1
|
Maurer DP, Vu M, Ramos ASF, Dugan HL, Khalife P, Geoghegan JC, Walker LM, Bajic G, Schmidt AG. Conserved sites on the influenza H1 and H3 hemagglutinin recognized by human antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619298. [PMID: 39484545 PMCID: PMC11526932 DOI: 10.1101/2024.10.22.619298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Monoclonal antibodies (mAbs) targeting the influenza hemagglutinin (HA) have the potential to be used as prophylactics or templates for next-generation vaccines that provide broad protection. Here, we isolated broad, subtype-neutralizing mAbs from human B cells targeting the H1 or H3 HA head as well as a unique mAb targeting the stem. The H1 mAbs target the previously defined lateral patch epitope on H1 HAs and recognize HAs from 1933 to 2021 in addition to a swine H1N1 virus with pandemic potential. Using directed evolution, we improved the neutralization potency of these H1 mAbs towards a contemporary H1 strain. Using deep mutational scanning of four antigenically distinct H1N1 viruses, we identified potential viral escape pathways. For the H3 mAbs we used cryo-EM to define the targeted epitopes: one mAb recognizes the side of the H3 head, accommodating the N133 glycan and a pocket underneath the receptor binding site. The other H3 mAb recognizes an epitope in the HA stem that overlaps with previously characterized mAbs, but with distinct antibody variable genes and mode of recognition. Collectively, these mAbs identify common sites recognized by broad, subtype-specific mAbs that may be elicited by next-generation vaccines.
Collapse
|
2
|
Wang H, Zhang S, Xue W, Zeng Y, Liu L, Cui L, Liu H, Zhang Y, Chen L, Nie M, Zhang R, Chen Z, Hong C, Zheng Q, Cheng T, Gu Y, Li T, Xia N, Li S. Glycoprotein E-Displaying Nanoparticles Induce Robust Neutralizing Antibodies and T-Cell Response against Varicella Zoster Virus. Int J Mol Sci 2024; 25:9872. [PMID: 39337359 PMCID: PMC11432701 DOI: 10.3390/ijms25189872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The Varicella zoster virus (VZV), responsible for both varicella (chickenpox) and herpes zoster (shingles), presents significant global health challenges. While primary VZV infection primarily affects children, leading to chickenpox, reactivation in later life can result in herpes zoster and associated post-herpetic neuralgia, among other complications. Vaccination remains the most effective strategy for VZV prevention, with current vaccines largely based on the attenuated vOka strains. Although these vaccines are generally effective, they can induce varicella-like rashes and have sparked concerns regarding cell virulence. As a safer alternative, subunit vaccines circumvent these issues. In this study, we developed a nanoparticle-based vaccine displaying the glycoprotein E (gE) on ferritin particles using the SpyCatcher/SpyTag system, termed FR-gE. This FR-gE nanoparticle antigen elicited substantial gE-specific binding and VZV-neutralizing antibody responses in BALB/c and C57BL/6 mice-responses that were up to 3.2-fold greater than those elicited by the subunit gE while formulated with FH002C, aluminum hydroxide, or a liposome-based XUA01 adjuvant. Antibody subclass analysis revealed that FR-gE produced comparable levels of IgG1 and significantly higher levels of IgG2a compared to subunit gE, indicating a Th1-biased immune response. Notably, XUA01-adjuvanted FR-gE induced a significant increase in neutralizing antibody response compared to the live attenuated varicella vaccine and recombinant vaccine, Shingrix. Furthermore, ELISPOT assays demonstrated that immunization with FR-gE/XUA01 generated IFN-γ and IL-2 levels comparable to those induced by Shingrix. These findings underscore the potential of FR-gE as a promising immunogen for the development of varicella and herpes zoster vaccines.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Yarong Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Liqin Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuyun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Lin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Meifeng Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Rongwei Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Congming Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Jones CH, Hauguel T, Beitelshees M, Davitt M, Welch V, Lindert K, Allen P, True JM, Dolsten M. Deciphering immune responses: a comparative analysis of influenza vaccination platforms. Drug Discov Today 2024; 29:104125. [PMID: 39097221 DOI: 10.1016/j.drudis.2024.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Influenza still poses a significant challenge due to its high mutation rates and the low effectiveness of traditional vaccines. At present, antibodies that neutralize the highly variable hemagglutinin antigen are a major driver of the observed variable protection. To decipher how influenza vaccines can be improved, an analysis of licensed vaccine platforms was conducted, contrasting the strengths and limitations of their different mechanisms of protection. Through this review, it is evident that these vaccines do not elicit the robust cellular immune response critical for protecting high-risk groups. Emerging platforms, such as RNA vaccines, that induce robust cellular responses that may be additive to the recognized mechanism of protection through hemagglutinin inhibition may overcome these constraints to provide broader, protective immunity. By combining both humoral and cellular responses, such platforms could help guide the future influenza vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Verna Welch
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | | | - Pirada Allen
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | - Jane M True
- Pfizer, Hudson Boulevard, New York, NY 10018, USA.
| | | |
Collapse
|
4
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
5
|
Alves K, Plested JS, Galbiati S, Chau G, Cloney-Clark S, Zhu M, Kalkeri R, Patel N, Smith K, Marcheschi A, Pfeiffer S, McFall H, Smith G, Glenn GM, Dubovsky F, Mallory RM. Immunogenicity and safety of a fourth homologous dose of NVX-CoV2373. Vaccine 2023:S0264-410X(23)00612-6. [PMID: 37271706 DOI: 10.1016/j.vaccine.2023.05.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has significantly reduced the efficacy of some approved vaccines. A fourth dose of NVX-CoV2373 (5 µg SARS-CoV-2 recombinant spike [rS] protein + 50 µg Matrix-M™ adjuvant; Novavax, Gaithersburg, MD) was evaluated to determine induction of cross-reactive antibodies to variants of concern. A phase II randomized study (NCT04368988) recruited participants in Australia and the United States to assess a primary series of NVX-CoV2373 followed by two booster doses (third and fourth doses at 6-month intervals) in adults 18-84 years of age. The primary series was administered when the SARS-CoV-2 ancestral strain was prevalent and the third and fourth doses while the Alpha and Delta variants were prevalent in AUS and US. Local/systemic reactogenicity was assessed the day of vaccination and for 6 days thereafter. Unsolicited adverse events (AEs) were reported. Immunogenicity was measured before, and 14 days after, fourth dose administration, using anti-spike serum immunoglobulin G (IgG) and neutralization assays against ancestral SARS-CoV-2 strain and Omicron sublineages. Among 1283 enrolled participants, 258 were randomized to receive the two-dose primary series, of whom 104 received a third dose, and 45 received a fourth dose of NVX-CoV2373. The incidence of local/systemic reactogenicity events increased after the first three doses of NVX-CoV2373 and leveled off after dose 4. Unsolicited AEs were reported in 9 % of participants after dose 4 (none of which were severe or serious). Anti-rS IgG levels and neutralization antibody titers increased following booster doses to a level approximately four-fold higher than that observed after the primary series, with a progressively narrowed gap in response between the ancestral strain and Omicron BA.5. A fourth dose of NVX-CoV2373 enhanced immunogenicity for ancestral and variant SARS-CoV-2 strains without increasing reactogenicity, indicating that updates to the vaccine composition may not be currently warranted.
Collapse
Affiliation(s)
- Katia Alves
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Joyce S Plested
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | | | - Gordon Chau
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | | | - Mingzhu Zhu
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Raj Kalkeri
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Kathy Smith
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Alex Marcheschi
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Susan Pfeiffer
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Heather McFall
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Gale Smith
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Gregory M Glenn
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | - Filip Dubovsky
- Novavax, Inc., 21 Firstfield Rd, Gaithersburg, MD 20878, USA.
| | | |
Collapse
|
6
|
Stertman L, Palm AKE, Zarnegar B, Carow B, Lunderius Andersson C, Magnusson SE, Carnrot C, Shinde V, Smith G, Glenn G, Fries L, Lövgren Bengtsson K. The Matrix-M™ adjuvant: A critical component of vaccines for the 21 st century. Hum Vaccin Immunother 2023; 19:2189885. [PMID: 37113023 PMCID: PMC10158541 DOI: 10.1080/21645515.2023.2189885] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Matrix-M™ adjuvant is a key component of several novel vaccine candidates. The Matrix-M adjuvant consists of two distinct fractions of saponins purified from the Quillaja saponaria Molina tree, combined with cholesterol and phospholipids to form 40-nm open cage-like nanoparticles, achieving potent adjuvanticity with a favorable safety profile. Matrix-M induces early activation of innate immune cells at the injection site and in the draining lymph nodes. This translates into improved magnitude and quality of the antibody response to the antigen, broadened epitope recognition, and the induction of a Th1-dominant immune response. Matrix-M-adjuvanted vaccines have a favorable safety profile and are well tolerated in clinical trials. In this review, we discuss the latest findings on the mechanisms of action, efficacy, and safety of Matrix-M adjuvant and other saponin-based adjuvants, with a focus on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine candidate NVX-CoV2373 developed to prevent coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Linda Stertman
- Department Product Development, Novavax AB, Uppsala, Sweden
| | | | | | - Berit Carow
- Department Product Development, Novavax AB, Uppsala, Sweden
| | | | - Sofia E Magnusson
- Department Alliance and Project Management, Novavax AB, Uppsala, Sweden
| | - Cecilia Carnrot
- Department Alliance and Project Management, Novavax AB, Uppsala, Sweden
| | - Vivek Shinde
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | - Gale Smith
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | - Gregory Glenn
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | - Louis Fries
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | | |
Collapse
|
7
|
Jiao C, Wang B, Chen P, Jiang Y, Liu J. Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front Immunol 2023; 14:1086297. [PMID: 36875062 PMCID: PMC9981632 DOI: 10.3389/fimmu.2023.1086297] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The conserved protective epitopes of hemagglutinin (HA) are essential to the design of a universal influenza vaccine and new targeted therapeutic agents. Over the last 15 years, numerous broadly neutralizing antibodies (bnAbs) targeting the HA of influenza A viruses have been isolated from B lymphocytes of human donors and mouse models, and their binding epitopes identified. This work has brought new perspectives for identifying conserved protective epitopes of HA. In this review, we succinctly analyzed and summarized the antigenic epitopes and functions of more than 70 kinds of bnAb. The highly conserved protective epitopes are concentrated on five regions of HA: the hydrophobic groove, the receptor-binding site, the occluded epitope region of the HA monomers interface, the fusion peptide region, and the vestigial esterase subdomain. Our analysis clarifies the distribution of the conserved protective epitope regions on HA and provides distinct targets for the design of novel vaccines and therapeutics to combat influenza A virus infection.
Collapse
Affiliation(s)
- Chenchen Jiao
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Qian C, Yang Y, Xu Q, Wang Z, Chen J, Chi X, Yu M, Gao F, Xu Y, Lu Y, Sun H, Shen J, Wang D, Zhou L, Li T, Wang Y, Zheng Q, Yu H, Zhang J, Gu Y, Xia N, Li S. Characterization of an Escherichia coli-derived triple-type chimeric vaccine against human papillomavirus types 39, 68 and 70. NPJ Vaccines 2022; 7:134. [PMID: 36316367 PMCID: PMC9622684 DOI: 10.1038/s41541-022-00557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.
Collapse
Affiliation(s)
- Ciying Qian
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yurou Yang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qin Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Zhiping Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jie Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Xin Chi
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Miao Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Fei Gao
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yujie Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yihan Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hui Sun
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jingjia Shen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Daning Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Lizhi Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Tingting Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yingbin Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qingbing Zheng
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hai Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jun Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ying Gu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ningshao Xia
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Shaowei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
9
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
10
|
Xia M, Hoq MR, Huang P, Jiang W, Jiang X, Tan M. Bioengineered pseudovirus nanoparticles displaying the HA1 antigens of influenza viruses for enhanced immunogenicity. NANO RESEARCH 2022; 15:4181-4190. [PMID: 35106126 PMCID: PMC8795936 DOI: 10.1007/s12274-021-4011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 04/14/2023]
Abstract
Even with implementation of current influenza vaccines, influenza still claims up to 500,000 lives worldwide annually, indicating a need for a better vaccine strategy. We have developed a technology to generate unique S60-HA1 pseudovirus nanoparticles (PVNPs) that display the receptor-binding HA1 domains of influenza viruses. Each self-assembled S60-HA1 PVNP consists of a T = 1 icosahedral S60 nanoparticle that resembles the inner shell of norovirus capsid and 60 surface-displayed HA1 antigens that are excellent vaccine targets. Soluble S60-HA1 PVNPs presenting HA1 antigens of H7N9 influenza virus subtypes have been produced efficiently in large amount. Their three-dimensional (3D) structures have been solved by cryogenic electron microscopy. The PVNP-displayed HA1 antigens react with HA-specific antibody, and retain authentic sialic acid binding specificity and hemagglutinate human erythrocytes. The PVNPs are highly immunogenic, eliciting high titers of HA1-specific antibodies in mice and the mouse sera strongly inhibited hemagglutinations of homologous and heterologous influenza virus HA proteins. Therefore, the S60-HA1 PVNPs may provide useful reagents to study influenza viruses and offer a potential new vaccine tactic to fight the deadly influenza disease.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Md Rejaul Hoq
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, IN 47907 USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, IN 47907 USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| |
Collapse
|
11
|
Caradonna TM, Schmidt AG. Protein engineering strategies for rational immunogen design. NPJ Vaccines 2021; 6:154. [PMID: 34921149 PMCID: PMC8683408 DOI: 10.1038/s41541-021-00417-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Antibody immunodominance refers to the preferential and asymmetric elicitation of antibodies against specific epitopes on a complex protein antigen. Traditional vaccination approaches for rapidly evolving pathogens have had limited success in part because of this phenomenon, as elicited antibodies preferentially target highly variable regions of antigens, and thus do not confer long lasting protection. While antibodies targeting functionally conserved epitopes have the potential to be broadly protective, they often make up a minority of the overall repertoire. Here, we discuss recent protein engineering strategies used to favorably alter patterns of immunodominance, and selectively focus antibody responses toward broadly protective epitopes in the pursuit of next-generation vaccines for rapidly evolving pathogens.
Collapse
Affiliation(s)
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Arunachalam AB, Post P, Rudin D. Unique features of a recombinant haemagglutinin influenza vaccine that influence vaccine performance. NPJ Vaccines 2021; 6:144. [PMID: 34857771 PMCID: PMC8640007 DOI: 10.1038/s41541-021-00403-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
The influenza vaccine field has been constantly evolving to improve the speed, scalability, and flexibility of manufacturing, and to improve the breadth and longevity of the protective immune response across age groups, giving rise to an array of next generation vaccines in development. Among these, the recombinant influenza vaccine tetravalent (RIV4), using a baculovirus expression vector system to express recombinant haemagglutinin (rHA) in insect cells, is the only one to have reached the market and has been studied extensively. We describe how the unique structural features of rHA in RIV4 improve protective immune responses compared to conventional influenza vaccines made from propagated influenza virus. In addition to the sequence integrity, characteristic of recombinant proteins, unique post-translational processing of the rHA in insect cells instills favourable tertiary and quaternary structural features. The absence of protease-driven cleavage and addition of simple N-linked glycans help to preserve and expose certain conserved epitopes on HA molecules, which are likely responsible for the high levels of broadly cross-reactive and protective antibodies with rare specificities observed with RIV4. Furthermore, the presence of uniform compact HA oligomers and absence of egg proteins, viral RNA or process impurities, typically found in conventional vaccines, are expected to eliminate potential adverse reactions to these components in susceptible individuals with the use of RIV4. These distinct structural features and purity of the recombinant HA vaccine thus provide a number of benefits in vaccine performance which can be extended to other viral targets, such as for COVID-19.
Collapse
Affiliation(s)
- Arun B Arunachalam
- Analytical Sciences, R&D Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, 18370, USA.
| | - Penny Post
- Regulatory Affairs, Protein Sciences, a Sanofi Company, 1000 Research Parkway, Meriden, CT, 06450, USA
| | - Deborah Rudin
- Global Medical Affairs, Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, 18370, USA
| |
Collapse
|
13
|
Ftouh M, Kalboussi N, Abid N, Sfar S, Mignet N, Bahloul B. Contribution of Nanotechnologies to Vaccine Development and Drug Delivery against Respiratory Viruses. PPAR Res 2021; 2021:6741290. [PMID: 34721558 PMCID: PMC8550859 DOI: 10.1155/2021/6741290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
According to the Center for Disease Control and Prevention (CDC), the coronavirus disease 2019, a respiratory viral illness linked to significant morbidity, mortality, production loss, and severe economic depression, was the third-largest cause of death in 2020. Respiratory viruses such as influenza, respiratory syncytial virus, SARS-CoV-2, and adenovirus, are among the most common causes of respiratory illness in humans, spreading as pandemics or epidemics throughout all continents. Nanotechnologies are particles in the nanometer range made from various compositions. They can be lipid-based, polymer-based, protein-based, or inorganic in nature, but they are all bioinspired and virus-like. In this review, we aimed to present a short review of the different nanoparticles currently studied, in particular those which led to publications in the field of respiratory viruses. We evaluated those which could be beneficial for respiratory disease-based viruses; those which already have contributed, such as lipid nanoparticles in the context of COVID-19; and those which will contribute in the future either as vaccines or antiviral drug delivery systems. We present a short assessment based on a critical selection of evidence indicating nanotechnology's promise in the prevention and treatment of respiratory infections.
Collapse
Affiliation(s)
- Mahdi Ftouh
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nesrine Kalboussi
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
- Sahloul University Hospital, Pharmacy Department, Sousse, Tunisia
| | - Nabil Abid
- Department of Biotechnology, High Institute of Biotechnology of Sidi Thabet, University of Manouba, BP-66, 2020 Ariana, Tunis, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia
| | - Souad Sfar
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nathalie Mignet
- University of Paris, INSERM, CNRS, UTCBS, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Badr Bahloul
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| |
Collapse
|
14
|
Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2021; 22:73-84. [PMID: 34563277 DOI: 10.1016/s1473-3099(21)00192-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Improved seasonal influenza vaccines for older adults that can induce broadly cross-reactive antibodies and enhanced T-cell responses, particularly against A H3N2 viruses, while avoiding egg-adaptive antigenic changes, are needed. We aimed to show that the Matrix-M-adjuvanted quadrivalent nanoparticle influenza vaccine (qNIV) was immunologically non-inferior to a licensed, standard-dose quadrivalent inactivated influenza vaccine (IIV4) in older adults. METHODS This was a phase 3 randomised, observer-blinded, active-comparator controlled trial done across 19 US community-based clinical research sites during the 2019-20 influenza season. Participants were clinically stable and community-dwelling, aged at least 65 years, and were randomised in a 1:1 ratio using an interactive web response system to receive a single intramuscular dose of qNIV or IIV4. The primary objective was to describe safety and show that qNIV was immunologically non-inferior to IIV4. The primary outcomes were adverse events by treatment group and comparative haemagglutination-inhibiting antibody responses (assayed with egg-propagated virus) on day 28, summarised in terms of the ratio of geometric mean titres (GMTRqNIV/IIV4) and seroconversion rate (SCR) difference between participants receiving qNIV or IIV4 for all four vaccine homologous influenza strains. The immunogenicity outcome was measured in the per-protocol population. Non-inferiority was shown if the lower bound of the two-sided 95% CI on the GMTRqNIV/IIV4 was at least 0·67 and the lower bound of the two-sided 95% CI on the SCR difference -was at least -10%. The study is registered with clinicaltrials.gov, NCT04120194, and is active and not recruiting. FINDINGS 2742 adults were assessed for eligibility and 2654 were enrolled and randomised between Oct 14, 2019, and Oct 25, 2019; 1333 participants were randomised to the qNIV group and 1319 to the IIV4 group (two participants withdrew consent before being assigned to a group). qNIV showed immunological non-inferiority to IIV4: GMTRqNIV/IIV4 for the four vaccine homologous influenza strains was A/Brisbane 1·09 (95% CI 1·03 to 1·15), A/Kansas 1·19 (1·11 to 1·27), B/Maryland 1·03 (0·99 to 1·07), and B/Phuket 1·23 (1·16 to 1·29); and SCR difference was A/Brisbane 5·0 (95% CI 1·9 to 8·1), A/Kansas 7·3 (3·6 to 11·1), B/Maryland 0·5 (-1·9 to 2·9), and B/Phuket 8·5 (5·0 to 11·9). 659 (49·4%) of 1333 of participants in the qNIV group and 551 (41·8%) of 1319 participants in the IIV4 group had at least one treatment-emergent adverse event. More solicited adverse events were reported by participants in the qNIV group (551 [41·3%] of 1333) than in the IIV4 group (420 [31·8%] of 1319), and were comprised primarily of mild to moderate transient injection site pain (341 [25·6%] in the qNIV group vs 212 [16·1%] in the IIV4 group). INTERPRETATION qNIV was well tolerated and produced qualitatively and quantitatively enhanced humoral and cellular immune response in older adults compared with IIV4. qNIV might enhance the effectiveness of seasonal influenza vaccination, and future studies to show clinical efficacy are planned. FUNDING Novavax.
Collapse
|
15
|
Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, Yameogo P, Valia D, Tegneri M, Ouedraogo F, Soma R, Sawadogo S, Sorgho F, Derra K, Rouamba E, Orindi B, Ramos Lopez F, Flaxman A, Cappuccini F, Kailath R, Elias S, Mukhopadhyay E, Noe A, Cairns M, Lawrie A, Roberts R, Valéa I, Sorgho H, Williams N, Glenn G, Fries L, Reimer J, Ewer KJ, Shaligram U, Hill AVS, Tinto H. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet 2021; 397:1809-1818. [PMID: 33964223 PMCID: PMC8121760 DOI: 10.1016/s0140-6736(21)00943-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy. METHODS In this double-blind, randomised, controlled, phase 2b trial, the low-dose circumsporozoite protein-based vaccine R21, with two different doses of adjuvant Matrix-M (MM), was given to children aged 5-17 months in Nanoro, Burkina Faso-a highly seasonal malaria transmission setting. Three vaccinations were administered at 4-week intervals before the malaria season, with a fourth dose 1 year later. All vaccines were administered intramuscularly into the thigh. Group 1 received 5 μg R21 plus 25 μg MM, group 2 received 5 μg R21 plus 50 μg MM, and group 3, the control group, received rabies vaccinations. Children were randomly assigned (1:1:1) to groups 1-3. An independent statistician generated a random allocation list, using block randomisation with variable block sizes, which was used to assign participants. Participants, their families, and the local study team were all masked to group allocation. Only the pharmacists preparing the vaccine were unmasked to group allocation. Vaccine safety, immunogenicity, and efficacy were evaluated over 1 year. The primary objective assessed protective efficacy of R21 plus MM (R21/MM) from 14 days after the third vaccination to 6 months. Primary analyses of vaccine efficacy were based on a modified intention-to-treat population, which included all participants who received three vaccinations, allowing for inclusion of participants who received the wrong vaccine at any timepoint. This trial is registered with ClinicalTrials.gov, NCT03896724. FINDINGS From May 7 to June 13, 2019, 498 children aged 5-17 months were screened, and 48 were excluded. 450 children were enrolled and received at least one vaccination. 150 children were allocated to group 1, 150 children were allocated to group 2, and 150 children were allocated to group 3. The final vaccination of the primary series was administered on Aug 7, 2019. R21/MM had a favourable safety profile and was well tolerated. The majority of adverse events were mild, with the most common event being fever. None of the seven serious adverse events were attributed to the vaccine. At the 6-month primary efficacy analysis, 43 (29%) of 146 participants in group 1, 38 (26%) of 146 participants in group 2, and 105 (71%) of 147 participants in group 3 developed clinical malaria. Vaccine efficacy was 74% (95% CI 63-82) in group 1 and 77% (67-84) in group 2 at 6 months. At 1 year, vaccine efficacy remained high, at 77% (67-84) in group 1. Participants vaccinated with R21/MM showed high titres of malaria-specific anti-Asn-Ala-Asn-Pro (NANP) antibodies 28 days after the third vaccination, which were almost doubled with the higher adjuvant dose. Titres waned but were boosted to levels similar to peak titres after the primary series of vaccinations after a fourth dose administered 1 year later. INTERPRETATION R21/MM appears safe and very immunogenic in African children, and shows promising high-level efficacy. FUNDING The European & Developing Countries Clinical Trials Partnership, Wellcome Trust, and National Institute for Health Research Oxford Biomedical Research Centre.
Collapse
Affiliation(s)
- Mehreen S Datoo
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Magloire H Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Ousmane Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Duncan Bellamy
- The Jenner Institute Laboratories, University of Oxford, UK
| | - Prisca Yameogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Daniel Valia
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Moubarak Tegneri
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Florence Ouedraogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Rachidatou Soma
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Seydou Sawadogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Faizatou Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Karim Derra
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Eli Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | - Fernando Ramos Lopez
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amy Flaxman
- The Jenner Institute Laboratories, University of Oxford, UK
| | | | - Reshma Kailath
- The Jenner Institute Laboratories, University of Oxford, UK
| | - Sean Elias
- The Jenner Institute Laboratories, University of Oxford, UK
| | | | - Andres Noe
- The Jenner Institute Laboratories, University of Oxford, UK
| | - Matthew Cairns
- London School of Hygiene & Tropical Medicine, London, UK
| | - Alison Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | | | | | | | - Katie J Ewer
- The Jenner Institute Laboratories, University of Oxford, UK
| | | | - Adrian V S Hill
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK; The Jenner Institute Laboratories, University of Oxford, UK.
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso.
| |
Collapse
|
16
|
Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021; 11:334. [PMID: 33920215 PMCID: PMC8069851 DOI: 10.3390/life11040334] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are increasingly used for vaccine development and drug delivery. Assembly of VLPs from purified monomers in a chemically defined reaction is advantageous compared to in vivo assembly, because it avoids encapsidation of host-derived components and enables loading with added cargoes. This review provides an overview of ex cella VLP production methods focusing on capsid protein production, factors that impact the in vitro assembly, and approaches to characterize in vitro VLPs. The uses of in vitro produced VLPs as vaccines and for therapeutic delivery are also reported.
Collapse
Affiliation(s)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| |
Collapse
|
17
|
Tong J, Zhu C, Lai H, Feng C, Zhou D. Potent Neutralization Antibodies Induced by a Recombinant Trimeric Spike Protein Vaccine Candidate Containing PIKA Adjuvant for COVID-19. Vaccines (Basel) 2021; 9:296. [PMID: 33810026 PMCID: PMC8004863 DOI: 10.3390/vaccines9030296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The structures of immunogens that elicit the most potent neutralization antibodies to prevent COVID-19 infection are still under investigation. In this study, we tested the efficacy of a recombinant trimeric Spike protein containing polyI:C (PIKA) adjuvant in mice immunized by a 0-7-14 day schedule. The results showed that a Spike protein-specific antibody was induced at Day 21 with titer of above 50,000 on average, as measured by direct binding. The neutralizing titer was above 1000 on average, as determined by a pseudo-virus using monoclonal antibodies (40592-MM57 and 40591-MM43) with IC50 at 1 μg/mL as standards. The protein/peptide array-identified receptor-binding domain (RBD) was considered as immunodominant. No linear epitopes were found in the RBD, although several linear epitopes were found in the C-terminal domain right after the RBD and heptad repeat regions. Our study supports the efficacy of a recombinant trimeric Spike protein vaccine candidate for COVID-19 that is safe and ready for storage and distribution in developing countries.
Collapse
Affiliation(s)
- Jiao Tong
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Chenxi Zhu
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Hanyu Lai
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Chunchao Feng
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Dapeng Zhou
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| |
Collapse
|
18
|
Shinde V, Cai R, Plested J, Cho I, Fiske J, Pham X, Zhu M, Cloney-Clark S, Wang N, Zhou H, Zhou B, Patel N, Massare MJ, Fix A, Spindler M, Thomas DN, Smith G, Fries L, Glenn GM. Induction of Cross-reactive Hemagglutination Inhibiting Antibody and Polyfunctional CD4+ T-cell Responses by a Recombinant Matrix-M-Adjuvanted Hemagglutinin Nanoparticle Influenza Vaccine. Clin Infect Dis 2020; 73:e4278-e4287. [PMID: 33146720 PMCID: PMC8664440 DOI: 10.1093/cid/ciaa1673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Background Recurrent reports of suboptimal influenza vaccine effectiveness have renewed calls to develop improved, broadly cross-protective influenza vaccines. Here, we evaluated the safety and immunogenicity of a novel, saponin (Matrix-M)–adjuvanted, recombinant hemagglutinin (HA) quadrivalent nanoparticle influenza vaccine (qNIV). Methods We conducted a randomized, observer-blind, comparator-controlled (trivalent high-dose inactivated influenza vaccine [IIV3-HD] or quadrivalent recombinant influenza vaccine [RIV4]), safety and immunogenicity trial of qNIV (5 doses/formulations) in healthy adults ≥65 years. Vaccine immunogenicity was measured by hemagglutination-inhibition assays using reagents that express wild-type hemagglutination inhibition (wt-HAI) sequences and cell-mediated immune responses. Results A total of 1375 participants were randomized, immunized, and followed for safety and immunogenicity. Matrix-M–adjuvanted qNIV induced superior wt-HAI antibody responses against 5 of 6 homologous or drifted strains compared with unadjuvanted qNIV. Adjuvanted qNIV induced post-vaccination wt-HAI antibody responses at day 28 that were statistically higher than IIV3-HD against a panel of homologous or drifted A/H3N2 strains, similar to IIV3-HD against homologous A/H1N1 and B (Victoria) strains and similar to RIV4 against all homologous and drifted strains evaluated. The qNIV formulation with 75 µg Matrix-M adjuvant induced substantially higher post-vaccination geometric mean fold increases of influenza HA-specific polyfunctional CD4+ T cells compared with IIV3-HD or RIV4. Overall, similar frequencies of solicited and unsolicited adverse events were reported in all treatment groups. Conclusions qNIV with 75 µg Matrix-M adjuvant was well tolerated and induced robust antibody and cellular responses, notably against both homologous and drifted A/H3N2 viruses. Further investigation in a pivotal phase 3 trial is underway. Clinical Trials Registration NCT03658629.
Collapse
Affiliation(s)
| | - Rongman Cai
- Previously with Novavax, Inc., Gaithersburg, MD, USA
| | | | | | | | - Xuan Pham
- Previously with Novavax, Inc., Gaithersburg, MD, USA
| | | | | | - Nan Wang
- Previously with Novavax, Inc., Gaithersburg, MD, USA
| | | | - Bin Zhou
- Novavax, Inc., Gaithersburg, MD, USA
| | | | | | - Amy Fix
- Previously with Novavax, Inc., Gaithersburg, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Progress in the Development of Universal Influenza Vaccines. Viruses 2020; 12:v12091033. [PMID: 32957468 PMCID: PMC7551969 DOI: 10.3390/v12091033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses pose a significant threat to human health. They are responsible for a large number of deaths annually and have a serious impact on the global economy. There are numerous influenza virus subtypes, antigenic variations occur continuously, and epidemic trends are difficult to predict—all of which lead to poor outcomes of routine vaccination against targeted strain subtypes. Therefore, the development of universal influenza vaccines still constitutes the ideal strategy for controlling influenza. This article reviews the progress in development of universal vaccines directed against the conserved regions of hemagglutinin (HA), neuraminidase (NA), and other structural proteins of influenza viruses using new technologies and strategies with the goals of enhancing our understanding of universal influenza vaccines and providing a reference for research into the exploitation of natural immunity against influenza viruses.
Collapse
|
20
|
Rockman S, Laurie K, Barr I. Pandemic Influenza Vaccines: What did We Learn from the 2009 Pandemic and are We Better Prepared Now? Vaccines (Basel) 2020; 8:E211. [PMID: 32392812 PMCID: PMC7349738 DOI: 10.3390/vaccines8020211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
In 2009, a novel A(H1N1) influenza virus emerged with rapid human-to-human spread and caused the first pandemic of the 21st century. Although this pandemic was considered mild compared to the previous pandemics of the 20th century, there was still extensive disease and death. This virus replaced the previous A(H1N1) and continues to circulate today as a seasonal virus. It is well established that vaccines are the most effective method to alleviate the mortality and morbidity associated with influenza virus infections, but the 2009 A(H1N1) influenza pandemic, like all significant infectious disease outbreaks, presented its own unique set of problems with vaccine supply and demand. This manuscript describes the issues that confronted governments, international agencies and industries in developing a well-matched vaccine in 2009, and identifies the key improvements and remaining challenges facing the world as the next influenza pandemic inevitably approaches.
Collapse
Affiliation(s)
- Steven Rockman
- Seqirus, 63 Poplar Road, Parkville 3052, Victoria, Australia; (S.R.); (K.L.)
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Karen Laurie
- Seqirus, 63 Poplar Road, Parkville 3052, Victoria, Australia; (S.R.); (K.L.)
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ian Barr
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| |
Collapse
|
21
|
Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, Xia N. Recent Progress on the Versatility of Virus-Like Particles. Vaccines (Basel) 2020; 8:vaccines8010139. [PMID: 32244935 PMCID: PMC7157238 DOI: 10.3390/vaccines8010139] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-like particles (VLPs) are multimeric nanostructures composed of one or more structural proteins of a virus in the absence of genetic material. Having similar morphology to natural viruses but lacking any pathogenicity or infectivity, VLPs have gradually become a safe substitute for inactivated or attenuated vaccines. VLPs can achieve tissue-specific targeting and complete and effective cell penetration. With highly ordered epitope repeats, VLPs have excellent immunogenicity and can induce strong cellular and humoral immune responses. In addition, as a type of nanocarrier, VLPs can be used to display antigenic epitopes or deliver small molecules. VLPs have thus become powerful tools for vaccinology and biomedical research. This review highlights the versatility of VLPs in antigen presentation, drug delivery, and vaccine technology.
Collapse
Affiliation(s)
- Ciying Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Xinlin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qin Xu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Zhiping Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Jie Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| |
Collapse
|