1
|
Carresi C, Pauletto M, Fiore E, Musolino V, Britti D. Editorial: Green Veterinary Pharmacology and Toxicology: a "One Health" Approach milestone. Front Vet Sci 2024; 11:1476877. [PMID: 39315082 PMCID: PMC11417102 DOI: 10.3389/fvets.2024.1476877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Cristina Carresi
- Veterinary Pharmacology Laboratory, Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Enrico Fiore
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, Catanzaro, Italy
| |
Collapse
|
2
|
Marrelli M, De Luca M, Toma CC, Grande F, Occhiuzzi MA, Caruso R, Conforti F, Statti G. Enhancing the nitric oxide inhibitory activity using a combination of plant essential oils and mixture design approach. Heliyon 2024; 10:e31080. [PMID: 38803904 PMCID: PMC11128917 DOI: 10.1016/j.heliyon.2024.e31080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The synergistic effects of essential oils (EOs) from three aromatic plant species, Foeniculum vulgare subsp. piperitum (C.Presl) Bég. (FV), Origanum heracleoticum L. (OH) and Lavandula austroapennina N.G.Passal., Tundis & Upson. (LA), were evaluated for their inhibitory properties on nitric oxide production in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). We utilized a Design of Experiments (DoE) methodology to optimize a formulation by combining three Essential Oils (EOs), while simultaneously taking into account two response variables, maximization of NO inhibition with minimum cytotoxicity. The optimal blend of components was predicted, and the statistical outcome's efficacy was experimentally verified. The combination corresponding to 87.7 % FV, 12.3 % LA and 0.0 % OH showed high inhibitory effect (76.3 %) with negligible cytotoxicity (4.5 %). This research provides new information on the interactions among fennel, oregano and lavender essential oils and shows how they can synergistically inhibit in vitro LPS-induced NO production.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| | - Claudia-Crina Toma
- Pharmacology Department, Faculty of Pharmacy, Vasile Goldis Western University of Arad, 87 L. Rebreanu Str., 310045, Arad, Romania
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| | - Rosalba Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Cosenza, Italy
| |
Collapse
|
3
|
Lupia C, Castagna F, Bava R, Naturale MD, Zicarelli L, Marrelli M, Statti G, Tilocca B, Roncada P, Britti D, Palma E. Use of Essential Oils to Counteract the Phenomena of Antimicrobial Resistance in Livestock Species. Antibiotics (Basel) 2024; 13:163. [PMID: 38391549 PMCID: PMC10885947 DOI: 10.3390/antibiotics13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance is an increasingly widespread phenomenon that is of particular concern because of the possible consequences in the years to come. The dynamics leading to the resistance of microbial strains are diverse, but certainly include the incorrect use of veterinary drugs both in terms of dosage and timing of administration. Moreover, the drug is often administered in the absence of a diagnosis. Many active ingredients in pharmaceutical formulations are, therefore, losing their efficacy. In this situation, it is imperative to seek alternative treatment solutions. Essential oils are mixtures of compounds with different pharmacological properties. They have been shown to possess the antibacterial, anti-parasitic, antiviral, and regulatory properties of numerous metabolic processes. The abundance of molecules they contain makes it difficult for treated microbial species to develop pharmacological resistance. Given their natural origin, they are environmentally friendly and show little or no toxicity to higher animals. There are several published studies on the use of essential oils as antimicrobials, but the present literature has not been adequately summarized in a manuscript. This review aims to shed light on the results achieved by the scientific community regarding the use of essential oils to treat the main agents of bacterial infection of veterinary interest in livestock. The Google Scholar, PubMed, SciELO, and SCOPUS databases were used for the search and selection of studies. The manuscript aims to lay the foundations for a new strategy of veterinary drug use that is more environmentally friendly and less prone to the emergence of drug resistance phenomena.
Collapse
Affiliation(s)
- Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Fabio Castagna
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy
| | - Ludovica Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
García-Vicente EJ, Benito-Murcia M, Martín M, Rey-Casero I, Pérez A, González M, Alonso JM, Risco D. Evaluation of the Potential Effect of Postbiotics Obtained from Honey Bees against Varroa destructor and Their Combination with Other Organic Products. INSECTS 2024; 15:67. [PMID: 38249073 PMCID: PMC10816111 DOI: 10.3390/insects15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The Varroa destructor mite infests Apis mellifera colonies and causes significant harm. Traditional treatments have become less effective because of mite resistance development and can also generate residues inside beehives. This study aimed to gauge the efficacy of a beehive-derived postbiotic in reducing V. destructor viability and to explore its synergies with organic compounds. Four lactic acid bacteria (LAB) species, Leuconostoc mesenteroides, Lactobacillus helsingborgensis, Bacillus velezensis, and Apilactobacillus kunkeei, were isolated and tested in a postbiotic form (preparations of inanimate microorganisms and/or their components) via bioassays. L. mesenteroides, L. helsingborgensis, and B. velezensis notably reduced the mite viability compared to the control, and they were further tested together as a single postbiotic product (POS). Further bioassays were performed to assess the impact of the POS and its combinations with oxalic acid and oregano essential oil. The simple products and combinations (POS/Oregano, POS/Oxalic, Oregano/Oxalic, and POS/Oregano/Oxalic) decreased the mite viability. The most effective were the oxalic acid combinations (POS/Oregano/Oxalic, Oxalic/Oregano, POS/Oxalic), showing significant improvements compared to the individual products. These findings highlight the potential of combining organic products as a vital strategy for controlling V. destructor infection. This study suggests that these combinations could serve as essential tools for combating the impact of mites on bee colonies.
Collapse
Affiliation(s)
- Eduardo José García-Vicente
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10001 Cáceres, Spain;
| | - María Benito-Murcia
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - María Martín
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - Ismael Rey-Casero
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - Ana Pérez
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - María González
- Neobéitar S.L., Av. de Alemania, 6 1ºB, 10003 Cáceres, Spain; (M.B.-M.); (M.M.); (I.R.-C.); (A.P.); (M.G.)
| | - Juan Manuel Alonso
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10001 Cáceres, Spain;
| | - David Risco
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10001 Cáceres, Spain;
| |
Collapse
|
5
|
Bava R, Castagna F, Lupia C, Ruga S, Conforti F, Marrelli M, Argentieri MP, Musella V, Britti D, Statti G, Palma E. Phytochemical Composition and Pharmacological Efficacy Evaluation of Calamintha nepeta, Calamintha sylvatica, Lavandula austroapennina and Mentha piperita Essential Oils for the Control of Honeybee ( Apis mellifera) Varroosis. Animals (Basel) 2023; 14:69. [PMID: 38200800 PMCID: PMC10778109 DOI: 10.3390/ani14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Varroa destructor is currently considered the parasite that causes the greatest damage and economic losses to honeybee farms. Its presence is often associated with that of viral and bacterial pathogens, which ultimately leads to colony collapse. Careful control of the parasitic load is therefore necessary to avoid the onset of these events. Although chemical treatments are often in easily and quickly administered formulations, in recent years, there have been increasingly frequent reports of the onset of drug resistance phenomena, which must lead to reconsidering their use. Furthermore, chemical compounds can easily accumulate in the food matrices of the hive, with possible risks for the final consumer. In such a condition, it is imperative to find alternative treatment solutions. Essential oils (EOs) prove to be promising candidates due to their good efficacy and good environmental biodegradability. In this study, the acaricidal efficacy of the EOs of Calamintha sylvatica Bromf., Calamintha nepeta Savi, Lavandula austroapennina N.G. Passal. Tundis & Upson and Mentha piperita L., extracted from botanical species belonging to the Lamiaceae family, was evaluated. The test chosen for the evaluation was residual toxicity by contact. The examined EOs were diluted in Acetone to a concentration of 2, 1 and 0.5 mg/mL. At the highest concentration, the EOs demonstrated an acaricidal activity equal to 52% for C. nepeta, 60% for C. sylvatica, 80% for L. austroapennina and 68% for M. piperita. Of the EOs tested, therefore, Lavender proves to be a good candidate for subsequent evaluations in semi-field and field studies.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy; (R.B.); (C.L.); (S.R.); (V.M.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy; (R.B.); (C.L.); (S.R.); (V.M.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, CZ, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy; (R.B.); (C.L.); (S.R.); (V.M.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, CZ, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy; (R.B.); (C.L.); (S.R.); (V.M.); (D.B.); (E.P.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.C.); (M.M.); (G.S.)
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.C.); (M.M.); (G.S.)
| | - Maria Pia Argentieri
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, BA, Italy;
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy; (R.B.); (C.L.); (S.R.); (V.M.); (D.B.); (E.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy; (R.B.); (C.L.); (S.R.); (V.M.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.C.); (M.M.); (G.S.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy; (R.B.); (C.L.); (S.R.); (V.M.); (D.B.); (E.P.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, CZ, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, CZ, Italy
| |
Collapse
|
6
|
Bava R, Castagna F, Ruga S, Caminiti R, Nucera S, Bulotta RM, Naccari C, Britti D, Mollace V, Palma E. Protective Role of Bergamot Polyphenolic Fraction (BPF) against Deltamethrin Toxicity in Honeybees ( Apis mellifera). Animals (Basel) 2023; 13:3764. [PMID: 38136801 PMCID: PMC10741048 DOI: 10.3390/ani13243764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Pesticide-induced poisoning phenomena are a serious problem for beekeeping and can cause large losses of honeybee populations due to acute and sub-acute poisoning. The reduced responsiveness of honeybees to the damage caused by pesticides used in agriculture can be traced back to a general qualitative and quantitative impoverishment of the nectar resources of terrestrial ecosystems. Malnutrition is associated with a decline in the functionality of the immune system and the systems that are delegated to the detoxification of the organism. This research aimed to verify whether bergamot polyphenolic extract (BPF) could have protective effects against poisoning by the pyrethroid pesticide deltamethrin. The studies were conducted with caged honeybees under controlled conditions. Sub-lethal doses of pesticides and related treatments for BPF were administered. At a dose of 21.6 mg/L, deltamethrin caused mortality in all treated subjects (20 caged honeybees) after one day of administration. The groups where BPF (1 mg/kg) was added to the toxic solution recorded the survival of honeybees by up to three days. Comparing the honeybees of the groups in which the BPF-deltamethrin association was added to the normal diet (sugar solution) with those in which deltamethrin alone was added to the normal diet, the BPF group had a statistically significant reduction in the honeybee mortality rate (p ≤ 0.05) and a greater consumption of food. Therefore, it can be argued that the inclusion of BPF and its constituent antioxidants in the honeybee diet reduces toxicity and oxidative stress caused by oral intake of deltamethrin. Furthermore, it can be argued that BPF administration could compensate for metabolic energy deficits often induced by the effects of malnutrition caused by environmental degradation and standard beekeeping practices.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Clara Naccari
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Vincenzo Mollace
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
7
|
Bava R, Castagna F, Ruga S, Nucera S, Caminiti R, Serra M, Bulotta RM, Lupia C, Marrelli M, Conforti F, Statti G, Domenico B, Palma E. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee ( Apis mellifera) Pathogens. Pathogens 2023; 12:1260. [PMID: 37887776 PMCID: PMC10610010 DOI: 10.3390/pathogens12101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The most important pollinator for agricultural crops is the Western honeybee (Apis mellifera). During the winter and summer seasons, diseases and stresses of various kinds endanger honeybee numbers and production, resulting in expenses for beekeepers and detrimental effects on agriculture and ecosystems. Researchers are continually in search of therapies for honeybees using the resources of microbiology, molecular biology, and chemistry to combat diseases and improve the overall health of these important pollinating insects. Among the most investigated and most promising solutions are medicinal plants and their derivatives. The health of animals and their ability to fight disease can be supported by natural products (NPs) derived from living organisms such as plants and microbes. NPs contain substances that can reduce the effects of diseases by promoting immunity or directly suppressing pathogens, and parasites. This literature review summarises the advances that the scientific community has achieved over the years regarding veterinary treatments in beekeeping through the use of NPs. Their impact on the prevention and control of honeybee diseases is investigated both in trials that have been conducted in the laboratory and field studies.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Maria Serra
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy;
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Britti Domenico
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
8
|
Peritore AF, Gugliandolo E, Cuzzocrea S, Crupi R, Britti D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int J Mol Sci 2023; 24:11707. [PMID: 37511474 PMCID: PMC10380748 DOI: 10.3390/ijms241411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorinated and polyfluorinated alkyl substances (PFAS), more than 4700 in number, are a group of widely used man-made chemicals that accumulate in living things and the environment over time. They are known as "forever chemicals" because they are extremely persistent in our environment and body. Because PFAS have been widely used for many decades, their presence is evident globally, and their persistence and potential toxicity create concern for animals, humans and environmental health. They can have multiple adverse health effects, such as liver damage, thyroid disease, obesity, fertility problems, and cancer. The most significant source of living exposure to PFAS is dietary intake (food and water), but given massive industrial and domestic use, these substances are now punctually present not only domestically but also in the outdoor environment. For example, livestock and wildlife can be exposed to PFAS through contaminated water, soil, substrate, air, or food. In this review, we have analyzed and exposed the characteristics of PFAS and their various uses and reported data on their presence in the environment, from industrialized to less populated areas. In several areas of the planet, even in areas far from large population centers, the presence of PFAS was confirmed, both in marine and terrestrial animals (organisms). Among the most common PFAS identified are undoubtedly perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), two of the most widely used and, to date, among the most studied in terms of toxicokinetics and toxicodynamics. The objective of this review is to provide insights into the toxic potential of PFAS, their exposure, and related mechanisms.
Collapse
Affiliation(s)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, "Magna Græcia University" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Bava R, Castagna F, Palma E, Ceniti C, Millea M, Lupia C, Britti D, Musella V. Prevalence of Varroa destructor in Honeybee (Apis mellifera) Farms and Varroosis Control Practices in Southern Italy. Microorganisms 2023; 11:1228. [PMID: 37317203 DOI: 10.3390/microorganisms11051228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The majority of honeybee farms in industrialized countries currently base their Varroa destructor control programs on the use of acaricides in conjunction with other management practices. However, the outcomes of these practices are often misunderstood and have only been studied to a limited extent. Better yields are guaranteed by having hives with low infection levels in the spring. Therefore, it is crucial to understand which beekeeping practices can result in increased control effectiveness. This study aimed to analyze the potential effects of environmental factors and beekeeping practices on the dynamics of V. destructor population. Experimental evidence was obtained by interpolating percentage infestation data from diagnoses conducted on several apiaries in the Calabria region (Southern Italy) with data acquired from a questionnaire on pest control strategies. Data on climatic temperature during the different study periods were also taken into account. The study was conducted over two years and involved 84 Apis mellifera farms. For each apiary, the diagnosis of infestation was made on a minimum of 10 hives. In total, 840 samples of adult honeybees were analyzed in the field to determine the level of infestation. In 2020, 54.7% of the inspected apiaries tested positive for V. destructor, and in 2021, 50% tested positive, according to a study of the field test findings (taking into account a threshold of 3% in July). A significant effect of the number of treatments on parasite prevalence was found. The results showed a significant reduction in the infestation rate in apiaries that received more than two treatments each year. Furthermore, it was shown that management practices, such as drone brood removal and frequent queen replacement, have a statistically significant impact on the infestation rate. The analysis of the questionnaires revealed some critical issues. In particular, only 50% of the interviewed beekeepers diagnosed infestation on samples of adult bees, and only 69% practiced drug rotation. In conclusion, it is only possible to maintain the infestation rate at an acceptable threshold by implementing integrated pest management (IPM) programs and using good beekeeping practices (GBPs).
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Institute of Research for Food Safety & Health (IRC-FISH), Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Maurizio Millea
- ARA Calabria (Calabria Regional Breeders Association), Via Umberto Boccioni, 88046 Lamezia Terme, Italy
| | - Carmine Lupia
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Bava R, Castagna F, Palma E, Marrelli M, Conforti F, Musolino V, Carresi C, Lupia C, Ceniti C, Tilocca B, Roncada P, Britti D, Musella V. Essential Oils for a Sustainable Control of Honeybee Varroosis. Vet Sci 2023; 10:vetsci10050308. [PMID: 37235392 DOI: 10.3390/vetsci10050308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Varroa destructor parasite is the main obstacle to the survival of honey bee colonies. Pest control mainly involves the use of synthetic drugs which, used with the right criteria and in rotation, are able to ensure that infestation levels are kept below the damage threshold. Although these drugs are easy to use and quick to apply, they have numerous disadvantages. Their prolonged use has led to the emergence of pharmacological resistance in treated parasite populations; furthermore, the active ingredients and/or their metabolites accumulate in the beehive products with the possibility of risk for the end consumer. Moreover, the possibility of subacute and chronic toxicity phenomena for adult honeybees and their larval forms must be considered. In this scenario, eco-friendly products derived from plant species have aroused great interest over the years. In recent decades, several studies have been carried out on the acaricidal efficacy of plant essential oils (EOs). Despite the swarming of laboratory and field studies, however, few EO products have come onto the market. Laboratory studies have often yielded different results even for the same plant species. The reason for this discrepancy lies in the various study techniques employed as well as in the variability of the chemical compositions of plants. The purpose of this review is to take stock of the research on the use of EOs to control the V. destructor parasite. It begins with an extensive discussion of the characteristics, properties, and mechanisms of action of EOs, and then examines the laboratory and field tests carried out. Finally, an attempt is made to standardize the results and open up new lines of study in future.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Mediterranean Etnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Etnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Cilia G, Nanetti A. Challenges and Advances in Bee Health and Diseases. Vet Sci 2023; 10:vetsci10040253. [PMID: 37104408 PMCID: PMC10143450 DOI: 10.3390/vetsci10040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding the health status of bees is crucial in assessing the epidemiology of pathogens that cause diseases in honey bee (Apis mellifera) colonies and wild bees [...]
Collapse
|
12
|
Therapeutic Use of Bee Venom and Potential Applications in Veterinary Medicine. Vet Sci 2023; 10:vetsci10020119. [PMID: 36851423 PMCID: PMC9965945 DOI: 10.3390/vetsci10020119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Apitherapy is a branch of alternative medicine that consists of the treatment of diseases through products collected, processed, and secreted by bees, specifically pollen, propolis, honey, royal jelly, and bee venom. In traditional medicine, the virtues of honey and propolis have been well-known for centuries. The same, however, cannot be said for venom. The use of bee venom is particularly relevant for many therapeutic aspects. In recent decades, scientific studies have confirmed and enabled us to understand its properties. Bee venom has anti-inflammatory, antioxidant, central nervous system inhibiting, radioprotective, antibacterial, antiviral, and antifungal properties, among others. Numerous studies have often been summarised in reviews of the scientific literature that have focused on the results obtained with mouse models and their subsequent transposition to the human patient. In contrast, few reviews of scientific work on the use of bee venom in veterinary medicine exist. This review aims to take stock of the research achievements in this particular discipline, with a view to a recapitulation and stabilisation in the different research fields.
Collapse
|
13
|
Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Vet Sci 2022; 9:vetsci9120684. [PMID: 36548845 PMCID: PMC9784571 DOI: 10.3390/vetsci9120684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Varroatosis is an important parasitic disease of Apis mellifera caused by the mite Varroa destructor (V. destructor). The parasite is able to transmit numerous pathogens to honeybees which can lead to colony collapse. In recent years, the effectiveness of authorized drug products has decreased due to increasing resistance phenomena. Therefore, the search for alternatives to commercially available drugs is mandatory. In this context, essential oils (EOs) prove to be a promising choice to be studied for their known acaricide properties. In this research work, the acaricide activity of EO vapours isolated from the epigeal part (whole plant) of fennel (Foeniculum vulgare sbps. piperitum) and its three fractions (leaves, achenes and flowers) against V. destructor was evaluated. The effectiveness of fumigation was studied using two methods. The first involved prolonged exposure of mites to oil vapour for variable times. After exposure, the five mites in each replicate were placed in a Petri dish with an Apis mellifera larva. Mortality, due to chronic toxicity phenomena, was assessed after 48 h. The second method aimed to translate the results obtained from the in vitro test into a semi-field experiment. Therefore, two-level cages were set up. In the lower compartment of the cage, a material releasing oil vapours was placed; in the upper compartment, Varroa-infested honeybees were set. The results of the first method showed that the increase in mortality was directly proportional to exposure time and concentration. The whole plant returned 68% mortality at the highest concentration (2 mg/mL) and highest exposure time (48 h control), while the leaves, achenes and flowers returned 64%, 52% and 56% mortality, respectively. In the semi-field experiment, a concentration up to 20 times higher than the one used in the in vitro study was required for the whole plant to achieve a similar mite drop of >50%. The results of the study show that in vitro tests should only be used for preliminary screening of EO activity. In vitro tests should be followed by semi-field tests, which are essential to identify the threshold of toxicity to bees and the effective dose to be used in field studies.
Collapse
|
14
|
Bava R, Castagna F, Carresi C, Cardamone A, Federico G, Roncada P, Palma E, Musella V, Britti D. Comparison of Two Diagnostic Techniques for the Apis mellifera Varroatosis: Strengths, Weaknesses and Impact on the Honeybee Health. Vet Sci 2022; 9:vetsci9070354. [PMID: 35878371 PMCID: PMC9315579 DOI: 10.3390/vetsci9070354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Varroa destructor is the most dangerous pest that poses a threat to honey bee survival. In recent years, increasingly worrying phenomena of drug resistance have occurred to various active ingredients of pharmaceutical formulations used to control this parasitosis. Determining the level of infestation is essential to preventing the inappropriate use and abuse of veterinary medicines, and to choose the most appropriate time for treatment. This comparative study investigates the sensitivity and diagnostic accuracy of two field techniques for diagnosing V. destructor infestations in hives. The EasyCheck device (Véto-pharma) was used in two of its application modes, namely, the sugar roll test and carbon dioxide (CO2) injection. The experiments were conducted on 15 samples of 300 bees each taken from the same frame and checked for the presence of mites using standard and modified field techniques in both uncaged and caged queen hive conditions. The results demonstrate that the sugar roll technique is significantly more effective and safer than CO2 injection, allowing for a higher accuracy in diagnosing a V. destructor infestation. Furthermore, the evaluation of mites present on bees in brood block conditions has proven to be particularly reliable. Considering the number of mites on the filter of the device as an additional step helps to implement the diagnostic accuracy of the CO2 injection technique, however, not achieving the efficacy results of the sugar roll.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (C.C.); (E.P.)
| | - Antonio Cardamone
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
| | - Giovanni Federico
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Loc. Catona, 89135 Reggio Calabria, Italy;
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l. Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- Correspondence: (C.C.); (E.P.)
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|