1
|
Birch GF, Lee JH, Gunns T, Besley CH. The use of sedimentary metals to assess anthropogenic change, ecological risk, model past and future impacts and identify contaminant sources in the eleven estuaries of Greater Sydney (Australia): A review and critical assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175268. [PMID: 39111437 DOI: 10.1016/j.scitotenv.2024.175268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
The Greater Sydney (Australia) region is dissected by eleven major estuaries comprising a wide range of sizes, sediment and contaminant types, while the catchments also vary in size, land use type, populations size and geology/soils. The magnitude and breadth of the current study are rare and offered an unusual opportunity to provide new information on interactions between source, fate and effect relationships of a highly diverse estuarine-catchment environment using sedimentary metals (Co, Cr, Cu, Ni, Pb and Zn). Advanced methodologies used in this study revealed that although metal concentrations were generally high, ecological risk was surprisingly reduced due to the presence of metal-poor coarse sediment. Stormwater was identified as the dominant source of metals to estuaries of Greater Sydney and relates to development of high-density road networks. Industrial sources, frequently identified as a major contributor to estuarine contamination, was significantly reduced due to the decline of industry through decentralisation and gentrification and because waste is discharged to the sewer system, which is released offshore, or tertiary-treated to the Hawkesbury. Groundwater leachate associated with shoreline reclamation and wetland infilling and metals related to boating activities were important sources of metals impacting local bays and coastal lagoons. Temporal monitoring and unique modelling approaches indicated that the concentration of sedimentary metals is generally declining in these estuaries, (especially for Pb), except for areas with rapidly increasing urban populations. Multivariate statistical modelling was able to differentiate the 11 estuaries on a chemical basis by aligning Cu, Pb, Zn vectors with metal-rich estuaries and also identified catchment attributes (percent area, total yield, anthropogenic yield and population density) normalised to catchment areas as having a major influence on estuarine condition. The new knowledge derived from this study should be used to assess the environmental status of estuaries and to prioritise management actions in future investigations.
Collapse
Affiliation(s)
- G F Birch
- Geocoastal Research Group, School of Geosciences, The University of Sydney, New South Wales, Australia.
| | - J-H Lee
- Geocoastal Research Group, School of Geosciences, The University of Sydney, New South Wales, Australia; CoreLogic Asia Pacific, Sydney, New South Wales, Australia
| | - T Gunns
- Geocoastal Research Group, School of Geosciences, The University of Sydney, New South Wales, Australia
| | - C H Besley
- Laboratory Services, Sydney Water, NSW 2143, Australia
| |
Collapse
|
2
|
Patra M, Upadhyay SN, Dubey SK. Synchrotron induced X-ray fluorescence spectroscopy reveals heavy metal translocation in sludge amended soil-plant systems: assessment of ecological and health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:399. [PMID: 39190042 DOI: 10.1007/s10653-024-02174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
The use of composted sludge from sewage treatment plants as a soil amendment is a common practice of recycling nutrients like organic carbon, nitrogen, and phosphorus. The sewage generated in larger cities of developing countries is often contaminated with various heavy metals (HMs) that ultimately end up in composted sludge. Thus, using such composted sludge is likely to pose ecological and human health risks. Hence, the knowledge of HM translocation in sludge-soil-plant systems is of vital importance. The present study was aimed at investigating the HM translocation in sludge-soil-plant system. The HM translocation was measured using synchrotron radiation-induced x-ray fluorescence spectrometry and atomic absorption spectroscopic techniques. The results indicated high HM mobility (up to 2628.5 mg kg-1) from sludge to spinach plant. The metal accumulation (mg kg-1) ranged in the order-Fe (950.55-2628.5) > Zn (20.11-172.13) > Cu (13.86-136.17) > Mn (2.13-34.67) > Cd (0.11-31.17) > Pb (1.50-30.16) > Co (0.18-9.85) As (0.02-7.80) > Cr (0.01-5.69). This observed accumulation depended on the volume of sewage being treated in the sewage treatment plant (STP) and varied in the order control < (8 MLD Bhagwanpur, STP 1) < (80 MLD Dinapur, STP2) < (140 MLD Dinapur, STP3) hence the HM load coming into STPs. The metal transfer factor, bioconcentration factor, and translocation factor values also correlated with the abundance of Fe, Cu, Pb, Cd, and Zn in spinach root and shoot compartments. The carcinogenic risk for heavy metal carcinogens like As, Cd, Cr, and Pb revealed children being more prone to cancer upon spinach consumption. Hence, it is necessary to assess the heavy metals present in the sludge prior to its application in agricultural fields.
Collapse
Affiliation(s)
- Mrinmoy Patra
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Siddha Nath Upadhyay
- Rajiv Gandhi Institute of Petroleum Technology, Jayas, Amethi, Uttar Pradesh, 229304, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Otugboyega JO, Madu FU, Otugboyega OO, Ojo AM, Adeyeye AJ, Ajayi JA. Biomonitoring and Biomathematical Modeling of Health Risks Associated with Dumpsite Grown Vegetables in Lagos State. Biol Trace Elem Res 2024; 202:3333-3348. [PMID: 37848588 DOI: 10.1007/s12011-023-03903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Conversion of dumpsites to farm lands in several communities is a usual practice in Nigeria. Wastes accumulate heavy metals in a variety of forms. This study assessed the concentration, degrees of contamination, and attendant health risk of heavy metals (HMs), using two major indigenous vegetables (Amaranthus viridis and Talinum triangulare) grown on five major dumpsites in Lagos state. After wet digestion, the mean concentrations of the HMs in the vegetable samples were evaluated using atomic absorption spectrophotometer (AAS). Daily intake of metals (DIM), target hazard quotient (THQ), and hazard index (HI) biomathematics were employed in the assessment of non-carcinogenic health risk. Incremental lifetime cancer risk (ILCR) assessment was used to assess carcinogenicity. The obtained result shows that the concentrations of HMs fell within the following ranges: (0.37 to 0.59), (0.07 to 1.36), (0.30 to 1.92), (0.00 to 0.03), and (0.00 to 0.04) mg/kg; for zinc (Zn), lead (Pb), Iron (Fe), cadmium (Cd), and chromium (Cr), respectively, with low to moderate variability. At Ikorodu dumping site, the Pb concentration was above the World Health Organization (WHO) permissible range and has the highest contamination factor. DIM for Pb was also above threshold values (> 1) in both adults and children, while the THQ values for Fe, Pb, and Cd were above 1 (> 1) in both adults and children. HI values for the vegetables exceeded WHO normal range (> 1), except Abule-Egba dumps' samples (70% HI greater than 1 in adults and 90% HI greater than 1 in children). Additionally, the ILCR values of above 50% of the samples were above the WHO (10-6) limits, with the highest value in children (Cd, 1.064 × 10-3) indicating high risk of carcinogenicity over a life time of exposure. Thus, the results revealed great health risk from consumption of vegetables from the four major dumping sites, with children being at greater risk.
Collapse
Affiliation(s)
- Joseph Olusoji Otugboyega
- Department of Environmental Management and Toxicology, Federal University Oye Ekiti, Oye, Ekiti, Nigeria
| | - Francis Ugochukwu Madu
- Department of Environmental Management and Toxicology, University of Agriculture and Environmental Sciences, Umuagwo, Nigeria.
| | | | | | - Adeleke Joseph Adeyeye
- Department of Water Resources Management, Federal University Oye Ekiti, Oye, Ekiti, Nigeria
| | - John Adekunle Ajayi
- Centre for Environmental Studies and Sustainable Development, Lagos State University, Ojo, Nigeria
| |
Collapse
|
4
|
Ruzi II, Ishak AR, Abdullah MA, Zain NNM, Tualeka AR, Adriyani R, Mohamed R, Edinur HA, Aziz MY. Heavy metal contamination in Sungai Petani, Malaysia: a wastewater-based epidemiology study. JOURNAL OF WATER AND HEALTH 2024; 22:953-966. [PMID: 38935448 DOI: 10.2166/wh.2024.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/09/2024] [Indexed: 06/29/2024]
Abstract
The aim of this study was to investigate the use of wastewater-based epidemiology (WBE) to estimate heavy metal exposure in Sungai Petani, Malaysia. Atomic absorption spectroscopy was used to detect copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), and cadmium (Cd) in wastewater from eight sewage treatment facilities in Sungai Petani in January 2022. The heavy metal concentrations were measured in both influent and effluent, and the mean concentrations in the wastewater were found to be in the following order: Fe > Ni > Zn > Cd > Cu, with a 100% detection frequency. The results of WBE estimation showed that Fe, Ni, and Zn had the highest estimated per population exposure levels, while Cd had the lowest. Compared to a similar study conducted in Penang, Malaysia, all metals except Cu were found to have higher concentrations in Sungai Petani, even though it is a non-industrial district. These findings highlight the importance of addressing heavy metal contamination in Sungai Petani and implementing effective risk management and prevention strategies.
Collapse
Affiliation(s)
- Iqbal Iman Ruzi
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Ahmad Razali Ishak
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Muhamad Azwat Abdullah
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Abdul Rohim Tualeka
- Department of Occupational Health and Safety, Public Health Faculty, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Retno Adriyani
- Department of Environmental Health, Faculty of Public Health, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Rafeezul Mohamed
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Yusmaidie Aziz
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia; Department of Occupational Health and Safety, Public Health Faculty, Universitas Airlangga, Surabaya, East Java 60115, Indonesia E-mail:
| |
Collapse
|
5
|
Ashong GW, Ababio BA, Kwaansa-Ansah EE, Gyabeng E, Nti SO. Human and ecotoxicological risk assessment of heavy metals in polymer post treatment sludge from Barekese Drinking Water Treatment Plant, Kumasi. Toxicol Rep 2024; 12:404-413. [PMID: 38590342 PMCID: PMC10999660 DOI: 10.1016/j.toxrep.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The disposal of polymer post-treatment sludge (PTS) from Barekese Water Treatment Plants (WTPs) as organic fertilizer and aquatic feed is a common practice in Ghana, necessitating a thorough evaluation of its ecological and human health risks. This study aims to assess the suitability of PTS samples for soil amendment and fish feed, scrutinizing potential hazards to consumer health and soil. PTS samples were collected from five distinct lateral sections of three clariflocculator tanks. Potentially toxic metals such as Cd, Zn, Pb, Cu, Ni, and Cr were determined using a flame atomic absorption spectrophotometer. The mean concentration of 7.82 ± 2.43, 0.31 ± 0.021, and 0.78 ± 0.042 mg/kg for Mn, Zn, and Pb respectively. The concentrations of Ni, Cr, and Cd were below their detection limits (BDL) in all PTS samples. Upon detailed exposure assessment, ingestion emerged as the primary exposure route for both adults and children, with non-cancer risks (NCR) determined to be below 1 for both age groups. Additionally, an exploration of potential cancer risks (CR) associated with heavy metal exposure in the PTS samples revealed values below the tolerable intake levels ranging from 10-4 to 10-6 for both adults and children (10-8 and 10-9, respectively). This study also employs various ecological indices, such as Nemerow's synthetic pollution index (PN), single factor pollution index (PI), geo-accumulation index (Igeo), contamination factor (CF), potential ecological risk index (PERI), pollution load index (PLI), polymetallic contaminant index (IPD), and ecological risk index (ERI). These indices consistently highlight a low contamination status and ecological sensitivity. Consequently, the study indicates that the presence of metals in the PTS samples does not pose a significant threat to the surrounding environment and human health. Furthermore, this research underscores the inadequacy of relying solely on regulatory limit values in assessing the health risks of waste materials. Such comprehensive assessments are crucial for safeguarding aquatic and human populations.
Collapse
Affiliation(s)
| | - Boansi Adu Ababio
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Enock Gyabeng
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Owusu Nti
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
6
|
Salem SH, Saber M, Gadow S, Kabary H, Zaghloul A. Influence of the use of remediated soil and agricultural drainage water on the safety of tomato fruits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31546-31561. [PMID: 38632200 PMCID: PMC11096225 DOI: 10.1007/s11356-024-33187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
The objective of this study is to assess the effectiveness of different techniques employed in remediating contaminated soil and wastewater ecosystems to ensure the safety of tomato fruits (Solanum lycopersicum L. var. cerasiforme) cultivated in these environments. Three biochemical techniques T1-T3, besides two controls CCU and CCT, were used to remediate contaminated soil ecosystems using rock phosphate, elemental sulfur, bentonite, phosphate-dissolving bacteria, and Thiobacillus sp. The contaminated agricultural drainage water was remediated by a down-flow hanging sponge (DHS) system. Two experiments were conducted: a pot experiment took place in the greenhouse at the National Research Center of Cairo (Egypt) and a field experiment was carried out at the basin site in the village of El-Rahawy, applying the optimal treatment(s) identified from the greenhouse experiment. The health risk assessment for potentially toxic elements (PTEs) in the harvested tomato fruits was conducted by calculating estimated daily intake (EDI) and target risk quotient (THQ) values. Results from the greenhouse experiment indicated the high effectiveness of the DHS technique in remediating El-Rahawy agricultural drainage water. The content of PTEs after remediation was significantly reduced by 100%, 93.3%, 97.8, and 77.8% for cadmium, copper, manganese, and zinc, respectively. The application of treated drainage water in employed reclaimed soil ecosystems led to a remarkable decrease in PTE levels, especially under T3 treatment; the reduction reached 89.4%, 89.5%, and 78.4% for nickel, copper, and zinc, respectively. The bioremediation technique also reduced the content of PTEs in tomato fruits harvested from both greenhouse and field experiments; the cadmium content, for example, was below detection limits in all treatments. The T3 treatment applied in the greenhouse experiment caused the highest percentage decrease among the employed PTEs in tomato fruits grown in the greenhouse. The same trend was also reached in the field experiment. Microbiological analyses of tomato fruits revealed that E. coli, Salmonella, or S. aureus bacteria were identified on tomato fruits harvested from either greenhouses or field experiments, showing that the counted total bacteria were higher under the field experiment compared to the greenhouse experiment. The health risk assessment parameter THQ was below 1.0 for all tested metals under all treatments. This means that no potential health risk is expected from consuming tomato products produced under the different employed remediation treatments. In conclusion, the employed bioremediation techniques successfully reduced the PTE content and microbial load in both soil and drainage water ecosystems and in harvested tomato fruits. Henceforth, no health risks are expected from the consumption of this product.
Collapse
Affiliation(s)
- Salah H Salem
- Food Toxicology and Contaminants Dept., Food Industries and Nutrition Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Mohamed Saber
- Agricultural Microbiology Dept., Agricultural and Biological Sciences Institute National Research Centre, Cairo, 12622, Egypt
| | - Samir Gadow
- Agricultural Microbiology Dept., Agricultural and Biological Sciences Institute National Research Centre, Cairo, 12622, Egypt
| | - Hoda Kabary
- Agricultural Microbiology Dept., Agricultural and Biological Sciences Institute National Research Centre, Cairo, 12622, Egypt
| | - Alaa Zaghloul
- Soils and Water Use Dept., Agricultural and Biological Sciences Institute National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
7
|
Semerjian L, Adeniji AO, Shanableh A, Semreen MH, Mousa M, Abass K, Okoh A. Assessment of elemental chemistry, spatial distribution, and potential risks of road-deposited dusts in Sharjah, United Arab Emirates. Heliyon 2024; 10:e29088. [PMID: 38617947 PMCID: PMC11015408 DOI: 10.1016/j.heliyon.2024.e29088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Road dust is a major source of pollution in the environment, carrying different pollutants, including heavy metals and metalloids, from one location to another. This study assesses the concentrations of eight heavy metals and one metalloid (Zn, Pb, Mn, Fe, Cr, Cu, Cd, Ni, and As) in dust samples collected from sixty-eight streets of Sharjah, United Arab Emirates using ICP-OES, as well as investigates their effects on both the environment and humans. Mean concentrations of the elements in μg/g across the sites were 392 ± 46 (Zn), 68.28 ± 11.3 (Pb), 1437 ± 67 (Mn), 39,481 ± 4611 (Fe), 460 ± 31 (Cr), 150 ± 44 (Cu), 1.25 ± 0.65 (Cd), 856 ± 72 (Ni), and 0.97 ± 0.28 (As). The Cdeg and ERI calculated from the study were 54.79 and 573, respectively, suggesting varying pollution levels. The highest contributions were from Ni, Cd, Zn, Cu, Cr, and Pb, especially in areas with heavy traffic. The non-carcinogenic risk assessments were generally low for the three routes of exposure, except HQoral that was slightly higher for children. Similarly, none of the elements exhibited any carcinogenic risk except chromium. Overall, the cancer risk is considered low. In view of the limited studies from UAE in relation to the metal content of road-deposited dusts, the current study serves as novel knowledge, especially in the context of geographical areas with a higher occurrence of sandstorms and the presence of particulate matter. The study also adds to the global understanding of the contribution of street dust to environmental pollution and its implications for human health.
Collapse
Affiliation(s)
- Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abiodun O. Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Abdallah Shanableh
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Finland
| | - Anthony Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
8
|
Najam T, Hashmi I. Monitoring of university wastewater within the sewage system and its performance evaluation through integrated constructed wetlands. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:403. [PMID: 38556601 DOI: 10.1007/s10661-024-12575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Rapid increase in population and industrialization has not only improved the lifestyle but adversely affected the quality and availability of water leading to ample amount of wastewater generation. The major contribution towards wastewater production is from sewage. Regular monitoring and treatment of sewage water is necessary to conserve and enhance the quality of water. The present study focuses on monitoring of sewage water within the sewage system of a residential university. A total of 16 samples from different manholes were collected for physicochemical and heavy metals analysis and compared with final effluent collected from integrated constructed wetlands (ICWs) to assess its removal efficiency. The mean concentrations of influent and effluent were compared with national environmental quality standards (NEQS) for municipal discharge (pH 6-9, COD 150 mg/L, TSS 200 mg/L and TDS 3500 mg/L) and international agricultural reuse standards (IARS) (pH 6-8, COD <150 mg/L, TSS < 100 mg/L) respectively. Among all physicochemical parameters, influent values for chemical oxygen demand (COD) (169.56-258.36) mg/L exceeded the limit of NEQS for discharge into inland waters, whereas for total suspended solids (TSS) the concentration exceeded for discharge into STP (406 mg/L) and inland waters (202.33 mg/L). However, effluent concentrations for all the parameters were found within the permissible limit set by IARS. The removal efficiency for different parameters such as phosphate- phosphorus (PO43-P), COD, TSS, total dissolved solids (TDS) and total kjeldahl nitrogen (TKN) were 52, 53, 54, 35, and 36%, respectively. Heavy metal concentrations were compared with WHO guidelines among which lead (Pb) in effluent and chromium (Cr) in influent exceeded the limit (Pb 0.01 and Cr 0.05 mg/L). Interpolation results showed that zone 2 was highly contaminated in comparison to zone 1 & 3. Statistical analysis showed that correlation of physicochemical parameters and heavy metals was found significant (p < 0.05).
Collapse
Affiliation(s)
- Talyaa Najam
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12 Campus, Islamabad, Pakistan
| | - Imran Hashmi
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Sector H-12 Campus, Islamabad, Pakistan.
| |
Collapse
|
9
|
Camêlo DDL, Silva Filho LAD, Arruda DLD, Cyrino LM, Barroso GF, Corrêa MM, Barbeira PJS, Mendes DB, Pasa VMD, Profeti D. Mineralogical fingerprint and human health risk from potentially toxic elements of Fe mining tailings from the Fundão dam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169328. [PMID: 38104831 DOI: 10.1016/j.scitotenv.2023.169328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In 2015, >50 million cubic meters of Fe mining tailings were released into the Doce River basin from the Fundão dam, raising the question of its consequences on the affected ecosystems. This study aimed to establish a mineralogical-(geo)chemical association of potentially toxic elements (PTEs) from Fe mining tailings from the Fundão dam, collected seven days after the failure, through a multidisciplinary approach combining assessment of the risk to human health, environmental geochemistry, and mineralogy. Thus, eleven tailings samples were collected with the support of the Brazilian Military Police Fire Department. Granulometry, magnetic measurements, optical microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and sequential chemical extraction of PTEs analyses were performed. Contamination indexes, assessment of risk to human health, and Pearson correlation were calculated using the results of sequential chemical extraction of PTEs. The predominance of goethite in Fe oxyhydroxide concentrates from the mud indicates that the major source of hematite may not be from tailings, but from pre-existing soils and sediments, and/or preferential dissolution of hematite in deep flooded zones of the tailings column of the Fundão dam. Moreover, the high correlation of most carcinogenic PTEs with their crystallographic variables indicates that goethite is the primary source of contaminants. Goethites from Fe mining tailings showed high specific surface area and Al-substitution, and due to their greater stability and reactivity, the impacts on PTE sorption phenomena and bioavailability may be maintained for long periods. However, their lower dissolution rate, and the consequent release of heavy metals would promote greater resilience for affected ecosystems, preventing significant PTE inputs under periodic reduction conditions. More specific studies, involving the crystallographic characteristics of Fe oxyhydroxides should be developed since they may provide another critical component of this set of complex and dynamic variables that interfere with the bioavailability of metals in ecosystems.
Collapse
Affiliation(s)
- Danilo de Lima Camêlo
- Department of Agronomy, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil.
| | | | - David Lukas de Arruda
- Department of Agronomy, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil
| | - Luan Mauri Cyrino
- Department of Agronomy, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil
| | - Gilberto Fonseca Barroso
- Department of Oceanography and Ecology, Federal University of Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Marcelo Metri Corrêa
- Federal University of Agreste of Pernambuco, Garanhuns, Pernambuco 55292-270, Brazil
| | | | - Danniel Brandão Mendes
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vânya Marcia Duarte Pasa
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Demetrius Profeti
- Department of Chemistry and Physics, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil
| |
Collapse
|
10
|
Khurana P, Pulicharla R, Brar SK. Imipenem-metal complexes: Computational analysis and toxicity studies with wastewater model microorganisms. ENVIRONMENTAL RESEARCH 2023; 239:117275. [PMID: 37827363 DOI: 10.1016/j.envres.2023.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The occurrence of antibiotic residues in diverse water sources has long been acknowledged as a potential health concern due to the emergence and spread of antibiotic-resistant bacteria and genes. However, there have been limited studies into the presence of antibiotic-metal complexes (AMCs) in real-time wastewater matrices, and their impact on wastewater microbial communities. The present work, in this regard, investigated the stability of Imipenem-metal complexes (Me = Mg (II), Ca (II), Fe (II), Cu (II), and Al (III)) with computational studies, stoichiometry with potentiometric measurements, and their antibacterial activity towards wastewater model microorganisms- Bacillus subtilis (B. subtilis) and Escherichia coli (E. Coli) by Colony Forming Unit (CFU) method. The lower energy of Imipenem-metal complexes than the parent antibiotic- Imipenem, during energy optimization using density functional (DFT) methods, revealed that metal interactions of Imipenem stabilize the drug by minimizing its energy. Further, CFU studies indicated that these complexes display higher antimicrobial activity than parent antibiotics. The electron delocalization over the entire chelated system (AMCs) reduces polarity and increases the lipophilicity of the complexes, thereby facilitating stronger interaction between AMCs and the bacterial cell membrane. Results indicate increased antibacterial activity of Imipenem-metal complexes for both E. coli and B. subtilis. The antibacterial activity, was however, more pronounced in B. subtilis, with >97% growth inhibition for metal complexes of Imipenem (at a Minimum Inhibitory Concentration of 20 nM or 6 ppb (i.e., MIC90)), for both the stoichiometric ratios (metal to ligand) ratios (M: L 1: 1 and 2: 1). All around, with increased stability and toxicity, AMCs are emerging as contaminants of concern and demand immediate attention to devise methods for their removal.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
11
|
Goyal N, Nawaz A, Chandel KS, Devnarayan D, Gupta L, Singh S, Khan MS, Lee M, Sharma AK. A cohesive effort to assess the suitability and disparity of carbon nanotubes for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124832-124853. [PMID: 36168008 DOI: 10.1007/s11356-022-23137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Population growth, industrialization, and the extensive use of chemicals in daily life have all contributed to an increase in waste generation and an intensified release of organic pollutants into the aquatic environment. To ensure the quality of water (including natural resources), the removal of these pollutants from wastewater has become a challenging task for scientific community. Conventional physical, chemical, and biological treatment methods are commonly used in combinations and are not very effective. Recently, carbon nanotubes (CNTs) emerged as the most reliable and adaptable choice for efficient water treatment due to their extraordinary material properties appearing as a single-step solution for water treatment. High surface area, exceptional porosities, hollow and layered structures, and ease of chemical activation and functionalization are some properties which makes it excellent adsorption material. Hence, this review paper discusses the recent advances in the synthesis, purification, and functionalization of CNTs for water and wastewater treatment. In addition, this study also also provides a quick overview of CNTs-based advance technologies employed in water treatment and carefully assesses the benefits versus risks during large-scale water treatment. Furthermore, it concludes that identified risks to the environment and human health cannot be easily ignored and strict regulatory requirements are a must for producing low-cost innoxious CNTs.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Allied Sciences, School of Health Sciences and Technology, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 749-719, Republic of Korea
| | - Kuldeep Singh Chandel
- Department of Chemical Engineering, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Devraja Devnarayan
- Department of Chemical Engineering and Analytical Science, Faculty of Science and Engineering, The University of Manchester, Manchester, M1 3AL, UK
| | - Lalit Gupta
- Department of Chemical Engineering, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Siddharth Singh
- Department of Allied Sciences, School of Health Sciences and Technology, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Mohd Shariq Khan
- Department of Chemical Engineering, Dhofar University, 211, Salalah, Oman
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 749-719, Republic of Korea
| | - Amit Kumar Sharma
- Department of Chemistry, Applied Science Clusters and Centre for Alternate Energy Research (CAER), School of Engineering, University of Petroleum & Energy Studies, Uttarakhand, 248007, Dehradun, India.
| |
Collapse
|
12
|
Ali A, Alghanem SMS, Al-Haithloul HAS, Muzammil S, Adrees M, Irfan E, Waseem M, Anayat A, Saqalein M, Rizwan M, Ali S, Abeed AHA. Co-application of copper nanoparticles and metal tolerant Bacillus sp. for improving growth of spinach plants in chromium contaminated soil. CHEMOSPHERE 2023; 345:140495. [PMID: 37865204 DOI: 10.1016/j.chemosphere.2023.140495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Chromium (Cr) is classified as a toxic metal as it exerts harmful effects on plants and human life. Bacterial-assisted nano-phytoremediation is an emerging and environment friendly technique that can be used for the detoxification of such pollutants. In current study, pot experiment was conducted in which spinach plants were grown in soil containing chromium (0, 5, 10, 20 mgkg-1) and treated with selected strain of Bacillus sp. and Cu-O nanoparticle (CuONPs). Data related to plant's growth, physiological parameters, and biochemical tests was collected and analyzed using an appropriate statistical test. It was observed that under chromium stress, all plant's growth parameters were significantly enhanced in response to co-application of CuONPs and Bacillus sp. Similarly, higher levels of catalase, superoxide dismutase, malondialdehyde, and hydrogen peroxide were also observed. However, contents of anthocyanin, carotenoid, total chlorophyll, chlorophyll a & b, were lowered under chromium stress, which were raised in response to the combined application of CuONPs and Bacillus sp. Moreover, this co-application has significant positive effect on total soluble protein, free amino acid, and total phenolics. From this study, it was evident that combined application of Bacillus sp. and CuONP alleviated metal-induced toxicity in spinach plants. The findings from current study may provide new insights for agronomic research for the utilization of bacterial-assisted nano-phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Arslan Ali
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | | | | | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Effa Irfan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Alia Anayat
- Soil & Water Testing Laboratory, Ayub Agricultural Research Institute, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Saqalein
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
13
|
Tytła M, Widziewicz-Rzońca K. Ecological and human health risk assessment of heavy metals in sewage sludge produced in Silesian Voivodeship, Poland: a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1373. [PMID: 37880548 PMCID: PMC10600313 DOI: 10.1007/s10661-023-11987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to assess the potential risks posed by heavy metals in sewage sludge (SS) produced by municipal wastewater treatment plants (WWTPs) in the most industrialized region in Poland, the Silesian Voivodeship. The ecological risk was assessed using three indices: the Geoaccumulation Index (Igeo), Potential Ecological Risk Factor (ER), and Risk Assessment Code (RAC), while the health risk was estimated by using carcinogenic and non-carcinogenic risk indices. The average concentrations of metals in the sludge samples were determined revealing that Zn was the predominant element, whereas Cd and Hg were present in the lowest concentrations. The study showed that the processes used in wastewater treatment plants influenced the overall metal content and chemical speciation. According to Igeo values, the dewatered sludge samples exhibited higher contamination levels of Cd and Zn, while Cu and Pb were upon to a lesser extent. The ER values suggest that Cd and Hg present the highest ecological risk. Considering the chemical forms and RAC values, Ni (26.8-37.2%) and Zn (19.8-27.0%) were identified to cause the most significant risks. The non-carcinogenic risk for adults and children was below acceptable levels. However, the carcinogenic risk associated with Ni (WWTP1) for both demographic groups and Cr and Cd (WWTP2), specifically for children, exceeded the acceptable threshold. Ingestion was the primary route of exposure. Although the dewatered SS met the standards for agricultural use, there is still a risk of secondary pollution to the environment and possible adverse health effects.
Collapse
Affiliation(s)
- Malwina Tytła
- Institute of Environmental Engineering, Polish Academy of Sciences, 41-819, Zabrze, Poland.
| | | |
Collapse
|
14
|
Banda B, Habtu NG, Gebreeyessus GD, Meshesha BT. Vermicomposting as an effective approach to municipal sewage sludge management through optimization of the selected process variables. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1957-1973. [PMID: 37906452 PMCID: wst_2023_322 DOI: 10.2166/wst.2023.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In most developing countries, municipal sewage sludge end-use practices appear unsustainable; rather, it poses environmental concerns. This study examined the potential of vermicomposting of municipal sewage sludge and its blend with other biowaste for agricultural application. Using a response surface methodology and the Box-Behnken design in Design Expert Software (Version 10.0.7), the current study optimized the moisture content (60-90%), turning frequency (1-3 turnings/week), and substrate mixing ratios (50:50 to 80:20 wt.%) to maximize the content of nitrogen, phosphorus, and potassium. As a result, an optimal moisture content (72%), substrate mixing ratio (72.34:27.6 wt.%), and turning frequency (2 per week), producing a promising-quality vermicompost with a maximum yield of nitrogen (2.76%), phosphorus (1.80%), and potassium (1.88%) is achieved. Thus, vermicomposting can effectively turn the concerning municipal sewage sludge into useful agricultural input for its sustainable management.
Collapse
Affiliation(s)
- Beauty Banda
- Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia E-mail:
| | - Nigus Gabbiye Habtu
- Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Getachew Dagnew Gebreeyessus
- Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia; Kotebe University of Education, P.O. Box 31248, Addis Ababa, Ethiopia
| | - Beteley Tekola Meshesha
- Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Popoola LT, Olawale TO, Salami L. A review on the fate and effects of contaminants in biosolids applied on land: Hazards and government regulatory policies. Heliyon 2023; 9:e19788. [PMID: 37810801 PMCID: PMC10556614 DOI: 10.1016/j.heliyon.2023.e19788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The increase in world population growth and its resultant increase in industrial production to meet its need, have continued to raise the volume of wastewater received by treatment plant facilities. This has expectedly, led to an upsurge in the volume of sewage sludge and biosolids generated from wastewater treatment systems. Biosolids are best managed by application on land because of their agronomic benefits. However, this usage has been discovered to negatively affect humans and impact the environment due to the accumulation of minute concentrations of contaminants still present in the biosolid after treatment, hence the need for government regulations. This review article examined the fate and effects of pollutants, especially persistent organic pollutants (PoPs) of concern and emerging contaminants found in biosolids used for land applications, and also discussed government regulations on biosolid reuse from the perspectives of the two major regulations governing biosolid land application-the EU's Sludge Directive and USEPA's Part 503 Rule, in an attempt to draw attention to their outdated contents since enactment, as they do not currently meet the challenges of biosolid land application and thus, require a comprehensive update. Any update efforts should focus on USEPA's Part 503 Rule, which is less stringent on the allowable concentration of biosolid pollutants. Furthermore, an update should include specific regulations on new and emerging contaminants and persistent organic pollutants (PoPs) such as microplastics, pharmaceutical and personal care products (P&PCPs), surfactants, endocrine-disrupting chemicals, flame retardants, pathogens, and organic pollutants; further reduction of heavy metal standard limits, and consideration of soil phosphate-metal interactions to regulate biosolid agronomic loading rate. Future biosolid research should focus on the concentration of TCS, TCC, and emerging pharmaceuticals, as well as Microplastic transport in biosolid-amended soils, soil-plant transfer mechanism, and metabolism of PFAs in the soils; all of which will inform government policies on biosolid application on land.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Theophilus Ogunwumi Olawale
- Department of Chemical and Petroleum Engineering, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| | - Lukumon Salami
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| |
Collapse
|
16
|
Khan SN, Nafees M, Imtiaz M. Assessment of industrial effluents for heavy metals concentration and evaluation of grass ( Phalaris minor) as a pollution indicator. Heliyon 2023; 9:e20299. [PMID: 37809466 PMCID: PMC10560060 DOI: 10.1016/j.heliyon.2023.e20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
This study was conducted to investigate the impact of industrial activities on heavy metals status in wastewater, sludge and flora on the bank of selected main drains of the Hayatabad Industrial estate, Peshawar. Plants, sludge and wastewater samples of selected sites were collected and analyzed for heavy metals distribution; cadmium (Cd), chromium (Cr), lead (Pb) and zinc (Zn) levels. Bioconcentration factor (BCF) values were calculated for plants (Phalaris minor) grass species found naturally at all sites. The results showed that the levels of metals in wastewater were lower than permissible limits except Cd and the concentration of metals in plants and sludge were within permissible limits when compared to their respective standards. Metal distribution was in the following order; sludge > plants > wastewater and the concentration of metals varied according to the distance from the source with no specific pattern. Sludge samples for all sites showed a high concentration of metals as compared to plants and wastewater samples. In grass samples, Zn was highest and Cd was low for all sites. Metals accumulation in plants was in order of; roots > shoot. Pearson's coefficient correlation showed that Cr in plant roots and Zn in shoots showed significantly high correlation with Cd in sludge while Pb in roots showed significant negative correlation with Zn in sludge. BCF values for Cr, Pb and Zn were >1, showing the phytoremediation potential of plants.
Collapse
Affiliation(s)
- Sara Nawaz Khan
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Sciences Division, Nuclear Institute for Food and Agriculture (NIFA), Tarnab, Peshawar, Pakistan
| |
Collapse
|
17
|
Nandomah S, Tetteh IK. Potential ecological risk assessment of heavy metals associated with abattoir liquid waste: A narrative and systematic review. Heliyon 2023; 9:e17359. [PMID: 37636457 PMCID: PMC10447939 DOI: 10.1016/j.heliyon.2023.e17359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/29/2023] Open
Abstract
The article presents a narrative and systematic review of the potential ecological risk assessment of heavy metals associated with abattoir liquid waste for knowledge advancement. The narrative review primarily focused on (i) An overview of abattoir operations; (ii) Characteristics of abattoir liquid waste; (iii) Heavy metals in the liquid waste and their health effects; (iv) Environmental impacts of abattoir liquid waste; and (v) Potential ecological risk index (RI) methodology. These provided essential literature for the systematic review. Using exclusive/inclusive criteria, 15 abattoirs that satisfied the eligibility criteria, all located in Nigeria, were used for the systematic review with meta-analysis/meta-regression. Comparative multiple linear meta-regression analyses were used to quantify the heterogeneity variances between the abattoirs based on standardized RIs (SRIs; effect sizes) using eight tau (τ ) estimators in R metafor. The effects of three standardized moderators─ number of metals, metal concentrations, and relative distances between the abattoirs and a pristine environment, Gashaka-Gumti National Park (GNP), were also analyzed. The Sidik-Jonkman (SJ) estimator yielded a realistic output, and the current research findings were based on this estimator. The Cochran statistic (QE) suggested an absence of heterogeneity(p>0.99). Between-study heterogeneities, quantified by H2 (1.05), I2 (4.76%), and τ 2 (0.0032 ± 0.0032 (SE)) statistics were very low, practically suggesting complete homogeneity. The moderators accounted for R * 2 of 95.73% of the total explanatory capacity of the model. The beta coefficients of the moderators and intercept were significant (p-values: 0.009-0.0004). While the first two moderators showed in-phase relations with the SRIs, the third indicated an out-of-phase relation. Such links suggest the existence of abattoir-environment interactive processes. Although the abattoirs are spatially distinct and independent, their operations showed evidence-based homogeneity and posed high ecological risks. Hence, environmental legislation should be strictly enforced while ensuring human settlements are sited reasonably from abattoirs.
Collapse
Affiliation(s)
- Solomon Nandomah
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Isaac Kow Tetteh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
18
|
Chukwu KB, Abafe OA, Amoako DG, Essack SY, Abia ALK. Antibiotic, Heavy Metal, and Biocide Concentrations in a Wastewater Treatment Plant and Its Receiving Water Body Exceed PNEC Limits: Potential for Antimicrobial Resistance Selective Pressure. Antibiotics (Basel) 2023; 12:1166. [PMID: 37508262 PMCID: PMC10376008 DOI: 10.3390/antibiotics12071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Although the rise in antimicrobial resistance has been attributed mainly to the extensive and indiscriminate use of antimicrobials such as antibiotics and biocides in humans, animals and on plants, studies investigating the impact of this use on water environments in Africa are minimal. This study quantified selected antibiotics, heavy metals, and biocides in an urban wastewater treatment plant (WWTP) and its receiving water body in Kwazulu-Natal, South Africa, in the context of the predicted no-effect concentrations (PNEC) for the selection of antimicrobial resistance (AMR). Water samples were collected from the WWTP effluent discharge point and upstream and downstream from this point. Heavy metals were identified and quantified using the United States Environmental Protection Agency (US EPA) method 200.7. Biocides and antibiotic residues were determined using validated ultra-high-performance liquid chromatography with tandem mass spectrometry-based methods. The overall highest mean antibiotic, metal and biocide concentrations were observed for sulfamethoxazole (286.180 µg/L), neodymium (Nd; 27.734 mg/L), and benzalkonium chloride (BAC 12) (7.805 µg/L), respectively. In decreasing order per sampling site, the pollutant concentrations were effluent > downstream > upstream. This implies that the WWTP significantly contributed to the observed pollution in the receiving water. Furthermore, most of the pollutants measured recorded values exceeding the recommended predicted no-effect concentration (PNEC) values, suggesting that the microbes in such water environments were at risk of developing resistance due to the selection pressure exerted by these antimicrobials. Further studies are required to establish such a relationship.
Collapse
Affiliation(s)
- Kelechi B Chukwu
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Ovokeroye A Abafe
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Residue Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research Campus, Onderstepoort 0110, South Africa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Integrative Biology and Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L K Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| |
Collapse
|
19
|
Yakamercan E, Aygün A. Health risk assessment of metal(loid)s for land application of domestic sewage sludge in city of Bursa, Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:733. [PMID: 37231226 DOI: 10.1007/s10661-023-11302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
This study aims to determine the potential health risks (Carcinogenic and non-carcinogenic) of metal(loid)s in sewage sludge samples for agricultural purposes. For this purpose, sewage sludge was collected annually from a domestic wastewater treatment plant, and metal(loid)s were determined by ICP-MS. Metal(loid)s concentration in sludge samples was within the legal standards. No statically significant seasonal variation of metal(loid)s were observed. The total cancer risk and the hazard index (HI) of metal(loid)s through ingestion, dermal, and inhalation exposure from sewage sludge samples were estimated. The main risk contributor to metal(loid)s were Pb, Zn, and Ni. The average HI values were 0.75 (child) and 0.09 (adult). The total carcinogenic risk (TCR) for child and adult was found to be 3.43 × 10-5 and 2.31 × 10-5, respectively. EPA risk assessment model and Monte Carlo Simulation were used to estimate probability and sensitivity distributions for carcinogenic and non-carcinogenic risks. Sensitivity analysis showed that metal(loid)s concentration, exposure duration, exposure frequency, and body weight significantly affect total health risk. The sewage sludge can be applied safely in agriculture due to no important carcinogenic and non-carcinogenic risk for child and adult.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye
| | - Ahmet Aygün
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye.
| |
Collapse
|
20
|
Kumar R, Whelan A, Cannon P, Sheehan M, Reeves L, Antunes E. Occurrence of emerging contaminants in biosolids in northern Queensland, Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121786. [PMID: 37156436 DOI: 10.1016/j.envpol.2023.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
This study aims to identify and quantify different classes of emerging contaminants (ECs), such as pharmaceutical and personal care products (PPCPs), per-and polyfluoroalkyl substances (PFAS), heavy metals (HMs), polycyclic musks (PMs) in biosolids from different sewage treatment plants (STPs) from regional councils across Northern Queensland, Australia. Biosolids samples were named BS1 to BS7 for each council. The results revealed significant variations in the concentrations of different ECs in biosolids which could be explained in some instances by the characteristics of the upstream sewage network. For instance, BS4-biosolids from a small agricultural shire (largely sugarcane) showed the highest concentration of zinc and copper, which were 2430 and 1050 mg/kg, respectively. Among PPCPs, the concentration of ciprofloxacin was found to be the highest in BS3 and BS5, two large regional council areas which are a mix of domestic and industrial (predominantly domestic) biosolids of 1010 and 1590 ng/g, respectively. In addition, the quantity of sertraline was consistently high in all biosolids except from BS7, one of the smaller regional councils, which is indicative of the domestic catchments attached. PFAS compounds were detected in all biosolids samples except in BS6, one of the small (agricultural and tourist) catchments. Two PFAS compounds emerged as the most common pollutants that were perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). The largest industrial catchment biosolids, BS2 showed the highest concentration of PFOS at 253 ng/g, while the smallest regional council, BS7 showed the maximum concentration of 7.90 ng/g of PFOA. Overall, this study concludes that certain ECs such as HMs, antibiotics, PFOS and PFOA in biosolids may pose high environmental risks.
Collapse
Affiliation(s)
- Ravinder Kumar
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Anna Whelan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Townsville City Council, Wastewater Operations, Townsville, QLD, 4810, Australia
| | | | - Madoc Sheehan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Louise Reeves
- Queensland Water Directorate, Brisbane, QLD, 4009, Australia
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
21
|
El-Batal AI, Ismail MA, Amin MA, El-Sayyad GS, Osman MS. Selenium nanoparticles induce growth and physiological tolerance of wastewater‑stressed carrot plants. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
AbstractClimate changes have a direct impact on agricultural lands through their impact on the rate of water levels in the oceans and seas, which leads to a decrease in the amount of water used in agriculture, and therefore the use of alternative sources of irrigation such as wastewater and overcoming its harmful effect on plants was one of the solutions to face this problem. In the present study, the impacts of the synthesized selenium nanoparticles (Se NPs) alone or in combination with glycine betaine and proline treatments on the growth, physiological, and yield attributes of wastewater irrigated carrot plants are investigated. Furthermore, to evaluate heavy metals uptake and accumulation in edible plant parts. The usage of wastewater to carrot plants significantly increased free proline contents, total phenols, superoxide dismutase, catalase, peroxidase, polyphenol oxidase, Malondialdehyde (MDA), and hydrogen peroxide (H2O2) throughout the two growth stages. While total soluble carbohydrate and soluble protein content in carrot shoots and roots were significantly reduced. Moreover, the concentrations of nickel (Ni), cadmium (Cd), lead (Pb), and cobalt (Co) in carrot plants were considerably higher than the recommended limits set by international organizations. Application of selenium nanoparticles alone or in combination with glycine betaine and proline reduced the contents of Ni, Cd, Pb, and Co; free proline; total phenols; superoxide dismutase; catalase; peroxidase; polyphenol oxidase; Malondialdehyde (MDA) and Hydrogen peroxide (H2O2) in carrot plants. However, morphological aspects, photosynthetic pigments, soluble carbohydrates, soluble protein, total phenol, and β-Carotene were enhanced in response to Se NPs application. As an outcome, this research revealed that Se NPs combined with glycine betaine and proline can be used as a strategy to minimize heavy metal stress caused by wastewater irrigation in carrot plants, consequently enhancing crop productivity and growth.
Collapse
|
22
|
Topić Popović N, Čižmek L, Babić S, Strunjak-Perović I, Čož-Rakovac R. Fish liver damage related to the wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48739-48768. [PMID: 36869954 PMCID: PMC9985104 DOI: 10.1007/s11356-023-26187-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
Wastewater treatment plants (WWTPs) continuously release a complex mixture of municipal, hospital, industrial, and runoff chemicals into the aquatic environment. These contaminants are both legacy contaminants and emerging-concern contaminants, affecting all tissues in a fish body, particularly the liver. The fish liver is the principal detoxifying organ and effects of consistent pollutant exposure can be evident on its cellular and tissue level. The objective of this paper is thus to provide an in-depth analysis of the WWTP contaminants' impact on the fish liver structure, physiology, and metabolism. The paper also gives an overview of the fish liver biotransformation enzymes, antioxidant enzymes, and non-enzymatic antioxidants, their role in metabolizing xenobiotic compounds and coping with oxidative damage. Emphasis has been placed on highlighting the vulnerability of fish to xenobiotic compounds, and on biomonitoring of exposed fish, generally involving observation of biomarkers in caged or native fish. Furthermore, the paper systematically assesses the most common contaminants with the potential to affect fish liver tissue.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
23
|
Mokoena LS, Mofokeng JP. A Review on Graphene (GN) and Graphene Oxide (GO) Based Biodegradable Polymer Composites and Their Usage as Selective Adsorbents for Heavy Metals in Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2527. [PMID: 36984407 PMCID: PMC10055790 DOI: 10.3390/ma16062527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Water pollution due to heavy metal ions has become a persistent and increasing problem globally. To combat this, carbonaceous materials have been explored as possible adsorbents of these metal ions from solution. The problem with using these materials on their own is that their lifespan and, therefore, usability is reduced. Hence the need to mask them and an interest in using polymers to do so is picked. This introduces an improvement into other properties as well and opens the way for more applications. This work gives a detailed review of the major carbonaceous materials, graphene and graphene oxide, outlining their origin as well as morphological studies. It also outlines the findings on their effectiveness in removing heavy metal ions from water, as well as their water absorption properties. The section further reports on graphene/polymer and graphene oxide/polymer composites previously studied and their morphological as well as thermal properties. Then the work done in the absorption and adsorption capabilities of these composites is explored, thereby contrasting the two materials. This enables us to choose the optimal material for the desired outcome of advancing further in the utilization of carbonaceous material-based polymer composites to remove heavy metal ions from water.
Collapse
|
24
|
Matebese F, Moutloali RM. Integrating Ultrafiltration Membranes with Flocculation and Activated Carbon Pretreatment Processes for Membrane Fouling Mitigation and Metal Ion Removal from Wastewater. ACS OMEGA 2023; 8:9074-9085. [PMID: 36936310 PMCID: PMC10018693 DOI: 10.1021/acsomega.2c03524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/29/2022] [Indexed: 06/18/2023]
Abstract
The presence of metal ions in an aqueous medium is an ongoing challenge throughout the world. Processes employed for metal ion removal are developed continuously with the integration of these processes taking center stage. Herein, an integrated system consisting of flocculation, activated carbon (AC), and an ultrafiltration (UF) membrane was assessed for the removal of multiple metal ions contained in wastewater generated from a university chemistry research laboratory. The quality of the wastewater was established before and further determined after treatment with inductively coupled plasma optical emission spectrometry (ICP-OES) for metal content, total dissolved solids (TDS), turbidity, electrical conductivity (EC), and pH. Assessing the spent AC indicated minimal structural changes, indicating a potential for further reuse; for instance, the BET for both the pristine and spent AC exhibited type I isotherms with a mesoporous structure, indicating no major structural changes due to metal complexation. The relative performance of the integrated system indicated that the use of flocculation improved the water quality of metal-laden wastewater for safe disposal. The integrated treatment systems exhibited high removal efficiencies between 80 and 99.99% for all the metal ions except for Mn (<0.008 mg L-1) and Cr (<0.016 mg L-1) both at ca. 70%, indicative of the positive influence of the polyelectrolyte in the treatment process. The fabricated UiO-66-NH2@GO membranes (Z4 and Z5) exhibited high fouling resistance and reusability potential as well as relatively high pure water flux. Consequently, the integrated process employed for the treatment of laboratory metal-containing wastewater is promising as a generic approach to improving the quality of metal-containing wastewater to meet the standards of discharging limits in South Africa.
Collapse
Affiliation(s)
- Funeka Matebese
- Department
of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028Johannesburg, South Africa
- DSI/Mintek
Nanotechnology Innovation Center−UJ Water Research Node, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028Johannesburg, South Africa
| | - Richard M. Moutloali
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering
and Technology, University of South Africa, Florida, 1709Johannesburg, South Africa
| |
Collapse
|
25
|
Inobeme A, Mathew JT, Jatto E, Inobeme J, Adetunji CO, Muniratu M, Onyeachu BI, Adekoya MA, Ajai AI, Mann A, Olori E, Akhor SO, Eziukwu CA, Kelani T, Omali PI. Recent advances in instrumental techniques for heavy metal quantification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:452. [PMID: 36892610 DOI: 10.1007/s10661-023-11058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) are ubiquitous; they are found in soil, water, air, and all biological matrices. The toxicity, bioaccumulation potential, and deleterious effects of most of these metals on humans and the environment have been widely documented. Consequently, the detection and quantification of HMs in various environmental samples have become a pressing issue. The analysis of the concentrations of HMs is a vital component of environmental monitoring; hence, the selection of the most suitable analytical technique for their determination has become a topic of great interest in food, environment, and human health safety. Analytical techniques for the quantification of these metals have evolved. Presently, a broad range of HM analytical techniques are available with each having its outstanding merits as well as limitations. Most analytical scientists, therefore, adopt complementation of more than one method, with the choice influenced by the specific metal of interest, desired limits of detection and quantification, nature of the interference, level of sensitivity, and precision among others. Sequel to the above, this work comprehensively reviews the most recent advances in instrumental techniques for the determination of HMs. It gives a general overview of the concept of HMs, their sources, and why their accurate quantification is pertinent. It highlights various conventional and more advanced techniques for HM determination, and as one of its kind, it also gives special attention to the specific merits and demerits of the analytical techniques. Finally, it presents the most recent studies in this regard.
Collapse
Affiliation(s)
- Abel Inobeme
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria.
| | - John Tsado Mathew
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, Lapai, Nigeria
| | - Ejeomo Jatto
- Department of Chemistry, Ambrose Alli University Ekpoma, Ekpoma, Nigeria
| | - Jonathan Inobeme
- Department of Geography, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University Uzairue, Edo State, Nigeria
| | - Maliki Muniratu
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria
| | | | | | | | - Abdullahi Mann
- Department of Chemistry, Federal University of Technology Minna, Minna, Nigeria
| | - Eric Olori
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria
| | - Sadiq Oshoke Akhor
- Department of Accounting, Edo State University Uzairue, Edo State, Nigeria
| | | | - Tawakalit Kelani
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria
| | | |
Collapse
|
26
|
Manjubaashini N, Daniel Thangadurai T. Unaided-eye detection of diverse Metal ions by AuNPs-based Nanocomposites: A Review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
27
|
du Plessis M, Fourie C, Stone W, Engelbrecht AM. The impact of endocrine disrupting compounds and carcinogens in wastewater: Implications for breast cancer. Biochimie 2023; 209:103-115. [PMID: 36775066 DOI: 10.1016/j.biochi.2023.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
The incidence of breast cancer is often associated with geographic variation which indicates that a person's surrounding environment can be an important etiological factor in cancer development. Environmental risk factors can include exposure to sewage- or wastewater, which consist of a complex mixture of pathogens, mutagens and carcinogens. Wastewater contains primarily carbonaceous, nitrogenous and phosphorus compounds, however it can also contain trace amounts of chemical pollutants including toxic metal cations, hydrocarbons and pesticides. More importantly, the contamination of drinking water by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds. Organic solvents and other pollutants often found in wastewater have been detected in various tissues, including breast and adipose tissues. Furthermore, these pollutants such as phenolic compounds in some detergents and plastics, as well as parabens and pesticides can mimic estrogen. High estrogen levels are a well-established risk factor for estrogen-receptor (ER) positive breast cancer. Therefore, exposure to wastewater is a risk factor for the initiation, progression and metastasis of breast cancer. Carcinogens present in wastewater can promote tumourigenesis through various mechanisms, including the formation of DNA adducts, gene mutations and oxidative stress. Lastly, the presence of endocrine disrupting compounds in wastewater can have negative implications for ER-positive breast cancers, where these molecules can activate ERα to promote cell proliferation, survival and metastasis. As such, strategies should be implemented to limit exposure, such as providing funding into treatment technologies and implementation of regulations that limit the production and use of these potentially harmful chemicals.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Carla Fourie
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Wendy Stone
- Stellenbosch University Water Institute, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
28
|
Nnaji JC, Amaku JF, Amadi OK, Nwadinobi SI. Evaluation and remediation protocol of selected organochlorine pesticides and heavy metals in industrial wastewater using nanoparticles (NPs) in Nigeria. Sci Rep 2023; 13:2170. [PMID: 36750624 PMCID: PMC9905072 DOI: 10.1038/s41598-023-28761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Limited knowledge of the level of contaminants in industrial wastewater within the Nigerian states together with the global challenge of water supply have compelled our investigation into the analyses and removal of organochlorine pesticides (OCPs) and heavy metal contents in industrial wastewater. Wastewater samples were collected from 13 industries across five states in Nigeria. The OCPs content of the samples was extracted, cleaned up and analysed using gas chromatography-mass spectrometry. The results indicate that the mean concentrations of the OCPs in the effluent samples ranged from 1.76 ng L-1 (Dieldrin) to 0.89 ng L-1 (endrin). Cadmium (Cd), chromium (Cr) and lead (Pb) were evaluated in all the effluent water samples. The results show that the average concentrations of the heavy metal ions in the effluent samples ranged from 0.008 ± 0.003 mg L-1 (Cd) to 2.215 ± 0.841 mg L-1 (Pb). For the removal of the identified contaminants, biomagnetite nanoparticles (BioMag), magnetite nanoparticles (MagNPs), biomagnetite-CMC nanocomposite (BioMag-CMC) and magnetite-CMC nanocomposite (MagNPs-CMC) were synthesised and characterised using Braunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and high resolution-transmission electron microscopy (HR-TEM). This study demonstrates the successful application of nanoparticles (NPs) and nanocomposites in the removal of OCPs and heavy metal ions in industrial effluents. The routine assessment and continuous removal become important to attain a state of clean and healthy aquatic ecosystem due to rapid industrial and technological advances.
Collapse
Affiliation(s)
- Jude Chidozie Nnaji
- grid.442668.a0000 0004 1764 1269Department of Chemistry, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia Nigeria
| | - James Friday Amaku
- Department of Chemistry, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia, Nigeria.
| | - Okoche Kelvin Amadi
- grid.442668.a0000 0004 1764 1269Department of Chemistry, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia Nigeria
| | - Solomon Ireji Nwadinobi
- grid.442668.a0000 0004 1764 1269Department of Chemistry, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia Nigeria
| |
Collapse
|
29
|
Jalali M, Imanifard A, Jalali M. Heavy metals accumulation in wheat (Triticum aestivum L.) roots and shoots grown in calcareous soils treated with non-spiked and spiked sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20862-20873. [PMID: 36260228 DOI: 10.1007/s11356-022-23604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
With growing urbanization and agriculture, the quantity of sewage sludge production increases every year. For the purpose of risk management, it is crucial to figure out how much heavy metals are transported to different parts of plants when sewage sludge is used. A greenhouse experiment was carried out to investigate the accumulation of heavy metals in wheat (Triticum aestivum L.) grown in 30 calcareous soils. The soils in this study were subjected to three different treatments: soils treated with sewage sludge at a rate of 2.5%, soils treated with sewage sludge at a rate of 2.5% and enriched with heavy metals, and control soils that received neither sewage sludge nor heavy metals. Wheat grown in sewage sludge-treated soils had the highest mean dry matter, and was 2.11 and 1.25 times greater than wheat grown in control and spiked-sewage sludge-treated soils, respectively. In all treatments, wheat roots had greater heavy metal levels than wheat shoots. Among all the heavy metals examined, Pb and Cu had the highest bioconcentration factors for roots and shoots (BCFRoots and BCFShoots) in control and sewage sludge-treated soils, followed by Cd in spiked-sewage sludge-treated soils, and Co and Ni had the lowest BCFRoots and BCFShoots across all treatments. In spiked-sewage sludge-treated soils, the root restriction for heavy metals translocation was more important for Co, Cu, and Ni than for Pb and Zn, indicating that wheat can be grown safely in a variety of calcareous soils amended with sewage sludge with high content of Cd, Co, Cu, and Ni. Reducing the transfer of Pb and Zn from soils to wheat in soils treated with sewage sludge yet having high concentrations of these heavy metals should be considered as a top priority strategy for preserving wheat products. Since a wide range of calcareous soils was used in this study and because calcareous soils make up the majority of soils in the Middle East, the findings are relevant for all of the countries in this region.
Collapse
Affiliation(s)
- Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Abolfazle Imanifard
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
30
|
Muduli M, Choudhary M, Ray S. Remediation and characterization of emerging and environmental pollutants from residential wastewater using a nature-based system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45750-45767. [PMID: 36707474 DOI: 10.1007/s11356-023-25553-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
The nature-based systems (NBS) are nature inspired, unflagging, efficient, and budget friendly ideas that evolved as ideal technologies for wastewater treatment. The present study deals with the purification of residential wastewater through the NBS, covering three seasons. The NBS embedded with the Canna lily effectively eliminated organic matter, nutrients, and heavy metals. Nearly 57.2-75.2% COD, 69.9-83.2% BOD, 73.4-90.6% TSS, 51.1-71.6% PO43--P, 66.3-84.8% NH4+-N, 52-61.5% NO3--N, and 68-70.6% NO2--N removal were achieved. Heavy metals like Al, Cr, Mn, Fe, Ni, Cu, Zn, Mo, and Pb were removed, with a 98.25% reduction in the total bacterial count. The pollutant removal's kinetics was calculated using first-order kinetics. The mass removal rate of BOD was high in monsoon (22.3 g/m2/d), and COD was high in summer (36.4 g/m2/d). Organic compound removal (65.2%), including emerging pollutants, was observed by gas chromatography-mass spectrometry (GCMS) analysis of water and Canna samples. Wavelength dispersive X-ray fluorescence spectrometer (WDXRF) studied the elements and oxides retention by media and accumulation by the plant. The CHN content of the Canna and its morphological study was checked using the carbon CHNS analyzer and scanning electron microscope-energy dispersive X-ray (SEM-EDX), respectively. The performance of the NBS was validated using variance, correlation, and principal component analysis (PCA). This study shows the NBS effects on the remediation of environmental and emerging contaminants from residential wastewater and further use it for horticultural activities, thereby achieving sustainable development goals.
Collapse
Affiliation(s)
- Monali Muduli
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Meena Choudhary
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
31
|
Ling SY, Asis J, Musta B. Distribution of metals in coastal sediment from northwest sabah, Malaysia. Heliyon 2023; 9:e13271. [PMID: 36755600 PMCID: PMC9900272 DOI: 10.1016/j.heliyon.2023.e13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
The type of minerals in sediments control the geochemical distribution of metals which serve as an indicator of the pollution status to the marine environment. The type of minerals was determined from X-ray diffraction (XRD) and scanning electron microscope (SEM) which shows the dominance of carbonate (calcite, aragonite, dolomite), silicate (quartz) and minor clay (illite, kaolinite) minerals. The elemental concentrations were also determined using the Inductively Coupled Plasma (ICP-OES) analysis that shows the major elements Ca > Fe > Mg > Al > Mn for all locations, whereas the heavy metals differ as Ni > Cr > Zn > Co > Pb, Cr > Ni > Zn > Pb > Co and Zn > Pb > Cr > Ni, respectively. The correlation between the major elements and heavy metals were also performed using the Pearson Correlation analysis via IBM SPSS which showed the positive Al-Fe-Mn correlation with the heavy metals but negative correlation with Ca. The correlations between the elements were influenced by the adsorption and precipitation of the major minerals in the sediment. The objective of this study is to determine the geochemical distribution of metals due to the influence of minerals in the coastal sediment of Kota Belud, Kudat and Mantanani Island. Therefore, this study could serve as a geochemical baseline data to understand the abundance of metals from the coastal region of northwest Sabah, Malaysia.
Collapse
Affiliation(s)
- Sin Yi Ling
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Junaidi Asis
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Baba Musta
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia,Small Island Research Centre, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia,Corresponding author. Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
32
|
Inobeme A, Mathew JT, Adetunji CO, Ajai AI, Inobeme J, Maliki M, Okonkwo S, Adekoya MA, Bamigboye MO, Jacob JO, Eziukwu CA. Recent advances in nanotechnology for remediation of heavy metals. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:111. [PMID: 36378336 DOI: 10.1007/s10661-022-10614-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal contamination of the environment has become an alarming environmental issue that has constituted serious threats to humans and the ecosystem. These metals have been identified as a priority class of pollutants due to their persistency in the environment and their potential to bioaccumulate in biological systems. Consequently, the remediation of heavy metals from various environmental matrices becomes a critical topic from the biological and environmental perspectives. To this end, various research interests have shifted to the need to put forward economically feasible and highly efficient approaches for mitigating these contaminants in the environment. Thus, numerous conventional approaches have reportedly been employed for the remediation of heavy metals, with each of the methods having its inherent limitations. More recently, studies have revealed that nanomaterials in their various forms show unique potential for the removal of various contaminants including heavy metals in comparison to their bulk counterparts making them a topic of importance to researchers in various fields. Also, various studies have documented specifically tailored nanomaterials that have been synthesized for the removal of heavy metals from various environmental matrices. This review provides up-to-date information on the application of nanotechnology for the remediation of heavy metals. It highlights various nanomaterials that have been employed for the remediation of heavy metals, current details on their methods of synthesis, factors affecting their adsorption processes, and the environmental and health impact of nanomaterials. Finally, it provides the challenges and future trends of nanomaterials for heavy metal removal.
Collapse
Affiliation(s)
- Abel Inobeme
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria.
| | - John Tsado Mathew
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, Lapai, Nigeria
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University Uzairue, Edo State, Nigeria
| | | | - Jonathan Inobeme
- Department of Geography, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| | - Muniratu Maliki
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria
| | - Stanley Okonkwo
- Department of Chemistry, Osaka Kyoiku University, Osaka, Japan
| | | | | | - John Olusanya Jacob
- Department of Chemistry, Federal University of Technology Minna, Niger State, Nigeria
| | | |
Collapse
|
33
|
Basheeru KA, Adekola FA, Abdus-Salam N, Okoro HK. Spatio-temporal monitoring of potentially toxic elements in Lagos harbour water and its health risk implications. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractContinuous discharge of industrial and domestic inputs from various processes into the Lagos lagoon has significantly affected the quality of the aquatic environment, as a result of potentially toxic elements (PTEs) being released into the harbour during anthropogenic activities. This study involved monitoring the concentration and distribution of heavy metals in Lagos harbour during the dry and wet seasons. The PTEs can pose a serious ecological threat to the marine environment as well as human beings when the level of priority metals like cadmium, lead, and chromium is beyond World Health Organization (WHO) limits of 0.003, 0.05, and 0.1 mg/L, respectively. The shipping activities within the harbour play a significant role in the generation of these toxic metals. The diverse nature of these metals coexisting with their oxidation states in aquatic environments and their bioaccumulation influences the toxicity of PTEs towards the living organism. The quantification of these metals with highly selective and accurate instrumentation is imperative. Ion-selective exchangers and other functionalized composite nanomaterial are critical for harbour water remediation because of the high risk that could be associated with prolonged exposure to these toxic elements especially when the carcinogenic risk value is greater than 1 × 10−6 mg/kg/day.
Collapse
|
34
|
Onchoke KK, Franclemont CM. Evaluation and removal efficiencies of a rural WWTP for metals and anions in Lufkin, East Texas (USA). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:920. [PMID: 36257995 PMCID: PMC9579637 DOI: 10.1007/s10661-022-10622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The present study quantified element concentrations and evaluated the removal efficiencies of the Lufkin Wastewater Treatment Plant (LWWTP): a public municipal wastewater treatment plant in East Texas. Macroelements (Na, K, Mg, Ca, Al, Fe, Se, Zn, P, and S) and microelements (Ni, Pb, Mn, Cr, Mo, Cu, Co, V, As, B, Ba) were detected using ICP-OES and ICP-MS. In addition, the anion concentrations (Br-, NO3-, NO2-, PO43-, F-, Cl-, and SO42-) and their percent removal from the LWWTP were assessed by using ion chromatography. Whereas macroelements in the influent were above the maximum ceiling limits, the total metal concentrations in the effluent were found below the USEPA (below μg/L) guidelines. In general, the removal efficiencies for metals in LWWTP were ≥ 94%. The removal efficiencies of the anions were > 100% (Br-), 16.42% (Cl-), 78.89% (F-), 182.59% (NO3-), > 100% (NO2-), 51.81% (PO43-), and 67.01% (SO42-). In addition, Pierson correlation coefficients between the anions and cations, and implications for usage and suggested improvements of the treatment plants are proposed.
Collapse
Affiliation(s)
- Kefa K Onchoke
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 - SFA Station, Nacogdoches, TX, 75962-13006, USA.
| | - Christopher M Franclemont
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 - SFA Station, Nacogdoches, TX, 75962-13006, USA
| |
Collapse
|
35
|
Maphuhla NG, Lewu FB, Oyedeji OO. Enzyme Activities in Reduction of Heavy Metal Pollution from Alice Landfill Site in Eastern Cape, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12054. [PMID: 36231352 PMCID: PMC9565107 DOI: 10.3390/ijerph191912054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/16/2023]
Abstract
Heavy metals are unbreakable, and most of them are poisonous to animals and people. Metals are particularly concerning among environmental contaminants since they are less apparent, have extensive effects on ecosystems, are poisonous, and bioaccumulate in ecosystems, biological tissues, and organs. Therefore, there is a need to use biological agents and phytoremediation processes such as enzymes because they have a high potential for effectively transforming and detoxifying polluting substances. They can convert pollutants at a detectable rate and are potentially suitable for restoring polluted environments. We investigated heavy metal concentrations in different soil samples collected in four sections in Alice and determined the enzyme activity levels present in the soil. The Pearson correlation analysis was conducted to check whether there was any relationship between heavy metal concentrations and enzyme activities in the soil. Samples were randomly collected in three weeks, and the microwave digestion method was used for sample treatment and preparation. Quantitation was achieved by inductively coupled plasma mass spectrometry (ICP-MS). The enzyme assay through incubation method was implemented for discovering the four selected enzymes (urease, invertase, catalase, and phosphatase), and their activity levels were examined colorimetrically by colorimetry spectrophotometer. The ICP-MS results revealed 16 predominating elements, namely: Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Sr, and Zn, and the presence of a non-mental, which is phosphorus (P), and a metalloid in the form of silicon (Si) in all soil samples. Significant differences in metal concentrations were observed among the collection sites. The Al, Fe, K, Mg, and Ca concentrations were above WHO's permissible limits. While Ba, Mn, Na, and P were in moderate concentration, Cu, Cr, Co, Zn, Sr, and Ni were in small amounts recorded mostly below the permissible values from WHO. Four soil enzyme activities were determined successfully (urease, invertase, phosphatase, and catalase). A negative non-significant correlation existed between urease, invertase, phosphatase enzyme activity, and the concentration levels of all selected metals (Al, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Cr, Sr, and Zn. In contrast, the content of catalase activity was associated non-significantly but positively with the range of selected heavy metals. This study suggests proper monitoring of residences' areas, which can provide detailed information on the impact of high heavy metal content on people's health. They are easily dispersed and can accumulate in large quantities in the soil. The necessary implementation of waste management programs will help the municipality adopt a strategy that will promote recycling programs and protect the residence health from this threat.
Collapse
Affiliation(s)
- Nontobeko Gloria Maphuhla
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Francis Bayo Lewu
- Department of Agriculture, Faculty of Applied Sciences, Wellington Campus, Cape Peninsula University of Technology, Wellington 7655, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
36
|
Recovery Strategies for Heavy Metal-Inhibited Biological Nitrogen Removal from Wastewater Treatment Plants: A Review. Microorganisms 2022; 10:microorganisms10091834. [PMID: 36144435 PMCID: PMC9506541 DOI: 10.3390/microorganisms10091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Biological nutrient removal is an integral part of a wastewater treatment plant. However, the microorganism responsible for nutrient removal is susceptible to inhibition by external toxicants such as heavy metals which have the potential to completely inhibit biological nutrient removal. The inhibition is a result of the interaction between heavy metals with the cell membrane and the deoxyribonucleic acid (DNA) of the cell. Several attempts, such as the addition of pretreatment steps, have been made to prevent heavy metals from entering the biological wastewater systems. However, the unexpected introduction of heavy metals into wastewater treatment plants result in the inhibition of the biological wastewater treatment systems. This necessitates the recovery of the biological process. The biological processes may be recovered naturally. However, the natural recovery takes time; additionally, the biological process may not be fully recovered under natural conditions. Several methods have been explored to catalyze the recovery process of the biological wastewater treatment process. Four methods have been discussed in this paper. These include the application of physical methods, chelating agents, external field energy, and biological accelerants. These methods are compared for their ability to catalase the process, as well as their environmental friendliness. The application of bio-accelerant was shown to be superior to other recovery strategies that were also reviewed in this paper. Furthermore, the application of external field energy has also been shown to accelerate the recovery process. Although EDTA has been gaining popularity as an alternative recovery strategy, chelating agents have been shown to harm the metal acquisition of bacteria, thereby affecting other metabolic processes that require heavy metals in small amounts. It was then concluded that understanding the mechanism of inhibition by specific heavy metals, and understanding the key microorganism in the inhibited process, is key to developing an effective recovery strategy.
Collapse
|
37
|
Aubeeluck-Ragoonauth I, Rhyman L, Somaroo GD, Ramasami P. Physicochemical analysis of wastewater generated from a coating industry in Mauritius. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:676. [PMID: 35974238 DOI: 10.1007/s10661-022-10309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The coating industry is one of the most important consumers of water and chemicals and consequently is a major water polluter in Mauritius. The focus of this study was to characterise wastewater generated by a coating industry in Mauritius. The objectives were to develop a wastewater sampling strategy and to analyse the pollutant parameters as per Mauritian regulations. The wastewater samples were analysed for physicochemical properties and metal abundances over a period of 6 months. The physicochemical parameters analysed were pH, electrical conductivity (EC), true colour, total suspended solids (TSS), biological oxygen demand (BOD5), chemical oxygen demand (COD), nitrate, phosphate, sulphate and free chlorine. The wastewater samples were also analysed for metal ions such as sodium, potassium, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel and zinc. The results of the physicochemical parameters indicated the presence of biologically resistant organic matters in all the wastewater samples with elevated values of BOD5 and COD, and low biodegradability index, respectively. The coating industry wastewater samples were acidic and saline in nature. Moreover, they presented high concentrations of TSS, free chlorine and sodium ions compared to standard limits promulgated by the Mauritian Government. Spearman's rank correlation matrix with non-linear regression analysis showed significant associations among the measured parameters which were found to have a common origin in the coating industry wastewater. This research will be useful for regular monitoring and setting up an adequate coating industry wastewater treatment for the potential reuse in production processes in Mauritius.
Collapse
Affiliation(s)
- Iswaree Aubeeluck-Ragoonauth
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Reduit, 80837, Mauritius
| | - Lydia Rhyman
- Department of Chemistry, Faculty of Science, University of Mauritius, Reduit, 80837, Mauritius
- Department of Chemical Sciences, Doornfontein Campus, Centre for Natural Product Research, University of Johannesburg, Johannesburg, 2028, South Africa
| | - Geeta Devi Somaroo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Reduit, 80837, Mauritius
| | - Ponnadurai Ramasami
- Department of Chemistry, Faculty of Science, University of Mauritius, Reduit, 80837, Mauritius.
- Department of Chemical Sciences, Doornfontein Campus, Centre for Natural Product Research, University of Johannesburg, Johannesburg, 2028, South Africa.
| |
Collapse
|
38
|
Almutairi M. Evaluate the effectiveness technology for the treatment of oily wastewater. JOURNAL OF WATER AND HEALTH 2022; 20:1171-1187. [PMID: 36044187 DOI: 10.2166/wh.2022.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work deals with the treatment of oily wastewater produced from the washing of oil-contaminated soil. Untreated oily wastewater contains toxic compounds that might be mutagenic or carcinogenic as total petroleum hydrocarbon (TPH) and heavy metals. Based on the water quality analysis, the tested samples contained a high concentration of TPH, chemical oxygen demand (COD) and turbidity with an average value of 67,500 mg/l, 48,240 mg/l and 176 (nephelometric turbidity unit, NTU), respectively. Several technologies were used, such as centrifuging, powdered activated carbon (PAC) and sawdust. The mean values of COD values for sawdust, centrifuging and PAC were 41,067, 25,600 and 13,133 mg/l, respectively. The present study indicated that the coagulation/flocculation processes were more efficient by using aluminium sulphate alum, while the preliminary conclusion derived was that the secondary treatment using an aeration system is capable of lowering the COD values as well as increasing the flocculent mass floc well equal to 4,784 mg/l and 0.69 g, respectively. The microbial seed was able to degrade the biosurfactant, which allows the stability of oil emulsion to be broken down and released easily.
Collapse
Affiliation(s)
- Meshari Almutairi
- Civil Engineering Department, Australian University AU: Kuwait, KW, West Mishref Mubarak Al-Abdullah Al-Jaber Area Block 5 - Al Aqsa Mosque Street Gate 1, P.O. Box 1411, Safat 13015, Kuwait E-mail:
| |
Collapse
|
39
|
Assessment of Heavy Metal Distributions in Sand Beaches in the Maltese Islands. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study focuses on the quantification of heavy metals present in 18 sand beaches on the islands of Malta and Gozo. A total of 134 samples were collected, digested using Aqua Regia, and analysed using flame AAS to find the concentration of six heavy metals. Concentrations obtained in descending order are: Sr > Fe > Mn > Pb > Zn > Cu. Using PCA, Fe and Mn resulted as homogenous distributions with a probable prevalent lithogenic origin. Pb is possibly dominantly anthropogenic, while Cu and Zn are of a mixed nature. Cluster analysis was used to prove the interaction between concentrations and different bays from where the samples were gathered. This showed that Ballut Reserve Bay and Rinella Bay in Malta and Marsalforn Bay in Gozo are amongst the bays most affected by heavy metal content. It has been observed that bays with higher heavy metal content lie in the same zones with the highest geological wear rate induced by sea waves. Health risk assessment undertaken for adults and children shows negligible effects of non-carcinogenic risk and cancer risk indices. Potential ecological risk computed for the concentrations obtained showed considerable Cu risk and a moderate Pb risk at the bays analysed, none of which are contaminated with these elements.
Collapse
|
40
|
Muduli M, Sonpal V, Ray S, Haldar S. In-depth performance study of an innovative decentralized multistage constructed wetland system treating real institutional wastewater. ENVIRONMENTAL RESEARCH 2022; 210:112896. [PMID: 35182600 DOI: 10.1016/j.envres.2022.112896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The performance of an innovative decentralized multistage constructed wetland (DMCW) treating institutional wastewater is studied covering three seasons. The DMCW system with Canna lily efficiently removed organics contaminants like COD and BOD, and nutrients from the wastewater, showing its dependency on meteorological factors. Overall the performance is maximum in summer and least in monsoon, with a COD removal of 85.6% in summer followed by 82.5% in winter and 61.2% in monsoon. Removal of TSS (67.7-85.5%), PO43--P (52.1-64.4%), NH4+-N (56.6-71.6%), NO3--N (47.3-63.4%) and NO2--N (62-75.4%) were achieved along with heavy metals like Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg and Pb. Removal of pathogens like Vibrio is >98%, E. coli 95%, Pseudomonas 99%, and Aeromonas 63% was observed. Mass removal rate of COD was maximum in summer (97.3 g/m2/d) followed by winter (78.7 g/m2/d) and monsoon (43.5 g/m2/d). Majority of organics removal during the treatment was highlighted through Gas Chromatography-Mass Spectrometry (GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed wastewater to be complex. The Canna lily accumulated various elements and oxides during the treatment with no stress on its health. The treated water quality is within the permissible limits and stands suitable for irrigational purposes. Better plant health and increased microbial diversity in the garden proves the suitability of treated water for irrigational activities. The results were validated using statistical tools like Mann-Whitney U test and principal component analysis.
Collapse
Affiliation(s)
- Monali Muduli
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vasavdutta Sonpal
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
41
|
Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. TOXICS 2022; 10:toxics10060340. [PMID: 35736948 PMCID: PMC9228299 DOI: 10.3390/toxics10060340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Poor and inadequate sanitation systems have been considered not only a human health issue, but also an environmental threat that instigates climate change. Nine heavy metals-arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn)-were evaluated in influent and effluent water samples from four wastewater treatment plants in the Durban metropolis, KwaZulu-Natal, South Africa. The results indicate that the mean concentrations of all the heavy metals in the influent samples ranged from 0.122 to 1.808 mg/L, while the effluent samples had a concentration ranging from 0.118 to 0.854 mg/L. Iron was found to be in the highest concentration and the concentration of Co was the lowest across the wastewater treatment plants. The levels for most of the heavy metals in this study were found to be above the recommended maximum concentrations in surface and effluent waters as stipulated by the World Health Organization, United States Environmental Protection Agency, Food and Agriculture Organization, and the Department of Water Affairs and Forestry of South Africa. According to the toxicity effect due to non-carcinogenic risks, As, Pb, Cr, and Cd are considered to be of medium risk in this study, indicating that a probable adverse health risk is very likely to occur. Additionally, the cancer risk (RI) values were lower than 10-3, which shows that cancer development is very likely in individuals who are exposed. Cancer development associated with dermal absorption is quite negligible; thereby, it does not raise any concerns.
Collapse
|
42
|
Temporal Variations of Heavy Metal Sources in Agricultural Soils in Malta. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the opportunity to understand the benefits of Maltese soil and its importance to our climate, the content of heavy metals—including Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn—was studied in two fields in proximity in the south-east region of Malta. Analytical determinations were carried out using atomic absorption spectroscopy following heated aqua regia digestion on 50 collected samples using triple repeatability. The decreasing pattern of the concentrations obtained is Fe > Zn > Mn > Sr > Pb > Cu > Ni > Cr > Co. Correlations between pre-harvesting and post-harvesting concentrations were examined to assess lithogenic and anthropogenic relationships. Multivariate analysis including principal component analysis and factor analysis clarified the origin of heavy metals content reviewed. Some of the heavy metals studied showed a dominant relationship between concentration variation and their possible sources. Potential ecological risk assessment demonstrated that the fields reviewed are not contaminated by any of the heavy metals assessed except for Zn which posed a moderate/strong contamination but presented an overall low potential for ecological risk. Concentrations of heavy metals demonstrated no risk to human health and no carcinogenic risk through ingestion and dermal contact with the soil.
Collapse
|
43
|
Hussain N, Shafiq Ahmed K, Asmatullah, Shafiq Ahmed M, Makhdoom Hussain S, Javid A. Potential health risks assessment cognate with selected heavy metals contents in some vegetables grown with four different irrigation sources near Lahore, Pakistan. Saudi J Biol Sci 2022; 29:1813-1824. [PMID: 35280542 PMCID: PMC8913408 DOI: 10.1016/j.sjbs.2021.10.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 01/13/2023] Open
Abstract
Carcinogenic and health hazard causing heavy metals have been increasing in our dietary stuffs due to large amount of industrial effluents being dumped in water bodies that are ultimately used for irrigation purposes. The study was aimed to assess and compare the mean concentrations of heavy metals (Cd, As and Pb) in soil and vegetables irrigated with four different sources (Ground water, river water, domestic sewage water and industrial untreated effluents and domestic waste water receiving drains) for the estimation of carcinogenic and non-carcinogenic health risk associated with them. Prepared samples were analyzed by through ICP-OES. Statistical analysis revealed that domestic sewage water and drains water usage for irrigation purposes leads to high values of Estimated Daily Intake (EDI) of metals through vegetation. To assess the carcinogenic effects values daily intakes, Total hazard quotients (THQs) and Health indexes (HI), while for carcinogenic effects, Total cancer risks (TCR) were determined. The results of present study revealed that the daily intakes of these metals are far less than that of permissible levels but their bio-accumulating behavior produce high risks to human health. The HI values revealed that waste water usage is producing the vegetables of high health risks. In adults, the HI of Phaseolus vulgaris, Spinacia oleracea, Brassica compestris, Raphnus sativus, Daucus carota and Solanum tuberosum assessed as 0.81, 1.52, 1.26, 0.12, 0.22, and 0.15 (ground water irrigation), 0.046, 0.75, 0.51, 0.68, 0.90 0.064 (River Ravi water irrigation), 1.23, 3.34, 4.81, 4.23, 1.41 and 3.43 (domestic sewage irrigation) and 3.04, 5.50, 6.08, 2.50, 5.34 and 5.13 (Drain waste water irrigation), respectively. It was observed that cancer risks of As exceeded the threshold (1 × 10−4) in all i.e. ground river, domestic sewage and drain water grown vegetables, while, Cd and Pb were in permissible range.
Collapse
Affiliation(s)
- Nasir Hussain
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Asmatullah
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | | | - Arshad Javid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Pakistan
| |
Collapse
|
44
|
Pinter J, Jones BS, Vriens B. Loads and elimination of trace elements in wastewater in the Great Lakes basin. WATER RESEARCH 2022; 209:117949. [PMID: 34915334 DOI: 10.1016/j.watres.2021.117949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The growing use of trace elements in industrialized societies is driving an increase in the occurrence of trace elements in anthropogenic waste streams globally. Yet, the large-scale sources of many trace elements to wastewater and their elimination during treatment remain poorly understood and potential environmental impacts on freshwater systems therefore unclear. We screened 42 wastewater treatment facilities in the North American Great Lakes basin and deployed a black-box approach to calculate representative estimates for average per-capita trace element loads and basin-scale effluent discharge rates, as well as trace element removal efficiencies across different treatment technologies. Our results show different removal of specific groups of trace elements during wastewater treatment: average removal efficiencies were 25% for alkali metals, 50% for alkaline earth metals, 74% for transition metals, and 85% for rare earth elements. Higher elimination of the majority of trace elements was generally achieved by more advanced, tertiary treatment types. Elemental loads generally followed natural abundance patterns, but anomalous loading rates were observed for various trace elements across the sampled facilities. By examining geospatial attributes of the sampled sewersheds, trends in select trace element loads were qualitatively tied to possible point sources and diffuse sources. Overall, these results illustrate the potential of wastewater surveillance to inform environmental management of emerging trace element contaminants.
Collapse
Affiliation(s)
- Jacob Pinter
- Department of Geological Sciences and Engineering, Queen's University, Kingston, Ontario, Canada
| | - Bailey S Jones
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| | - Bas Vriens
- Department of Geological Sciences and Engineering, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
45
|
Mohammadzadeh M, Mirzaei N, Mostafaii G, Atoof F, Miranzadeh MB, Dehghani R. Determination of potentially toxic metals in depilatory products in the Iranian markets: human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13756-13765. [PMID: 34599443 DOI: 10.1007/s11356-021-16608-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the concentrations of heavy metals, including lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), cobalt (Co), and arsenic metalloid (As), to assess their health risks in the popular depilatory products of the Iranian markets. Twenty-one samples of 7 popular brands of depilatory products, inclusive of cream and powder, were examined. Selected elements were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) using the appropriate procedure for acid digestion and the measurement of heavy metal contents. The differences in heavy metal concentrations were investigated according to the type of product, brand, country of production, and product price using t test and one-way analysis of variance and post hoc Tukey test. Finally, carcinogenic and non-carcinogenic risk assessments were calculated for the studied elements. The results showed that Pb (5.46±2.30 mg/kg) and Co (0.16±0.69 mg/kg) had the highest and lowest concentrations in these products, respectively. In general, the concentration of heavy metals in depilatory creams was less than the concentration of elements in depilatory powders and less than the maximum allowable limits as defined by the Institute of Standards and Industrial Research of Iran (ISIRI). There was a direct and significant relationship between the concentration of heavy metals in depilatory powders and the product's price. Moreover, the amount of As in one of the brands of depilatory powder was determined to exceed the standard value (2 mg/kg). Also, hazard index (HI) and lifetime cancer risk (LCR) were below 1 and 10-6, respectively, which indicated that this mentioned heavy metal had no probable non-carcinogenic and carcinogenic risks for consumers. According to this study, it was evident that the chances of cancer and non-cancer risk using depilatory products were unlikely, but continuous use can be harmful due to the excessive accumulation of these heavy metals.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Social Determinants of Health (SDH) Research Center, Department of Environment Health, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nezam Mirzaei
- Social Determinants of Health (SDH) Research Center, Department of Environment Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamreza Mostafaii
- Social Determinants of Health (SDH) Research Center, Department of Environment Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Atoof
- Departments of Biostatistics & Epidemiology, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Bagher Miranzadeh
- Social Determinants of Health (SDH) Research Center, Department of Environment Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Rouhullah Dehghani
- Social Determinants of Health (SDH) Research Center, Department of Environment Health, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
46
|
The Health and Environmental Impact of Plastic Waste Disposal in South African Townships: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020779. [PMID: 35055600 PMCID: PMC8776020 DOI: 10.3390/ijerph19020779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/06/2023]
Abstract
Twenty-first century human behaviour continues to escalate activities that result in environmental damage. This calls for environmentally friendly solutions, such as waste recycling and handling, to deal with the increased amount of waste, especially plastics. The plastic materials manufacturing sector is booming, particularly packaging; while only a fraction of its waste is recycled, another fraction is destroyed, and the larger part continues to pollute the environment. In addition to other waste disposal activities, destroying plastic or incineration (which could be for energy recovery) is usually subjected to strict legal requirements because of its effect on the environment. However plastic is destroyed or disposed of, it poses a serious challenge in both the short term and the long term to humans and their natural environment if the process is not efficiently managed. This article describes how a growing amount of plastic waste is disposed of haphazardly in South African townships, while most of the inhabitants are not aware or do not care about the adverse environmental and health effects of these actions. This article examines the environmental and health effects of poor plastic disposal in South African townships as it is in other developing countries to sensitise the citizens to the significance of reducing plastic waste quantities, which will downplay their impact on human health and the environment.
Collapse
|
47
|
Chandana N, Rao B. A critical review on sludge management from onsite sanitation systems: A knowledge to be revised in the current situation. ENVIRONMENTAL RESEARCH 2022; 203:111812. [PMID: 34363803 DOI: 10.1016/j.envres.2021.111812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 05/28/2023]
Abstract
Access to safe excreta disposal is a basic human right and an essential element of human development. Developing countries (like India) have constructed millions of toilets with on-site sanitation technologies (OSTs). However, these OSTs lack the required management system for collection, transportation and disposal of Faecal Sludge (FS, sludge getting accumulated in OST), leading to considerable water and soil pollution. The major challenge in FS Management is the collation of scattered data and concentrated experiences (i.e., existing knowledge remains with the practitioners in the field without a written record). Therefore, a critical review of existing knowledge on OST, FS collection, transportation, and its utilisation is essential. This study highlighted shortcomings associated with existing OST, FS collection, transportation, and treatment systems. Furthermore, this study provided a framework for appropriate selection of OST based on available sanitation chains, and a critical analysis of FS characteristics (i.e., total solids, pH, electrical conductivity, biological oxygen demand, chemical oxygen demand, and pathogens of FS ranged from 830 to 72000 mg/L, 6.8 to 7.8, 1.9 to 3.5 mS/cm, 500-5000 mg/L, 100 to 49,000 mg/L, and 106 to 107 E-coli and 103 to 104 parasitic worms per litre of FS, respectively) to design treatment systems for FS utilisation as a resource in agricultural, aqua-culture, and construction application.
Collapse
Affiliation(s)
- N Chandana
- Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Bakul Rao
- Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
48
|
Rajabi S, Nasiri A, Hashemi M. Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation. CHEMOSPHERE 2022; 286:131872. [PMID: 34411932 DOI: 10.1016/j.chemosphere.2021.131872] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, the degradation of Metronidazole (MNZ) using CuCoFe2O4@MC/AC catalyst synthesized by microwave-assisted method, as an efficient activator for persulfate (PS) in the presence of ultrasonic (US: 60 kHz) was investigated. X-ray powder diffraction (XRD), Field emission scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS)-Mapping and Line scan, Fourier transform infrared spectroscopy (FTIR), Vibrating-sample magnetometer (VSM), and Thermal gravimetric analysis (TGA) were conducted to characterize the structure of CuCoFe2O4@MC/AC catalyst and then the catalyst dose, PS dose, MNZ concentration, and pH parameters were optimized. The maximum MNZ degradation of 93.78 % was achieved after 15 min reaction at the optimized operation conditions: 0.4 g L-1 of catalyst, 6 mM of PS, 5 mg L-1 of MNZ, and pH of 3. The removal efficiency of Total Organic Carbon (TOC) was 87.5 % under optimal conditions. According to kinetic equations, it was found that the MNZ degradation followed both kinetics (pseudo-first-order and Langmuir-Hinshelwood) based on the coefficient of determination (R2) of 0.949, 0.9716, 0.9073, 0.9721, and 0.9662 at concentrations of 5, 10, 15, 20, and 30, respectively. The surface reaction rate constant (Kc) and the adsorption equilibrium constant (KL-H) of the Langmuir-Hinshelwood model were 0.81 (mg L-1 min-1) and 2.184 (L mg-1), respectively. The free radical scavenging experiments were conducted to illustration the proposed mechanism, which shown that the SO4-• was the predominant radicals involved in MNZ degradation. Finally, the regeneration of the catalyst was investigated and showed that after five cycles of use and regeneration by chemical and thermal methods, this catalyst has acceptable chemical stability.
Collapse
Affiliation(s)
- Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
49
|
Rastkari N, Akbari S, Brahmand MB, Takhvar A, Ahmadkhaniha R. Synthesis and characterization of tetraethylene pentamine functionalized MIL-101(Cr) for removal of metals from water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1735-1742. [PMID: 34900302 PMCID: PMC8617245 DOI: 10.1007/s40201-021-00728-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE Metal contamination in water is a worldwide persistent problem. We developed a nano-adsorbent, TEPA-MIL-101(Cr) that exhibits effective removal of heavy metals from real water samples. METHODS MIL-101(Cr) was synthesized under solvo-thermal condition. Then MIL-101(Cr) was dehydrated and degassed at high temperature under vacuum to generate the coordinately unsaturated sites which are used for tetraethylene pentamine (TEPA) grafting. The structures, morphologies, and compositions of the sorbents have been characterized. Langmuir and Freundlich isotherm models were applied for describing the adsorption process onto TEPA-MIL-101(Cr). RESULTS The successful grafting of TEPA on MIL-101(Cr) was verified by Fourier transform infrared. The results of X-ray diffraction, scanning electron microscopy, and CHN analysis show that the structure of TEPA-MIL-101(Cr) retains the original structure of MIL-101(Cr). Thermogravimetric analysis indicates thermo-stability of the adsorbent up to 300 °C. Optimal conditions for adsorption were determined as pH = 6.5 and contact time = 1 h. The adsorption capacities of TEPA-MIL-101(Cr) for Pb(II), Cu(II), Cd(II), and Co(II) from aqueous samples were 227.5, 217.7, 221.4, and 215.6 mg/g respectively, which is on average more than 8 times that of MIL-101(Cr). Analysis of Langmuir and Freundlich models for describing the adsorption isotherms of TEPA-MIL-101(Cr) reveals that the metal ions were absorbed onto TEPA-MIL-101(Cr) by a favorable physical absorption process. CONCLUSIONS TEPA-MIL-101(Cr) was synthesized successfully by a simple, and cost-effective method. The removal efficiency of TEPA-MIL-101(Cr) for the metal ions achieved more than 95 % in real water samples, which in addition to its thermal stability character make it a promising candidate for water treatment purposes.
Collapse
Affiliation(s)
- Noushin Rastkari
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Akbari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Binesh Brahmand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azra Takhvar
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadkhaniha
- Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151 Iran
| |
Collapse
|
50
|
Qadir M, Hussain A, Hamayun M, Shah M, Iqbal A, Irshad M, Ahmad A, Lodhi MA, Lee IJ. Phytohormones Producing Acinetobacter bouvetii P1 Mitigates Chromate Stress in Sunflower by Provoking Host Antioxidant Response. Antioxidants (Basel) 2021; 10:1868. [PMID: 34942971 PMCID: PMC8698644 DOI: 10.3390/antiox10121868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023] Open
Abstract
Different physical and chemical techniques are used for the decontamination of Cr+6 contaminated sites. The techniques are expensive, laborious, and time-consuming. However, remediation of Cr+6 by microbes is viable, efficient, and cost-effective. In this context, plant growth-promoting rhizobacteria Acinetobacter bouvetii P1 isolated from the industrial zone was tested for its role in relieving Cr+6 induced oxidative stress in sunflower. At the elevated Cr+6 levels and in the absence of P1, the growth of the sunflower plants was inhibited. In contrast, the selected strain P1 restored the sunflower growth under Cr+6 through plant growth-promoting interactions. Specifically, P1 biotransformed the Cr+6 into a stable and less toxic Cr+3 form, thus avoiding the possibility of phytotoxicity. On the one hand, the P1 strengthened the host antioxidant system by triggering higher production of enzymatic antioxidants, including catalases, ascorbate peroxidase, superoxide dismutase, and peroxidase. Similarly, P1 also promoted higher production of nonenzymatic antioxidants, such as flavonoids, phenolics, proline, and glutathione. Apart from the bioremediation, P1 solubilized phosphate and produced indole acetic acid, gibberellic acid, and salicylic acid. The production of phytohormones not only helped the host plant growth but also mitigated the harsh condition posed by the elevated levels of Cr+6. The findings mentioned above suggest that P1 may serve as an excellent phyto-stimulant and bio-remediator in a heavy metal-contaminated environment.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Mohib Shah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Amjad Iqbal
- Department of Food Science & Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan;
| | - Muhammad Irshad
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Ayaz Ahmad
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (A.A.); (M.A.L.)
| | - Muhammad Arif Lodhi
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (A.A.); (M.A.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|