1
|
Bonnesen K, Heide-Jørgensen U, Christensen DH, Lash TL, Hennessy S, Matthews A, Pedersen L, Thomsen RW, Schmidt M. Comparative Cardiovascular Effectiveness of Empagliflozin Versus Dapagliflozin in Adults With Treated Type 2 Diabetes: A Target Trial Emulation. Circulation 2024; 150:1401-1411. [PMID: 39206550 DOI: 10.1161/circulationaha.124.068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Empagliflozin and dapagliflozin have proven cardiovascular benefits in people with type 2 diabetes at high cardiovascular risk, but their comparative effectiveness is unknown. METHODS This study used nationwide, population-based Danish health registries to emulate a hypothetical target trial comparing empagliflozin versus dapagliflozin initiation, in addition to standard care, among people with treated type 2 diabetes from 2014 through 2020. The outcome was a composite of myocardial infarction, ischemic stroke, heart failure (HF), or cardiovascular death (major adverse cardiovascular event). Participants were followed until an outcome, emigration, or death occurred; 6 years after initiation; or December 31, 2021, whichever occurred first. Logistic regression was used to compute inverse probability of treatment and censoring weights, controlling for 57 potential confounders. In intention-to-treat analyses, 6-year adjusted risks, risk differences, and risk ratios, considering noncardiovascular death competing events, were estimated. Analyses were stratified by coexisting atherosclerotic cardiovascular disease and HF. A per-protocol design was performed as a secondary analysis. RESULTS There were 36 670 eligible empagliflozin and 20 606 eligible dapagliflozin initiators. In the intention-to-treat analysis, the adjusted 6-year absolute risk of major adverse cardiovascular event was not different between empagliflozin and dapagliflozin initiators (10.0% versus 10.0%; risk difference, 0.0% [95% CI, -0.9% to 1.0%]; risk ratio, 1.00 [95% CI, 0.91 to 1.11]). The findings were consistent in people with atherosclerotic cardiovascular disease (risk difference, -2.3% [95% CI, -8.2% to 3.5%]; risk ratio, 0.92 [95% CI, 0.74 to 1.14]) and without atherosclerotic cardiovascular disease (risk difference, 0.3% [95% CI, -0.6% to 1.2%]; risk ratio, 1.04 [95% CI, 0.93 to 1.16]) and in people with HF (risk difference, 1.1% [95% CI, -6.5% to 8.6%]; risk ratio, 1.04 [95% CI, 0.79 to 1.37]) and without HF (risk difference, -0.1% [95% CI, -1.0% to 0.8%]; risk ratio, 0.99 [95% CI, 0.90 to 1.09]). The 6-year risks of major adverse cardiovascular event were also not different in the per-protocol analysis (9.1% versus 8.8%; risk difference, 0.2% [95% CI, -2.1% to 2.5%]; risk ratio, 1.03 [95% CI, 0.80 to 1.32]). CONCLUSIONS Empagliflozin and dapagliflozin initiators had no differences in 6-year cardiovascular outcomes in adults with treated type 2 diabetes with or without coexisting atherosclerotic cardiovascular disease or HF.
Collapse
Affiliation(s)
- Kasper Bonnesen
- Departments of Clinical Epidemiology (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.), Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.)
| | - Uffe Heide-Jørgensen
- Departments of Clinical Epidemiology (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.), Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.)
| | - Diana H Christensen
- Departments of Clinical Epidemiology (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.), Aarhus University Hospital, Denmark
- Endocrinology and Internal Medicine (D.H.C.), Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.)
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, GA (T.L.L.)
| | - Sean Hennessy
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, PA (S.H.)
| | - Anthony Matthews
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden (A.M.)
| | - Lars Pedersen
- Departments of Clinical Epidemiology (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.), Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.)
| | - Reimar W Thomsen
- Departments of Clinical Epidemiology (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.), Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.)
| | - Morten Schmidt
- Departments of Clinical Epidemiology (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.), Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark (K.B., U.H.-J., D.H.C., L.P., R.W.T., M.S.)
- Department of Cardiology, Gødstrup Regional Hospital, Denmark (M.S.)
| |
Collapse
|
2
|
Klimek K, Chen X, Sasaki T, Groener D, Werner RA, Higuchi T. PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology. Mol Metab 2024; 90:102055. [PMID: 39454827 DOI: 10.1016/j.molmet.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease. SCOPE OF REVIEW This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional 18F-2-fluoro-2-deoxy-d-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers. MAJOR CONCLUSIONS SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.
Collapse
Affiliation(s)
- Konrad Klimek
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Takanori Sasaki
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daniel Groener
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Rudolf A Werner
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; The Russell H Morgan Department of Radiology and Radiological Sciences, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, United States; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Garg R, Sood N, Bansal O, Hoskote A. Euglycemic Ketoacidosis Associated with SGLT-2 Inhibitors in Non-diabetic Patients-A Narrative Review. J Gen Intern Med 2024:10.1007/s11606-024-09073-2. [PMID: 39354257 DOI: 10.1007/s11606-024-09073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Euglycemic ketoacidosis is an acute, life-threatening emergency that is characterized by euglycemia, metabolic acidosis, and ketonemia. It is a well-recognized adverse event in diabetic patients taking sodium-glucose cotransporter-2 inhibitor (SGLT-2 inhibitor). However, there is limited data on SGLT-2 inhibitor-related euglycemic ketoacidosis in non-diabetic patients. The mechanism behind SGLT-2 inhibitor-associated euglycemic ketoacidosis involves a general state of starvation or relative insulin deficiency, which exacerbates the mild baseline ketonemia caused by this class of medications while normoglycemia is maintained. The incidence of euglycemic ketoacidosis will likely increase with the increasing use of SGLT-2 inhibitors for various indications in addition to diabetes mellitus type 2, predominantly for congestive heart failure (CHF). Recognizing the signs and symptoms of this life-threatening condition is essential to treat it effectively. Our objective is to comprehensively revisit the pathophysiology of euglycemic ketoacidosis associated with SGLT-2 inhibitors and the risk factors for the condition, review the available data, and summarize the reported cases of euglycemic ketoacidosis in non-diabetic patients on SGLT-2 inhibitors. Our literature search identified five articles with six cases of euglycemic ketoacidosis in non-diabetic patients who were on SGLT-2 inhibitors for heart failure with reduced ejection fraction. The common risk factor in five out of the six cases was decreased oral intake due to acute illness, fasting, or a perioperative state.
Collapse
Affiliation(s)
- Rohini Garg
- Department of Internal Medicine, CHI Health Mercy Hospital, Council Bluffs, IA, USA.
| | - Nikhil Sood
- Department of Medicine, Banner Health, Banner Gateway Medical Center, Gilbert, AZ, USA
| | - Ojas Bansal
- Department of Cardiology, Banner Desert Medical Center, Mesa, AZ, USA
| | | |
Collapse
|
4
|
Cristovão A, Andrade N, Martel F, Silva C. Effect of Sodium-Glucose Co-Transporter 2 Inhibitors Combined with Metformin on Pancreatic Cancer Cell Lines. Int J Mol Sci 2024; 25:9932. [PMID: 39337420 PMCID: PMC11432055 DOI: 10.3390/ijms25189932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Pancreatic cancer (PC) is the ninth-leading cause of cancer-related deaths worldwide. Diabetic patients have an increased risk and mortality rates for PC. Sodium-glucose co-transporter 2 (SGLT2) inhibitors and metformin (Met) are widely used anti-diabetic medications. Both Met and SGLT2 inhibitors have anticancer properties in PC, but nothing is known concerning their combined effect. So, we investigated the in vitro effect of SGLT2 inhibitors combined with Met. Canagliflozin and dapagliflozin possessed cytotoxic, antiproliferative, and pro-apoptotic properties in the tested PC cell lines. In PANC-1 cells, the antimigratory and pro-apoptotic effects were enhanced when dapagliflozin was combined with Met, and G1 cell cycle arrest was enhanced when dapagliflozin or canagliflozin was combined with Met. In AsPC-1 cells, the cytotoxic effect and the G1 cell cycle arrest were enhanced when canagliflozin and dapagliflozin, respectively, were combined with Met. Only the cytotoxic effects of SGLT2 inhibitors, but not the combination treatments, involved PI3K and JNK-dependent pathways in AsPC-1 cells. In conclusion, combination treatments increased the anticancer effects in a cell type-dependent way in the two investigated cell lines. Additionally, the cytotoxic effect of SGLT2 inhibitors was dependent on the PI3K and JNK pathways in AsPC-1 cells, but Met appears to act via a distinct mechanism.
Collapse
Affiliation(s)
- André Cristovão
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, 4200-135 Porto, Portugal
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Ghezzi C, Ellingson BM, Lai A, Liu J, Barrio JR, Wright EM. Effect of Jardiance on glucose uptake into astrocytomas. J Neurooncol 2024; 169:437-444. [PMID: 39037688 PMCID: PMC11341586 DOI: 10.1007/s11060-024-04746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE SGLT2, the sodium glucose cotransporter two, is expressed in human pancreatic, prostate and brain tumors, and in a mouse cancer model SGLT2 inhibitors reduce tumor glucose uptake and growth. In this study we have measured the effect of a specific SGLT2 inhibitor, Jardiance® (Empagliflozin), on glucose uptake into astrocytomas in patients. METHODS We have used a specific SGLT glucose tracer, α-methyl-4-[18F]fluoro-4-deoxy-α-D-glucopyranoside (Me4FDG), and Positron Emission Tomography (PET) to measure glucose uptake. Four of five patients enrolled had WHO grade IV glioblastomas, and one had a low grade WHO Grade II astrocytoma. Two dynamic brain PET scans were conducted on each patient, one before and one after treatment with a single oral dose of Jardiance, a specific SGLT2 inhibitor. As a control, we also determined the effect of oral Jardiance on renal SGLT2 activity. RESULTS In all five patients an oral dose (25 or 100 mg) of Jardiance reduced Me4FDG tumor accumulation, highly significant inhibition in four, and inhibited SGLT2 activity in the kidney. CONCLUSIONS These initial experiments show that SGLT2 is a functional glucose transporter in astocytomas, and Jardiance inhibited glucose uptake, a drug approved by the FDA to treat type 2 diabetes mellitus (T2DM), heart failure, and renal failure. We suggest that clinical trials be initiated to determine whether Jardiance reduces astrocytoma growth in patients.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1751, USA
| | - Benjamin M Ellingson
- Department of Radiological Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Albert Lai
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jie Liu
- Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ernest M Wright
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1751, USA.
| |
Collapse
|
6
|
Khan I, Kamal A, Akhtar S. Diabetes Driven Oncogenesis and Anticancer Potential of Repurposed Antidiabetic Drug: A Systemic Review. Cell Biochem Biophys 2024; 82:1907-1929. [PMID: 38954353 DOI: 10.1007/s12013-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.
Collapse
Affiliation(s)
- Iqra Khan
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India.
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
7
|
Mei J, Li Y, Niu L, Liang R, Tang M, Cai Q, Xu J, Zhang D, Yin X, Liu X, Shen Y, Liu J, Xu M, Xia P, Ling J, Wu Y, Liang J, Zhang J, Yu P. SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. Transl Neurodegener 2024; 13:41. [PMID: 39123214 PMCID: PMC11312905 DOI: 10.1186/s40035-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impairment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increasingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflammation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impairment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabetes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal studies and clinical evidence. Research gaps are proposed to spur further investigation.
Collapse
Affiliation(s)
- Jiaqi Mei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Yi Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Liyan Niu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyue Tang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiao Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Huang XD, Jiang DS, Feng X, Fang ZM. The benefits of oral glucose-lowering agents: GLP-1 receptor agonists, DPP-4 and SGLT-2 inhibitors on myocardial ischaemia/reperfusion injury. Eur J Pharmacol 2024; 976:176698. [PMID: 38821168 DOI: 10.1016/j.ejphar.2024.176698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.
Collapse
Affiliation(s)
- Xu-Dong Huang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ze-Min Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Susini P, Marcaccini G, Efica J, Giuffrè MT, Mazzotta R, Caneschi C, Cuomo R, Nisi G, Grimaldi L. Fournier's Gangrene Surgical Reconstruction: A Systematic Review. J Clin Med 2024; 13:4085. [PMID: 39064124 PMCID: PMC11278345 DOI: 10.3390/jcm13144085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Fournier's gangrene (FG) is a rare form of necrotizing fasciitis of the perineal, genital, or perianal region. It is characterized by an aggressive course and high mortality rate, over 20%. FG demands immediate treatment including resuscitation maneuvers, intravenous antibiotic therapy and early surgical debridement. Background/Objectives: The gold-standard treatment for FG is surgical reconstruction. However, up to date, no precise guidelines exist. Thus, we decided to systematically review the literature, focusing on FG contemporary approaches to reconstructive surgery, aiming to analyze the various reconstructive strategies and their specific indications. Methods: A systematic review was carried out according to the PRISMA statement by searching various databases from April 2014 to April 2024, using the terms ''Fournier Gangrene OR Fournier Gangrene Reconstruction OR Fournier Gangrene Treatment OR Fournier Gangrene Plastic Surgery OR Necrotizing Fasciitis OR Necrotizing Fasciitis AND Reconstruction". The eligibility criteria included original studies aimed at discussing FG reconstruction with at least three clinical cases. Results: The final synthesis included 38 articles, and 576 reconstructions were described. Of these, 77.6% were minimally invasive strategies (direct closure, secondary healing, grafts, and local random flaps), while more invasive reconstructions (loco-regional flaps based on known vascular anatomy) were adopted in 22.4%. No free flaps were reported. Conclusions: FG requires immediate medical interventions including broad-spectrum antibiotic therapy, surgical debridement, adjuvant therapies, and reconstructive surgeries. Taking into account the anatomical characteristics of the inguinal-crural region, skin grafts and local random flaps could offer versatile and effective reconstructions for most FG cases, while the more invasive strategies should be reserved for very few cases. Future research is warranted to define an FG dedicated reconstruction protocol.
Collapse
Affiliation(s)
- Pietro Susini
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (G.M.); (J.E.); (M.T.G.); (R.C.); (G.N.); (L.G.)
| | - Gianluca Marcaccini
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (G.M.); (J.E.); (M.T.G.); (R.C.); (G.N.); (L.G.)
| | - Jessica Efica
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (G.M.); (J.E.); (M.T.G.); (R.C.); (G.N.); (L.G.)
| | - Maria Teresa Giuffrè
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (G.M.); (J.E.); (M.T.G.); (R.C.); (G.N.); (L.G.)
| | - Ruggero Mazzotta
- Division of General Cardiology, Careggi University Hospital, 50134 Florence, Italy;
| | - Corso Caneschi
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi University Hospital, 50134 Florence, Italy;
| | - Roberto Cuomo
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (G.M.); (J.E.); (M.T.G.); (R.C.); (G.N.); (L.G.)
| | - Giuseppe Nisi
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (G.M.); (J.E.); (M.T.G.); (R.C.); (G.N.); (L.G.)
| | - Luca Grimaldi
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (G.M.); (J.E.); (M.T.G.); (R.C.); (G.N.); (L.G.)
| |
Collapse
|
10
|
Cook AK, Behrend E. SGLT2 inhibitor use in the management of feline diabetes mellitus. J Vet Pharmacol Ther 2024. [PMID: 38954371 DOI: 10.1111/jvp.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are routinely used in the management of human type 2 diabetes and have been shown to effectively mitigate hyperglycemia and reduce the risks of cardiovascular and renal compromise. Two SGLT2 inhibitors, namely bexagliflozin and velagliflozin, were recently FDA approved for the treatment of uncomplicated feline diabetes mellitus. These oral hypoglycemic agents are a suitable option for many newly diagnosed cats, with rapid improvements in glycemic control and clinical signs. Suitable candidates must have some residual β-cell function, as some endogenous insulin production is required to prevent ketosis. Appropriate patient selection and monitoring are necessary, and practitioners should be aware of serious complications such as euglycemic diabetic ketoacidosis.
Collapse
Affiliation(s)
- Audrey K Cook
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ellen Behrend
- Veterinary Information Network, Davis, California, USA
| |
Collapse
|
11
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Alcantar-Vallin L, Zaragoza JJ, Díaz-Villavicencio B, Hernandez-Morales K, Camacho-Guerrero JR, Perez-Venegas MA, Carmona-Morales EJ, Oseguera-Gonzalez AN, Murguia-Soto C, Chávez-Alonso G, Arredondo-Dubois JM, Orozco-Chan CE, Gómez-Fregoso JA, Rodríguez-García FG, Navarro-Blackaller G, Medina-González R, Martínez Gallardo-González A, Abundis-Mora GJ, Vega-Vega O, García-García G, Chávez-Iñiguez JS. SGLT2i treatment during AKI and its association with major adverse kidney events. Front Pharmacol 2024; 15:1356991. [PMID: 38933678 PMCID: PMC11199731 DOI: 10.3389/fphar.2024.1356991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Background The association between the administration of sodium-glucose cotransporter 2 inhibitors (SGLT2is) during acute kidney injury (AKI) and the incidence of major adverse kidney events (MAKEs) is not known. Methods This retrospective cohort study included patients with AKI and compared the outcomes for those who were treated with SGLT2is during hospitalization and those without SGLT2i treatment. The associations of SGLT2i use with MAKEs at 10 and 30-90 days, each individual MAKE component, and the pre-specified patient subgroups were analyzed. Results From 2021 to 2023, 374 patients were included in the study-316 without SGLT2i use and 58 with SGLT2i use. Patients who were treated with SGLT2is were older; had a greater prevalence of diabetes, hypertension, chronic heart failure, and chronic kidney disease; required hemodialysis less often; and presented stage 3 AKI less frequently than those who were not treated with SGLT2is. Logistic regression analysis with nearest-neighbor matching revealed that SGLT2i use was not associated with the risk of MAKE10 (OR 1.08 [0.45-2.56]) or with MAKE30-90 (OR 0.76 [0.42-1.36]). For death, the stepwise approach demonstrated that SGLT2i use was associated with a reduced risk (OR 0.08; 0.01-0.64), and no effect was found for kidney replacement therapy (KRT). The subgroups of patients who experienced a reduction in the risk of MAKEs in patients with AKI treated with SGLT2is were those older than 61 years, those with an eGFR >81, and those without a history of hypertension or DM (p ≤ 0.05 for all). Conclusion The use of SGLT2is during AKI had no effect on short- or medium-term MAKEs, but some subgroups of patients may have experienced benefits from SGLT2i treatment.
Collapse
Affiliation(s)
- Luz Alcantar-Vallin
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | | | - Bladimir Díaz-Villavicencio
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Karla Hernandez-Morales
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Jahir R. Camacho-Guerrero
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Miguel A. Perez-Venegas
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Edgar J. Carmona-Morales
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Alexa N. Oseguera-Gonzalez
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Cesar Murguia-Soto
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Gael Chávez-Alonso
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | | | | | - Juan A. Gómez-Fregoso
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | | | - Guillermo Navarro-Blackaller
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Ramón Medina-González
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Alejandro Martínez Gallardo-González
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Gabriela J. Abundis-Mora
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Olynka Vega-Vega
- Departamento Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencia Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jonathan S. Chávez-Iñiguez
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| |
Collapse
|
13
|
Albalawy WN, Youm EB, Shipman KE, Trull KJ, Baty CJ, Long KR, Rbaibi Y, Wang XP, Fagunloye OG, White KA, Jurczak MJ, Kashlan OB, Weisz OA. SGLT2-independent effects of canagliflozin on NHE3 and mitochondrial complex I activity inhibit proximal tubule fluid transport and albumin uptake. Am J Physiol Renal Physiol 2024; 326:F1041-F1053. [PMID: 38660713 PMCID: PMC11381006 DOI: 10.1152/ajprenal.00005.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Beyond glycemic control, SGLT2 inhibitors (SGLT2is) have protective effects on cardiorenal function. Renoprotection has been suggested to involve inhibition of NHE3 leading to reduced ATP-dependent tubular workload and mitochondrial oxygen consumption. NHE3 activity is also important for regulation of endosomal pH, but the effects of SGLT2i on endocytosis are unknown. We used a highly differentiated cell culture model of proximal tubule (PT) cells to determine the direct effects of SGLT2i on Na+-dependent fluid transport and endocytic uptake in this nephron segment. Strikingly, canagliflozin but not empagliflozin reduced fluid transport across cell monolayers and dramatically inhibited endocytic uptake of albumin. These effects were independent of glucose and occurred at clinically relevant concentrations of drug. Canagliflozin acutely inhibited surface NHE3 activity, consistent with a direct effect, but did not affect endosomal pH or NHE3 phosphorylation. In addition, canagliflozin rapidly and selectively inhibited mitochondrial complex I activity. Inhibition of mitochondrial complex I by metformin recapitulated the effects of canagliflozin on endocytosis and fluid transport, whereas modulation of downstream effectors AMPK and mTOR did not. Mice given a single dose of canagliflozin excreted twice as much urine over 24 h compared with empagliflozin-treated mice despite similar water intake. We conclude that canagliflozin selectively suppresses Na+-dependent fluid transport and albumin uptake in PT cells via direct inhibition of NHE3 and of mitochondrial function upstream of the AMPK/mTOR axis. These additional targets of canagliflozin contribute significantly to reduced PT Na+-dependent fluid transport in vivo.NEW & NOTEWORTHY Reduced NHE3-mediated Na+ transport has been suggested to underlie the cardiorenal protection provided by SGLT2 inhibitors. We found that canagliflozin, but not empagliflozin, reduced NHE3-dependent fluid transport and endocytic uptake in cultured proximal tubule cells. These effects were independent of SGLT2 activity and resulted from inhibition of mitochondrial complex I and NHE3. Studies in mice are consistent with greater effects of canagliflozin versus empagliflozin on fluid transport. Our data suggest that these selective effects of canagliflozin contribute to reduced Na+-dependent transport in proximal tubule cells.
Collapse
Affiliation(s)
- Wafaa N Albalawy
- Department of Human Genetics, Pitt Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elynna B Youm
- Department of Human Genetics, Pitt Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Keelan J Trull
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, United States
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xue-Ping Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Olayemi G Fagunloye
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, United States
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
14
|
Staruschenko A. SGLT2 inhibitors: not every drug has the same effect. Am J Physiol Renal Physiol 2024; 326:F1039-F1040. [PMID: 38695073 DOI: 10.1152/ajprenal.00126.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South FloridaTampa, Florida, United States
- James A. Haley Veterans Hospital, Tampa, Florida, United States
| |
Collapse
|
15
|
Lv X, Shang Y, Ning Y, Yu W, Wang J. Pharmacological targets of SGLT2 inhibitors on IgA nephropathy and membranous nephropathy: a mendelian randomization study. Front Pharmacol 2024; 15:1399881. [PMID: 38846092 PMCID: PMC11155304 DOI: 10.3389/fphar.2024.1399881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Emerging research suggests that sodium-glucose cotransporter 2 (SGLT2) inhibitors may play a pivotal role in the treatment of primary glomerular diseases. This study was aimed to investigate potential pharmacological targets connecting SGLT2 inhibitors with IgA nephropathy (IgAN) and membranous nephropathy (MN). Methods A univariate Mendelian randomization (MR) analysis was conducted using publicly available genome-wide association studies (GWAS) datasets. Co-localization analysis was used to identify potential connections between target genes and IgAN and MN. Then, Comparative Toxicogenomics Database (CTD) was employed to predict diseases associated with these target genes and SGLT2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin). Subsequently, phenotypic scan analyses were applied to explore the causal relationships between the predicted diseases and target genes. Finally, we analyzed the immune signaling pathways involving pharmacological target genes using the Kyoto encyclopedia of genes and genomes (KEGG). Results The results of MR analysis revealed that eight drug targets were causally linked to the occurrence of IgAN, while 14 drug targets were linked to MN. In the case of IgAN, LCN2 and AGER emerged as co-localized genes related to the pharmacological agent of dapagliflozin and the occurrence of IgAN. LCN2 was identified as a risk factor, while AGER was exhibited a protective role. KEGG analysis revealed that LCN2 is involved in the interleukin (IL)-17 immune signaling pathway, while AGER is associated with the neutrophil extracellular traps (NETs) signaling immune pathway. No positive co-localization results of the target genes were observed between two other SGLT2 inhibitors (canagliflozin and empagliflozin) and the occurrence of IgAN, nor between the three SGLT2 inhibitors and the occurrence of MN. Conclusion Our study provided evidence supporting a causal relationship between specific SGLT2 inhibitors and IgAN. Furthermore, we found that dapagliflozin may act on IgAN through the genes LCN2 and AGER.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shang
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Alsereidi FR, Khashim Z, Marzook H, Gupta A, Al-Rawi AM, Ramadan MM, Saleh MA. Targeting inflammatory signaling pathways with SGLT2 inhibitors: Insights into cardiovascular health and cardiac cell improvement. Curr Probl Cardiol 2024; 49:102524. [PMID: 38492622 DOI: 10.1016/j.cpcardiol.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Fatmah R Alsereidi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zenith Khashim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN, United States
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anamika Gupta
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed M Al-Rawi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mahmoud M Ramadan
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, 35516 Egypt
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt.
| |
Collapse
|
17
|
Chawla M, Panneerselvam D, Gundgurthy A, Sud S, Alamchandani R, Aneja P, Nair R, Korukonda KR. Retrospective Observational Study on Assessing Sitagliptin and Dapagliflozin as a Fixed-Dose Combination in the Indian Population With Type 2 Diabetes Mellitus: The SIDAXA Study. Cureus 2024; 16:e60815. [PMID: 38910691 PMCID: PMC11191412 DOI: 10.7759/cureus.60815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM), a prevalent chronic metabolic disorder, necessitates multifaceted treatment approaches. Emerging studies highlight the cardiovascular advantages of sodium-glucose transport protein 2 (SGLT2) and dipeptidyl peptidase 4 (DPP-4) inhibitors in T2DM. This investigation delves into the synergistic effects of the fixed-dose combination (FDC) of sitagliptin and dapagliflozin, offering insights into its safety and efficacy for the Indian population. Methods This real-world, retrospective, observational study spanned 328 cases across 111 Indian centres, evaluating the safety, efficacy, and clinical utilization of the sitagliptin and dapagliflozin FDC in T2DM patients after obtaining ethical approval. Assessments at baseline, week four, and week 12 encompassed hemoglobin A1C (HbA1C), fasting plasma glucose (FPG), postprandial blood glucose (PPBG), low-density lipoprotein cholesterol (LDL-C), systolic blood pressure (SBP), diastolic blood pressure (DBP), and weight change. The statistical analysis was done using Statistical Package for Social Sciences (SPSS) version 29.0.1.0(171) (IBM Corp., Armonk, NY, USA) with a significance level p<0.05. Results Study participants [mean age: 51.14±5.55 years, 77.74% (n=255) males, 22.26% (n=73) females] exhibited prevalent risk factors like sedentary lifestyle (n=167, 50.91%) and smoking (n=147, 44.82%). Comorbidities included hypertension (n=235, 71.65%) and dyslipidaemia (n=139, 42.38%). Metformin (n=282, 85.98%) and sulfonylurea (n=134, 40.85%) were commonly prescribed concomitant oral antidiabetic agents (OADs). FDC administration significantly reduced HbA1c by 1.05 ± 0.83% (p < 0.0001) at week 12. FPG and PPBG showed significant reductions of 22.98 ± 22.23 mg/dL (p < 0.0001), 165.50 ± 37.02 mg/dL and 40.94 ± 36.04 mg/dL (p < 0.0001) at four weeks respectively. By week 12, significant reductions were noted in SBP (14.61±13.98mmHg reduction, p-value <0.0001), DBP (7.80±8.45mmHg reduction, p-value <0.0001), and LDL-C levels (18.14±23.95 mg/dL reduction, p-value <0.0001). In patients with established cardiovascular disease, there was reduction in HbA1c levels by 1.02 ± 0.63% after 12 weeks, with FPG decreasing by 54.52 ± 32.67 mg/dL and PPBG decreasing by 88.73 ± 44.90 mg/dL. Treatment-emergent adverse events included headache, changes in micturition, genital mycotic infection, and nausea and diarrhoea which were mild, transient, and necessitated no treatment discontinuation. Conclusion The FDC of sitagliptin and dapagliflozin significantly improved glycaemic control and lipid profiles in T2DM patients, particularly those with coronary artery disease. It demonstrated a favourable safety profile in the Indian population, signifying its potential as an effective and well-tolerated therapeutic option in patients with established cardiovascular disease.
Collapse
Affiliation(s)
- Manoj Chawla
- Department of Diabetes and Endocrinology, Lina Diabetes Care Centre, Mumbai, IND
| | | | - Abhay Gundgurthy
- Department of Diabetes and Endocrinology, Sanjeevani Clinic, Bangalore, IND
| | - Sanjay Sud
- Department of Diabetes and Endocrinology, Doctor Sud's Clinic, Hooghly, IND
| | | | - Pankaj Aneja
- Department of Internal Medicine, Naveda Healthcare Centre, New Delhi, IND
| | - Rathish Nair
- Medical Strategic Affairs, Torrent Pharmaceuticals Ltd., Ahmedabad, IND
| | | |
Collapse
|
18
|
Zhang W, Sun Y, Wang H, Xu M, He C, Wang C, Yu Y, Zhang Z, Su L. Exogenous Melatonin Enhances Dihydrochalcone Accumulation in Lithocarpus litseifolius Leaves via Regulating Hormonal Crosstalk and Transcriptional Profiling. Int J Mol Sci 2024; 25:4592. [PMID: 38731810 PMCID: PMC11083347 DOI: 10.3390/ijms25094592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Dihydrochalcones (DHCs) constitute a specific class of flavonoids widely known for their various health-related advantages. Melatonin (MLT) has received attention worldwide as a master regulator in plants, but its roles in DHC accumulation remain unclear. Herein, the elicitation impacts of MLT on DHC biosynthesis were examined in Lithocarpus litseifolius, a valuable medicinal plant famous for its sweet flavor and anti-diabetes effect. Compared to the control, the foliar application of MLT significantly increased total flavonoid and DHC (phlorizin, trilobatin, and phloretin) levels in L. litseifolius leaves, especially when 100 μM MLT was utilized for 14 days. Moreover, antioxidant enzyme activities were boosted after MLT treatments, resulting in a decrease in the levels of intracellular reactive oxygen species. Remarkably, MLT triggered the biosynthesis of numerous phytohormones linked to secondary metabolism (salicylic acid, methyl jasmonic acid (MeJA), and ethylene), while reducing free JA contents in L. litseifolius. Additionally, the flavonoid biosynthetic enzyme activities were enhanced by the MLT in leaves. Multiple differentially expressed genes (DEGs) in RNA-seq might play a crucial role in MLT-elicited pathways, particularly those associated with the antioxidant system (SOD, CAT, and POD), transcription factor regulation (MYBs and bHLHs), and DHC metabolism (4CL, C4H, UGT71K1, and UGT88A1). As a result, MLT enhanced DHC accumulation in L. litseifolius leaves, primarily by modulating the antioxidant activity and co-regulating the physiological, hormonal, and transcriptional pathways of DHC metabolism.
Collapse
Affiliation(s)
- Wenlong Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Yuqi Sun
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Hongfeng Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Mingfeng Xu
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Chunmei He
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Congcong Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Yongli Yu
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Zongshen Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
| | - Lingye Su
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| |
Collapse
|
19
|
Brisnovali NF, Franco I, Abdelgawwad A, Tsou HLP, Cao TH, Riva A, Rutter GA, Akalestou E. Effects of SGLT2 Ablation or Inhibition on Corticosterone Secretion in High-Fat-Fed Mice: Exploring a Nexus with Cytokine Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590099. [PMID: 38712064 PMCID: PMC11071289 DOI: 10.1101/2024.04.18.590099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Despite recent therapeutic advances, achieving optimal glycaemic control remains a challenge in managing Type 2 Diabetes (T2D). Sodium-glucose co-transporter type 2 (SGLT2) inhibitors have emerged as effective treatments by promoting urinary glucose excretion. However, the full scope of their mechanisms extends beyond glycaemic control. At present, their immunometabolic effects remain elusive. To investigate the effects of SGLT2 inhibition or deletion, we compared the metabolic and immune phenotype between high fat diet-fed control, chronically dapagliflozin-treated mice and total-body SGLT2/Slc5a2 knockout mice. SGLT2 null mice exhibited superior glucose tolerance and insulin sensitivity compared to control or dapagliflozin-treated mice, independent of glycosuria and body weight. Moreover, SGLT2 null mice demonstrated physiological regulation of corticosterone secretion, with lowered morning levels compared to control mice. Systemic cytokine profiling also unveiled significant alterations in inflammatory mediators, particularly interleukin 6 (IL-6). Furthermore, unbiased proteomic analysis demonstrated downregulation of acute-phase proteins and upregulation of glutathione-related proteins, suggesting a role in the modulation of antioxidant responses. Conversely, IL-6 increased SGLT2 expression in kidney HK2 cells suggesting a role for cytokines in the effects of hyperglycemia. Collectively, our study elucidates a potential interplay between SGLT2 activity, immune modulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Niki F. Brisnovali
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Isabelle Franco
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amira Abdelgawwad
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hio Lam Phoebe Tsou
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Thong Huy Cao
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, United Kingdom
- Leicester van Geest Multi-OMICS facility, University of Leicester, Leicester, United Kingdom
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
20
|
Rendell M. Lessons learned from early-stage clinical trials for diabetic nephropathy. Expert Opin Investig Drugs 2024; 33:287-301. [PMID: 38465470 DOI: 10.1080/13543784.2024.2326025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The evolution of treatment for diabetic nephropathy illustrates how basic biochemistry and physiology have led to new agents such as SGLT2 inhibitors and mineralocorticoid blockers. Conversely, clinical studies performed with these agents have suggested new concepts for investigational drug development. We reviewed currently available treatments for diabetic nephropathy and then analyzed early clinical trials of new agents to assess the potential for future treatment modalities. AREAS COVERED We searched ClinicalTrials.gov for new agents under study for diabetic nephropathy in the past decade. Once we have identified investigation trials of new agents, we then used search engines and Pubmed.gov to find publications providing insight on these drugs. Current treatments have shown benefit in both cardiac and renal disease. In our review, we found 51 trials and 43 pharmaceuticals in a number of drug classes: mineralocorticoid blockers, anti-inflammatory, anti-fibrosis, nitric oxide stimulatory, and podocyte protection, and endothelin inhibitors. EXPERT OPINION It is difficult to predict which early phase treatments will advance to confirmatory clinical trials. Current agents are thought to improve hemodynamic function. However, the coincident benefit of both myocardial function and the glomerulus argues for primary effects at the subcellular level, and we follow the evolution of agents which modify fundamental cellular processes.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
21
|
Shepard BD, Chau J, Kurtz R, Rosenberg AZ, Sarder P, Border SP, Ginley B, Rodriguez O, Albanese C, Knoer G, Greene A, De Souza AMA, Ranjit S, Levi M, Ecelbarger CM. Nascent shifts in renal cellular metabolism, structure, and function due to chronic empagliflozin in prediabetic mice. Am J Physiol Cell Physiol 2024; 326:C1272-C1290. [PMID: 38602847 PMCID: PMC11193535 DOI: 10.1152/ajpcell.00446.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Jennifer Chau
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Pinaki Sarder
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Samuel P Border
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Brandon Ginley
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Computational Cell Biology, Anatomy, and Pathology, State University of New York at Buffalo, Buffalo, New York, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
- Department of Radiology, Georgetown University, Washington, District of Columbia, United States
| | - Grace Knoer
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Aarenee Greene
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Aline M A De Souza
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
- Microscopy & Imaging Shared Resources, Georgetown University, Washington, District of Columbia, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Carolyn M Ecelbarger
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
22
|
Guo YY, Zhang JY, Sun JF, Gao H. A comprehensive review of small-molecule drugs for the treatment of type 2 diabetes mellitus: Synthetic approaches and clinical applications. Eur J Med Chem 2024; 267:116185. [PMID: 38295688 DOI: 10.1016/j.ejmech.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a long-term metabolic disorder characterized by the body's resistance to insulin and inadequate production of insulin. Small molecule drugs to treat T2DM mainly control blood sugar levels by improving insulin sensitivity, increasing insulin secretion, or reducing liver glycogen production. With the deepening of research on the pathogenesis of diabetes, many drugs with new targets and mechanisms of action have been discovered. The targets of the drugs for T2DM are mainly dipeptidyl peptidase IV inhibitors (DPP4), sodium/glucose cotransporter 2 inhibitors (SGLT2), sulfonylurea receptor modulators (SUR), peroxisome proliferator-activated receptor γ agonists (PPARγ), etc. We are of the opinion that acquiring a comprehensive comprehension of the synthetic procedures employed in drug molecule production will serve as a source of inventive and pragmatic inspiration for the advancement of novel, more potent, and feasible synthetic methodologies. This review aims to outline the clinical applications and synthetic routes of some representative drugs to treat T2DM, which will drive the discovery of new, more effective T2DM drugs.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China; Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
23
|
Hasan I, Rashid T, Jaikaransingh V, Heilig C, Abdel-Rahman EM, Awad AS. SGLT2 inhibitors: Beyond glycemic control. J Clin Transl Endocrinol 2024; 35:100335. [PMID: 38525377 PMCID: PMC10957445 DOI: 10.1016/j.jcte.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Multiple randomized controlled trials have extensively examined the therapeutic effectiveness of sodium-glucose cotransporter 2 (SGLT2) inhibitors, ushering in a transformative approach to treating individuals with type 2 diabetes mellitus (DM). Notably, emerging reports have drawn attention to the potential positive impacts of SGLT2 inhibitors in nondiabetic patients. In an effort to delve into this phenomenon, a comprehensive systematic literature review spanning PubMed (NLM), Medline (Ovid), and Cochrane Library, covering publications from 2000 to 2024 was undertaken. This systematic review encompassed twenty-six randomized control trials (RCTs) involving 35,317 participants. The findings unveiled a multifaceted role for SGLT2 inhibitors, showcasing their ability to enhance metabolic control and yield cardioprotective effects through a reduction in cardiovascular death (CVD) and hospitalization related to heart failure (HF). Additionally, a renalprotective effect was observed, evidenced by a slowdown in chronic kidney disease (CKD) progression and a decrease in albuminuria. Importantly, these benefits were coupled with an acceptable safety profile. The literature also points to various biological plausibility and underlying mechanistic pathways, offering insights into the association between SGLT2 inhibitors and these positive outcomes in nondiabetic individuals. Current research trends indicate a continual exploration of additional role for SGLT2 inhibitors in. Nevertheless, further research is imperative to fully elucidate the mechanisms and long-term outcomes associated with the nondiabetic use of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Irtiza Hasan
- University of Florida College of Medicine-Jacksonville, FL, USA
| | - Tasnuva Rashid
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Charles Heilig
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Alaa S. Awad
- University of Florida College of Medicine-Jacksonville, FL, USA
| |
Collapse
|
24
|
Luna-Marco C, Iannantuoni F, Hermo-Argibay A, Devos D, Salazar JD, Víctor VM, Rovira-Llopis S. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radic Biol Med 2024; 213:19-35. [PMID: 38220031 DOI: 10.1016/j.freeradbiomed.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Overloaded glucose levels in several metabolic diseases such as type 2 diabetes (T2D) can lead to mitochondrial dysfunction and enhanced production of reactive oxygen species (ROS). Oxidative stress and altered mitochondrial homeostasis, particularly in the cardiovascular system, contribute to the development of chronic comorbidities of diabetes. Diabetes-associated hyperglycemia and dyslipidemia can directly damage vascular vessels and lead to coronary artery disease or stroke, and indirectly damage other organs and lead to kidney dysfunction, known as diabetic nephropathy. The new diabetes treatments include Na+-glucose cotransporter 2 inhibitors (iSGLT2) and glucagon-like 1 peptide receptor agonists (GLP-1RA), among others. The iSGLT2 are oral anti-diabetic drugs, whereas GLP-1RA are preferably administered through subcutaneous injection, even though GLP-1RA oral formulations have recently become available. Both therapies are known to improve both carbohydrate and lipid metabolism, as well as to improve cardiovascular and cardiorenal outcomes in diabetic patients. In this review, we present an overview of current knowledge on the relationship between oxidative stress, mitochondrial dysfunction, and cardiovascular therapeutic benefits of iSGLT2 and GLP-1RA. We explore the benefits, limits and common features of the treatments and remark how both are an interesting target in the prevention of obesity, T2D and cardiovascular diseases, and emphasize the lack of a complete understanding of the underlying mechanism of action.
Collapse
Affiliation(s)
- Clara Luna-Marco
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain
| | - Francesca Iannantuoni
- Service of di Immunohematology and Transfusion Medicine, Ospedale Infermi, AUSL Romagna, Rimini, Italy
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Deédeni Devos
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Juan D Salazar
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Víctor M Víctor
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd).
| | - Susana Rovira-Llopis
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia.
| |
Collapse
|
25
|
Klip A, De Bock K, Bilan PJ, Richter EA. Transcellular Barriers to Glucose Delivery in the Body. Annu Rev Physiol 2024; 86:149-173. [PMID: 38345907 DOI: 10.1146/annurev-physiol-042022-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Ferrannini E, Solini A, Baldi S, Scozzaro T, Polidori D, Natali A, Hansen MK. Role of Glycosuria in SGLT2 Inhibitor-Induced Cardiorenal Protection: A Mechanistic Analysis of the CREDENCE Trial. Diabetes 2024; 73:250-259. [PMID: 37939214 PMCID: PMC10796302 DOI: 10.2337/db23-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
SGLT2 inhibitors have been shown to provide pronounced reductions in cardiorenal outcomes, including cardiovascular death, heart failure, and renal failure. The mechanisms underlying these benefits remain uncertain. We hypothesized that the effects could be attributed to the elevated glycosuria induced by these drugs. Urine concentrations of glucose, creatinine, and ketones were measured at baseline and after 1 year of treatment with either placebo or canagliflozin 100 mg/day, in approximately 2,600 individuals from the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial (enrolling patients with type 2 diabetes, chronic kidney disease (CKD), and albuminuria). Associations between glycosuria and the primary composite end point from CREDENCE, and secondary outcomes were assessed using Cox proportional hazards models. Canagliflozin treatment increased fractional urinary glucose excretion (± SD) from 3 ± 9% at baseline to 30 ± 26% at year 1 (vs. 5 ± 19% with placebo; P < 0.001). Patients in the canagliflozin arm and in the top quartile of urine glucose to creatinine ratio at year 1 were significantly protected for the primary end point (hazard ratio [HR] 0.42; 95% CI 0.30-0.61); similar results were seen for cases of hospitalized heart failure (HR 0.45; 95% CI 0.27-0.73) and all-cause death (HR 0.56; 95% CI 0.39-0.80). These associations persisted when adjustments were made for multiple conventional risk factors. Among patients with type 2 diabetes and CKD treated with canagliflozin, individuals with the highest glycosuria levels had the strongest protection against multiple cardiorenal outcomes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | - Anna Solini
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tiziana Scozzaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
27
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Albaik M, Sheikh Saleh D, Kauther D, Mohammed H, Alfarra S, Alghamdi A, Ghaboura N, Sindi IA. Bridging the gap: glucose transporters, Alzheimer's, and future therapeutic prospects. Front Cell Dev Biol 2024; 12:1344039. [PMID: 38298219 PMCID: PMC10824951 DOI: 10.3389/fcell.2024.1344039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Glucose is the major source of chemical energy for cell functions in living organisms. The aim of this mini-review is to provide a clearer and simpler picture of the fundamentals of glucose transporters as well as the relationship of these transporters to Alzheimer's disease. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic databases (PubMed and ScienceDirect) were used to search for relevant studies mainly published during the period 2018-2023. This mini-review covers the two main types of glucose transporters, facilitated glucose transporters (GLUTs) and sodium-glucose linked transporters (SGLTs). The main difference between these two types is that the first type works through passive transport across the glucose concentration gradient. The second type works through active co-transportation to transport glucose against its chemical gradient. Fluctuation in glucose transporters translates into a disturbance of normal functioning, such as Alzheimer's disease, which may be caused by a significant downregulation of GLUTs most closely associated with insulin resistance in the brain. The first sign of Alzheimer's is a lack of GLUT4 translocation. The second sign is tau hyperphosphorylation, which is caused by GLUT1 and 3 being strongly upregulated. The current study focuses on the use of glucose transporters in treating diseases because of their proven therapeutic potential. Despite this, studies remain insufficient and inconclusive due to the complex and intertwined nature of glucose transport processes. This study recommends further understanding of the mechanisms related to these vectors for promising future therapies.
Collapse
Affiliation(s)
- Mai Albaik
- Department of Chemistry Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | - Dana Kauther
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Hajira Mohammed
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shurouq Alfarra
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Adel Alghamdi
- Department of Biology Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Buczyńska A, Kościuszko M, Krętowski AJ, Popławska-Kita A. Exploring the clinical utility of DPP-IV and SGLT2 inhibitors in papillary thyroid cancer: a literature review. Front Pharmacol 2024; 15:1323083. [PMID: 38292938 PMCID: PMC10824900 DOI: 10.3389/fphar.2024.1323083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
In the realm of clinical management, Papillary Thyroid Cancer (PTC) stands out as a prevalent thyroid malignancy, characterized by significant metabolic challenges, particularly in the context of carbohydrate metabolism. Recent studies have unveiled promising applications of Dipeptidyl Peptidase-IV (DPP-IV) and Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors, which are conventionally employed in the treatment of type 2 diabetes mellitus (T2DM), as potential adjuncts in anticancer therapy. DPP-IV and SGLT2 inhibitors can be imply to counteract the Warburg effect in cancer, with a specific focus on PTC, owing to their potential metabolic advantages and their influence on the tumor microenvironment, achieved by imposing restrictions on glucose accessibility. Consequently, a comprehensive review has been undertaken, involving meticulous examination of the existing body of evidence pertaining to the utilization of DPP-IV and SGLT2 inhibitors in the context of PTC. The mechanisms of action inherent to these inhibitors have been thoroughly explored, drawing upon insights derived from preclinical investigations. Furthermore, this review initiates discussions concerning the implications for future research directions and the formulation of innovative therapeutic strategies for PTC. As the intricate interplay between carbohydrate metabolism, the Warburg effect, and cancer progression garners increasing attention, attaining a comprehensive understanding of the roles played by DPP-IV and SGLT2 inhibitors in PTC management may serve as the cornerstone for novel approaches aimed at enhancing patient care and broadening the spectrum of available therapeutic modalities.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
30
|
Basham HA, Keswani S, Kumar A, Rahol Rai SKA, Surkasha F, Kumari A, Malik J. Role of Sodium-Glucose Co-Transporter-2 Inhibitor During Anthracycline Use: An Updated Review. Cardiol Rev 2024:00045415-990000000-00187. [PMID: 38189378 DOI: 10.1097/crd.0000000000000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The coalescence of anthracycline-induced cardiotoxicity and the evolving role of sodium-glucose co-transporter-2 (SGLT-2) inhibitors in oncology and cardiology has prompted a comprehensive review of their mechanisms, clinical implications, and future directions. Anthracyclines, potent chemotherapeutic agents, have been integral in cancer treatment, yet their potential for cardiac harm necessitates careful monitoring and management. We explore the multifactorial nature of anthracycline-induced cardiotoxicity, encompassing diverse patient populations, cumulative doses, and interplay with other treatments. While advancements in imaging and biomarker assessments aid in early detection, the lack of standardized criteria poses challenges. The emergent role of SGLT-2 inhibitors, initially developed for diabetes management, presents a novel avenue for cardioprotection. Beyond glycemic control, these inhibitors exhibit pleiotropic effects, including enhanced diuresis, anti-inflammatory actions, and modulation of energy sources. Consequently, SGLT-2 inhibitors are being investigated for their potential to mitigate cardiotoxic effects, promising an innovative approach in cardio-oncology. Despite these advancements, limitations in data interpretation and patient-specific considerations persist. The future of anthracycline-induced cardiotoxicity research lies in predictive biomarkers, precision medicine, multidisciplinary collaboration, and tailored treatment regimens. By navigating these challenges and harnessing emerging strategies, we aim to optimize cancer treatment efficacy while safeguarding cardiovascular health, ultimately paving the way for a new era of personalized and comprehensive oncologic care.
Collapse
Affiliation(s)
- Humzala Ali Basham
- From the Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
31
|
Savage P, Dixon L, Grieve D, Watson C. SGLT2 Inhibition in Heart Failure: Clues to Cardiac Effects? Cardiol Rev 2024:00045415-990000000-00189. [PMID: 38189526 DOI: 10.1097/crd.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Following the publication of several landmark clinical trials such as dapagliflozin in patients with heart failure and reduced ejection fraction, dapagliflozin evaluation to improve the lives of patients with preserved ejection fraction heart failure, and empagliflozin outcome trial in patients with chronic heart failure with preserved ejection fraction, sodium-glucose cotransport 2 inhibitors have been rapidly incorporated as a guideline-directed therapy in the treatment of heart failure. Moreover, their benefits appear to extend across the spectrum of left ventricular dysfunction which in some respects, can be seen as the holy grail of heart failure pharmacotherapy. Despite its plethora of proven cardioprotective benefits, the mechanisms by which it exerts these effects remain poorly understood, however, it is clear that these extend beyond that of promotion of glycosuria and natriuresis. Several hypotheses have emerged over the years including modification of cardiovascular risk profile via weight reduction, improved glucose homeostasis, blood pressure control, and natriuretic effect; however, these mechanisms do not fully explain the potent effects of the drug demonstrated in large-scale randomized trials. Other mechanisms may be at play, specifically the down-regulation of inflammatory pathways, improved myocardial sodium homeostasis, modulation of profibrotic pathways, and activation of nutrient deprivation signaling pathways promoting autophagic flux. This review seeks to summarize the cardioprotective benefits demonstrated in major clinical trials and provide a succinct review of the current theories of mechanisms of action, based on the most recent evidence derived from both clinical and laboratory data.
Collapse
Affiliation(s)
| | - Lana Dixon
- From the Royal Victoria Hospital Cardiology Department
| | - David Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Chris Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| |
Collapse
|
32
|
Hiraizumi M, Akashi T, Murasaki K, Kishida H, Kumanomidou T, Torimoto N, Nureki O, Miyaguchi I. Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter. Nat Struct Mol Biol 2024; 31:159-169. [PMID: 38057552 PMCID: PMC10803289 DOI: 10.1038/s41594-023-01134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/22/2023] [Indexed: 12/08/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) is imporant in glucose reabsorption. SGLT2 inhibitors suppress renal glucose reabsorption, therefore reducing blood glucose levels in patients with type 2 diabetes. We and others have developed several SGLT2 inhibitors starting from phlorizin, a natural product. Using cryo-electron microscopy, we present the structures of human (h)SGLT2-MAP17 complexed with five natural or synthetic inhibitors. The four synthetic inhibitors (including canagliflozin) bind the transporter in the outward conformations, while phlorizin binds it in the inward conformation. The phlorizin-hSGLT2 interaction exhibits biphasic kinetics, suggesting that phlorizin alternately binds to the extracellular and intracellular sides. The Na+-bound outward-facing and unbound inward-open structures of hSGLT2-MAP17 suggest that the MAP17-associated bundle domain functions as a scaffold, with the hash domain rotating around the Na+-binding site. Thus, Na+ binding stabilizes the outward-facing conformation, and its release promotes state transition to inward-open conformation, exhibiting a role of Na+ in symport mechanism. These results provide structural evidence for the Na+-coupled alternating-access mechanism proposed for the transporter family.
Collapse
Affiliation(s)
- Masahiro Hiraizumi
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Tomoya Akashi
- DMPK Research Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Kouta Murasaki
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Hiroyuki Kishida
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Taichi Kumanomidou
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Nao Torimoto
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Ikuko Miyaguchi
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.
| |
Collapse
|
33
|
Safaie N, Masoumi S, Alizadeh S, Mirzajanzadeh P, Nejabati HR, Hajiabbasi M, Alivirdiloo V, Basmenji NC, Derakhshi Radvar A, Majidi Z, Faridvand Y. SGLT2 inhibitors and AMPK: The road to cellular housekeeping? Cell Biochem Funct 2024; 42:e3922. [PMID: 38269506 DOI: 10.1002/cbf.3922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Sodium-glucose co-transporter-2 (SGLT2) inhibitors, known as Gliflozins, are a class of Glucose-lowering drugs in adults with type 2 diabetes (T2D) that induce glucosuria by blocking SGLT2 co-transporters in the proximal tubules. Several lines of evidence suggest that SGLT2 inhibitors regulate multiple mechanisms associated with the regulation of varying cellular pathways. The 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway plays an important role in metabolic homeostasis by influencing cellular processes. Recently, it has been shown that SGLT2 inhibitors can affect the AMPK pathway in differing physiological and pathological ways, resulting in kidney, intestinal, cardiovascular, and liver protective effects. Additionally, they have therapeutic effects on nonalcoholic fatty liver disease and diabetes mellitus-associated complications. In this review, we summarize the results of studies of AMPK-associated therapeutic effects of SGLT2 inhibitors in different organelle functions.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Fellowship, Vanderbilt University of Medical center, Nashville, Tennessee, USA
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | | | | | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Avagimyan A, Fogacci F, Pogosova N, Kakrurskiy L, Kogan E, Urazova O, Kobalava Z, Mikhaleva L, Vandysheva R, Zarina G, Trofimenko A, Navasardyan G, Mkrtchyan L, Galli M, Jndoyan Z, Aznauryan A, Saahakyan K, Agati L, Shafie D, Cicero A, Salvo GD, Sarrafzadegan N. Diabetic Cardiomyopathy: 2023 Update by the International Multidisciplinary Board of Experts. Curr Probl Cardiol 2024; 49:102052. [PMID: 37640176 DOI: 10.1016/j.cpcardiol.2023.102052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Diabetes mellitus (DM) is considered by many the pandemic of the 21st century and is associated with multiple organ damages. Among these, cardiovascular complications are responsible for an incredible burden of mortality and morbidity in Western Countries. The study of the pathological mechanisms responsible for the cardiovascular complications in DM patients is key for the development of new therapeutic strategies. The metabolic disorders caused by hyperglycemia, insulin resistance, and dyslipidemia, results in a cascade of pathomorphological changes favoring the atherosclerotic process and leading to myocardial remodeling. Parallel to this, oxidative stress, calcium overload, mitochondrial dysfunction, activation of protein kinase C signaling pathways, myocardial lipomatosis, and low-grade inflammation of the myocardium - are the main pathways responsible for the diabetic cardiomyopathy development. This review aims to appraise and discuss the pathogenetic mechanisms behind the diabetic cardiomyopathy development.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University, Yerevan, Armenia.
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Nana Pogosova
- Research and Preventive Cardiology, National Medical Research Centre of Cardiology, Moscow, Russia
| | - Lev Kakrurskiy
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Eugenia Kogan
- Pathology Department, Immunohistochemistry Reference Centre of Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga Urazova
- Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Zhanna Kobalava
- Internal Disease and Cardiology Department, Peoples Friendship University of Russia, Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Gioeva Zarina
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Artem Trofimenko
- Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | | | - Lusine Mkrtchyan
- Cardiology Department, Yerevan State Medical University, Yerevan, Armenia
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Zinaida Jndoyan
- Internal Diseases Propaedeutic Department, Yerevan State Medical University, Yerevan, Armenia
| | - Anait Aznauryan
- Histology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Karmen Saahakyan
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Luciano Agati
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Arrigo Cicero
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Zhang M, Sun L, Wu X, Qin Y, Lin M, Ding X, Zhu W, Jiang Z, Jin S, Leng C, Wang J, Lv X, Cai Q. Effects of 3-month dapagliflozin on left atrial function in treatment-naïve patients with type 2 diabetes mellitus: Assessment using 4-dimensional echocardiography. Hellenic J Cardiol 2023:S1109-9666(23)00228-2. [PMID: 38092177 DOI: 10.1016/j.hjc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND The sodium-glucose transporter-2 (SGLT-2) inhibitor dapagliflozin can improve left ventricular (LV) performance in patients with type 2 diabetes mellitus (T2DM). However, the effects on left atrial (LA) function in treatment-naïve T2DM patients remain unclear. The aim of our study was 1) to investigate the effects of 3-month treatment with dapagliflozin on LA function in treatment-naïve patients with T2DM using 4-dimensional automated LA quantification (4D Auto LAQ) and 2) to explore linked covariation patterns of changes in clinical and LA echocardiographic variables. METHODS 4D Auto LAQ was used to evaluate LA volumes, longitudinal and circumferential strains in treatment-naïve T2DM patients at baseline, at follow-up, and in healthy control (HC). Sparse canonical correlation analysis (sCCA) was performed to capture the linked covariation patterns between changes in clinical and LA echocardiographic variables within the treatment-naïve T2DM patient group. RESULTS This study finally included 61 treatment-naïve patients with T2DM without cardiovascular disease and 39 healthy controls (HC). Treatment-naïve T2DM patients showed reduced LA reservoir and conduit function at baseline compared to HC, independent of age, sex, BMI, and blood pressure (LASr: 21.11 ± 5.39 vs. 27.08 ± 5.31 %, padjusted = 0.017; LAScd: -11.51 ± 4.48 vs. -16.74 ± 4.51 %, padjusted = 0.013). After 3-month treatment with dapagliflozin, T2DM patients had significant improvements in LA reservoir and conduit function independent of BMI and blood pressure changes (LASr: 21.11 ± 5.39 vs. 23.84 ± 5.74 %, padjusted < 0.001; LAScd: -11.51 ± 4.48 vs. -12.75 ± 4.70 %, padjusted < 0.001). The clinical and LA echocardiographic parameters showed significant covariation (r = 0.562, p = 0.039). In the clinical dataset, changes in heart rate, insulin, and BMI were most associated with the LA echocardiographic variate. In the LA echocardiographic dataset, changes in LAScd, LASr, and LASr_c were most associated with the clinical variate. CONCLUSION Compared with HC, treatment-naïve patients with T2DM had lower LA function, and these patients benefited from dapagliflozin administration, particularly in LA function.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lanlan Sun
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaopeng Wu
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunyun Qin
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mingming Lin
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueyan Ding
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Weiwei Zhu
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhe Jiang
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shan Jin
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Chenlei Leng
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China
| | | | - Xiuzhang Lv
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Qizhe Cai
- Department of Ultrasound Medicine, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
36
|
Forrester EA, Benítez-Angeles M, Redford KE, Rosenbaum T, Abbott GW, Barrese V, Dora K, Albert AP, Dannesboe J, Salles-Crawley I, Jepps TA, Greenwood IA. Crucial role for Sodium Hydrogen Exchangers in SGLT2 inhibitor-induced arterial relaxations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570303. [PMID: 38116028 PMCID: PMC10729745 DOI: 10.1101/2023.12.05.570303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Introduction Sodium dependent glucose transporter 2 (SGLT2 or SLC5A2) inhibitors effectively lower blood glucose and are also approved treatments for heart failure independent of raised glucose. One component of the cardioprotective effect is reduced cardiac afterload but the mechanisms underlying peripheral relaxation are ill defined and variable. We speculated that SGLT2 inhibitors promoted arterial relaxation via the release of the potent vasodilator calcitonin gene-related peptide (CGRP) from sensory nerves independent of glucose transport. Experimental approach The functional effects of SGLT2 inhibitors (dapagliflozin, empagliflozin, ertugliflozin) and the sodium/hydrogen exchanger 1 (NHE1) blocker cariporide were determined on pre-contracted mesenteric and renal arteries from male Wistar rats using Wire-Myography. SGLT2, NHE1, CGRP and TRPV1 expression in both arteries was determined by Western blot and immunohistochemistry. Kv7.4/5/KCNE4 and TRPV1 currents were measured in the presence and absence of dapagliflozin and empagliflozin. Results All SGLT2 inhibitors produced a concentration dependent relaxation (1µM-100µM) of mesenteric arteries that was considerably greater than in renal arteries. Cariporide relaxed mesenteric arteries but not renal arteries. Immunohistochemistry with TRPV1 and CGRP antibodies revealed a dense innervation of sensory nerves in mesenteric arteries that was absent in renal arteries. Consistent with a greater sensory nerve component, the TRPV1 agonist capsaicin produced significantly greater relaxations in mesenteric arteries compared to renal arteries. Relaxations to dapagliflozin, empagliflozin and cariporide were attenuated by incubation with the CGRP receptor antagonist BIBN-4096, the Kv7 blocker linopirdine and the TRPV1 antagonist AMG-517 as well as by depletion of neuronal CGRP. Neither dapagliflozin nor empagliflozin directly activated heterologously expressed TRPV1 channels or Kv7 channels. Strikingly, only NHE1 colocalised with TRPV1 in sensory nerves, and cariporide pre-application prevented the relaxant response to SGLT2 inhibitors. Conclusions SGLT2 inhibitors relax mesenteric arteries by a novel mechanism involving the release of CGRP from sensory nerves following inhibition of the Na + /H + exchanger.
Collapse
|
37
|
Mulliri A, Joubert M, Piquet MA, Alves A, Dupont B. Functional sequelae after pancreatic resection for cancer. J Visc Surg 2023; 160:427-443. [PMID: 37783613 DOI: 10.1016/j.jviscsurg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The morbidity and mortality of pancreatic cancer surgery has seen substantial improvement due to the standardization of surgical techniques, the optimization of perioperative multidisciplinary management and the organization of specialized care systems. The identification and treatment of postoperative functional and nutritional sequelae have thereby become major issues in patients who undergo pancreatic surgery. This review addresses the functional sequelae of pancreatic resection for cancerous and pre-cancerous lesions (excluding chronic pancreatitis). Its aim is to specify the prevalence and severity of sequelae according to the type of pancreatic resection and to document, where appropriate, the therapeutic management. Exocrine pancreatic insufficiency (ExPI) is observed in nearly one out of three patients at one year after surgery, and endocrine pancreatic insufficiency (EnPI) is present in one out of five patients after pancreatoduodenectomy (PD) and one out of three patients after distal pancreatectomy (DP). In addition, digestive functional disorders may appear, such as delayed gastric emptying (DGE), which affects 10 to 45% of patients after PD and nearly 8% after DP. Beyond these functional sequelae, pancreatic surgery can also induce nutritional and vitamin deficiencies secondary to a lack of uptake for certain vitamins or to the loss of absorption site in the duodenum. In addition to the treatment of ExPI with oral pancreatic enzymes, nutritional management is based on a high-calorie, high-protein diet with normal lipid intake in frequent small feedings, combined with vitamin supplementation adapted to monitored deficiencies. Better knowledge of the functional consequences of pancreatic cancer surgery can improve the overall management of patients.
Collapse
Affiliation(s)
- Andrea Mulliri
- Digestive Surgery Department, University Hospital Center of Caen, Normandie Université, UNICAEN, 14000 Caen, France; Anticipe' U1086 Inserm-UCBN, 'Cancers & Preventions', Registre spécialisé des Tumeurs Digestives du Calvados, Team Labelled 'League Against Cancer', UNICAEN, Normandie Université, 14000 Caen, France
| | - Michael Joubert
- Diabetology-Endocrinology Department, University Hospital Center of Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Marie-Astrid Piquet
- Department of Hepato-Gastroenterology and Nutrition, University Hospital Center of Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Arnaud Alves
- Digestive Surgery Department, University Hospital Center of Caen, Normandie Université, UNICAEN, 14000 Caen, France; Anticipe' U1086 Inserm-UCBN, 'Cancers & Preventions', Registre spécialisé des Tumeurs Digestives du Calvados, Team Labelled 'League Against Cancer', UNICAEN, Normandie Université, 14000 Caen, France
| | - Benoît Dupont
- Anticipe' U1086 Inserm-UCBN, 'Cancers & Preventions', Registre spécialisé des Tumeurs Digestives du Calvados, Team Labelled 'League Against Cancer', UNICAEN, Normandie Université, 14000 Caen, France; Department of Hepato-Gastroenterology and Nutrition, University Hospital Center of Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France.
| |
Collapse
|
38
|
Wojtasińska A, Kućmierz J, Tokarek J, Dybiec J, Rodzeń A, Młynarska E, Rysz J, Franczyk B. New Insights into Cardiovascular Diseases Treatment Based on Molecular Targets. Int J Mol Sci 2023; 24:16735. [PMID: 38069058 PMCID: PMC10706703 DOI: 10.3390/ijms242316735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular diseases (CVDs) which consist of ischemic heart disease, stroke, heart failure, peripheral arterial disease, and several other cardiac and vascular conditions are one of the most common causes of death worldwide and often co-occur with diabetes mellitus and lipid disorders which worsens the prognosis and becomes a therapeutic challenge. Due to the increasing number of patients with CVDs, we need to search for new risk factors and pathophysiological changes to create new strategies for preventing, diagnosing, and treating not only CVDs but also comorbidities like diabetes mellitus and lipid disorders. As increasing amount of patients suffering from CVDs, there are many therapies which focus on new molecular targets like proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein 3, ATP-citrate lyase, or new technologies such as siRNA in treatment of dyslipidemia or sodium-glucose co-transporter-2 and glucagon-like peptide-1 in treatment of diabetes mellitus. Both SGLT-2 inhibitors and GLP-1 receptor agonists are used in the treatment of diabetes, however, they proved to have a beneficial effect in CVDs as well. Moreover, a significant amount of evidence has shown that exosomes seem to be associated with myocardial ischaemia and that exosome levels correlate with the severity of myocardial injury. In our work, we would like to focus on the above mechanisms. The knowledge of them allows for the appearance of new strategies of treatment among patients with CVDs.
Collapse
Affiliation(s)
- Armanda Wojtasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julita Tokarek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Anna Rodzeń
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
39
|
Khan F, Elgeti M, Grandfield S, Paz A, Naughton FB, Marcoline FV, Althoff T, Ermolova N, Wright EM, Hubbell WL, Grabe M, Abramson J. Membrane potential accelerates sugar uptake by stabilizing the outward facing conformation of the Na/glucose symporter vSGLT. Nat Commun 2023; 14:7511. [PMID: 37980423 PMCID: PMC10657379 DOI: 10.1038/s41467-023-43119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Sodium-dependent glucose transporters (SGLTs) couple a downhill Na+ ion gradient to actively transport sugars. Here, we investigate the impact of the membrane potential on vSGLT structure and function using sugar uptake assays, double electron-electron resonance (DEER), electrostatic calculations, and kinetic modeling. Negative membrane potentials, as present in all cell types, shift the conformational equilibrium of vSGLT towards an outward-facing conformation, leading to increased sugar transport rates. Electrostatic calculations identify gating charge residues responsible for this conformational shift that when mutated reduce galactose transport and eliminate the response of vSGLT to potential. Based on these findings, we propose a comprehensive framework for sugar transport via vSGLT, where the cellular membrane potential facilitates resetting of the transporter after cargo release. This framework holds significance not only for SGLTs but also for other transporters and channels.
Collapse
Affiliation(s)
- Farha Khan
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Matthias Elgeti
- Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| | - Samuel Grandfield
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Aviv Paz
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - Fiona B Naughton
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Frank V Marcoline
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Thorsten Althoff
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Natalia Ermolova
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ernest M Wright
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wayne L Hubbell
- Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Demir ME, Özler TE, Merhametsiz Ö, Sözener U, Uyar M, Ercan Z, Bardak Demir S, Sezer S, Türkmen Sarıyıldız G. The results of SGLT-2 inhibitors use in kidney transplantation: 1-year experiences from two centers. Int Urol Nephrol 2023; 55:2989-2999. [PMID: 37289399 PMCID: PMC10248967 DOI: 10.1007/s11255-023-03645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/20/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Sodium-glucose co-transporter-2 inhibitor (SGLT-2i) administration is associated with some concerns in regard to the increased risk of genital and urinary tract infections (UTI) in kidney transplant recipients (KTR). In this study, we present the results of SGLT-2i use in KTR, including the early post-transplant period. METHODS Participants were divided into two groups: SGLT-2i-free diabetic KTR (Group 1, n = 21) and diabetic KTR using SGLT-2i (Group 2, n = 36). Group 2 was further divided into two subgroups according to the posttransplant prescription day of SGLT-2i; < 3 months (Group 2a) and ≥ 3 months (Group 2b). Groups were compared for development of genital and urinary tract infections, glycated hemoglobin a1c (HgbA1c), estimated glomerular filtration rate (eGFR), proteinuria, weight change, and acute rejection rate during 12-month follow-up. RESULTS Urinary tract infections prevalence was 21.1% and UTI-related hospitalization rate was 10.5% in our cohort. Prevalence of UTI and UTI-related hospitalization, eGFR, HgbA1c levels, and weight gain were similar between the SGLT-2i group and SGLT-2i-free group, at the 12-month follow-up. UTI prevalence was similar between groups 2a and 2b (p = 0.871). No case of genital infection was recorded. Significant proteinuria reduction was observed in Group 2 (p = 0.008). Acute rejection rate was higher in the SGLT-2i-free group (p = 0.040) and had an impact on 12-month follow-up eGFR (p = 0.003). CONCLUSION SGLT-2i in KTR is not associated with an increased risk of genital infection and UTI in diabetic KTR, even in the early posttransplant period. The use of SGLT-2i reduces proteinuria in KTR and has no adverse effects on allograft function at the 12-month follow-up.
Collapse
Affiliation(s)
- Mehmet Emin Demir
- Department of Nephrology and Organ Transplantation, Atılım University School of Medicine, Medicana International Ankara Hospital, Ankara, Turkey
| | - Tuba Elif Özler
- Department of Nephrology and Organ Transplantation, Yeni Yuzyil University Private Gaziosmanpaşa Hospital, Istanbul, Turkey
| | - Özgür Merhametsiz
- Department of Nephrology and Organ Transplantation, Beykent University Hospital, Istanbul, Turkey
| | - Ulaş Sözener
- Department of General Surgery and Organ Transplantation, Atılım University School of Medicine, Medicana International Ankara Hospital, Ankara, Turkey
| | - Murathan Uyar
- Department of Nephrology and Organ Transplantation, Aydın University Medical School, Istanbul, Turkey
| | - Zafer Ercan
- Department of Nephrology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Simge Bardak Demir
- Department of Nephrology, Yenimahalle Education and Research Hospital, Ankara, Turkey.
| | - Siren Sezer
- Department of Nephrology and Organ Transplantation, Atılım University School of Medicine, Medicana International Ankara Hospital, Ankara, Turkey
| | - Gülçin Türkmen Sarıyıldız
- Department of General Surgery and Organ Transplantation, Atılım University School of Medicine, Medicana International Ankara Hospital, Ankara, Turkey
| |
Collapse
|
41
|
Tanrıverdi M, Baştemir M, Demirbakan H, Ünalan A, Türkmen M, Tanrıverdi GÖ. Association of SGLT-2 inhibitors with bacterial urinary tract infection in type 2 diabetes. BMC Endocr Disord 2023; 23:211. [PMID: 37789335 PMCID: PMC10548559 DOI: 10.1186/s12902-023-01464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVE We aimed to investigate the factors associated with UTI in patients with T2D whether being treated with SGLT-2i or not. METHODS Adult patients with T2D, whose urine culture results were available, were analyzed retrospectively. Urine culture was obtained from mid-flow urine. Antibacterial treatment was given to the patients with UTI, which was defined by positive urine cultures and/or clinical findings. We grouped the patients as follows: Group A, those treated with SGLT-2i; and Group B, those not treated with SGLT-2i. RESULTS A total of 101 patients were included. Median age was 56 (45-67), 56.4% (n = 57) of the patients were female. Urine culture was positive in 54.9% (n = 28) and 16% (n = 8) of Group A (n = 51) and Group B (n = 50), respectively. Of those for whom urine culture was positive, Escherichia coli was isolated in 83.3% (n = 30), and both Escherichia coli and Klebsiella pneumoniae (K.pneumoniae) were isolated in 16.7% (n = 6). Klebsiella pneumoniae was isolated only from Group A. The need for and duration of hospitalization were higher in Group A (p < 0.001). UTI was detected in 60 patients. ROC analysis showed that a HbA1c of > 5.8% was associated with UTI with good accuracy (AUC: 0.835, p < 0.001). In multiple logistic regression analysis, SGLT-2i use and glucosuria were positive predictors for UTI (p = 0.004, Odds Ratio: 1984.013; and p = 0.028, and Odds Ratio: 12.480, respectively). CONCLUSION Besides the association of HbA1c and BMI with UTI, SGLT-2i use and glucosuria predicted UTI. Urine culture is important with respect to the choice of antibacterial treatment, especially in those patients under SGLT-2i treatment. The effect of SGLT-2i on the development of UTI is independent of baseline BMI score or HbA1c.
Collapse
Affiliation(s)
- Mustafa Tanrıverdi
- Department of Infectious Diseases, SANKO University Faculty of Medicine, Gazimuhtar Paşa Bulvar? No:36 - 27090 Şehitkamil, Gaziantep, Turkey.
| | - Mehmet Baştemir
- Department of Medical Microbiology, SANKO University Faculty of Medicine, Gaziantep, Turkey
| | - Hadiye Demirbakan
- Department of Medical Microbiology, SANKO University Faculty of Medicine, Gaziantep, Turkey
| | - Alperen Ünalan
- Department of Internal Medicine, SANKO University Faculty of Medicine, Gaziantep, Turkey
| | - Merve Türkmen
- Department of Infectious Diseases, SANKO University Faculty of Medicine, Gazimuhtar Paşa Bulvar? No:36 - 27090 Şehitkamil, Gaziantep, Turkey
| | | |
Collapse
|
42
|
Meekers E, Dauw J, Martens P, Dhont S, Verbrugge FH, Nijst P, Ter Maaten JM, Damman K, Mebazaa A, Filippatos G, Ruschitzka F, Tang WHW, Dupont M, Mullens W. Renal function and decongestion with acetazolamide in acute decompensated heart failure: the ADVOR trial. Eur Heart J 2023; 44:3672-3682. [PMID: 37623428 DOI: 10.1093/eurheartj/ehad557] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND AND AIMS In the ADVOR trial, acetazolamide improved decongestion in acute decompensated heart failure (ADHF). Whether the beneficial effects of acetazolamide are consistent across the entire range of renal function remains unclear. METHODS This is a pre-specified analysis of the ADVOR trial that randomized 519 patients with ADHF to intravenous acetazolamide or matching placebo on top of intravenous loop diuretics. The main endpoints of decongestion, diuresis, natriuresis, and clinical outcomes are assessed according to baseline renal function. Changes in renal function are evaluated between treatment arms. RESULTS On admission, median estimated glomerular filtration rate (eGFR) was 40 (30-52) mL/min/1.73 m². Acetazolamide consistently increased the likelihood of decongestion across the entire spectrum of eGFR (P-interaction = .977). Overall, natriuresis and diuresis were higher with acetazolamide, with a higher treatment effect for patients with low eGFR (both P-interaction < .007). Acetazolamide was associated with a higher incidence of worsening renal function (WRF; rise in creatinine ≥ 0.3 mg/dL) during the treatment period (40.5% vs. 18.9%; P < .001), but there was no difference in creatinine after 3 months (P = .565). This was not associated with a higher incidence of heart failure hospitalizations and mortality (P-interaction = .467). However, decongestion at discharge was associated with a lower incidence of adverse clinical outcomes irrespective of the onset of WRF (P-interaction = .805). CONCLUSIONS Acetazolamide is associated with a higher rate of successful decongestion across the entire range of renal function with more pronounced effects regarding natriuresis and diuresis in patients with a lower eGFR. While WRF occurred more frequently with acetazolamide, this was not associated with adverse clinical outcomes. CLINICALTRIALS.GOV IDENTIFIER NCT03505788.
Collapse
Affiliation(s)
- Evelyne Meekers
- Department of Cardiology, Ziekenhuis Oost-Limburg AV, Schiepse Bos 6, 3600 Genk, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Universiteitslaan, Diepenbeek, Belgium
| | - Jeroen Dauw
- Faculty of Medicine and Life Sciences, Hasselt University, Universiteitslaan, Diepenbeek, Belgium
- Department of Cardiology, AZ Sint-Lucas, Ghent, Belgium
| | - Pieter Martens
- Department of Cardiology, Ziekenhuis Oost-Limburg AV, Schiepse Bos 6, 3600 Genk, Belgium
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sebastiaan Dhont
- Department of Cardiology, Ziekenhuis Oost-Limburg AV, Schiepse Bos 6, 3600 Genk, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Universiteitslaan, Diepenbeek, Belgium
| | - Frederik H Verbrugge
- Centre for Cardiovascular Diseases, University Hospital Brussels, Jette, Belgium
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Jette, Belgium
| | - Petra Nijst
- Department of Cardiology, Ziekenhuis Oost-Limburg AV, Schiepse Bos 6, 3600 Genk, Belgium
| | - Jozine M Ter Maaten
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kevin Damman
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alexandre Mebazaa
- Department of Anesthesia & Critical Care, Université Paris Cité, Inserm MASCOT, APHP, Paris, France
| | | | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Wai Hong Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg AV, Schiepse Bos 6, 3600 Genk, Belgium
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg AV, Schiepse Bos 6, 3600 Genk, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Universiteitslaan, Diepenbeek, Belgium
| |
Collapse
|
43
|
Tokarek J, Budny E, Saar M, Stańczak K, Wojtanowska E, Młynarska E, Rysz J, Franczyk B. Molecular Processes Involved in the Shared Pathways between Cardiovascular Diseases and Diabetes. Biomedicines 2023; 11:2611. [PMID: 37892985 PMCID: PMC10604380 DOI: 10.3390/biomedicines11102611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular diseases and diabetes mellitus are currently among the diseases with the highest morbidity and mortality. The pathogenesis and development of these diseases remain strongly connected, along with inflammation playing a major role. Therefore, the treatment possibilities showing a positive impact on both of these diseases could be especially beneficial for patients. SGLT-2 inhibitors and GLP-1 receptor agonists present this dual effect. Moreover, the hostile composition of the gut microbiota could influence the progression of these conditions. In this review, the authors present the latest knowledge on and innovations in diabetes mellitus and CVD-with the focus on the molecular mechanisms and the role of the microbiota.
Collapse
Affiliation(s)
- Julita Tokarek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Maciej Saar
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Kamila Stańczak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Ewa Wojtanowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| |
Collapse
|
44
|
Тюренков ИН, Файбисович ТИ, Бакулин ДА. [Synergistic effects of GABA and hypoglycemic drugs]. PROBLEMY ENDOKRINOLOGII 2023; 69:61-69. [PMID: 37694868 PMCID: PMC10520901 DOI: 10.14341/probl13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 09/12/2023]
Abstract
Diabetes mellitus (DM) is the leading cause of premature death and disability. Despite a significant number of drugs, the effectiveness of therapy aimed at normalizing the level of glycemia and preventing complications does not fully satisfy doctors and patients. Therefore, the search for new approaches for the prevention and treatment of DM and its complications continues. Significant resources are used to develop new drugs, but recently the possibility of using «old» widely available drugs with newly discovered pleiotropic properties has been substantiated. These may include preparations of gammaaminobutyric acid (GABA) and agents that directly or indirectly activate GABAergic transmission, which have a pronounced pancreatic protective effect, which has been widely discussed in foreign literature over the past 10-15 years. However, there are few such publications in the domestic literature.It has been established that the content of GABA in β-cells in patients with type 1 and type 2 diabetes is reduced and this correlates with the severity of the disease. Genetic suppression of GABA receptors causes a significant decrease in the mass of β-cells and glucose-stimulated insulin secretion, which confirms the importance of GABA in ensuring glucose homeostasis and the advisability of replenishing the GABA deficiency in DM with its additional administration. It has been established that in animals with DM, GABA suppresses apoptosis and stimulates the regeneration of β-cells, increases β-cell mass and insulin production.Experimental data have been obtained indicating a synergistic effect of GABA when combined with glucagon-like peptide-1 (GLP-1) receptor agonists, DPP-4 inhibitors and sodium-glucose cotransporter 2 (SGLT-2) inhibitors, when a more pronounced pancreoprotective effect is observed, due to decrease in oxidative and nitrosative stress, inflammation, increase in the level of Klotho protein, Nrf-2 activity and antioxidant defense enzymes, suppression of NF-kB activity and expression of pro-inflammatory cytokines. As a result, all this leads to a decrease in apoptosis and death of β-cells, an increase in β-cell mass, insulin production and, at the same time, a decrease in glucagon levels and insulin resistance.The review substantiates the feasibility of using GABA and drugs with a positive GABAeric effect in combination with new generation antidiabetic agents: GLP-1 receptor agonists, DPP-4 inhibitors and SGLT-2 inhibitors in order to increase their antidiabetic potential.The search was carried out in the databases Pubmed, eLibrary, Medline. Keywords: diabetes mellitus, gamma-aminobutyric acid, glucagon-like peptide-1, GLP-1 receptor agonists, glucose-dependent insulinotropic peptide, dipeptidyl peptidase inhibitors, sodium-glucose cotransporter 2 inhibitors. The search was carried out from 2000 to 2022, but the review presents the results studies published mainly in the last 3 years, due to the requirements of the journal for the maximum amount of work and the number of sources.
Collapse
Affiliation(s)
| | | | - Д. А. Бакулин
- Волгоградский государственный медицинский университет
| |
Collapse
|
45
|
Bodnar P, Mazurkiewicz M, Chwalba T, Romuk E, Ciszek-Chwalba A, Jacheć W, Wojciechowska C. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress-Role of New Drugs, Flozins. Biomedicines 2023; 11:2236. [PMID: 37626732 PMCID: PMC10452694 DOI: 10.3390/biomedicines11082236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure (HF) is a multifactorial clinical syndrome involving many complex processes. The causes may be related to abnormal heart structure and/or function. Changes in the renin-angiotensin-aldosterone system, the sympathetic nervous system, and the natriuretic peptide system are important in the pathophysiology of HF. Dysregulation or overexpression of these processes leads to changes in cardiac preload and afterload, changes in the vascular system, peripheral vascular dysfunction and remodeling, and endothelial dysfunction. One of the important factors responsible for the development of heart failure at the cellular level is oxidative stress. This condition leads to deleterious cellular effects as increased levels of free radicals gradually disrupt the state of equilibrium, and, as a consequence, the internal antioxidant defense system is damaged. This review focuses on pharmacotherapy for chronic heart failure with regard to oxidation-reduction metabolism, with special attention paid to the latest group of drugs, SGLT2 inhibitors-an integral part of HF treatment. These drugs have been shown to have beneficial effects by protecting the antioxidant system at the cellular level.
Collapse
Affiliation(s)
- Patryk Bodnar
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | | | - Tomasz Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland
| | - Anna Ciszek-Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| |
Collapse
|
46
|
Koh ES, Kim GH, Chung S. Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis. Endocrinol Metab (Seoul) 2023; 38:359-372. [PMID: 37482684 PMCID: PMC10475968 DOI: 10.3803/enm.2023.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
When sodium-glucose cotransporter-2 (SGLT2) inhibitors were first introduced a decade ago, no one expected them to have substantial effects beyond their known glucose-lowering effects, until the emergence of evidence of their robust renal and cardiovascular benefits showing that they could attenuate progression of kidney disease, irrespective of diabetes, as well as prevent the development of acute kidney injury. Still, the precise and elaborate mechanisms underlying the major organ protection of SGLT2 inhibitors remain unclear. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule of the kidney and then recovers tubuloglomerular feedback, whereby SGLT2 inhibitors reduce glomerular hyperfiltration. This simple demonstration of their beneficial effects has perplexed experts in seeking more plausible and as yet undisclosed explanations for the whole effects of SGLT2 inhibitors, including metabolism reprogramming and the modulation of hypoxia, inflammation, and oxidative stress. Given that the renal benefits of SGLT2 inhibitors in patients with kidney disease but without diabetes were comparable to those seen in patients with diabetes, it may be reasonable to keep the emphasis on their hemodynamic actions. In this context, the aim of the present review is to provide a comprehensive overview of renal hemodynamics in individuals with diabetes who are treated with SGLT2 inhibitors, with a focus on natriuresis associated with the regulation of tubuloglomerular feedback and potential aquaresis. Throughout the discussion of alterations in renal sodium and water transports, particular attention will be given to the potential enhancement of adenosine and its receptors following SGLT2 inhibition.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gheun-Ho Kim
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
47
|
Taylor SI, Cherng HR, Yazdi ZS, Montasser ME, Whitlatch HB, Mitchell BD, Shuldiner AR, Streeten EA, Beitelshees AL. Pharmacogenetics of SGLT2 Inhibitors: Validation of a sex-agnostic pharmacodynamic biomarker. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286875. [PMID: 36945579 PMCID: PMC10029014 DOI: 10.1101/2023.03.07.23286875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Aim SGLT2 inhibitors provide multiple benefits to patients with type 2 diabetes - including improved glycemic control and decreased risks of cardiorenal disease. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. Methods Canagliflozin (300 mg) was administered to 30 healthy volunteers. Several endpoints were measured to assess clinically relevant responses - including drug-induced increases in urinary excretion of glucose, sodium, and uric acid. Results This pilot study confirmed that canagliflozin (300 mg) triggered acute changes in mean levels of several biomarkers: fasting plasma glucose (-4.1 mg/dL; p=6x10), serum creatinine (+0.05 mg/dL; p=8×10 -4 ), and serum uric acid (-0.90 mg/dL; p=5×10 -10 ). The effects of sex on glucosuria depended upon how data were normalized. Whereas males' responses were ∼60% greater when data were normalized to body surface area, males and females exhibited similar responses when glucosuria was expressed as grams of urinary glucose per gram-creatinine. The magnitude of glucosuria was not significantly correlated with fasting plasma glucose, estimated GFR, or age in these healthy non-diabetic individuals with estimated GFR>60 mL/min/1.73m 2 . Conclusions Normalizing data relative to creatinine excretion will facilitate including data from males and females in a single analysis. Furthermore, because our ongoing pharmacogenomic study ( NCT02891954 ) is conducted in healthy individuals, this will facilitate detection of genetic associations with limited confounding by other factors such as age and renal function. Registration NCT02462421 ( clinicaltrials.gov ). Funding Research grants from the National Institute of Diabetes and Digestive and Kidney Diseases: R21DK105401, R01DK108942, T32DK098107, and P30DK072488.
Collapse
Affiliation(s)
- Simeon I. Taylor
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Hua-Ren Cherng
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Zhinous Shahidzadeh Yazdi
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Hilary B. Whitlatch
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Alan R. Shuldiner
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Elizabeth A. Streeten
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Amber L. Beitelshees
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
48
|
Hoehlschen J, Hofreither D, Tomin T, Birner-Gruenberger R. Redox-driven cardioprotective effects of sodium-glucose co-transporter-2 inhibitors: comparative review. Cardiovasc Diabetol 2023; 22:101. [PMID: 37120524 PMCID: PMC10148992 DOI: 10.1186/s12933-023-01822-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023] Open
Abstract
Sodium-glucose co-transporter-2 inhibitors are used in the treatment of diabetes but are also emerging as cardioprotective agents in heart diseases even in the absence of type 2 diabetes. In this paper, upon providing a short overview of common pathophysiological features of diabetes, we review the clinically reported cardio- and nephroprotective potential of sodium-glucose co-transporter-2 inhibitors currently available on the market, including Dapagliflozin, Canagliflozin, and Empagliflozin. To that end, we summarize findings of clinical trials that have initially drawn attention to the drugs' organ-protective potential, before providing an overview of their proposed mechanism of action. Since we particularly expect that their antioxidative properties will broaden the application of gliflozins from therapeutic to preventive care, special emphasis was put on this aspect.
Collapse
Affiliation(s)
- Julia Hoehlschen
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria
| | - Dominik Hofreither
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria.
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria.
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
49
|
Erdem S, Titus A, Patel D, Patel NN, Sattar Y, Glazier J, Alraies MC. Sodium-Glucose Cotransporter 2 Inhibitors: A Scoping Review of the Positive Implications on Cardiovascular and Renal Health and Dynamics for Clinical Practice. Cureus 2023; 15:e37310. [PMID: 37182087 PMCID: PMC10166724 DOI: 10.7759/cureus.37310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiorenal benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been demonstrated in patients with type 2 diabetes in multiple trials. We aim to provide a comprehensive review of the role of SGLT2i in cardiovascular disease. Reducing blood glucose to provide more effective vascular function, lowering the circulating volume, reducing cardiac stress, and preventing pathological cardiac re-modeling and function are the mechanisms implicated in the beneficial cardiovascular effects of SGLT2 inhibitors. Treatment with SGLT2i was associated with a decrease in cardiovascular and all-cause mortality, acute heart failure exacerbation hospitalization, and composite adverse renal outcomes. Improved symptoms, better functional status, and quality of life were also seen in heart failure with reduced ejection fraction (HFrEF), heart failure and mildly reduced ejection fraction (HFmrEF), and heart failure with preserved ejection fraction (HFpEF) patients. Recent trials have shown a notable therapeutic benefit of SGLT2is in acute heart failure and also suggest that SGLT2is have the potential to strengthen recovery after acute myocardial infarction (AMI) in percutaneous coronary Intervention (PCI) patients. The mechanism behind the cardio-metabolic and renal-protective effects of SGLT2i is multifactorial. Adverse events may occur with their usage including increased risk of genital infections, diabetic ketoacidosis, and perhaps limited amputations; however, all of them are preventable. Overall, SGLT2i clearly has many beneficial effects, and the benefits of using SGLT2i by far outweigh the risks.
Collapse
Affiliation(s)
- Saliha Erdem
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Anoop Titus
- Internal Medicine, Saint Vincent Hospital, Worcester, USA
- Medicine, Government Medical College Thrissur, Thrissur, IND
| | - Dhruvil Patel
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Neel N Patel
- Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, USA
- Medicine, B. J. (Byramjee Jeejeebhoy) Medical College, Ahmedabad, IND
| | - Yasar Sattar
- Cardiology, West Virginia University, Morgantown, USA
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - James Glazier
- Cardiology, Wayne State University/Detroit Medical Center, Detroit, USA
| | - M Chadi Alraies
- Cardiology, Wayne State University/Detroit Medical Center, Detroit, USA
| |
Collapse
|
50
|
Tuttle KR. Digging deep into cells to find mechanisms of kidney protection by SGLT2 inhibitors. J Clin Invest 2023; 133:167700. [PMID: 36856116 PMCID: PMC9974093 DOI: 10.1172/jci167700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The sodium-glucose cotransporter-2 (SGLT2) is expressed on the luminal side of proximal tubule epithelial cells in the kidney. While pharmacological inhibition of SGLT2 provides kidney protection in diabetic kidney disease (DKD), the molecular mechanisms remain unclear. In this issue of the JCI, Schaub et al. report on the changes in single-cell transcriptional profiles of young participants with type 2 diabetes who received SGLT2 inhibitors. Treatment with SGLT2 inhibitors restored metabolic perturbations in proximal tubular cells and reduced expression of the inflammatory signaling molecule mTORC1. Notably, changes in transcripts and mTORC1 were also found in the kidney of a diabetes mouse model treated with an SGLT2 inhibitor, supporting use of this model for further studies. These findings reveal cellular mechanisms of SGLT2 inhibitors and are important for advancing therapeutic targets in the treatment of DKD.
Collapse
Affiliation(s)
- Katherine R. Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, Washington, USA.,Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|