1
|
Siregar S, Rulianov R, Ksatriapraja RA, Stefanus D. The role of angiotensin receptor blocker (losartan) on decreasing fibrotic process of corpora cavernosa in priapism model of wistar rats. F1000Res 2024; 11:831. [PMID: 38046538 PMCID: PMC10690033 DOI: 10.12688/f1000research.123040.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 12/05/2023] Open
Abstract
Background Priapism induces regulation of Transforming Growth Factor-β1 (TGF-β1) expression and collagen-type-1 deposition. This will replace the normal corpora cavernosa with fibrotic tissue which eventually resulted in erectile dysfunction. It is also known that the fibrosis process of corpora cavernosa is related to Renin-Angiotensin II System (RAS). Angiotensin II receptor blockers (ARB), especially losartan, inhibit the inflammation process and fibrotic tissue formation. This study evaluated the effect of losartan in reducing fibrosis in priapism by evaluating TGF-β1 and collagen-type-1 in cavernous tissue and determined the effect of losartan in preventing fibrosis in priapism model of Wistar rats assessed by the metavir score. Methods A total of eighteen male Wistar rats mean were divided into five groups. For the priapism models, we applied negative pressure on the penis to make an artificial erection to mimic the priapism process. The control groups were observed and the treatment groups were orally given losartan 15 mg/kg/day. Corpora cavernosa was harvested for TGF-β1 and collagen-type-1 measurement using an enzyme-linked immunosorbent assay (ELISA). The fibrotic tissue of each rat was then collected and assessed histopathologically with the metavir scoring system. Results Penile TGF-β1 concentration in the losartan-treated group was not significantly different on day 10 and day 28 of observation (p10=0,30; p28=0,17). Meanwhile, collagen-type-1 concentration was significantly lower compared to control group (p10=0,002; p28=0,01). There was a significant difference in metavir scores in rats that received losartan and those who did not (p<0,05). Conclusion Losartan could suppress the fibrosis process in the priapism model. It could decrease the collagen type 1 deposition during corpora cavernosa tissue regeneration. Based on the metavir score, the group receiving losartan therapy was better than the control group.
Collapse
Affiliation(s)
- Safendra Siregar
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Rulianov Rulianov
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | | | - Dicky Stefanus
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| |
Collapse
|
2
|
Chen CF, Chen YC, Fu YS, Tsai SW, Wu PK, Chen CM, Chen WM, Wu HTH, Lee CH, Chang CL, Lin PC, Kao YC, Chen CH, Chuang MH. Safety and Tolerability of Intra-Articular Injection of Adipose-Derived Mesenchymal Stem Cells GXCPC1 in 11 Subjects With Knee Osteoarthritis: A Nonrandomized Pilot Study Without a Control Arm. Cell Transplant 2024; 33:9636897231221882. [PMID: 38205679 PMCID: PMC10785714 DOI: 10.1177/09636897231221882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The current study aimed to determine the safety profile of intra-articular-injected allogeneic adipose-derived mesenchymal stem cells (ADSCs) GXCPC1 in subjects with knee osteoarthritis (OA) and its preliminary efficacy outcome. The 3 + 3 phase I study was designed with two dose-escalation cohorts: low dose (6.7 × 106 GXCPC1, N = 5) and high dose (4 × 107 GXCPC1, N = 6). The primary endpoint was safety, which was evaluated by recording adverse events throughout the trial; the secondary endpoints included total, pain, stiffness, and function subscales of the Western Ontario and McMaster Universities Arthritis Index (WOMAC), Visual Analogue Scale (VAS) for pain, and 12-Item Short Form (SF-12) health survey questionnaire. The GXCPC1 treatment was found to be safe after 1 year of follow-up with no treatment-related severe adverse events observed. When compared to baseline, subjects in both the low- and high-dose cohorts demonstrated improving trends in pain and knee function after receiving GXCPC1 treatment. Generally, the net change in pain (95% confidence interval (CI) = -7.773 to -2.561t at 12 weeks compared to baseline) and knee function (95% CI = -24.297 to -10.036t at 12 weeks compared to baseline) was better in subjects receiving high-dose GXCPC1. Although this study included a limited number of subjects without a placebo arm, it showed that the intra-articular injection of ADSCs was safe and well-tolerated in subjects with therapeutic alternatives to treat knee OA. However, a larger scale study with an appropriate control would be necessary for clinical efficacy in the following study.
Collapse
Affiliation(s)
- Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Chung Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shang-Wen Tsai
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Po-Kuei Wu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chao-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hung-Ta Hondar Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Radiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chia-Hsin Lee
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Chao-Liang Chang
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Yong-Cheng Kao
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Chun-Hung Chen
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Ming-Hsi Chuang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- College of Management, Chung Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
3
|
Liu H, Wang X, Deng H, Huang H, Liu Y, Zhong Z, Shen L, Cao S, Ma X, Zhou Z, Chen D, Peng G. Integrated Transcriptome and Metabolomics to Reveal the Mechanism of Adipose Mesenchymal Stem Cells in Treating Liver Fibrosis. Int J Mol Sci 2023; 24:16086. [PMID: 38003277 PMCID: PMC10671340 DOI: 10.3390/ijms242216086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| |
Collapse
|
4
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Enciso N, Amiel J, Fabián-Domínguez F, Pando J, Rojas N, Cisneros-Huamaní C, Nava E, Enciso J. Model of Liver Fibrosis Induction by Thioacetamide in Rats for Regenerative Therapy Studies. Anal Cell Pathol (Amst) 2022; 2022:2841894. [PMID: 36411771 PMCID: PMC9675604 DOI: 10.1155/2022/2841894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 03/14/2024] Open
Abstract
Hepatic fibrosis is caused by chronic injury due to toxic, infectious, or metabolic causes, and it may progress to cirrhosis and hepatocellular carcinoma. There is currently no antifibrotic therapy authorized for human use; however, there are promising studies using cell therapies. There are also no animal models that exactly reproduce human liver fibrosis that can be used to better understand the mechanisms of its regression and identify new targets for treatment and therapeutic approaches. On the other hand, mesenchymal stem cells (MSC) have experimentally demonstrated fibrosis regression effects, but it is necessary to have an animal model of advanced liver fibrosis to evaluate the effect of these cells. The aim of this work was to establish a protocol for the induction of advanced liver fibrosis in rats using thioacetamide (TAA), which will allow us to perform trials using MSC as a possible therapy for fibrosis regression. For this purpose, we selected 24 female rats and grouped them into three experimental groups: the control group (G-I) without treatment and groups II (G-II) and III (G-III) that received TAA by intraperitoneal injection for 24 weeks. Then, 1 × 106/kg adipose mesenchymal stem cells (ASCs) were infused intravenously. Groups G-I and G-II were sacrificed 7 days after the last dose of ASC, and G-III was sacrificed 8 weeks after the last ASC infusion, all with xylazine/ketamine (40 mg/kg). The protocol used in this work established a model of advanced hepatic fibrosis as corroborated by METAVIR tests of the histological lesions; by the high levels of the markers α-SMA, CD68, and collagen type I; by functional alterations due to elevated markers of the hepatic lesions; and by alterations of the leukocytes, lymphocytes, and platelets. Finally, transplanted cells in the fibrous liver were detected. We conclude that TAA applied using the protocol introduced in this study induces a good model of advanced liver fibrosis in rats.
Collapse
Affiliation(s)
- Nathaly Enciso
- Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
- Dirección General de Investigación, Desarrollo e Innovación, Universidad Científica del Sur, Lima 150142, Peru
| | - José Amiel
- Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| | - Fredy Fabián-Domínguez
- Investigador Adjunto, Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| | - Jhon Pando
- Instituto de Criopreservación y Terapia Celular, Lima 15074, Peru
| | - Nancy Rojas
- Laboratorio de Microscopía Electrónica, Universidad Nacional Mayor de San Marcos, Lima 506, Peru
| | - Carlos Cisneros-Huamaní
- Investigador Adjunto, Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| | - Ernesto Nava
- Laboratorio de Microscopía Electrónica, Universidad Nacional Mayor de San Marcos, Lima 506, Peru
| | - Javier Enciso
- Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| |
Collapse
|
6
|
Mehdi S, Ahmad FUD, Lodhi AH, Khurshid U, Khalid AA, Sidiq SS, Hussain L, Baig MS. Protective Effects of p-CA Against Acute Liver Damage Induced by LPS/D-GalN in Wistar Albino Rats. Drug Des Devel Ther 2022; 16:3327-3342. [PMID: 36199629 PMCID: PMC9527823 DOI: 10.2147/dddt.s380324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Seerat Mehdi
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Correspondence: Fiaz-ud-Din Ahmad, Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Khawaja Fareed Campus, Railway Road, Bahawalpur, 63100, Pakistan, Tel +92-320-8402376, Email
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ahmed Awais Khalid
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sheikh Safeena Sidiq
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mirza Shaharyar Baig
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
7
|
Organ-Specific Differentiation of Human Adipose-Derived Stem Cells in Various Organs of Xenotransplanted Rats: A Pilot Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081116. [PMID: 35892918 PMCID: PMC9330795 DOI: 10.3390/life12081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Adipose-derived stem cells (ADSCs) are potential therapeutics considering their self-renewal capacity and ability to differentiate into all somatic cell types in vitro. The ideal ADSC-based therapy is a direct injection into the relevant organs. The objective of this study was to investigate the viability and safety of intra-organ human ADSC (h-ADSC) xenotransplants in vivo. Subcutaneous adipose tissue from the abdominal area of 10 patients was sampled. h-ADSCs were isolated from adipose tissue samples and identified using immunofluorescence antibodies. Multi-differentiation potential assays for adipocytes, osteocytes, and chondrocytes were performed. Cultured h-ADSCs at passage 4 were transplanted into multiple organs of 17 rats, including the skin, subcutaneous layer, liver, kidney, pancreas, and spleen. The h-ADSC-injected organs excised after 100 days were examined, and the survival of h-ADSCs was measured by quantitative real-time polymerase chain reaction (qRT-PCR) using specific human and rat target genes. h-ADSCs confirmed by stem cell phenotyping were induced to differentiate into adipogenic, osteogenic, and chondrogenic lineages in vitro. All rats were healthy and exhibited no side effects during the study; the transplanted h-ADSCs did not cause inflammation and were indiscernible from the native organ cells. The presence of transplanted h-ADSCs was confirmed using qRT-PCR. However, the engrafted survival rates varied as follows: subcutaneous fat (70.6%), followed by the liver (52.9%), pancreas (50.0%), kidney (29.4%), skin (29.4%), and spleen (12.5%). h-ADSCs were successfully transplanted into a rat model, with different survival rates depending on the organ.
Collapse
|
8
|
Lee J, Park L, Kim H, Rho BI, Han RT, Kim S, Kim HJ, Na HS, Back SK. Adipose-derived stem cells decolonize skin Staphylococcus aureus by enhancing phagocytic activity of peripheral blood mononuclear cells in the atopic rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:287-295. [PMID: 35766006 PMCID: PMC9247705 DOI: 10.4196/kjpp.2022.26.4.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
Staphylococcus aureus (S. aureus) is known to induce apoptosis of host immune cells and impair phagocytic clearance, thereby being pivotal in the pathogenesis of atopic dermatitis (AD). Adipose-derived stem cells (ASCs) exert therapeutic effects against inflammatory and immune diseases. In the present study, we investigated whether systemic administration of ASCs restores the phagocytic activity of peripheral blood mononuclear cells (PBMCs) and decolonizes cutaneous S. aureus under AD conditions. AD was induced by injecting capsaicin into neonatal rat pups. ASCs were extracted from the subcutaneous adipose tissues of naïve rats and administered to AD rats once a week for a month. Systemic administration of ASCs ameliorated AD-like symptoms, such as dermatitis scores, serum IgE, IFN-γ+/IL-4+ cell ratio, and skin colonization by S. aureus in AD rats. Increased FasL mRNA and annexin V+/7-AAD+ cells in the PBMCs obtained from AD rats were drastically reversed when co-cultured with ASCs. In contrast, both PBMCs and CD163+ cells bearing fluorescent zymosan particles significantly increased in AD rats treated with ASCs. Additionally, the administration of ASCs led to an increase in the mRNA levels of antimicrobial peptides, such as cathelicidin and β-defensin, in the skin of AD rats. Our results demonstrate that systemic administration of ASCs led to decolonization of S. aureus by attenuating apoptosis of immune cells in addition to restoring phagocytic activity. This contributes to the improvement of skin conditions in AD rats. Therefore, administration of ASCs may be helpful in the treatment of patients with intractable AD.
Collapse
Affiliation(s)
- Jaehee Lee
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | | | - Hyeyoung Kim
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | | | - Rafael Taeho Han
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | - Sewon Kim
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hee Jin Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University Mirae Campus, Wonju 26493, Korea
| | - Heung Sik Na
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
9
|
Siregar S, Herlambang MS, Reza M, Mustafa A, Stefanus D. Role of human adipose-derived stem cells (hADSC) on TGF-β1, type I collagen, and fibrosis degree in bladder obstruction model of Wistar rats. BMC Urol 2022; 22:69. [PMID: 35462546 PMCID: PMC9036781 DOI: 10.1186/s12894-022-01019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Bladder outlet obstruction (BOO) was caused by a series of histological and biochemical changes in the bladder wall, through the inflammation process in the bladder wall, hypertrophy and fibrosis. ADSC has an important role in bladder regeneration.
Methods and materials This study was an experimental randomized study using male Wistar rats which were monitored at 2 and 4 weeks to determine the effect of ADSC therapy on TGF-β1 type I collagen, and degree of fibrosis.
Result Rats were divided into 5 groups. In the week 2 BOO group, 1 sample included in the category of moderate fibrosis, 1 sample that was given ADSC with mild fibrosis category, 3 samples included in severe fibrosis category, 3 samples that were given ADSC included in the category of moderate fibrosis. The concentration of TGF-β1 in the hADSC therapy group was significantly lower than the control group at the 2nd and 4th week of monitoring (p2 = 0.048, p4 = 0.048), and also with more type I collagen on 2nd and the 4th week (p2 = 0.048, p4 = 0.048). Conclusion ADSC therapy can reduce the concentration of TGF-β1, type I collagen, and degree of fibrosis in the male Wistar BOO model.
Collapse
|
10
|
Liang RY, Zhang KL, Chuang MH, Lin FH, Chen TC, Lin JN, Liang YJ, Li YA, Chen CH, Wong PLJ, Lin SZ, Lin PC. A One-Step, Monolayer Culture and Chemical-Based Approach to Generate Insulin-Producing Cells From Human Adipose-Derived Stem Cells to Mitigate Hyperglycemia in STZ-Induced Diabetic Rats. Cell Transplant 2022; 31:9636897221106995. [PMID: 36002988 PMCID: PMC9421045 DOI: 10.1177/09636897221106995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The global population of individuals afflicted with diabetes mellitus has been increasing year by year, and this disease poses a serious threat to human health as well as the economies worldwide. Pancreatic or islet transplantations provide one of the most effective and long-term therapies available to treat diabetes, but the scarcity and quality of pancreatic islets limit their use in treatments. Here, we report the development of a one-step, monolayer culture, and chemical-based protocol that efficiently mediates the differentiation of human adipose-derived stem cells (hADSCs) into insulin-producing cells (IPCs). Our data indicate that hADSCs in monolayer culture that are allowed to differentiate into IPCs are superior to those in suspension cultures with respect to insulin secretion capacity (213-fold increase), cell viability (93.5 ± 3.27% vs. 41.67 ± 13.17%), and response to glucose stimulation. Moreover, the expression of genes associated with pancreatic lineage specification, such as PDX1, ISL1, and INS (encoding insulin), were expressed at significantly higher levels during our differentiation protocol (6-fold for PDX1 and ISL1, 11.5-fold for INS). Importantly, in vivo studies demonstrated that transplantation with IPCs significantly mitigated hyperglycemia in streptozotocin-induced diabetic rats. Our results indicate that this one-step, rapid protocol increases the efficiency of IPC generation and that the chemical-based approach for IPC induction may reduce safety concerns associated with the use of IPCs for clinical applications, thereby providing a safe and effective cell-based treatment for diabetes.
Collapse
Affiliation(s)
- Ruei-Yue Liang
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
- Ruei-Yue Liang, Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan.
| | - Kai-Ling Zhang
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Ming-Hsi Chuang
- Department of Technology Management, Chung Hua University, Hsinchu, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Chien Chen
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhih-Ni Lin
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Jyun Liang
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-An Li
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hung Chen
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Peggy Leh Jiunn Wong
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Po-Cheng Lin
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| |
Collapse
|
11
|
Sun H, Shi C, Ye Z, Yao B, Li C, Wang X, Qian Q. The role of mesenchymal stem cells in liver injury. Cell Biol Int 2021; 46:501-511. [PMID: 34882906 PMCID: PMC9303694 DOI: 10.1002/cbin.11725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 11/10/2022]
Abstract
Recently, mesenchymal stem cell (MSC) therapy has been suggested as an effective alternate approach for the treatment of hepatic diseases. MSCs have potential therapeutic value, because these have high self-renewal ability, are capable of multipotent differentiation, and have low immunogenicity. Furthermore, MSCs have the potential to differentiate into hepatocytes, and the therapeutic value exists in their immune-modulatory properties and secretion of trophic factors, such as growth factors and cytokines. Moreover, MSCs can suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, regress liver fibrosis, and enhance liver functionality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Haoyu Sun
- Shanghai Cell Therapy Group, Shanghai, China
| | | | - Zhenlong Ye
- Shanghai Cell Therapy Group, Shanghai, China
| | - Bi Yao
- Shanghai Cell Therapy Group, Shanghai, China
| | - Chen Li
- Shanghai Cell Therapy Group, Shanghai, China
| | | | - Qijun Qian
- Shanghai Cell Therapy Group, Shanghai, China
| |
Collapse
|
12
|
Wiśniewska J, Sadowska A, Wójtowicz A, Słyszewska M, Szóstek-Mioduchowska A. Perspective on Stem Cell Therapy in Organ Fibrosis: Animal Models and Human Studies. Life (Basel) 2021; 11:life11101068. [PMID: 34685439 PMCID: PMC8538998 DOI: 10.3390/life11101068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components that result from the disruption of regulatory processes responsible for ECM synthesis, deposition, and remodeling. Fibrosis develops in response to a trigger or injury and can occur in nearly all organs of the body. Thus, fibrosis leads to severe pathological conditions that disrupt organ architecture and cause loss of function. It has been estimated that severe fibrotic disorders are responsible for up to one-third of deaths worldwide. Although intensive research on the development of new strategies for fibrosis treatment has been carried out, therapeutic approaches remain limited. Since stem cells, especially mesenchymal stem cells (MSCs), show remarkable self-renewal, differentiation, and immunomodulatory capacity, they have been intensively tested in preclinical studies and clinical trials as a potential tool to slow down the progression of fibrosis and improve the quality of life of patients with fibrotic disorders. In this review, we summarize in vitro studies, preclinical studies performed on animal models of human fibrotic diseases, and recent clinical trials on the efficacy of allogeneic and autologous stem cell applications in severe types of fibrosis that develop in lungs, liver, heart, kidney, uterus, and skin. Although the results of the studies seem to be encouraging, there are many aspects of cell-based therapy, including the cell source, dose, administration route and frequency, timing of delivery, and long-term safety, that remain open areas for future investigation. We also discuss the contemporary status, challenges, and future perspectives of stem cell transplantation for therapeutic options in fibrotic diseases as well as we present recent patents for stem cell-based therapies in organ fibrosis.
Collapse
|
13
|
Yan M, Fu LL, Nada OA, Chen LM, Gosau M, Smeets R, Feng HC, Friedrich RE. Evaluation of the Effects of Human Dental Pulp Stem Cells on the Biological Phenotype of Hypertrophic Keloid Fibroblasts. Cells 2021; 10:cells10071803. [PMID: 34359971 PMCID: PMC8303871 DOI: 10.3390/cells10071803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Despite numerous existing treatments for keloids, the responses in the clinic have been disappointing, due to either low efficacy or side effects. Numerous studies dealing with preclinical and clinical trials have been published about effective therapies for fibrotic diseases using mesenchymal stem cells; however, no research has yet been reported to scientifically investigate the effect of human dental pulp stem cells (HDPSCs) on the treatment of keloids. The objective is to provide an experimental basis for the application of stem cells in the treatment of keloids. METHODS Human normal fibroblasts (HNFs) and human keloid fibroblasts (HKFs) were cultured alone and in combination with HDPSCs using a transwell cell-contact-independent cell culture system. The effects of HDPSCs on HKFs were tested using a CCK-8 assay, live/dead staining assay, quantitative polymerase chain reaction, Western blot and immunofluorescence microscopy. RESULTS HDPSCs did not inhibit the proliferation nor the apoptosis of HKFs and HNFs. HDPSCs did, however, inhibit their migration. Furthermore, HDPSCs significantly decreased the expression of profibrotic genes (CTGF, TGF-β1 and TGF-β2) in HKFs and KNFs (p < 0.05), except for CTGF in HNFs. Moreover, HDPSCs suppressed the extracellular matrix (ECM) synthesis in HKFs, as indicated by the decreased expression of collagen I as well as the low levels of hydroxyproline in the cell culture supernatant (p < 0.05). CONCLUSIONS The co-culture of HDPSCs inhibits the migration of HKFs and the expression of pro-fibrotic genes, while promoting the expression of anti-fibrotic genes. HDPSCs' co-culture also inhibits the synthesis of the extracellular matrix by HKFs, whereas it does not affect the proliferation and apoptosis of HKFs. Therefore, it can be concluded that HDPSCs can themselves be used as a tool for restraining/hindering the initiation or progression of fibrotic tissue.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.Y.); (L.-L.F.); (O.A.N.); (M.G.); (R.S.); (R.E.F.)
- Department of Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai 054000, China
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.Y.); (L.-L.F.); (O.A.N.); (M.G.); (R.S.); (R.E.F.)
- Department of Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai 054000, China
| | - Ola A. Nada
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.Y.); (L.-L.F.); (O.A.N.); (M.G.); (R.S.); (R.E.F.)
| | - Li-Ming Chen
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang 050017, China;
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.Y.); (L.-L.F.); (O.A.N.); (M.G.); (R.S.); (R.E.F.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.Y.); (L.-L.F.); (O.A.N.); (M.G.); (R.S.); (R.E.F.)
- Department of Oral and Maxillofacial Surgery, Division of “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang 050017, China;
- Correspondence: ; Tel.: +86-139-8403-0259
| | - Reinhard E. Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.Y.); (L.-L.F.); (O.A.N.); (M.G.); (R.S.); (R.E.F.)
| |
Collapse
|
14
|
Current and Emerging Approaches for Hepatic Fibrosis Treatment. Gastroenterol Res Pract 2021; 2021:6612892. [PMID: 34326871 PMCID: PMC8310447 DOI: 10.1155/2021/6612892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis resulting from chronic liver injury is a key factor to develop liver cirrhosis and risk of hepatocellular carcinoma (HCC) which are major health burden worldwide. Therefore, it is necessary for antifibrotic therapies to prevent chronic liver disease progression and HCC development. There has been tremendous progress in understanding the mechanisms of liver fibrosis in the last decade, which has created new opportunities for the treatment of this condition. In this review, we aim to make an overview on information of different potential therapies (drug treatment, cell therapy, and liver transplantation) for the liver fibrosis and hope to provide the therapeutic options available for the treatment of liver fibrosis and discuss novel approaches.
Collapse
|
15
|
Siregar S, Noegroho BS, Karim MI. The effect of intravenous human adipose-derived stem cells (hADSC) on transforming growth factor β1 (TGF-β1), collagen type 1, and kidney histopathological features in the unilateral ureteropelvic junction obstruction model of wistar rats. Turk J Urol 2020; 46:236-242. [PMID: 32401706 DOI: 10.5152/tud.2020.20024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The fibrotic process of kidney resulting in glomerulosclerosis was found in patients with ureteropelvic junction obstruction (UPJO) who underwent renal biopsy during pyeloplasty. Transforming growth factor β1 (TGF-β1) plays a role in collagen accumulation, resulting in fibrosis. Adipose tissue-derived stem cells (ADSCs) have an anti-apoptotic effect on target cells and enhance the kidney function recovery. We will further investigate the use of ADSC in the prevention of kidney fibrosis in the unilateral UPJO model of Wistar rats. MATERIAL AND METHODS A total of twenty-two 12-week-old Wistar rats were divided into three groups. We made the UPJO models using nylon 6-0 inside the left ureter and tied the ureter with nylon 6-0, creating partial ureteral obstruction. The treatment group was then injected with 1.0 × 106 cells of human ADSC via the tail vein of rats. All rats were euthanized after 2 and 4 weeks of treatment. The left kidney used hematoxylin-eosin for histopathological examination. Statistical analysis using one-way analysis of variance (ANOVA) was done with SPSS version 21.0. RESULTS TGF-β1 concentration in the treatment group was significantly lower in the 4th week of observation (p4=0.0001), as well as collagen type 1, which was also significantly lower in the 4th week (p4=0.0001). There was a significant difference in the glomerulus count between the control group and the human ADSC (hADSC) group therapy in week 2 and week 4 (p2=0.0001 and p4=0.026). CONCLUSION Administration of hADSC therapy reduces TGF-β1 and collagen type 1 levels and then improves the histopathological features in the process of renal fibrosis in the UPJO model.
Collapse
Affiliation(s)
- Safendra Siregar
- Department of Urology, Faculty of Medicine Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Indonesia
| | - Bambang Sasongko Noegroho
- Department of Urology, Faculty of Medicine Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Indonesia
| | - Muhammad Ilhamul Karim
- Department of Urology, Faculty of Medicine Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Indonesia
| |
Collapse
|
16
|
Siregar S, Adriansjah R, Sibarani J, Mustafa A. Effect of Intracorporeal Human Adipose-Derived Stem Cells (hADSCs) on Corpora Cavernosa Transforming Growth Factor β 1 (TGFβ 1) and Collagen Type I Concentration in Wistar Rat Priapism Model. Res Rep Urol 2020; 12:21-27. [PMID: 32104667 PMCID: PMC7008193 DOI: 10.2147/rru.s232303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/30/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction The ischemic process in priapism can lead to displacement of normal tissue with fibrotic tissue, due to collagen deposition, and eventually leads to erectile dysfunction. Many studies have identified that the supernatant of adipose tissue–derived stem cells (ADSCs) significantly ameliorates fibrosis of different tissue, but limited attention has been paid to its efficacy on fibrosis of the corpora cavernosa. Methods A total of 22 Wistar rats divided into five groups, with two groups each consisting of five male wistar rats with priapism without human ADSC (hADSC) therapy (group I) and two other groups consisting of five rats with priapism, were given 106 cells' intracorporeal hADSC injection after 12 hours of penile clamping (group II) were euthanized after 2 and 4 weeks of observation. The last group consisted of two rats without any treatment or model (group III). Following euthanasia, penises were harvested for TGFβ1 and collagen type I measurement using ELISA. Statistical analysis using independent-sample t-tests was done with SPSS 21.0. Results Penile TGFβ1 concentration in the treatment group was significantly lower in the second and fourth weeks of observation (p2=0.004, p4=0.003), and collagen type I was significantly lower in the second and fourth weeks (p2=0.003, p4=0.011). Conclusion Intracorporeal hADSC injection limited the fibrosis process in a priapism model. Although the mechanism was unclear, it may be related to the potential of hADSCs to produce various growth factors that could limit TGFβ1 and collagen production.
Collapse
Affiliation(s)
- Safendra Siregar
- Department of Urology, Faculty of Medicine, Universitas Padjadjaran, General Hospital Hasan Sadikin, Bandung, Indonesia
| | - Ricky Adriansjah
- Department of Urology, Faculty of Medicine, Universitas Padjadjaran, General Hospital Hasan Sadikin, Bandung, Indonesia
| | - Jupiter Sibarani
- Department of Urology, Faculty of Medicine, Universitas Padjadjaran, General Hospital Hasan Sadikin, Bandung, Indonesia
| | - Akhmad Mustafa
- Department of Urology, Faculty of Medicine, Universitas Padjadjaran, General Hospital Hasan Sadikin, Bandung, Indonesia
| |
Collapse
|
17
|
Huang KC, Chuang MH, Lin ZS, Lin YC, Chen CH, Chang CL, Huang PC, Syu WS, Chiou TW, Hong ZH, Tsai YC, Harn HJ, Lin PC, Lin SZ. Transplantation with GXHPC1 for Liver Cirrhosis: Phase 1 Trial. Cell Transplant 2019; 28:100S-111S. [PMID: 31722556 PMCID: PMC7016466 DOI: 10.1177/0963689719884885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Currently, the only effective therapy for cirrhosis of the liver is liver transplantation. However, finding a compatible liver is difficult due to the low supply of healthy livers and the ever-increasing demand. However, stem-cell therapy may offer a solution for liver cirrhosis; for example, GXHPC1 therapy preparation contains adipose-derived mesenchymal stem cells (AD-MSCs) and was developed for the treatment of liver cirrhosis. In our previous report, animal studies suggested that treatment of a diseased liver via GXHPC1 transplantation can abrogate liver fibrosis and facilitate recovery of liver function. In our current human trial, patients with liver cirrhosis were included. Their adipose tissue was harvested from the subcutaneous fat of the abdominal wall during surgery. AD-MSCs were cultured and suspended at a concentration of 100 million cells in 1 ml of physiological saline (i.e., GXHPC1). This human study passed the Taiwan Food and Drug Administration IND inspection and received Phase I clinical trial permission. The trial was conducted with six patients with liver cirrhosis to demonstrate the safety and efficacy of administering GXHPC1. Intrahepatic injection of GXHPC1 did not cause any safety issues in the analysis of adverse drug reactions and suspected unexpected serious adverse reactions, and showed a tendency for improvement of liver function, METAVIR score, Child–Pugh score, MELD score, and quality of life for patients with liver cirrhosis.
Collapse
Affiliation(s)
- Ko-Chang Huang
- Department of Gastroenterological, China Medical University Beigan Hospital, Yunlin
| | - Ming-Hsi Chuang
- PhD Program of Technology Management, Chung Hua University, Hsinchu.,Department of Bioinformatics, Chung Hua University, Hsinchu
| | - Zung-Sheng Lin
- Department of General Surgery, China Medical University Beigan Hospital, Yunlin
| | - Yi-Chun Lin
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu
| | | | | | - Pi-Chun Huang
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu
| | - Wan-Sin Syu
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien
| | - Zih-Han Hong
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu
| | - Yu-Chen Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi foundation; Department of Pathology, Buddhist Tzu Chi General hospital, Tzu Chi University, Hualien
| | - Po-Cheng Lin
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi foundation; Department of Neurosurgery, Buddhist Tzu Chi General hospital, Tzu Chi University, Hualien
| |
Collapse
|
18
|
Hu C, Zhao L, Li L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 2019; 10:199. [PMID: 31287024 PMCID: PMC6613269 DOI: 10.1186/s13287-019-1310-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest organ with multiple synthetic and secretory functions in mammals, consists of hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, Kupffer cells (KCs), and immune cells, among others. Various causative factors, including viral infection, toxins, autoimmune defects, and genetic disorders, can impair liver function and result in chronic liver disease or acute liver failure. Mesenchymal stem cells (MSCs) from various tissues have emerged as a potential candidate for cell transplantation to promote liver regeneration. Adipose-derived MSCs (ADMSCs) with high multi-lineage potential and self-renewal capacity have attracted great attention as a promising means of liver regeneration. The abundance source and minimally invasive procedure required to obtain ADMSCs makes them superior to bone marrow-derived MSCs (BMMSCs). In this review, we comprehensively analyze landmark studies that address the isolation, proliferation, and hepatogenic differentiation of ADMSCs and summarize the therapeutic effects of ADMSCs in animal models of liver diseases. We also discuss key points related to improving the hepatic differentiation of ADMSCs via exposure of the cells to cytokines and growth factors (GFs), extracellular matrix (ECM), and various physical parameters in in vitro culture. The optimization of culturing methods and of the transplantation route will contribute to the further application of ADMSCs in liver regeneration and help improve the survival rate of patients with liver diseases. To this end, ADMSCs provide a potential strategy in the field of liver regeneration for treating acute or chronic liver injury, thus ensuring the availability of ADMSCs for research, trial, and clinical applications in various liver diseases in the future.
Collapse
Affiliation(s)
- Chenxia Hu
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lingfei Zhao
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lanjuan Li
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
19
|
Mesenchymal Stem Cells for Liver Regeneration in Liver Failure: From Experimental Models to Clinical Trials. Stem Cells Int 2019; 2019:3945672. [PMID: 31191671 PMCID: PMC6525815 DOI: 10.1155/2019/3945672] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
The liver centralizes the systemic metabolism and thus controls and modulates the functions of the central and peripheral nervous systems, the immune system, and the endocrine system. In addition, the liver intervenes between the splanchnic and systemic venous circulation, determining an abdominal portal circulatory system. The liver displays a powerful regenerative potential that rebuilds the parenchyma after an injury. This regenerative mission is mainly carried out by resident liver cells. However, in many cases this regenerative capacity is insufficient and organ failure occurs. In normal livers, if the size of the liver is at least 30% of the original volume, hepatectomy can be performed safely. In cirrhotic livers, the threshold is 50% based on current practice and available data. Typically, portal vein embolization of the part of the liver that is going to be resected is employed to allow liver regeneration in two-stage liver resection after portal vein occlusion (PVO). However, hepatic resection often cannot be performed due to advanced disease progression or because it is not indicated in patients with cirrhosis. In such cases, liver transplantation is the only treatment possibility, and the need for transplantation is the common outcome of progressive liver disease. It is the only effective treatment and has high survival rates of 83% after the first year. However, donated organs are becoming less available, and mortality and the waiting lists have increased, leading to the initiation of living donor liver transplantations. This type of transplant has overall complications of 38%. In order to improve the treatment of hepatic injury, much research has been devoted to stem cells, in particular mesenchymal stem cells (MSCs), to promote liver regeneration. In this review, we will focus on the advances made using MSCs in animal models, human patients, ongoing clinical trials, and new strategies using 3D organoids.
Collapse
|
20
|
Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. Int J Mol Sci 2018; 19:ijms19124064. [PMID: 30558283 PMCID: PMC6321531 DOI: 10.3390/ijms19124064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Currently, the most effective therapy for liver diseases is liver transplantation, but its use is limited by organ donor shortage, economic reasons, and the requirement for lifelong immunosuppression. Mesenchymal stem cell (MSC) transplantation represents a promising alternative for treating liver pathologies in both human and veterinary medicine. Interestingly, these pathologies appear with a common clinical and pathological profile in the human and canine species; as a consequence, dogs may be a spontaneous model for clinical investigations in humans. The aim of this work was to characterize canine adipose-derived MSCs (cADSCs) and compare them to their human counterpart (hADSCs) in order to support the application of the canine model in cell-based therapy of liver diseases. Both cADSCs and hADSCs were successfully isolated from adipose tissue samples. The two cell populations shared a common fibroblast-like morphology, expression of stemness surface markers, and proliferation rate. When examining multilineage differentiation abilities, cADSCs showed lower adipogenic potential and higher osteogenic differentiation than human cells. Both cell populations retained high viability when kept in PBS at controlled temperature and up to 72 h, indicating the possibility of short-term storage and transportation. In addition, we evaluated the efficacy of autologous ADSCs transplantation in dogs with liver diseases. All animals exhibited significantly improved liver function, as evidenced by lower liver biomarkers levels measured after cells transplantation and evaluation of cytological specimens. These beneficial effects seem to be related to the immunomodulatory properties of stem cells. We therefore believe that such an approach could be a starting point for translating the results to the human clinical practice in future.
Collapse
|
21
|
Ge Y, Zhang Q, Li H, Bai G, Jiao Z, Wang H. Adipose-derived stem cells alleviate liver apoptosis induced by ischemia-reperfusion and laparoscopic hepatectomy in swine. Sci Rep 2018; 8:16878. [PMID: 30442976 PMCID: PMC6237819 DOI: 10.1038/s41598-018-34939-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Hepatic ischemia-reperfusion (I/R) injury is inevitable during hepatectomy and may cause both postoperative morbidity and mortality. Regenerative medicine suggested adipose-derived stem cells (ADSCs) as an attractive tool for the treatment of liver diseases. In this study, we investigated the effect of ADSCs in an I/R model combined with laparoscopic hepatectomy in swine. Eighteen Bama miniature pigs were randomly divided into Sham, IRI, and ADSCs groups. ADSCs (1 × 106/kg) were injected through liver parenchyma immediately after hemihepatectomy. The apoptosis-related role of ADSCs was studied. The results showed that ADSCs transplantation reduced both pathological and ultrastructural changes and decreased the number of apoptotic-positive cells. In the ADSCs group, Fas, Fas ligand (FasL) protein, and mRNA were downregulated and the enzyme activities of Caspase3, Caspase8, and Caspase9 were significantly decreased. In addition, ADSC therapy significantly increased the ratio of Bcl-2/Bax protein and mRNA compared to the IRI group. In conclusion, ADSCs attenuated both I/R and hepatectomy-induced liver apoptosis in a porcine model, and offers a potential therapeutic option for hepatic I/R and hepatectomy.
Collapse
Affiliation(s)
- Yansong Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Ge Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Zhihui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.
| |
Collapse
|
22
|
Hessin AF, Hegazy RR, Hassan AA, Yassin NZ, Kenawy SAB. Resveratrol prevents liver fibrosis via two possible pathways: Modulation of alpha fetoprotein transcriptional levels and normalization of protein kinase C responses. Indian J Pharmacol 2018; 49:282-289. [PMID: 29326488 PMCID: PMC5754935 DOI: 10.4103/ijp.ijp_299_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE: Liver fibrosis is a global health problem that causes approximately 1.4 million deaths per year. It is associated with inflammation, oxidative stress, necrosis and ends with cirrhosis, liver cancer, or liver failure. Therefore, the present study was constructed to investigate the protective effect of resveratrol (RVT) on liver fibrosis, focusing on the possible involvement of alpha 1-fetoprotein and protein kinase C signaling. MATERIALS AND METHODS: Rats received thioacetamide (TAA) (200 mg/kg, intraperitoneal) twice weekly, for 4 successive weeks to induce liver fibrosis. RVT (30 mg/kg, per os) and vehicle were administered orally for 1 month before and another month during TAA intoxication. Body weights and mortality rate were assessed during the experiment. Liver functions and protein concentration were determined in serum, while liver tissues were analyzed for oxidative and fibrotic biomarkers. Moreover, histological examinations were performed to liver biopsies. RESULTS: RVT prevented the debility of TAA; liver functions including alanine aminotransferase, aspartate aminotransferase, bilirubin, and albumin were also protected. RVT prevented TAA oxidative stress, and normal liver contents of malondialdehyde and reduced glutathione were markedly preserved. In addition, RVT abolished the stimulant effect of TAA to fibrosis markers and conserved normal liver contents of nuclear factor kappa B, hydroxyproline, and alpha fetoprotein. Histological examinations indicated normal liver architecture in RVT-administered rats as compared to their TAA-administered peers. CONCLUSION: RVT was able to enhance liver functions, prevent oxidative stress, and eliminate liver fibrosis. Hence, the present data highlight the therapeutic potential of RVT as a protective agent against liver fibrosis.
Collapse
Affiliation(s)
- Alyaa Farouk Hessin
- Department of Pharmacology, Division of Medical, National Research Center, Giza, Cairo, Egypt.,Department of Microbiology and Immunology, College of Medicine, UIC, IL, USA
| | - Rehab Rehab Hegazy
- Department of Pharmacology, Division of Medical, National Research Center, Giza, Cairo, Egypt
| | - Azza Ahmed Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt
| | - Nemat Zakaria Yassin
- Department of Pharmacology, Division of Medical, National Research Center, Giza, Cairo, Egypt
| | - Sanaa Abdel-Baky Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Cairo, Egypt
| |
Collapse
|
23
|
Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci 2018; 75:1307-1324. [PMID: 29181772 PMCID: PMC5852182 DOI: 10.1007/s00018-017-2713-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration.
Collapse
Affiliation(s)
- Salamah M Alwahsh
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| | - Hassan Rashidi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
24
|
Praveena SM, Teh SW, Rajendran RK, Kannan N, Lin CC, Abdullah R, Kumar S. Recent updates on phthalate exposure and human health: a special focus on liver toxicity and stem cell regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11333-11342. [PMID: 29546515 DOI: 10.1007/s11356-018-1652-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate's internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Seoh Wei Teh
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Darul Ehsan, 43400, Serdang, Selangor, Malaysia
| | - Ranjith Kumar Rajendran
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Narayanan Kannan
- Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Darul Ehsan, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Chi K, Fu RH, Huang YC, Chen SY, Hsu CJ, Lin SZ, Tu CT, Chang LH, Wu PA, Liu SP. Adipose-derived Stem Cells Stimulated with n-Butylidenephthalide Exhibit Therapeutic Effects in a Mouse Model of Parkinson's Disease. Cell Transplant 2018; 27:456-470. [PMID: 29756519 PMCID: PMC6038049 DOI: 10.1177/0963689718757408] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) causes motor dysfunction and dopaminergic cell death. Drug treatments can effectively reduce symptoms but often cause unwanted side effects. Stem cell therapies using cell replacement or indirect beneficial secretomes have recently emerged as potential therapeutic strategies. Although various types of stem cells have been proposed as possible candidates, adipose-derived stem cells (ADSCs) are easily obtainable, more abundant, less ethically disputed, and able to differentiate into multiple cell lineages. However, treatment of PD using adult stem cells is known to be less efficacious than neuron or embryonic stem cell transplantation. Therefore, improved therapies are urgently needed. n-Butylidenephthalide (BP), which is extracted from Angelica sinensis, has been shown to have anti-inflammatory and neuroprotective effects. Indeed, we previously demonstrated that BP treatment of ADSCs enhances the expression of neurogenesis and homing factors such as nuclear receptor related 1 protein, stromal-derived factor 1, and brain-derived neurotrophic factor. In the present study, we examined the ability of BP-pretreated ADSC transplantation to improve PD motor symptoms and protect dopamine neurons in a mouse model of PD. We evaluated the results using neuronal behavior tests such as beam walking, rotarod, and locomotor activity tests. ADSCs with or without BP pretreatment were transplanted into the striatum. Our findings demonstrated that ADSC transplantation improved motor abilities with varied efficacies and that BP stimulation improved the therapeutic effects of transplantation. Dopaminergic cell numbers returned to normal in ADSC-transplanted mice after 22 d. In summary, stimulating ADSCs with BP improved PD recovery efficiency. Thus, our results provide important new strategies to improve stem cell therapies for neurodegenerative diseases in future studies.
Collapse
Affiliation(s)
- Kang Chi
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
| | - Ru-Huei Fu
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University,
Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, Genetics Center, China Medical University
Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical
University, Taichung, Taiwan
| | - Shih-Yin Chen
- Department of Medical Research, Genetics Center, China Medical University
Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical
University, Taichung, Taiwan
| | - Ching-Ju Hsu
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation,
Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Chi-Tang Tu
- Taiwan Mitochondrion Applied Technology Co., Ltd, Hsinchu, Taiwan
| | - Li-Hsun Chang
- Taiwan Mitochondrion Applied Technology Co., Ltd, Hsinchu, Taiwan
| | - Ping-An Wu
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation,
Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Shih-Ping Liu
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University,
Taichung, Taiwan
- Department of Social Work, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Soluble factors from adipose tissue-derived mesenchymal stem cells promote canine hepatocellular carcinoma cell proliferation and invasion. PLoS One 2018; 13:e0191539. [PMID: 29346427 PMCID: PMC5773216 DOI: 10.1371/journal.pone.0191539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
The potential effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) on the growth and invasion of canine tumours including hepatocellular carcinoma (HCC) are not yet understood. Moreover in humans, the functional contribution of AT-MSCs to malignancies remains controversial. The purpose of this study was to investigate the effects of AT-MSCs on the proliferation and invasion of canine HCC cells in vitro. The effect of AT-MSCs on mRNA levels of factors related to HCC progression were also evaluated. Conditioned medium from AT-MSCs (AT-MSC-CM) significantly enhanced canine HCC cell proliferation and invasion. Moreover, mRNA expression levels of transforming growth factor-beta 1, epidermal growth factor A, hepatocyte growth factor, platelet-derived growth factor-beta, vascular endothelial growth factor, and insulin-like growth factor 2 were 2.3 ± 0.4, 2.0 ± 0.5, 5.7 ± 1.9, 1.7 ± 0.2, 2.1 ± 0.4, and 1.4 ± 0.3 times higher, respectively (P < 0.05). The mRNA expression level of MMP-2 also increased (to 4.0 ± 1.2 times control levels) in canine HCC cells co-cultured with AT-MSCs, but MMP-9 mRNA significantly decreased (to 0.5 ± 0.1 times control levels). These findings suggest that soluble factors from AT-MSCs promote the proliferation and invasion of canine HCC cells.
Collapse
|
27
|
Rivera-Valdés JJ, García-Bañuelos J, Salazar-Montes A, García-Benavides L, Rosales-Dominguez A, Armendáriz-Borunda J, Sandoval-Rodríguez A. Human adipose derived stem cells regress fibrosis in a chronic renal fibrotic model induced by adenine. PLoS One 2017; 12:e0187907. [PMID: 29281649 PMCID: PMC5744925 DOI: 10.1371/journal.pone.0187907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS ADSCs transplantation had been shown in some experimental models of kidney damage that it improves kidney function and reduces fibrosis. In this study we evaluated the effect of human adipose tissue-derived stem cell (hADSC) therapy in a chronic kidney damage experimental model. METHODS A chronic kidney injury was induced by daily orogastric administration of adenine (100mg/kg) to male Wistar rats for 28 days. hADSCs were isolated, expanded and characterized before transplantation. hADSC administration was performed in a tail vein at a dose of 2 x106 cells/animal. Animals were sacrificed at 7 days post-treatment. The percentage of fibrotic tissue, serum and urine levels of urea, creatinine, total protein and renal mRNA of COL1A1, TGFB1, CTGF, ACTA2, IL6, IL10, TNF were analyzed. RESULTS hADSCs treatment significantly reduces kidney fibrosis, improves urea and creatinine serum and urine levels, and diminishes COL1A1, TGFB1, CTGF, ACTA2 mRNA kidney levels. CONCLUSIONS These results showed that cell therapy using hADSCs improves renal function and reduces fibrosis.
Collapse
Affiliation(s)
- Juan José Rivera-Valdés
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jesus García-Bañuelos
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adriana Salazar-Montes
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Leonel García-Benavides
- Department of Biomedical Sciences, Tonala University Center, University of Guadalajara, Tonala, Jalisco, Mexico
| | - Alfredo Rosales-Dominguez
- Chronic-Degenerative Diseases Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Juan Armendáriz-Borunda
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Tecnologico de Monterrey, Guadalajara, Jalisco, Mexico
| | - Ana Sandoval-Rodríguez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
28
|
Liao N, Zheng Y, Xie H, Zhao B, Zeng Y, Liu X, Liu J. Adipose tissue-derived stem cells ameliorate hyperglycemia, insulin resistance and liver fibrosis in the type 2 diabetic rats. Stem Cell Res Ther 2017; 8:286. [PMID: 29258603 PMCID: PMC5738093 DOI: 10.1186/s13287-017-0743-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022] Open
Abstract
Background Type 2 diabetes (T2D) is closely associated with liver fibrosis, but no effective treatments are currently available. This study was designed to investigate the therapeutic effects of ADSCs on insulin resistance, hyperglycemia, and liver fibrosis on T2D rats. Methods We first established a T2D rat model with liver fibrosis by using the combination of a high-fat diet (HFD), low-dose streptozotocin (STZ), and carbon tetrachloride (CCl4). Subsequently, the model rats were administrated by tail vein injection of PBS or ADSCs, respectively. Thereafter, insulin resistance and liver function were assessed by biochemical analysis, ELISA, histopathological examination, and q-PCR assay, respectively. Moreover, the molecular mechanisms of ADSCs on the effect of the TGF-β1/SMAD3 signaling pathway were further analyzed. Results Our data showed that ADSC transplantation significantly alleviated insulin resistance and hyperglycemia in the liver-injured T2D rats. We also found that ADSC transplantation could attenuate liver injury by improving liver function and inhibiting pathological changes of liver fibrosis, as well as through downregulation of TGF-β1 and phosphorylated SMAD3 both in vitro and in vivo. Conclusions These findings suggested that ADSC transplantation can ameliorate insulin resistance, hyperglycemia, and liver fibrosis via suppressing TGF-β1/SMAD3 signaling, which may provide a potential treatment strategy for liver fibrosis of T2D. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0743-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China
| | - Haihua Xie
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China. .,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
29
|
Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat. Cytotechnology 2017; 70:55-66. [PMID: 29234944 DOI: 10.1007/s10616-017-0162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/16/2023] Open
Abstract
The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.
Collapse
|
30
|
Baig MT, Ali G, Awan SJ, Shehzad U, Mehmood A, Mohsin S, Khan SN, Riazuddin S. Serum from CCl 4-induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis. Growth Factors 2017; 35:144-160. [PMID: 29110545 DOI: 10.1080/08977194.2017.1392945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular therapies hold promise to alleviate liver diseases. This study explored the potential of allogenic serum isolated from rat with acute CCl4 injury to differentiate adipose derived stem cells (ADSCs) towards hepatic lineage. Acute liver injury was induced by CCl4 which caused significant increase in serum levels of VEGF, SDF1α and EGF. ADSCs were preconditioned with 3% serum isolated from normal and acute liver injury models. ADSCs showed enhanced expression of hepatic markers (AFP, albumin, CK8 and CK19). These differentiated ADSCs were transplanted intra-hepatically in CCl4-induced liver fibrosis model. After one month of transplantation, fibrosis and liver functions (alkaline phosphatase, ALAT and bilirubin) showed marked improvement in acute injury group. Elevated expression of hepatic (AFP, albumin, CK 18 and HNF4a) and pro survival markers (PCNA and VEGF) and improvement in liver architecture as deduced from results of alpha smooth muscle actin, Sirius red and Masson's trichome staining was observed.
Collapse
Affiliation(s)
- Maria Tayyab Baig
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Gibran Ali
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sana Javaid Awan
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Umara Shehzad
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Azra Mehmood
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sadia Mohsin
- b Cardiovascular Research Centre, Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Shaheen N Khan
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sheikh Riazuddin
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
- c Allama Iqbal Medical College , Lahore , Pakistan
- d Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU) , Islamabad , Pakistan
| |
Collapse
|
31
|
Jiang H, Gao Q, Che X, Zhu L, Zhang Z, Chen Y, Dai Y. Inhibition of penile tunica albuginea myofibroblasts activity by adipose-derived stem cells. Exp Ther Med 2017; 14:5149-5156. [PMID: 29201230 DOI: 10.3892/etm.2017.5179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The activation of tunica albuginea myofibroblasts (MFs) serves an essential role in Peyronie's disease (PD). Increasing evidence has reported that adipose tissue-derived stem cells (ADSCs) have been demonstrated to attenuate the symptoms of PD in animal models. However, the mechanisms of the antifibrotic effects of ADSCs in PD remain to be fully elucidated. In the present study, the inhibitory effects and possible mechanism of ADSCs on the activation of MFs derived from rat penile tunica albuginea were investigated. ADSCs were obtained from the paratesticular fat of Sprague Dawley rats. MFs were transformed from rat penile tunica albuginea fibroblasts through stimulation with 5 ng/ml tumor growth factor-β1. Transwell cell cultures were adopted for co-culture of ADSCs and MFs. Western blot analysis was used to assess changes in the expression levels of α smooth muscle actin (αSMA), collagen I, phosphorylated (p)-SMAD family member 2 (Smad2), Smad2, ras homolog family member A (RhoA), Rho associated coiled-coil containing protein kinase (ROCK)1 and ROCK2, caspase3, caspase9, and matrix metalloproteinases (MMPs). Collagen gel assays were used to assess cell contractility. Additionally, the concentration of hydroxyproline in the culture medium was detected using commercially available kits. It was demonstrated that ADSCs reduced the expression of αSMA and collagen I of MFs. Furthermore, p-Smad2, RhoA, ROCK1 and ROCK2 expression was significantly reduced in the MFs+ADSCs group compared with that in the MFs-only culture, while the expression of MMPs (MMP2, MMP3, MMP9 and MMP13) and caspases (caspase3 and caspase9) was upregulated. In addition, ADSCs were able to downregulate the concentration of hydroxyproline in the culture medium of MFs and reverse the contraction of MFs. Collectively, these results suggested that ADSCs inhibited the activation of MFs, decreased collagen production, and suppressed the contraction of myofibroblasts, via Smad and RhoA/ROCK signaling pathways. Furthermore, ADSCs reduced the deposition of collagen and promoted the apoptosis of MFs via MMPs, and caspases. Accordingly, the application of ADSCs may provide a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Hesong Jiang
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Qingqiang Gao
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoyan Che
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Leilei Zhu
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Chen
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yutian Dai
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
32
|
Nam A, Han SM, Go DM, Kim DY, Seo KW, Youn HY. Long-Term Management with Adipose Tissue-Derived Mesenchymal Stem Cells and Conventional Treatment in a Dog with Hepatocutaneous Syndrome. J Vet Intern Med 2017; 31:1514-1519. [PMID: 28782844 PMCID: PMC5598886 DOI: 10.1111/jvim.14798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/24/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatocutaneous syndrome (HS) is an uncommon skin disorder that occurs in conjunction with liver disease and is diagnosed based on decreased plasma concentrations of amino acids and the histopathology of skin lesions. The survival period generally is <6 months. A 10-year-old castrated male Maltese dog was presented for evaluation of lethargy, polyuria, polydipsia, and skin lesions including alopecia, erythema, and crusts. Based on increased liver enzyme activity, low plasma amino acid concentrations, and findings from liver cytology and skin biopsy, the dog was diagnosed with HS. In addition to administration of antioxidants, hepatoprotective agents, and amino acids IV, allogenic adipose tissue-derived mesenchymal stem cells were infused 46 times over a 30-month period: 8 times directly into the liver parenchyma guided by ultrasonography and the remainder of the times into peripheral veins. After commencing stem cell therapy, the dog's hair re-grew and the skin lesions disappeared or became smaller. During ongoing management, the patient suddenly presented with anorexia and uncontrolled vomiting, and severe azotemia was observed. The dog died despite intensive care. On necropsy, severe liver fibrosis and superficial necrolytic dermatitis were observed. The dog survived for 32 months after diagnosis. A combination of amino acid and stem cell therapy may be beneficial for patients with HS.
Collapse
Affiliation(s)
- A Nam
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - S-M Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - D-M Go
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - D-Y Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - K-W Seo
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - H-Y Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
33
|
Gilsanz C, Aller MA, Fuentes-Julian S, Prieto I, Blázquez-Martinez A, Argudo S, Fernández-Delgado J, Beleña J, Arias J, De Miguel MP. Adipose-derived mesenchymal stem cells slow disease progression of acute-on-chronic liver failure. Biomed Pharmacother 2017; 91:776-787. [PMID: 28501004 DOI: 10.1016/j.biopha.2017.04.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
A serious complication of chronic hepatic insufficiency is acute-on-chronic liver failure, a recognized syndrome characterized by acute decompensation of cirrhosis and organ/system failure. We investigated the use of adipose-derived mesenchymal stem cells (AD-MSCs) in an experimental model of acute-on-chronic liver failure, developed by microsurgical extrahepatic cholestasis in rats. Rats undergoing microsurgical extrahepatic cholestasis were treated by intraparenchymal liver injection of human or rat AD-MSCs, undifferentiated or previously differentiated in vitro toward the hepatocyte lineage. The groups treated with rat AD-MSCs showed less ascites, lower hepato- and splenomegaly, less testicular atrophy, and an improvement in serum biochemical hepatic parameters. There was also an improvement in histological liver changes, in which the area of fibrosis and bile duct proliferation were significantly decreased in the group treated with predifferentiated rat AD-MSCs. In conclusion, an isograft of hepatocyte-predifferentiated AD-MSCs injected intraparenchymally 2 weeks after microsurgery in extrahepatic cholestatic rats prevents secondary complications of acute-on-chronic hepatic failure. These data support the potential use of autologous AD-MSCs in the treatment of human cholestasis, and specifically of newborn biliary atresia, which could be beneficial for patients awaiting transplant.
Collapse
Affiliation(s)
- Carlos Gilsanz
- Department of General and Digestive Surgery, Sureste Hospital, Arganda del Rey, Madrid, Spain
| | - Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Sherezade Fuentes-Julian
- Cell Engineering Laboratory, La Paz University Hospital Biomedical Research Institute, IDiPAZ, Madrid, Spain
| | - Isabel Prieto
- Department of General and Digestive Surgery, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Alejandro Blázquez-Martinez
- Cell Engineering Laboratory, La Paz University Hospital Biomedical Research Institute, IDiPAZ, Madrid, Spain
| | - Salvador Argudo
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jorge Fernández-Delgado
- Department of Plastic and Reconstructive Surgery, Santa Cristina Hospital and Centrocim, Madrid, Spain
| | - Jose Beleña
- Department of Anesthesia and Resuscitation, Sureste Hospital, Arganda del Rey, Madrid, Spain
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - María P De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Biomedical Research Institute, IDiPAZ, Madrid, Spain.
| |
Collapse
|
34
|
Mesenchymal Stem Cells Transplantation following Partial Hepatectomy: A New Concept to Promote Liver Regeneration-Systematic Review of the Literature Focused on Experimental Studies in Rodent Models. Stem Cells Int 2017; 2017:7567958. [PMID: 28386285 PMCID: PMC5366767 DOI: 10.1155/2017/7567958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive source for regenerative medicine because they are easily accessible through minimally invasive methods and have the potential to enhance liver regeneration (LG) and improve liver function, following partial hepatectomy (PH) and acute or chronic liver injury. A systematic review of the literature was conducted for articles published up to September 1st, 2016, using the MEDLINE database. The keywords that were used in various combinations were as follows: “Mesenchymal stem cells”, “transplantation”, “stem cells”, “adipose tissue derived stem cells”, “bone marrow-derived stem cells”, “partial hepatectomy”, “acute liver failure”, “chronic liver failure”, “liver fibrosis”, “liver cirrhosis”, “rats”, “mice”, and “liver regeneration”. All introduced keywords were searched for separately in MeSH Database to control relevance and terminological accuracy and validity. A total of 41 articles were identified for potential inclusion and reviewed in detail. After a strict selection process, a total of 28 articles were excluded, leaving 13 articles to form the basis of this systematic review. MSCs transplantation promoted LG and improved liver function. Furthermore, MSCs had the ability to differentiate in hepatocyte-like cells, increase survival, and protect hepatocytes by paracrine mechanisms. MSCs transplantation may provide beneficial effects in the process of LG after PH and acute or chronic liver injury. They may represent a new therapeutic option to treat posthepatectomy acute liver failure.
Collapse
|
35
|
Meza-Ríos A, García-Benavides L, García-Bañuelos J, Salazar-Montes A, Armendáriz-Borunda J, Sandoval-Rodríguez A. Simultaneous Administration of ADSCs-Based Therapy and Gene Therapy Using Ad-huPA Reduces Experimental Liver Fibrosis. PLoS One 2016; 11:e0166849. [PMID: 27992438 PMCID: PMC5161330 DOI: 10.1371/journal.pone.0166849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/05/2016] [Indexed: 12/13/2022] Open
Abstract
Background and Aims hADSCs transplantation in cirrhosis models improves liver function and reduces fibrosis. In addition, Ad-huPA gene therapy diminished fibrosis and increased hepatocyte regeneration. In this study, we evaluate the combination of these therapies in an advanced liver fibrosis experimental model. Methods hADSCs were expanded and characterized before transplantation. Ad-huPA was simultaneously administrated via the ileac vein. Animals were immunosuppressed by CsA 24 h before treatment and until sacrifice at 10 days post-treatment. huPA liver expression and hADSCs biodistribution were evaluated, as well as the percentage of fibrotic tissue, hepatic mRNA levels of Col-αI, TGF-β1, CTGF, α-SMA, PAI-I, MMP2 and serum levels of ALT, AST and albumin. Results hADSCs homed mainly in liver, whereas huPA expression was similar in Ad-huPA and hADSCs/Ad-huPA groups. hADSCs, Ad-huPA and hADSCs/Ad-huPA treatment improves albumin levels, reduces liver fibrosis and diminishes Collagen α1, CTGF and α-SMA mRNA liver levels. ALT and AST serum levels showed a significant decrease exclusively in the hADSCs group. Conclusions These results showed that combinatorial effect of cell and gene-therapy does not improve the antifibrogenic effects of individual treatments, whereas hADSCs transplantation seems to reduce liver fibrosis in a greater proportion.
Collapse
Affiliation(s)
- Alejandra Meza-Ríos
- Institute for Molecular Biology in Medicine, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Leonel García-Benavides
- Unit of Cardiovascular Investigation, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jesus García-Bañuelos
- Institute for Molecular Biology in Medicine, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adriana Salazar-Montes
- Institute for Molecular Biology in Medicine, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Juan Armendáriz-Borunda
- Institute for Molecular Biology in Medicine, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- INNOVARE, Guadalajara, Jalisco, Mexico
- * E-mail: (ASR); (JAB)
| | - Ana Sandoval-Rodríguez
- Institute for Molecular Biology in Medicine, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- * E-mail: (ASR); (JAB)
| |
Collapse
|
36
|
Lin YC, Harn HJ, Lin PC, Chuang MH, Chen CH, Lin SZ, Chiou TW. Commercial Production of Autologous Stem Cells and Their Therapeutic Potential for Liver Cirrhosis. Cell Transplant 2016; 26:449-460. [PMID: 27718343 DOI: 10.3727/096368916x693310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are a promising source of autologous stem cells for personalized cell-based therapies. Culture expansion of ADSCs provides an attractive opportunity for liver cirrhosis patients. However, safety and stability issues can pose big challenges for personalized autologous stem cell products. In the present study, we addressed whether the commercial production program could provide a consistent product for liver cirrhosis therapy. We collected adipose tissue from three human donors by lipoaspirate and isolated ADSCs, which were expanded in culture to reach 1 × 108 cells (an approximately 1,000-fold expansion) within four passages. We then examined their morphology, chromosome stability, surface markers, and differentiation ability after culture. Next, we explored their therapeutic potential using a rat model of thioacetamide-induced liver cirrhosis. Culture-expanded ADSCs were injected intrahepatically, and their biodistribution was tracked by immunohistochemistry using an antibody against human mitochondria. Finally, we tested for tumor development by subcutaneously injecting a 100-fold dose range of cultured ADSCs into immunocompromised mice. Taken together, we find that culture expansion of autologous ADSCs is a potentially suitable stem cell product for personalized cell-based therapy for patients with liver cirrhosis.
Collapse
|
37
|
Lo Furno D, Mannino G, Cardile V, Parenti R, Giuffrida R. Potential Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1615-1628. [PMID: 27520311 DOI: 10.1089/scd.2016.0135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cells are subdivided into two main categories: embryonic and adult stem cells. In principle, pluripotent embryonic stem cells might differentiate in any cell types of the organism, whereas the potential of adult stem cells would be more restricted. Although adult stem cells from bone marrow have been initially the most extensively studied, those derived from human adipose tissue have been lately more widely investigated, because of several advantages. First, they can be easily obtained in large amounts from subcutaneous adipose tissue, with minimal pain and morbidity for the patients during harvesting. In addition, they feature low immunogenicity and can differentiate not only in cells of mesodermal lineage (adipocytes, osteoblasts, chondrocytes and muscle cells), but also in cells of other germ layers, such as neural or epithelial cells. As their multilineage differentiation capabilities are increasingly highlighted, their possible use in cell-based regenerative medicine is now broadly explored. In fact, starting from in vitro observations, many studies have already entered the preclinical and clinical phases. In this review, because of our main scientific interest, adipogenic, osteogenic, chondrogenic, and neurogenic differentiation abilities of adipose-derived mesenchymal stem cells, as well as their possible therapeutic applications, are chiefly focused. In addition, their ability to differentiate toward muscle, epithelial, pancreatic, and hepatic cells is briefly reported.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| |
Collapse
|
38
|
Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I. Sci Rep 2016; 6:31460. [PMID: 27510266 PMCID: PMC4980609 DOI: 10.1038/srep31460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah(-/-) rats. The Fah(-/-) rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah(-/-) rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah(-/-) rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah(-/-) livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah(-/-) rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah(-/-) rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes.
Collapse
|
39
|
Nakada A, Shigeno K, Sato T, Hatayama T, Wakatsuki M, Nakamura T. Optimal dehydrothermal processing conditions to improve biocompatibility and durability of a weakly denatured collagen scaffold. J Biomed Mater Res B Appl Biomater 2016; 105:2301-2307. [DOI: 10.1002/jbm.b.33766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/14/2016] [Accepted: 07/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Akira Nakada
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Keiji Shigeno
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Toshihiko Sato
- Department of Thoracic Surgery; Kyoto University; Kyoto Japan
| | - Takahide Hatayama
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Mariko Wakatsuki
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| |
Collapse
|
40
|
Hsin IF, Lee JY, Huo TI, Lee FY, Huang HC, Hsu SJ, Wang SS, Ho HL, Lin HC, Lee SD. 2'-Hydroxyflavanone ameliorates mesenteric angiogenesis and portal-systemic collaterals in rats with liver fibrosis. J Gastroenterol Hepatol 2016; 31:1045-51. [PMID: 26474184 DOI: 10.1111/jgh.13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Portal-systemic collaterals lead to dreadful consequences in patients with cirrhosis. Angiogenesis participates in the development of liver fibrosis, hyperdynamic circulation, and portal-systemic collaterals. 2'-Hydroxyflavanone (2'-HF), one of the citrus fruits flavonoids, is known to have antiangiogenesis effect without adverse response. However, the relevant effects in liver fibrosis have not been surveyed. METHODS Male Wistar rats received thioacetamide (TAA, 100 mg/kg tiw, i.p.) for 6 weeks to induce liver fibrosis. On the 29th to 42nd day, rats randomly received 2'-HF (100 mg/kg, qod, i.p.) or vehicle (corn oil). On the 43rd day, after hemodynamic measurements, the followings were surveyed: (i) severity of collaterals; (ii) mesenteric angiogenesis; (iii) mesenteric proangiogenic factors protein expressions; (iv) Mesenteric vascular endothelial cells apoptosis; and (v) Mesenteric expressions of proteins regulating apoptosis. RESULTS Compared with the vehicle group, 2'-HF did not significantly change body weight, mean arterial pressure, heart rate, and portal pressure in TAA rats. 2'-HF significantly alleviated the severity of collaterals, but the mesenteric phospho-ERK, ERK, phospho-Akt, Akt, COX1, COX2, VEGF, and VEGFR-2 protein expressions were not altered. The apoptotic index of 2'-HF group was significantly higher and the mesenteric protein expressions of pro-apoptotic factors, NFkB 50, NFkB 65, Bax, phospho-p53, 17 kD cleaved caspase 3, and 17 kD casepase 3 were up-regulated. CONCLUSIONS 2'-HF does not influence the hemodynamics but alleviated the severity of collaterals in rats with liver fibrosis and early portal hypertension. This is, at least partly, attributed to enhanced apoptosis of mesenteric vascular endothelial cells.
Collapse
Affiliation(s)
- I-Fang Hsin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei, Taiwan
| | - Jing-Yi Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sun-Sang Wang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Medical Affair and Planning, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ling Ho
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Chuang HM, Su HL, Li C, Lin SZ, Yen SY, Huang MH, Ho LI, Chiou TW, Harn HJ. The Role of Butylidenephthalide in Targeting the Microenvironment Which Contributes to Liver Fibrosis Amelioration. Front Pharmacol 2016; 7:112. [PMID: 27199755 PMCID: PMC4847481 DOI: 10.3389/fphar.2016.00112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/13/2016] [Indexed: 12/12/2022] Open
Abstract
The treatment of liver fibrosis has clinical limitations because of its multiple etiologies, such as epithelial–mesenchymal transition (EMT) promotion, cell regeneration and remodeling dysfunction, inflammatory cell activation, and scar tissue deposition. These factors might be considered as a new target for the fibrotic microenvironment, leading to increased fibrogenesis and liver fibrosis. Here, we investigate a small molecule named butylidenephthalide (BP) and its multiple effects on liver fibrosis treatment. Thioacetamide was used in vivo to induce chronic liver fibrosis. BP was administered orally in rats for a period of 2 and 4 weeks, which resulted in a significantly reduced fibrosis score (p < 0.05) and (p < 0.001), respectively. The inflammatory reaction of macrophage infiltration were reduced in the administration of BP, which led to the decrease in the transaminase levels. Moreover, we also found liver functions recovering (due to the increased serum albumin and reduced prothrombin time) where liver cells regenerated, which can be seen in the increase of Ki-67 on Oval cell. In addition, the fibrotic scar was also reduced, along with the expression of matrix metalloprotease by hepatic stellate cell. Furthermore, regarding the mechanism/study of EMT reduced by BP, the knockdown of BMP-7, which could reduce α-SMA expression, was mediated by the regulation of TGF-β, which implies its major role on EMT. Finally, in the in vivo study, BP treatment of liver fibrosis was reduced by Bmp7 knockdown in zebrafish, suggesting that BP leads to the reduction of liver fibrosis, which also depends on BMP-7 induction. These results suggest that BP had multiple targets for treating liver fibrosis in the following ways: reduction of EMT, decreasing inflammatory reaction, and liver cell proliferation. This multiple targets approach provided a new mechanism to treat liver injury and fibrosis.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Hong-Lin Su
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Chien Li
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University Hualien, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University HospitalTaichung, Taiwan; Graduate Institute of Immunology, China Medical UniversityTaichung, Taiwan
| | - Ssu-Yin Yen
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University Hualien, Taiwan
| | - Mao-Hsuan Huang
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Li-Ing Ho
- Division of Respiratory Therapy, Department of Chest Medicine, Taipei Veterans General Hospital Taipei, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University Hualien, Taiwan
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University HospitalTaichung, Taiwan; Department of Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
42
|
Liao N, Pan F, Wang Y, Zheng Y, Xu B, Chen W, Gao Y, Cai Z, Liu X, Liu J. Adipose tissue-derived stem cells promote the reversion of non-alcoholic fatty liver disease: An in vivo study. Int J Mol Med 2016; 37:1389-96. [PMID: 26986083 DOI: 10.3892/ijmm.2016.2528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/04/2016] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver injury and seriously affects human health. In the present study, we aimed to investigate whether adipose tissue-derived stem cell (ADSC) transplantation in combination with dietary modification was capable of reversing the progression of NAFLD. After establishing a rat model of NAFLD by feeding them a high-fat diet (HFD), ADSCs were transplanted via the portal vein into rats with HFD-induced NAFLD, and simultaneously fed a modified diet. Thereafter, gross liver morphology, the hepatosomatic (HSI) index and indicators of liver function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) were evaluated. Subsequently, the serum levels of total cholesterol (TC), triglycerides (TGs) and fatty acids (FAs) were also assayed. Furthermore, H&E and oil red O staining were used to confirm the pathological effects of NAFLD in the rat livers. Although dietary modification alone caused liver function to recover, ADSC transplantation in combination with dietary modification further decreased the HSI index, the serum levels of ALT, TBIL, TC, TGs, FAs, reduced lipid accumulation to normal levels, and reversed the hepatic pathological changes in the rat livers. Taken together, these findings suggest that ADSC transplantation assists in the reversion of NAFLD by improving liver function and promoting lipid metabolism, thereby exerting hepatoprotective effects. Thus, we suggest that ADSC transplantation is a promising, potential therapeutic strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Fan Pan
- Department of Hepatobiliary Surgery, Fuzong Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Bo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Wenwei Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Yunzhen Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
43
|
Zhang H, Siegel CT, Shuai L, Lai J, Zeng L, Zhang Y, Lai X, Bie P, Bai L. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis. Sci Rep 2016; 6:21783. [PMID: 26905303 PMCID: PMC4764864 DOI: 10.1038/srep21783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2(+) cells) that were isolated from healthy adult mouse liver by using a "Percoll-Plate-Wait" procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 10(6) cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2(+) cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2(+) cells may be novel adult liver progenitors that participate in liver regeneration.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Christopher T. Siegel
- Department of Surgery, Division of Hepatobiliary and Abdominal Organ Transplantation, Case Western Reserve University Hospital, Cleveland OH 44106, USA
| | - Ling Shuai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Linli Zeng
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Xiangdong Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| |
Collapse
|
44
|
Guo DL, Wang ZG, Xiong LK, Pan LY, Zhu Q, Yuan YF, Liu ZS. Hepatogenic differentiation from human adipose-derived stem cells and application for mouse acute liver injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:224-232. [PMID: 26838674 DOI: 10.3109/21691401.2016.1138495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- De-Liang Guo
- Department of Hepatopancreatobiliary Surgery, the First People's Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Zhi-Gang Wang
- Department of Hepatopancreatobiliary Surgery, the First People's Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Liang-Kun Xiong
- Department of Hepatopancreatobiliary, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Le-Yu Pan
- Department of Hepatopancreatobiliary Surgery, the First People's Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Qian Zhu
- Department of Hepatopancreatobiliary Surgery, the First People's Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Yu-Feng Yuan
- Department of Hepatopancreatobiliary Surgery, Zhongnan Hospital, Wuhan University, Wuhan, People’s Republic of China
| | - Zhi-Su Liu
- Department of Hepatopancreatobiliary Surgery, Zhongnan Hospital, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
45
|
Chi K, Fu RH, Huang YC, Chen SY, Lin SZ, Huang PC, Lin PC, Chang FK, Liu SP. Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model. Cell Transplant 2016; 25:899-912. [PMID: 26787228 DOI: 10.3727/096368916x690539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stroke is a result of cerebral ischemia that triggers a cascade of both physiological and biochemical events. No effective treatment is available for stroke; however, stem cells have the potential to rescue tissue from the effects of stroke. Adipose-derived stem cells (ADSCs) are an abundant source of adult stem cells; therefore, ADSC therapy can be considered as a future strategy for regenerative medicine. However, more research is required to improve the effectiveness of transplanted ADSCs as a treatment for stroke in the mouse stroke model. Ligustilide, isolated from the herb Angelica sinensis, exhibits a protective effect on neurons and inhibits inflammation. We also demonstrated that ligustilide treatment increases the expression levels of homing factors such as SDF-1 and CXCR4. In the present study, we evaluated the therapeutic effects of ADSC transplantation and ligustilide treatment in a mouse thromboembolic stroke model by behavioral tests, including beam walking, locomotor activity, and rotarod analysis. ADSCs pretreated with ligustilide were transplanted into the brains of stroke mice. The results showed that the therapeutic effect of ADSCs pretreated with ligustilide was better than that of ADSCs without ligustilide pretreatment. There was no difference between the recovery of mice treated by ADSC transplantation combined with subcutaneous ligustilide injection and that of mice treated only with ADSCs. The TUNEL assay showed fewer apoptotic cells in the brains of mice transplanted with ADSCs pretreated with ligustilide as well as in those without pretreatment. In summary, pretreatment of ADSCs with ligustilide improves the therapeutic efficacy of ADSC transplantation. The results of this study will help improve stem cell therapies being developed for future clinical applications.
Collapse
Affiliation(s)
- Kang Chi
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liao N, Wu M, Pan F, Lin J, Li Z, Zhang D, Wang Y, Zheng Y, Peng J, Liu X, Liu J. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells. Sci Rep 2016; 6:18746. [PMID: 26728448 PMCID: PMC4700528 DOI: 10.1038/srep18746] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.
Collapse
Affiliation(s)
- Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Fan Pan
- Department of Hepatobiliary Surgery, Fuzong Clinical College, Fujian Medical University, Fuzhou 350001, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P.R. China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P.R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, P.R. China
| |
Collapse
|
47
|
Katselis C, Apostolou K, Feretis T, Papanikolaou IG, Zografos GC, Toutouzas K, Papalois A. Role of Stem Cells Transplantation in Tissue Regeneration After Acute or Chronic Acetaminophen Induced Liver Injury. J INVEST SURG 2015; 29:112-20. [PMID: 26650889 DOI: 10.3109/08941939.2015.1086040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Acetaminophen-induced liver injury (APAP) is recognized as a frequent etiologic factor responsible for hepatic damage in the developed world. Management remains still elusive as treatment options are limited and their results are inconclusive. Consequently new strategies are explored at the experimental level. Mesenchymal stem cells (MSCs) present a promising modality as they can promote liver regeneration (LG) and compensate acute liver injury (ALI). MATERIALS AND METHODS Our research was focused on articles related to drug-induced liver injury, mechanisms of liver regeneration (LG) after Acute Liver Injury (ALI) and recent experimental protocols of Mesenchymal Stem Cells (MSCs) transplantation after chemical insult. All these studies are cited on Pubmed and MedLine. RESULTS This review has three distinct sections. First recent developments in ALI pathogenesis are presented. The second section covers cellular pathways and histological findings relevant to liver regeneration. The final chapter analyzes MSCs transplantation protocols after ALI and interrelation between liver regeneration and hepatic differentiation of MSCs. CONCLUSION Adipose tissue stem cells (ADSCs) and (MSCs) transplantation represents a promising modality in severe ALI management although many aspects remain to be clarified.
Collapse
Affiliation(s)
- Charalampos Katselis
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Konstantinos Apostolou
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Themistoklis Feretis
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Ioannis G Papanikolaou
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - George C Zografos
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece
| | - Konstantinos Toutouzas
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece
| | - Apostolos Papalois
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| |
Collapse
|
48
|
In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs) via Hepatic Injection in a Mouse Model. PLoS One 2015; 10:e0138184. [PMID: 26372641 PMCID: PMC4570793 DOI: 10.1371/journal.pone.0138184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Objective Adipose tissue derived stem cells (ADSCs) transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model. Methods The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT) transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one). Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two). Results Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted ADSCs underwent hepatogenic differentiation to become cells expressing albumin in the liver. These findings improve our understanding of the interplay between ADSCs (donor cells), alginate (biomaterial), and local microenvironment in a hepatectomized mouse model, and might improve the strategy of in situ transplantation of ADSCs in treating liver diseases.
Collapse
|
49
|
Yang D, Wang ZQ, Deng JQ, Liao JY, Wang X, Xie J, Deng MM, Lü MH. Adipose-derived stem cells: A candidate for liver regeneration. J Dig Dis 2015; 16:489-98. [PMID: 26121206 DOI: 10.1111/1751-2980.12268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The scarcity of donor livers and the impracticality of hepatocyte transplantation represent the biggest obstacles for the treatment of liver failure. Adipose-derived stem cells, with their ability to differentiate into the hepatic lineage, provide a reliable alternative cell source with clear ethical and practical advantages. Moreover, adipose-derived stem cells can effectively repair liver damage by the dominant indirect pattern and increase the number of hepatocytes by the secondary direct pattern. In recent years, the development of the indirect pattern, which mainly includes immunomodulatory and trophic effects, has become a hot topic in the field of cell engineering. Therefore, adipose-derived stem cells are considered to be ideal therapeutic stem cells for human liver regeneration. In this article, we reviewed the advantages of adipose-derived stem cells in liver regeneration, and explore their underlying mechanisms.
Collapse
Affiliation(s)
- Dan Yang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Zhong Qiong Wang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Jia Qi Deng
- School of Foreign Languages of Sichuan Medical University, Luzhou, Sichuan Province, China
| | - Jing Yuan Liao
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Xuan Wang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Jing Xie
- Department of Pediatric Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Ming Ming Deng
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Mu Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| |
Collapse
|
50
|
A comparison of the chemical and liver extract-induced hepatic differentiation of adipose derived stem cells. In Vitro Cell Dev Biol Anim 2015; 51:1085-92. [DOI: 10.1007/s11626-015-9939-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022]
|