1
|
Li P, Chang Y, Song J. Advances in preclinical surgical therapy of cardiovascular diseases. Int J Surg 2024; 110:4965-4975. [PMID: 38701509 PMCID: PMC11326035 DOI: 10.1097/js9.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Cardiovascular disease is the most common cause of death worldwide, resulting in millions of deaths annually. Currently, there are still some deficiencies in the treatment of cardiovascular diseases. Innovative surgical treatments are currently being developed and tested in response to this situation. Large animal models, which are similar to humans in terms of anatomy, physiology, and genetics, play a crucial role in connecting basic research and clinical applications. This article reviews recent preclinical studies and the latest clinical advancements in cardiovascular disease based on large animal models, with a focus on targeted delivery, neural regulation, cardiac remodeling, and hemodynamic regulation. It provides new perspectives and ideas for clinical translation and offers new methods for clinical treatment.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Cardiac Surgery, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | |
Collapse
|
2
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Zhang W, Wang T, Xue Y, Zhan B, Lai Z, Huang W, Peng X, Zhou Y. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases. Front Immunol 2023; 14:1238789. [PMID: 37646039 PMCID: PMC10461809 DOI: 10.3389/fimmu.2023.1238789] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
There is growing evidence that mesenchymal stem cell-derived extracellular vesicles and exosomes can significantly improve the curative effect of oxidative stress-related diseases. Mesenchymal stem cell extracellular vesicles and exosomes (MSC-EVs and MSC-Exos) are rich in bioactive molecules and have many biological regulatory functions. In this review, we describe how MSC-EVs and MSC-Exos reduce the related markers of oxidative stress and inflammation in various systemic diseases, and the molecular mechanism of MSC-EVs and MSC-Exos in treating apoptosis and vascular injury induced by oxidative stress. The results of a large number of experimental studies have shown that both local and systemic administration can effectively inhibit the oxidative stress response in diseases and promote the survival and regeneration of damaged parenchymal cells. The mRNA and miRNAs in MSC-EVs and MSC-Exos are the most important bioactive molecules in disease treatment, which can inhibit the apoptosis, necrosis and oxidative stress of lung, heart, kidney, liver, bone, skin and other cells, and promote their survive and regenerate.
Collapse
Affiliation(s)
- Wenwen Zhang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Tingyu Wang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Bingbing Zhan
- School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Zengjie Lai
- The Second Clinical Medical College of Guangdong Medical University, Dongguan, China
| | - Wenjie Huang
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Zhou
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
5
|
Hong S, Huang W, Zhu X, Tang H, Krier JD, Xing L, Lu B, Gandhi D, Jordan KL, Saadiq IM, Lerman A, Eirin A, Lerman LO. Obesity blunts amelioration of cardiac hypertrophy and fibrosis by human mesenchymal stem/stromal cell-derived extracellular vesicles. Am J Physiol Heart Circ Physiol 2023; 325:H163-H171. [PMID: 37294895 PMCID: PMC10312317 DOI: 10.1152/ajpheart.00676.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/11/2023]
Abstract
Renovascular hypertension (RVH) can induce cardiac damage that is reversible using adipose tissue-derived mesenchymal stromal/stem cells (A-MSCs). However, A-MSCs isolated from patients with obesity are less effective than lean-A-MSC in blunting hypertensive cardiomyopathy in mice with RVH. We tested the hypothesis that this impairment extends to their obese A-MSC-extracellular vesicles (EVs) progeny. MSCs were harvested from the subcutaneous fat of obese and lean human subjects, and their EVs were collected and injected into the aorta of mice 2 wk after renal artery stenosis or sham surgery. Cardiac left ventricular (LV) function was studied with MRI 2 wk later, and myocardial tissue ex vivo. Blood pressure, LV myocardial wall thickness, mass, and fibrosis that were elevated in RVH mice were suppressed only by lean EVs. Hence, human A-MSC-derived lean EVs are more effective than obese EVs in blunting hypertensive cardiac injury in RVH mice. These observations highlight impaired paracrine repair potency of endogenous MSCs in patients with obesity.NEW & NOTEWORTHY Injection of A-MSC-derived EVs harvested from patients who are lean can resolve myocardial injury in mice with experimental renovascular hypertension more effectively than A-MSC-derived EVs from patients with obesity. These observations underscore and might have important ramifications for the self-healing capacity of patients with obesity and for the use of autologous EVs as a regenerative tool.
Collapse
Affiliation(s)
- Siting Hong
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Bo Lu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Deep Gandhi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
6
|
Hong S, Zhu XY, Jiang Y, Zhang L, Tang H, Jordan KL, Saadiq IM, Huang W, Lerman A, Eirin A, Lerman LO. Autologous Extracellular Vesicles Attenuate Cardiac Injury in Experimental Atherosclerotic Renovascular Disease More Effectively Than Their Parent Mesenchymal Stem/Stromal Cells. Stem Cell Rev Rep 2023; 19:700-712. [PMID: 36344721 PMCID: PMC10073252 DOI: 10.1007/s12015-022-10473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Atherosclerotic renovascular disease (RVD) leads to hypertension, chronic kidney disease (CKD), and heart disease. Intrarenal delivery of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) attenuate renal injury and suppress release of inflammatory cytokines in porcine RVD. We hypothesized that this strategy would also be useful for cardioprotection. Pigs with renovascular hypertension and metabolic syndrome were studied 4 weeks after treatment with a single intrarenal infusion of autologous MSCs, EVs, or vehicle. Cardiac structure and function were assessed in vivo, and myocardial remodeling and expression of the pro-fibrotic factor growth factor receptor-bound protein-2 (Grb2) were measured ex-vivo. Inflammatory cytokine levels were measured in the systemic circulation and myocardial tissue. Blood pressure was elevated in all RVD groups, but serum creatinine increased in RVD and decreased in both RVD + MSCs and RVD + EVs. RVD-induced diastolic dysfunction (lower E/A ratio) was normalized in both MSCs- and EVs- treated pigs. Intrarenal delivery of MSCs and EVs also attenuated RVD-induced myocardial fibrosis, collagen deposition, and Grb2 expression, yet EVs restored capillary density and inflammation more effectively than MSCs. These observations suggest that autologous EVs attenuate cardiac injury in experimental RVD more effectively than their parent MSCs.
Collapse
Affiliation(s)
- Siting Hong
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yamei Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lei Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
8
|
Gao R, Li X. Extracellular Vesicles and Pathological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:17-31. [PMID: 37603270 DOI: 10.1007/978-981-99-1443-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Pathological cardiac hypertrophy is a well-recognized risk factor for cardiovascular diseases (CVDs). Although lots of efforts have been made to illustrate the underlying molecular mechanisms, many issues remain undiscovered. Recently, intercellular communication by delivering small molecules between different cell types in the progression of cardiac hypertrophy has been reported, including bioactive nucleic acids or proteins. These extracellular vesicles (EVs) may act in an autocrine or paracrine manner between cardiomyocytes and noncardiomyocytes to provoke or inhibit cardiac remodeling and hypertrophy. Besides, EVs can be used as novel diagnostic or prognostic biomarkers in cardiac hypertrophy and also may serve as potential therapeutic targets due to its biocompatible nature and low immunogenicity. In this chapter, we will first summarize the current knowledge about EVs from different cells in pathological cardiac hypertrophy. Then, we will focus on the value of EVs as therapeutic agents and biomarkers for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Wang HS, Yi MY, Wu X, Liu Q, Deng YH, Wu T, Wang L, Kang YX, Luo XQ, Yan P, Wang M, Duan SB. Effects of mesenchymal stem cells in renovascular disease of preclinical and clinical studies: a systematic review and meta-analysis. Sci Rep 2022; 12:18080. [PMID: 36302933 PMCID: PMC9613984 DOI: 10.1038/s41598-022-23059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023] Open
Abstract
Renal artery stenosis (RAS) causes severe renovascular hypertension, worsening kidney function, and increased cardiovascular morbidity. According to recent studies, mesenchymal stem cells (MSCs) administration is a promising therapy for the improvement of RAS outcomes. The meta-analysis aims to evaluate the therapeutic effects of MSC therapy on RAS. We performed a search in MEDLINE, Web of Science, Embase, and Cochrane Library from inception to 5, October 2022. We included 16 preclinical and 3 clinical studies in this meta-analysis. In preclinical studies, the pooled results indicated that animals treated with MSCs had lower levels of systolic blood pressure (SBP) (SMD = - 1.019, 95% CI - 1.434 to - 0.604, I2 = 37.2%, P = 0.000), serum creatinine (Scr) (SMD = - 1.112, 95% CI - 1.932 to - 0.293, I2 = 72.0%, P = 0.008), and plasma renin activity (PRA) (SMD = - 0.477, 95% CI - 0.913 to 0.042, I2 = 43.4%, P = 0.032). The studies also revealed increased levels of renal blood flow (RBF) in stenotic kidney (STK) (SMD = 0.774, 95% CI - 0.351 to 1.197, I2 = 0%, P = 0.000) and the glomerular filtration rate (GFR) of STK (SMD = 1.825, 95% CI 0.963 to 2.688, I2 = 72.6%, P = 0.000). In clinical studies, the cortical perfusion and fractional hypoxia of the contralateral kidney (CLK) were alleviated by MSC therapy. Taken together, this meta-analysis revealed that MSCs therapy might be a promising treatment for RAS. However, due to the discrepancy between preclinical studies and early clinical trials outcomes, MSC therapy couldn't be recommended in clinical care for the moment, more high-quality randomized controlled clinical trials are needed to validate our conclusions and standardize MSCs protocols.
Collapse
Affiliation(s)
- Hong-Shen Wang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ming-Yu Yi
- grid.431010.7Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan China
| | - Xi Wu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Qian Liu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ying-Hao Deng
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ting Wu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Lin Wang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Yi-Xin Kang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Xiao-Qin Luo
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ping Yan
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Mei Wang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Shao-Bin Duan
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| |
Collapse
|
10
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
11
|
Meucci MC, Reinders MEJ, Groeneweg KE, Bezstarosti S, Ajmone Marsan N, Bax JJ, De Fijter JW, Delgado V. Cardiovascular Effects of Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Therapy With Early Tacrolimus Withdrawal in Renal Transplant Recipients: An Analysis of the Randomized TRITON Study. J Am Heart Assoc 2021; 10:e023300. [PMID: 34913362 PMCID: PMC9075245 DOI: 10.1161/jaha.121.023300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background After renal transplantation, there is a need of immunosuppressive regimens that effectively prevent allograft rejection while minimizing cardiovascular complications. This substudy of the TRITON trial evaluated the cardiovascular effects of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in renal transplant recipients. Methods and Results Renal transplant recipients were randomized to MSC therapy, infused at weeks 6 and 7 after transplantation, with withdrawal at week 8 of tacrolimus or standard tacrolimus dose. Fifty-four patients (MSC group=27; control group=27) underwent transthoracic echocardiography at weeks 4 and 24 after transplantation and were included in this substudy. Changes in clinical and echocardiographic variables were compared. The MSC group showed a benefit in blood pressure control, assessed by a significant interaction between changes in diastolic blood pressure and the treatment group (P=0.005), and a higher proportion of patients achieving the predefined blood pressure target of <140/90 mm Hg compared with the control group (59.3% versus 29.6%, P=0.03). A significant reduction in left ventricular mass index was observed in the MSC group, whereas there were no changes in the control group (P=0.002). The proportion of patients with left ventricular hypertrophy decreased at 24 weeks in the MSC group (33.3% versus 70.4%, P=0.006), whereas no changes were noted in the control group (63.0% versus 48.1%, P=0.29). Additionally, MSC therapy prevented progressive left ventricular diastolic dysfunction, as demonstrated by changes in mitral deceleration time and tricuspid regurgitant jet velocity. Conclusions MSC strategy is associated with improved blood pressure control, regression of left ventricular hypertrophy, and prevention of progressive diastolic dysfunction at 24 weeks after transplantation. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03398681.
Collapse
Affiliation(s)
- Maria Chiara Meucci
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands.,Department of Cardiovascular and Thoracic Sciences Fondazione Policlinico Universitario A. Gemelli IRCCSCatholic University of the Sacred Heart Rome Italy
| | - Marlies E J Reinders
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands
| | - Koen E Groeneweg
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands
| | - Suzanne Bezstarosti
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands.,Department of Immunology Leiden University Medical Center Leiden the Netherlands
| | - Nina Ajmone Marsan
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands
| | - Jeroen J Bax
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands.,Heart Center University of Turku and Turku University Hospital Turku Finland
| | - Johan W De Fijter
- Department of Internal Medicine (Nephrology) Leiden University Medical Center Leiden the Netherlands
| | - Victoria Delgado
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands
| |
Collapse
|
12
|
Eirin A, Lerman LO. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Chronic Kidney Disease: Are We There Yet? Hypertension 2021; 78:261-269. [PMID: 34176287 DOI: 10.1161/hypertensionaha.121.14596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are the most utilized cell type for cellular therapy, partly due to their important proliferative potential and ability to differentiate into various cell types. MSCs produce large amounts of extracellular vesicles (EVs), which carry genetic and protein cargo to mediate MSC paracrine function. Recently, MSC-derived EVs have been successfully used in several preclinical models of chronic kidney disease. However, uncertainty remains regarding EV fate, safety, and long-term effects, which might impose important limitations on their path to clinical translation. This review discusses the therapeutic application of MSC-derived EV therapy for renal disease, with particular emphasis on potential mechanisms of kidney repair and major translational barriers. Emerging evidence indicates that the cargo of MSC-derived EVs is capable of modulating several pathways responsible for renal injury, including inflammation, oxidative stress, apoptosis, fibrosis, and microvascular remodeling. EV-induced modulation of these pathways has been associated with important renoprotective effects in experimental studies. However, scarce clinical data are available, and several challenges need to be addressed as we move toward clinical translation, including standardization of methods for EV isolation and characterization, EV fate, duration of EV effects, and effects of cardiovascular risk factors. MSC-derived EVs have the potential to preserve renal structure and function, but further experimental and clinical evidence is needed to confirm their protective effects in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Farahani RA, Afarideh M, Zhu XY, Tang H, Jordan KL, Saadiq IM, Ferguson CM, Lerman A, Textor SC, Lerman LO, Eirin A. Percutaneous transluminal renal angioplasty attenuates poststenotic kidney mitochondrial damage in pigs with renal artery stenosis and metabolic syndrome. J Cell Physiol 2021; 236:4036-4049. [PMID: 33151557 PMCID: PMC7920930 DOI: 10.1002/jcp.30146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Percutaneous transluminal renal angioplasty (PTRA) has been used to treat renovascular disease (RVD), a chronic condition characterized by renal ischemia and metabolic abnormalities. Mitochondrial injury has been implicated as a central pathogenic mechanism in RVD, but whether it can be reversed by PTRA remains uncertain. We hypothesized that PTRA attenuates mitochondrial damage, renal injury, and dysfunction in pigs with coexisting renal artery stenosis (RAS) and metabolic syndrome (MetS). Four groups of pigs (n = 6 each) were studied after 16 weeks of diet-induced MetS and RAS (MetS + RAS), MetS + RAS treated 4 weeks earlier with PTRA, and Lean and MetS Sham controls. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multidetector computed tomography, and renal tubular mitochondrial structure and function and renal injury ex vivo. PTRA successfully restored renal artery patency, but mean arterial pressure remained unchanged. Stenotic kidney RBF and GFR, which fell in MetS + RAS compared to MetS, rose after PTRA. PTRA attenuated MetS + RAS-induced mitochondrial structural abnormalities in tubular cells and peritubular capillary endothelial cells, decreased mitochondrial H2 02 production, and increased renal cytochrome-c oxidase-IV activity and ATP production. PTRA also improved cortical microvascular and peritubular capillary density and ameliorated tubular injury and tubulointerstitial fibrosis in the poststenotic kidney. Importantly, renal mitochondrial damage correlated with poststenotic injury and dysfunction. Renal revascularization attenuated mitochondrial injury and improved renal hemodynamics and function in swine poststenotic kidneys. This study suggests a novel mechanism by which PTRA might be relatively effective in ameliorating mitochondrial damage and improving renal function in coexisting MetS and RAS.
Collapse
Affiliation(s)
- Rahele A. Farahani
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Mohsen Afarideh
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Xiang-Yang Zhu
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Hui Tang
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Kyra L. Jordan
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Ishran M. Saadiq
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Christopher M. Ferguson
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Stephen C. Textor
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Lilach O. Lerman
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Hickson LJ, Herrmann SM, McNicholas BA, Griffin MD. Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. KIDNEY360 2021; 2:542-557. [PMID: 34316720 PMCID: PMC8312727 DOI: 10.34067/kid.0005692020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Drawing from basic knowledge of stem-cell biology, embryonic development, wound healing, and aging, regenerative medicine seeks to develop therapeutic strategies that complement or replace conventional treatments by actively repairing diseased tissue or generating new organs and tissues. Among the various clinical-translational strategies within the field of regenerative medicine, several can be broadly described as promoting disease resolution indirectly through local or systemic interactions with a patient's cells, without permanently integrating or directly forming new primary tissue. In this review, we focus on such therapies, which we term disease-modulating regenerative therapies (DMRT), and on the extent to which they have been translated into the clinical arena in four distinct areas of nephrology: renovascular disease (RVD), sepsis-associated AKI (SA-AKI), diabetic kidney disease (DKD), and kidney transplantation (KTx). As we describe, the DMRT that has most consistently progressed to human clinical trials for these indications is mesenchymal stem/stromal cells (MSCs), which potently modulate ischemic, inflammatory, profibrotic, and immune-mediated tissue injury through diverse paracrine mechanisms. In KTx, several early-phase clinical trials have also tested the potential for ex vivo-expanded regulatory immune cell therapies to promote donor-specific tolerance and prevent or resolve allograft injury. Other promising DMRT, including adult stem/progenitor cells, stem cell-derived extracellular vesicles, and implantable hydrogels/biomaterials remain at varying preclinical stages of translation for these renal conditions. To date (2021), no DMRT has gained market approval for use in patients with RVD, SA-AKI, DKD, or KTx, and clinical trials demonstrating definitive, cost-effective patient benefits are needed. Nonetheless, exciting progress in understanding the disease-specific mechanisms of action of MSCs and other DMRT, coupled with increasing knowledge of the pathophysiologic basis for renal-tissue injury and the experience gained from pioneering early-phase clinical trials provide optimism that influential, regenerative treatments for diverse kidney diseases will emerge in the years ahead.
Collapse
Affiliation(s)
- LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
- Critical Care Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| |
Collapse
|
15
|
Yu S, Jiang K, Zhu XY, Ferguson CM, Krier JD, Lerman A, Lerman LO. Endovascular reversal of renovascular hypertension blunts cardiac dysfunction and deformation in swine. J Hypertens 2021; 39:556-562. [PMID: 33399301 PMCID: PMC8400925 DOI: 10.1097/hjh.0000000000002654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Renovascular hypertension (RVH) induces hemodynamic and humoral aberrations that may impair cardiac function, structure and mechanics, including cardiac twist and deformation. Revascularization of a stenotic renal artery can decrease blood pressure (BP), but its ability to restore cardiac mechanics in RVH remains unclear. We hypothesized that percutaneous transluminal renal angioplasty (PTRA) would improve cardiac function and left ventricular (LV) deformation in swine RVH. METHODS Seventeen domestic pigs were studied for 16 weeks: RVH, RVH + PTRA and normal controls (n = 5-6 each). Global LV function was estimated by multidetector computed-tomography, and LV deformation by electrocardiographically triggered MRI tagging at the apical, mid, and basal LV levels. Cardiomyocyte hypertrophy, myocardial capillary density, and fibrosis were evaluated ex vivo. RESULTS BP and wall thickness were elevated in RVH and decreased by PTRA, yet remained higher than in controls. LV myocardial muscle mass increased in RVH pigs, which also developed diastolic dysfunction, whereas cardiac output increased. Furthermore, both apical rotation and peak torsion angle increased in RVH compared with controls. Ex vivo, RVH induced myocardial fibrosis and vascular rarefaction. PTRA restored cardiac function and alleviated hypertrophy, vascular rarefaction, and fibrosis. PTRA also normalized apical rotation and peak torsion angle, and elevated basal peak radial strain and apical peak radial strain compared with RVH. CONCLUSION In addition to cardiac LV adaptive hypertrophy and diastolic dysfunction, short-term RVH causes cardiac deformation. Despite only partial improvement in BP, PTRA effectively restored cardiac function and reversed abnormal mechanics. Hence, renal revascularization may be a useful strategy to preserve cardiac function in RVH.
Collapse
Affiliation(s)
- Shasha Yu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiang Y. Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Jain CC, Pedrotty D, Araoz PA, Sugrue A, Vaidya VR, Padmanabhan D, Arunachalam SP, Lerman LO, Asirvatham SJ, Borlaug BA. Sustained Improvement in Diastolic Reserve Following Percutaneous Pericardiotomy in a Porcine Model of Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2021; 14:e007530. [PMID: 33478242 DOI: 10.1161/circheartfailure.120.007530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is increasing in prevalence, but few effective treatments are available. Elevated left ventricular (LV) diastolic filling pressures represent a key therapeutic target. Pericardial restraint contributes to elevated LV end-diastolic pressure, and acute studies have shown that pericardiotomy attenuates the rise in LV end-diastolic pressure with volume loading. However, whether these acute effects are sustained chronically remains unknown. METHODS Minimally invasive pericardiotomy was performed percutaneously using a novel device in a porcine model of heart failure with preserved ejection fraction. Hemodynamics were assessed at baseline and following volume loading with pericardium intact, acutely following pericardiotomy, and then again chronically after 4 weeks. Cardiac structure was assessed by magnetic resonance imaging. RESULTS The increase in LV end-diastolic pressure with volume loading was mitigated by 41% (95% CI, 27%-45%, P<0.0001; ΔLV end-diastolic pressure reduced from +9±3 mm Hg to +5±3 mm Hg, P=0.0003, 95% CI, -2.2 to -5.5). The effect was sustained at 4 weeks (+5±2 mm Hg, P=0.28 versus acute). There was no statistically significant effect of pericardiotomy on ventricular remodeling compared with age-matched controls. None of the animals developed hemodynamic or pathological indicators of pericardial constriction or frank systolic dysfunction. CONCLUSIONS The acute hemodynamic benefits of pericardiotomy are sustained for at least 4 weeks in a swine model of heart failure with preserved ejection fraction, without excessive chamber remodeling, pericarditis, or clinically significant systolic dysfunction. These data support trials evaluating minimally invasive pericardiotomy as a novel treatment for heart failure with preserved ejection fraction in humans.
Collapse
Affiliation(s)
- C Charles Jain
- Department of Cardiovascular Medicine (C.C.J., A.S., V.R.V., D. Padmanabhan, S.J.A., B.A.B.), Mayo Clinic Rochester, MN
| | - Dawn Pedrotty
- Division of Cardiovascular Disease, Mayo Clinic Arizona (D. Pedrotty)
| | - Philip A Araoz
- Department of Radiology (P.A.A., S.P.A.), Mayo Clinic Rochester, MN
| | - Alan Sugrue
- Department of Cardiovascular Medicine (C.C.J., A.S., V.R.V., D. Padmanabhan, S.J.A., B.A.B.), Mayo Clinic Rochester, MN
| | - Vaibhav R Vaidya
- Department of Cardiovascular Medicine (C.C.J., A.S., V.R.V., D. Padmanabhan, S.J.A., B.A.B.), Mayo Clinic Rochester, MN
| | - Deepak Padmanabhan
- Department of Cardiovascular Medicine (C.C.J., A.S., V.R.V., D. Padmanabhan, S.J.A., B.A.B.), Mayo Clinic Rochester, MN
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension (L.O.L.), Mayo Clinic Rochester, MN
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine (C.C.J., A.S., V.R.V., D. Padmanabhan, S.J.A., B.A.B.), Mayo Clinic Rochester, MN
| | - Barry A Borlaug
- Department of Cardiovascular Medicine (C.C.J., A.S., V.R.V., D. Padmanabhan, S.J.A., B.A.B.), Mayo Clinic Rochester, MN
| |
Collapse
|
17
|
Metabolic Syndrome Alters the Cargo of Mitochondria-Related microRNAs in Swine Mesenchymal Stem Cell-Derived Extracellular Vesicles, Impairing Their Capacity to Repair the Stenotic Kidney. Stem Cells Int 2020; 2020:8845635. [PMID: 33281903 PMCID: PMC7685840 DOI: 10.1155/2020/8845635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Coexisting metabolic syndrome (MetS) and renal artery stenosis (RAS) are linked to poor renal outcomes. Mesenchymal stem/stromal cell- (MSC-) derived extracellular vesicles (EVs) from lean animals show superior ability to repair the experimental MetS+RAS kidney compared to EVs from MetS pig MSCs. We hypothesized that MetS leads to selective packaging in porcine EVs of microRNAs capable of targeting mitochondrial genes, interfering with their capacity to repair the MetS+RAS kidney. Methods Five groups of pigs (n = 7 each) were studied after 16 weeks of diet-induced MetS and RAS (MetS+RAS) and MetS+RAS 4 weeks after a single intrarenal delivery of EVs harvested from allogeneic adipose tissue-derived MSCs isolated from Lean or MetS pigs, and Lean or MetS sham controls. Single-kidney blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multidetector CT, whereas EV microRNA cargo, renal tubular mitochondrial structure and bioenergetics, and renal injury pathways were assessed ex vivo. Results microRNA sequencing revealed 19 dysregulated microRNAs capable of targeting several mitochondrial genes in MetS-EVs versus Lean-EVs. Lean- and MetS-EVs were detected in the stenotic kidney 4 weeks after administration. However, only MetS-EVs failed to improve renal mitochondrial density, structure, and function or attenuate oxidative stress, tubular injury, and fibrosis. Furthermore, Lean-EVs but not MetS-EVs restored RBF and GFR in MetS+RAS. Conclusion MetS alters the cargo of mitochondria-related microRNAs in swine MSC-derived EVs, which might impair their capacity to repair the poststenotic kidney in MetS+RAS. These observations may contribute to develop approaches to improve the efficacy of MSC-EVs for patients with MetS.
Collapse
|
18
|
Zhao Y, Zhu X, Zhang L, Ferguson CM, Song T, Jiang K, Conley SM, Krier JD, Tang H, Saadiq I, Jordan KL, Lerman A, Lerman LO. Mesenchymal Stem/Stromal Cells and their Extracellular Vesicle Progeny Decrease Injury in Poststenotic Swine Kidney Through Different Mechanisms. Stem Cells Dev 2020; 29:1190-1200. [PMID: 32657229 DOI: 10.1089/scd.2020.0030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Novel therapies are needed to address the increasing prevalence of chronic kidney disease. Mesenchymal stem/stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) augment tissue repair. We tested the hypothesis that EVs are as effective as MSCs in protecting the stenotic kidney, but target different injury pathways. Pigs were studied after 16 weeks of renal injury achieved by diet-induced metabolic syndrome (MetS) and renal artery stenosis (RAS). Pigs were untreated or treated 4 weeks earlier with intrarenal delivery of autologous adipose tissue-derived MSCs (107) or their EVs (1011). Lean pigs and sham RAS served as controls (n = 6 each). Stenotic-kidney function was studied in vivo using computed tomography and magnetic resonance imaging. Histopathology and expression of necroptosis markers [receptor-interacting protein kinase (RIPK)-1 and RIPK-3], inflammatory, and growth factors (angiopoietin-1 and vascular endothelial growth factor) were studied ex vivo. Stenotic-kidney glomerular filtration rate and blood flow in MetS + RAS were both lower than Lean and increased in both MetS + RAS + MSC and MetS + RAS + EV. Both MSCs and EV improved renal function and decreased renal hypoxia, fibrosis, and apoptosis. MSCs were slightly more effective in preserving microvascular (0.02-0.2 mm diameters) density and prominently attenuated renal inflammation. However, EV more significantly upregulated growth factor expression and decreased necroptosis. In conclusion, adipose tissue-derived MSCs and their EV both improve stenotic kidney function and decrease tissue injury in MetS + RAS by slightly different mechanisms. MSCs more effectively preserved the microcirculation, while EV bestowed better preservation of renal cellular integrity. These findings encourage further exploration of this novel approach to attenuate renal injury.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, China.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Lei Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Institute of Urology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, China
| | | | - Turun Song
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ishran Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Ahmadi A, Rad NK, Ezzatizadeh V, Moghadasali R. Kidney Regeneration: Stem Cells as a New Trend. Curr Stem Cell Res Ther 2020; 15:263-283. [DOI: 10.2174/1574888x15666191218094513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Renal disease is a major worldwide public health problem that affects one in ten people.
Renal failure is caused by the irreversible loss of the structural and functional units of kidney (nephrons)
due to acute and chronic injuries. In humans, new nephrons (nephrogenesis) are generated until
the 36th week of gestation and no new nephron develops after birth. However, in rodents, nephrogenesis
persists until the immediate postnatal period. The postnatal mammalian kidney can partly repair
their nephrons. The kidney uses intrarenal and extra-renal cell sources for maintenance and repair.
Currently, it is believed that dedifferentiation of surviving tubular epithelial cells and presence of resident
stem cells have important roles in kidney repair. Many studies have shown that stem cells obtained
from extra-renal sites such as the bone marrow, adipose and skeletal muscle tissues, in addition
to umbilical cord and amniotic fluid, have potential therapeutic benefits. This review discusses the
main mechanisms of renal regeneration by stem cells after a kidney injury.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar K. Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Renovascular disease (RVD) remains an important cause of hypertension and renal dysfunction. Given the failure of renal revascularization to provide consistent clinical benefit in the Cardiovascular Outcomes for Renal Artery Lesions trial among others, further research has underscored the need for mechanistically targeted interventions to improve renal outcomes in patients in RVD. This review discusses novel therapeutic approaches for RVD in the post-Cardiovascular Outcomes for Renal Artery Lesions era. RECENT FINDINGS Emerging evidence indicates that renal inflammation, microvascular remodeling, and mitochondrial damage accelerate progression of renal injury and are important determinants of the response to revascularization. Experimental studies have identified interventions capable of ameliorating renal inflammation (e.g., cytokine inhibitors, mesenchymal stem cells), microvascular remodeling (proangiogenic interventions), and mitochondrial injury (mito-protective drugs), alone or combined with renal revascularization, to preserve the structure and function of the poststenotic kidney. Recent prospective pilot studies in patients with atherosclerotic RVD demonstrate the safety and feasibility of some of such interventions to protect the kidney. SUMMARY Experimental studies and pilot clinical trials suggest that therapies targeting renal inflammation, microvascular remodeling, and mitochondrial damage have the potential to preserve the structure and function of the stenotic kidney. Further studies in larger cohorts are needed to confirm their renoprotective effects and clinical role in human RVD.
Collapse
|
21
|
Kim SR, Jiang K, Ferguson CM, Tang H, Chen X, Zhu X, Hickson LJ, Tchkonia T, Kirkland JL, Lerman LO. Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. Am J Physiol Renal Physiol 2020; 318:F1167-F1176. [PMID: 32223312 DOI: 10.1152/ajprenal.00535.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence, a permanent arrest of cell proliferation, is characterized by a senescence-associated secretory phenotype (SASP), which reinforces senescence and exerts noxious effects on adjacent cells. Recent studies have suggested that transplanting small numbers of senescent cells suffices to provoke tissue inflammation. We hypothesized that senescent cells can directly augment renal injury. Primary scattered tubular-like cells (STCs) acquired from pig kidneys were irradiated by 10 Gy of cesium radiation, and 3 wk later cells were characterized for levels of senescence and SASP markers. Control or senescent STCs were then prelabeled and injected (5 × 105 cells) into the aorta of C57BL/6J mice. Four weeks later, renal oxygenation was studied in vivo using 16.4-T magnetic resonance imaging and function by plasma creatinine level. Renal markers of SASP, fibrosis, and microvascular density were evaluated ex vivo. Per flow cytometry, irradiation induced senescence in 80-99% of STCs, which showed increased gene expression of senescence and SASP markers, senescence-associated β-galactosidase staining, and cytokine levels (especially IL-6) secreted in conditioned medium. Four weeks after injection, cells were detected engrafted in the mouse kidneys with no evidence for rejection. Plasma creatinine and renal tissue hypoxia increased in senescent compared with control cells. Senescent kidneys were more fibrotic, with fewer CD31+ endothelial cells, and showed upregulation of IL-6 gene expression. Therefore, exogenously delivered senescent renal STCs directly injure healthy mouse kidneys. Additional studies are needed to determine the role of endogenous cellular senescence in the pathogenesis of kidney injury and evaluate the utility of senolytic therapy.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Department of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaojun Chen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - XiangYang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Pawar AS, Eirin A, Tang H, Zhu XY, Lerman A, Lerman LO. Upregulated tumor necrosis factor-α transcriptome and proteome in adipose tissue-derived mesenchymal stem cells from pigs with metabolic syndrome. Cytokine 2020; 130:155080. [PMID: 32240922 PMCID: PMC7529712 DOI: 10.1016/j.cyto.2020.155080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have endogenous reparative properties, and may constitute an exogenous therapeutic intervention in patients with chronic kidney disease. The microenvironment of metabolic syndrome (MetS) induces fat inflammation, with abundant expression of tumor necrosis factor (TNF)-α. MetS may also alter the content of adipose tissue-derived MSCs, and we hypothesized that the inflammatory profile of MetS manifests via upregulating MSC mRNAs and proteins of the TNF-α pathway. METHODS Domestic pigs were fed a 16-week Lean or MetS diet (n = 4 each). MSCs were harvested from abdominal subcutaneous fat, and their extracellular vesicles (EVs) isolated. Expression profiles of mRNAs and proteins in MSCs and EVs were obtained by high-throughput sequencing and proteomics. Nuclear translocation of the pro-inflammatory transcription factor (NF)-kB was evaluated in MSC and in pig renal tubular cells (TEC) co-incubated with EVs. RESULTS We found 13 mRNAs and 4 proteins in the TNF-α pathway upregulated in MetS- vs. Lean-MSCs (fold-change > 1.4, p < 0.05), mostly via TNF-α receptor-1 (TNF-R1) signaling. Three mRNAs were upregulated in MetS-EVs. MetS-MSCs, as well as TECs co-incubated with MetS-EVs, showed increased nuclear translocation of NF-kB. Using qPCR, JUNB, MAP2K7 and TRAF2 genes followed the same direction of RNA-sequencing findings. CONCLUSIONS MetS upregulates the TNF-α transcriptome and proteome in swine adipose tissue-derived MSCs, which are partly transmitted to their EV progeny, and are associated with activation of NF-kB in target cells. Hence, the MetS milieu may affect the profile of endogenous MSCs and their paracrine vectors and limit their use as an exogenous regenerative therapy. Anti-inflammatory strategies targeting the TNF-α pathway might be a novel strategy to restore MSC phenotype, and in turn function.
Collapse
Affiliation(s)
- Aditya S Pawar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States; Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
23
|
Conley SM, Hickson LJ, Kellogg TA, McKenzie T, Heimbach JK, Taner T, Tang H, Jordan KL, Saadiq IM, Woollard JR, Isik B, Afarideh M, Tchkonia T, Kirkland JL, Lerman LO. Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Front Cell Dev Biol 2020; 8:197. [PMID: 32274385 PMCID: PMC7113401 DOI: 10.3389/fcell.2020.00197] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic inflammatory conditions like obesity may adversely impact the biological functions underlying the regenerative potential of mesenchymal stromal/stem cells (MSC). Obesity can impair MSC function by inducing cellular senescence, a growth-arrest program that transitions cells to a pro-inflammatory state. However, the effect of obesity on adipose tissue-derived MSC in human subjects remains unclear. We tested the hypothesis that obesity induces senescence and dysfunction in human MSC. METHODS MSC were harvested from abdominal subcutaneous fat collected from obese and age-matched non-obese subjects (n = 40) during bariatric or kidney donation surgeries, respectively. MSC were characterized, their migration and proliferation assessed, and cellular senescence evaluated by gene expression of cell-cycle arrest and senescence-associated secretory phenotype markers. In vitro studies tested MSC effect on injured human umbilical vein endothelial cells (HUVEC) function. RESULTS Mean age was 59 ± 8 years, 66% were females. Obese subjects had higher body-mass index (BMI) than non-obese. MSC from obese subjects exhibited lower proliferative capacities than non-obese-MSC, suggesting decreased function, whereas their migration remained unchanged. Senescent cell burden and phenotype, manifested as p16, p53, IL-6, and MCP-1 gene expression, were significantly upregulated in obese subjects' MSC. BMI correlated directly with expression of p16, p21, and IL-6. Furthermore, co-incubation with non-obese, but not with obese-MSC, restored VEGF expression and tube formation that were blunted in injured HUVEC. CONCLUSION Human obesity triggers an early senescence program in adipose tissue-derived MSC. Thus, obesity-induced cellular injury may alter efficacy of this endogenous repair system and hamper the feasibility of autologous transplantation in obese individuals.
Collapse
Affiliation(s)
- Sabena M. Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Todd A. Kellogg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Travis McKenzie
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Timucin Taner
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ishran M. Saadiq
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - John R. Woollard
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Busra Isik
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mohsen Afarideh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
24
|
Gong P, Zhang Z, Zhang D, Zou Z, Zhang Q, Ma H, Li J, Liao L, Dong J. Effects of endothelial progenitor cells transplantation on hyperlipidemia associated kidney damage in ApoE knockout mouse model. Lipids Health Dis 2020; 19:53. [PMID: 32209093 PMCID: PMC7093994 DOI: 10.1186/s12944-020-01239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/13/2020] [Indexed: 11/15/2022] Open
Abstract
Background Hyperlipidaemia causes kidney damage over the long term. We investigated the effect of the administration of endothelial progenitor cells (EPCs) on the progression of kidney damage in a mouse model of hyperlipidaemia. Methods Apolipoprotein E-knockout (ApoE−/−) mice were treated with a high-cholesterol diet after spleen resection. Twenty-four weeks later, the mice were divided into two groups and intravenously injected with PBS or EPCs. Six weeks later, the recruitment of EPCs to the kidney was monitored by immunofluorescence. The lipid, endothelial cell, and collagen contents in the kidney were evaluated by specific immunostaining. The protein expression levels of transforming growth factor-β (TGF-β), Smad2/3, and phospho-Smad3 (p-smad3) were detected by western blot analysis. Results ApoE−/− mice treated with a high-fat diet demonstrated glomerular lipid deposition, enlargement of the glomerular mesangial matrix, endothelial cell enlargement accompanied by vacuolar degeneration and an area of interstitial collagen in the kidney. Six weeks after EPC treatment, only a few EPCs were detected in the kidney tissues of ApoE−/− mice, mainly in the kidney interstitial area. No significant differences in TGF-β, p-smad3 or smad2/3 expression were found between the PBS group and the EPC treatment group (TGF-β expression, PBS group: 1.06 ± 0.09, EPC treatment group: 1.09 ± 0.17, P = 0.787; p-smad3/smad2/3 expression: PBS group: 1.11 ± 0.41, EPC treatment group: 1.05 ± 0.33, P = 0.861). Conclusions Our findings demonstrate that hyperlipidaemia causes basement membrane thickening, glomerulosclerosis and the vascular degeneration of endothelial cells. The long-term administration of EPCs substantially has limited effect in the progression of kidney damage in a mouse model of hyperlipidaemia.
Collapse
Affiliation(s)
- Piyun Gong
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.,Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dongmei Zhang
- Department of Cardiovascular Medicine, Ninth Hospital of Xi'an, Xi'an, 710054, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Huimei Ma
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Jingxiu Li
- Quality control office, People's Hospital of Gaoqing, Zibo, 256300, China
| | - Lin Liao
- Department of Endocrinology and Metabology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China. .,Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
25
|
Selective intrarenal delivery of mesenchymal stem cell-derived extracellular vesicles attenuates myocardial injury in experimental metabolic renovascular disease. Basic Res Cardiol 2020; 115:16. [PMID: 31938859 DOI: 10.1007/s00395-019-0772-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) deliver genes and proteins to recipient cells, and mediate paracrine actions of their parent cells. Intrarenal delivery of mesenchymal stem cell (MSC)-derived EVs preserves stenotic-kidney function and reduces release of pro-inflammatory cytokines in a swine model of coexisting metabolic syndrome (MetS) and renal artery stenosis (RAS). We hypothesized that this approach is also capable of blunting cardiac injury and dysfunction. Five groups of pigs were studied after 16 weeks of diet-induced MetS and RAS (MetS + RAS), MetS and MetS + RAS treated 4 weeks earlier with a single intrarenal delivery of EVs-rich fraction harvested from autologous adipose tissue-derived MSCs, and lean and MetS Shams. Cardiac structure, function, and myocardial oxygenation were assessed in vivo using imaging, and cardiac inflammation, senescence, and fibrosis ex vivo. Inflammatory cytokine levels were measured in circulating and renal vein blood. Intrarenal EV delivery improved stenotic-kidney glomerular filtration rate and renal blood flow, and decreased renal release of monocyte-chemoattractant protein-1 and interleukin-6. Furthermore, despite unchanged systemic hemodynamics, intrarenal EV delivery in MetS + RAS normalized cardiac diastolic function, attenuated left ventricular remodeling, cellular senescence and inflammation, and improved myocardial oxygenation and capillary density in MetS + RAS. Intrarenal delivery of MSC-derived EVs blunts myocardial injury in experimental MetS + RAS, possibly related to improvement in renal function and systemic inflammatory profile. These observations underscore the central role of inflammation in the crosstalk between the kidney and heart, and the important contribution of renal function to cardiac structural and functional integrity in coexisting MetS and RAS.
Collapse
|
26
|
Lee TM, Harn HJ, Chiou TW, Chuang MH, Chen CH, Chuang CH, Lin PC, Lin SZ. Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats. Redox Biol 2019; 27:101170. [PMID: 31164286 PMCID: PMC6859583 DOI: 10.1016/j.redox.2019.101170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Left ventricular hypertrophy (LVH) in hypertension has prognostic significance on cardiovascular mortality and morbidity. Recently, we have shown that n-butylidenephthalide (BP) improves human adipose-derived stem cell (hADSC) engraftment via attenuated reactive oxygen species (ROS) production. This prompted us to investigate whether remote transplantation of BP-pretreated hADSCs confers attenuated LVH at an established phase of hypertension. Male spontaneously hypertensive rats (SHRs) aged 12 weeks were randomly allocated to receive right hamstring injection of vehicle, clinical-grade hADSCs, and BP-preconditioned hADSCs for 8 weeks. As compared with untreated SHRs, naïve hADSCs decreased the ratio of LV weight to tibia, cardiomyocyte cell size, and collagen deposition independent of hemodynamic changes. These changes were accompanied by attenuated myocardial ROS production and increased p-STAT3 levels. Compared with naïve hADSCs, BP-preconditioned hADSCs provided a further decrease of ROS and LVH and an increase of local hADSC engraftment, STAT3 phosphorylation, STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels, and the percentage of M2 macrophage infiltration. SIN-1 or S3I-201 reversed the effects of BP-preconditioned ADSCs increase on myocardial IL-10 levels. Furthermore, SIN-1 abolished the phosphorylation of STAT3, whereas superoxide levels were not affected following the inhibition of STAT3. Our results highlighted the feasibility of remote transplantation of hADSCs can be considered as an alternative procedure to reverse cardiac hypertrophy even at an established phase of hypertension. BP-pretreated hADSCs polarize macrophages into M2 immunoregulatory cells more efficiently than naïve hADSCs via ROS/STAT3 pathway. Hypertension was associated with left ventricular hypertrophy. Compared with untreated SHRs, naïve hADSCs injected at the right hamstring decreased LV mass and cardiomyocyte cell size. BP-preconditioned ADSCs provided a further increase of the M2 macrophage infiltration. The beneficial effects of BP-preconditioned stem cell administration can be abolished by exogenous SIN-1 or 3SI-201. Remote transplantation of hADSCs can be considered as an alternative procedure to reverse cardiac hypertrophy.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi Chuang
- Department of Technology Management, Chung Hua University, Hsinchu, Taiwan; Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | | | | | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Taiwan.
| |
Collapse
|
27
|
Alterations in genetic and protein content of swine adipose tissue-derived mesenchymal stem cells in the metabolic syndrome. Stem Cell Res 2019; 37:101423. [PMID: 30933719 DOI: 10.1016/j.scr.2019.101423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/21/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) possess endogenous reparative properties and may serve as an exogenous therapeutic intervention in patients with chronic kidney disease. Cardiovascular risk factors clustering in the metabolic syndrome (MetS) might adversely affect cellular properties. To test the hypothesis that Mets interferes with MSC characteristics, we performed comprehensive comparison of the mRNA, microRNA, and protein content of MSCs isolated from Lean and MetS pigs. METHODS Domestic pigs were fed a 16-week Lean or MetS diet (n = 4 each). Expression profiles of co-existing microRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and liquid chromatography-mass spectrometry. TargetScan and ComiR were used to predict target genes of differentially expressed microRNAs, and DAVID 6.7 for functional annotation analysis to rank primary gene ontology categories for the microRNA target genes, mRNAs, and proteins. RESULTS Differential expression analysis revealed 12 microRNAs upregulated in MetS-MSCs compared to Lean-MSCs (fold change>1.4, p < .05), which target 7728 genes, whereas 33 mRNAs and 78 proteins were downregulated (fold change<0.7, p < .05). Integrated analysis showed that targets of those microRNAs upregulated in MetS-MSCs overlap with at least half of mRNAs and proteins dysregulated in those cells. Functional analysis of overlapping mRNAs and proteins suggest that they are primarily involved in mitochondria, inflammation and transcription. MetS-MSCs also exhibited increased nuclear translocation of nuclear factor kappa-B, associated with increased SA-β-Galactosidase and decreased cytochrome-c oxidase-IV activity. CONCLUSION MetS alters the transcriptome and proteome of swine adipose tissue-derived MSCs particularly genes involved in mitochondria, inflammation and transcription regulation. These alterations might limit the reparative function of endogenous MSC and their use as an exogenous regenerative therapy.
Collapse
|
28
|
Zhang X, Kim SR, Ferguson CM, Ebrahimi B, Hedayat AF, Lerman A, Lerman LO. The Metabolic Syndrome Does Not Affect Development of Collateral Circulation in the Poststenotic Swine Kidney. Am J Hypertens 2018; 31:1307-1316. [PMID: 30107490 DOI: 10.1093/ajh/hpy127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The collateral circulation is important in maintenance of blood supply to the ischemic kidney distal to renal artery stenosis (RAS). Obesity metabolic syndrome (MetS) preserves renal blood flow (RBF) in the stenotic kidney, but whether this is related to an increase of collateral vessel growth is unknown. We hypothesized that MetS increased collateral circulation around the renal artery. METHODS Twenty-one domestic pigs were randomly divided into unilateral RAS fed an atherogenic (high-fat/high-fructose, MetS-RAS) or standard diet, or controls (n = 7 each). RBF, glomerular filtration rate (GFR), and the peristenotic collateral circulation were assessed after 10 weeks using multidetector computed tomography (CT) and the intrarenal microcirculation by micro-CT. Vascular endothelial growth factor (VEGF) expression was studied in the renal artery wall, kidney, and perirenal fat. Renal fibrosis and stiffness were examined by trichrome and magnetic resonance elastography. RESULTS Compared with controls, RBF and GFR were decreased in RAS, but not in MetS-RAS. MetS-RAS formed peristenotic collaterals to the same extent as RAS pigs but induced greater intrarenal microvascular loss, fibrosis, stiffness, and inflammation. MetS-RAS also attenuated VEGF expression in the renal tissue compared with RAS, despite increased expression in the perirenal fat. CONCLUSIONS MetS does not interfere with collateral vessel formation in the stenotic kidney, possibly because decreased renal arterial VEGF expression offsets its upregulation in perirenal fat, arguing against a major contribution of the collateral circulation to preserve renal function in MetS-RAS. Furthermore, preserved renal function does not protect the poststenotic kidney from parenchymal injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Seo Rin Kim
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher M Ferguson
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Behzad Ebrahimi
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ahmad F Hedayat
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
29
|
Girard‐Bock C, de Araújo CC, Bertagnolli M, Mai‐Vo T, Vadivel A, Alphonse RS, Zhong S, Cloutier A, Sutherland MR, Thébaud B, Nuyt AM. Endothelial colony-forming cell therapy for heart morphological changes after neonatal high oxygen exposure in rats, a model of complications of prematurity. Physiol Rep 2018; 6:e13922. [PMID: 30485704 PMCID: PMC6260919 DOI: 10.14814/phy2.13922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022] Open
Abstract
Very preterm birth is associated with increased cardiovascular diseases and changes in myocardial structure. The current study aimed to investigate the impact of endothelial colony-forming cell (ECFC) treatment on heart morphological changes in the experimental model of neonatal high oxygen (O2 )-induced cardiomyopathy, mimicking prematurity-related conditions. Sprague-Dawley rat pups exposed to 95% O2 or room air (RA) from day 4 (P4) to day 14 (P14) were randomized to receive (jugular vein) exogenous human cord blood ECFC or vehicle at P14 (n = 5 RA-vehicle, n = 8 RA-ECFC, n = 8 O2 -vehicle and n = 7 O2 -ECFC) and the hearts collected at P28. Body and heart weights and heart to body weight ratio did not differ between groups. ECFC treatment prevented the increase in cardiomyocyte surface area in both the left (LV) and right (RV) ventricles of the O2 group (O2 -ECFC vs. O2 -vehicle LV: 121 ± 13 vs. 179 ± 21 μm2 , RV: 118 ± 12 vs. 169 ± 21 μm2 ). In O2 rats, ECFC treatment was also associated with a significant reduction in interstitial fibrosis in both ventricles (O2 -ECFC vs. O2 -vehicle LV: 1.07 ± 0.47 vs. 1.68 ± 0.41% of surface area, RV: 1.01 ± 0.74 vs. 1.77 ± 0.67%) and in perivascular fibrosis in the LV (2.29 ± 0.47 vs. 3.85 ± 1.23%) but in not the RV (1.95 ± 0.95 vs. 2.74 ± 1.14), and with increased expression of angiogenesis marker CD31. ECFC treatment had no effect on cardiomyocyte surface area or on tissue fibrosis of RA rats. Human cord blood ECFC treatment prevented cardiomyocyte hypertrophy and myocardial and perivascular fibrosis observed after neonatal high O2 exposure. ECFC could constitute a new regenerative therapy against cardiac sequelae caused by deleterious conditions of prematurity.
Collapse
Affiliation(s)
- Camille Girard‐Bock
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Carla C. de Araújo
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Mariane Bertagnolli
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
- Present address:
Centre Intégré Universitaire de Santé et de Services Sociaux du Nord‐de‐l’Île‐de‐MontréalHôpital du Sacré‐Cœur de Montréal Research CenterUniversité de MontréalMontréalQuebecCanada
| | - Thuy‐An Mai‐Vo
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Arul Vadivel
- Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
| | | | - Shumei Zhong
- Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
| | - Anik Cloutier
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Megan R. Sutherland
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
- Present address:
Monash Biomedicine Discovery InstituteDepartment of Anatomy and Developmental BiologyMonash UniversityClaytonVictoriaAustralia
| | - Bernard Thébaud
- Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
- Department of PediatricsUniversity of AlbertaEdmontonAlbertaCanada
| | - Anne Monique Nuyt
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
30
|
Meng Y, Eirin A, Zhu XY, Tang H, Hickson LJ, Lerman A, van Wijnen AJ, Lerman LO. Micro-RNAS Regulate Metabolic Syndrome-induced Senescence in Porcine Adipose Tissue-derived Mesenchymal Stem Cells through the P16/MAPK Pathway. Cell Transplant 2018; 27:1495-1503. [PMID: 30187775 PMCID: PMC6180720 DOI: 10.1177/0963689718795692] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) constitute an important repair system, but may be impaired by exposure to cardiovascular risk factors. Consequently, adipose tissue-derived MSCs from pigs with the metabolic syndrome (MetS) show decreased vitality. A growing number of microRNAs (miRNAs) are recognized as key modulators of senescence, but their role in regulating senescence in MSC in MetS is unclear. We tested the hypothesis that MetS upregulates in MSC expression of miRNAs that can serve as post-transcriptional regulators of senescence-associated (SA) genes. MSCs were collected from swine abdominal adipose tissue after 16 weeks of Lean or Obese diet ( n = 6 each). Next-generation miRNA sequencing (miRNA-seq) was performed to identify miRNAs up-or down-regulated in MetS-MSCs compared with Lean-MSCs. Functional pathways of SA genes targeted by miRNAs were analyzed using gene ontology. MSC senescence was evaluated by p16 and p21 immunoreactivity, H2AX protein expression, and SA-β-Galactosidase activity. In addition, gene expression of p16, p21, MAPK3 (ERK1) and MAPK14, and MSC migration were studied after inhibition of SA-miR-27b. Senescence biomarkers were significantly elevated in MetS-MSCs. We found seven upregulated miRNAs, including miR-27b, and three downregulated miRNAs in MetS-MSCs, which regulate 35 SA genes, particularly MAPK signaling. Inhibition of miR-27b in cultured MSCs downregulated p16 and MARP3 genes, and increased MSC migration. MetS modulates MSC expression of SA-miRNAs that may regulate their senescence, and the p16 pathway seems to play an important role in MetS-induced MSC senescence.
Collapse
Affiliation(s)
- Y Meng
- 1 Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, USA.,2 Department of Nephrology, The First Hospital Affiliated to Jinan University, Guangzhou, China
| | - A Eirin
- 1 Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - X-Y Zhu
- 1 Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - H Tang
- 1 Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - L J Hickson
- 1 Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - A Lerman
- 3 Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - A J van Wijnen
- 2 Department of Nephrology, The First Hospital Affiliated to Jinan University, Guangzhou, China
| | - L O Lerman
- 1 Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, USA.,4 Orthopedic Surgery, Mayo Clinic, Rochester, USA
| |
Collapse
|
31
|
Kawamura M, Paulsen MJ, Goldstone AB, Shudo Y, Wang H, Steele AN, Stapleton LM, Edwards BB, Eskandari A, Truong VN, Jaatinen KJ, Ingason AB, Miyagawa S, Sawa Y, Woo YJ. Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovasc Diabetol 2017; 16:142. [PMID: 29096622 PMCID: PMC5668999 DOI: 10.1186/s12933-017-0625-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. Methods Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). Results SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. Conclusions Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.
Collapse
Affiliation(s)
- Masashi Kawamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Bryan B Edwards
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Vi N Truong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Kevin J Jaatinen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Arnar B Ingason
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Eirin A, Zhu XY, Puranik AS, Woollard JR, Tang H, Dasari S, Lerman A, van Wijnen AJ, Lerman LO. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One 2017; 12:e0174303. [PMID: 28333993 PMCID: PMC5363917 DOI: 10.1371/journal.pone.0174303] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. Methods Simultaneous expression profiles of miRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and LC-MS/MS proteomic analysis in porcine MSCs and their daughter EVs (n = 3 each). TargetScan and ComiR were used to predict miRNA target genes. Functional annotation analysis was performed using DAVID 6.7 database to rank primary gene ontology categories for the enriched mRNAs, miRNA target genes, and proteins. STRING was used to predict associations between mRNA and miRNA target genes. Results Differential expression analysis revealed 4 miRNAs, 255 mRNAs, and 277 proteins enriched in EVs versus MSCs (fold change >2, p<0.05). EV-enriched miRNAs target transcription factors (TFs) and EV-enriched mRNAs encode TFs, but TF proteins are not enriched in EVs. Rather, EVs are enriched for proteins that support extracellular matrix remodeling, blood coagulation, inflammation, and angiogenesis. Conclusions Porcine MSC-derived EVs contain a genetic cargo of miRNAs and mRNAs that collectively control TF activity in EVs and recipient cells, as well as proteins capable of modulating cellular pathways linked to tissue repair. These properties provide the fundamental basis for considering therapeutic use of EVs in tissue regeneration.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amrutesh S. Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John R. Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 2017; 92:114-124. [PMID: 28242034 DOI: 10.1016/j.kint.2016.12.023] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis.
Collapse
Affiliation(s)
- Alfonso Eirin
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiang-Yang Zhu
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amrutesh S Puranik
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelly A McGurren
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
34
|
Eirin A, Zhu XY, Puranik AS, Woollard JR, Tang H, Dasari S, Lerman A, van Wijnen AJ, Lerman LO. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Sci Rep 2016; 6:36120. [PMID: 27786293 PMCID: PMC5081562 DOI: 10.1038/srep36120] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) isolated from mesenchymal stem/stromal cells (MSCs) contribute to recovery of damaged tissue. We have previously shown that porcine MSC-derived EVs transport mRNA and miRNA capable of modulating cellular pathways in recipient cells. To identify candidate factors that contribute to the therapeutic effects of porcine MSC-derived EVs, we characterized their protein cargo using proteomics. Porcine MSCs were cultured from abdominal fat, and EVs characterized for expression of typical MSC and EV markers. LC-MS/MS proteomic analysis was performed and proteins classified. Functional pathway analysis was performed and five candidate proteins were validated by western blot. Proteomics analysis identified 5,469 distinct proteins in MSCs and 4,937 in EVs. The average protein expression was higher in MSCs vs. EVs. Differential expression analysis revealed 128 proteins that are selectively enriched in EVs versus MSCs, whereas 563 proteins were excluded from EVs. Proteins enriched in EVs are linked to a broad range of biological functions, including angiogenesis, blood coagulation, apoptosis, extracellular matrix remodeling, and regulation of inflammation. Excluded are mostly nuclear proteins, like proteins involved in nucleotide binding and RNA splicing. EVs have a selectively-enriched protein cargo with a specific biological signature that MSCs may employ for intercellular communication to facilitate tissue repair.
Collapse
Affiliation(s)
- Alfonso Eirin
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xiang-Yang Zhu
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - John R. Woollard
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Amir Lerman
- Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | - Lilach O. Lerman
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Chade AR, Hall JE. Role of the Renal Microcirculation in Progression of Chronic Kidney Injury in Obesity. Am J Nephrol 2016; 44:354-367. [PMID: 27771702 DOI: 10.1159/000452365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity is largely responsible for the growing incidence and prevalence of diabetes, cardiovascular and renal diseases. Current strategies to prevent and treat obesity and its consequences have been insufficient to reverse the ongoing trends. Lifestyle modification or pharmacological therapies often produce modest weight loss which is not sustained and recurrence of obesity is frequently observed, leading to progression of target organ damage in many obese subjects. Therefore, research efforts have focused not only on the factors that regulate energy balance, but also on understanding mechanisms of target organ injury in obesity. Summary and Key Message: Microvascular (MV) disease plays a pivotal role in progressive kidney injury from different etiologies such as hypertension, diabetes, and atherosclerosis, which are all important consequences of chronic obesity. The MV networks are anatomical units that are closely adapted to specific functions of nutrition and removal of waste in every organ. Damage of the small vessels in several tissues and organs has been reported in obesity and may increase cardio-renal risk. However, the mechanisms by which obesity and its attendant cardiovascular and metabolic consequences interact to cause renal MV injury and chronic kidney disease are still unclear, although substantial progress has been made in recent years. This review addresses potential mechanisms and consequences of obesity-induced renal MV injury as well as current treatments that may provide protection of the renal microcirculation and slow progressive kidney injury in obesity.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Miss., USA
| | | |
Collapse
|
36
|
Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, Epstein SE. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J Am Coll Cardiol 2016; 67:2050-60. [DOI: 10.1016/j.jacc.2016.01.073] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 12/18/2022]
|
37
|
Saad A, Herrmann SM, Textor SC. Chronic renal ischemia in humans: can cell therapy repair the kidney in occlusive renovascular disease? Physiology (Bethesda) 2016; 30:175-82. [PMID: 25933818 DOI: 10.1152/physiol.00065.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Occlusive renovascular disease caused by atherosclerotic renal artery stenosis (ARAS) elicits complex biological responses that eventually lead to loss of kidney function. Recent studies indicate a complex interplay of oxidative stress, endothelial dysfunction, and activation of fibrogenic and inflammatory cytokines as a result of atherosclerosis, hypoxia, and renal hypoperfusion in this disorder. Human studies emphasize the limits of the kidney adaptation to reduced blood flow, eventually leading to renal hypoxia with activation of inflammatory and fibrogenic pathways. Several randomized prospective clinical trials show that stent revascularization alone in patients with atherosclerotic renal artery stenosis provides little additional benefit to medical therapy once these processes have developed and solidified. Experimental data now support developing adjunctive cell-based measures to support angiogenesis and anti-inflammatory renal repair mechanisms. These data encourage the study of endothelial progenitor cells and/or mesenchymal stem/stromal cells for the repair of damaged kidney tissue.
Collapse
Affiliation(s)
- Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Kelkar AA, Butler J, Schelbert EB, Greene SJ, Quyyumi AA, Bonow RO, Cohen I, Gheorghiade M, Lipinski MJ, Sun W, Luger D, Epstein SE. Mechanisms Contributing to the Progression of Ischemic and Nonischemic Dilated Cardiomyopathy: Possible Modulating Effects of Paracrine Activities of Stem Cells. J Am Coll Cardiol 2016; 66:2038-2047. [PMID: 26516007 DOI: 10.1016/j.jacc.2015.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023]
Abstract
Over the past 1.5 decades, numerous stem cell trials have been performed in patients with cardiovascular disease. Although encouraging outcome signals have been reported, these have been small, leading to uncertainty as to whether they will translate into significantly improved outcomes. A reassessment of the rationale for the use of stem cells in cardiovascular disease is therefore timely. Such a rationale should include analyses of why previous trials have not produced significant benefit and address whether mechanisms contributing to disease progression might benefit from known activities of stem cells. The present paper provides such a reassessment, focusing on patients with left ventricular systolic dysfunction, either nonischemic or ischemic. We conclude that many mechanisms contributing to progressive left ventricular dysfunction are matched by stem cell activities that could attenuate the myocardial effect of such mechanisms. This suggests that stem cell strategies may improve patient outcomes and justifies further testing.
Collapse
Affiliation(s)
| | | | - Erik B Schelbert
- Cardiology Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen J Greene
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Robert O Bonow
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ira Cohen
- Stony Brook University, Stony Brook, New York
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael J Lipinski
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC
| | - Wei Sun
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC
| | - Dror Luger
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC
| | - Stephen E Epstein
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC
| |
Collapse
|
39
|
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016; 89:767-78. [PMID: 26924058 DOI: 10.1016/j.kint.2015.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation.
Collapse
|
40
|
Pathological Left Ventricular Hypertrophy and Stem Cells: Current Evidence and New Perspectives. Stem Cells Int 2015; 2016:5720758. [PMID: 26798360 PMCID: PMC4699040 DOI: 10.1155/2016/5720758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 12/17/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a strong predictor of adverse cardiovascular outcomes. It is the result of complex mechanisms that include not only an increase in protein synthesis and cell size but also proliferating cardiac progenitor cells and the influx of bone marrow-derived cells developing into cardiomyocytes. Stem and progenitor cells are known to contribute to the renewal of adult mammalian cardiomyocytes in case of myocardial injury or pressure and volume overload. They are activated in LVH and play a regulatory role in myocardial repair. They have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs that play important roles in cell differentiation, cardiac remodeling, and neovascularization. They are mobilized in response to either mechanical or chemical stimuli, hormones, or pharmacologic agents. Another important source of progenitor cells is the epicardial layer. It appears that precursor cells migrate from the epicardium to the myocardium in order to interact with myocardial cells. In addition, migratory cells participate in the formation of almost all cardiac structures in myocardial hypertrophy. Although the pathophysiological mechanisms are still obscure and further studies are required, their properties may open the door to regenerative cell therapy for the prevention of adverse remodeling.
Collapse
|