1
|
Albor C, Eisen K, Moore E, Geber M, Ashman TL, Raguso RA, Arceo-Gómez G. Co-flowering richness has variable effects on pollen quantity and quality limitation in four Clarkia species. ANNALS OF BOTANY 2024; 134:901-918. [PMID: 39136192 PMCID: PMC11560379 DOI: 10.1093/aob/mcae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND AIMS Pollination failure occurs from insufficient pollen quantity or quality. However, the relative contributions of pollen quantity vs. quality to overall pollen limitation, and how this is affected by the co-flowering context, remain unknown for most plant populations. Here, we studied patterns of pollen deposition and pollen tube formation across populations of four predominately outcrossing species in the genus Clarkia to evaluate how the richness of co-flowering congeners affects the contribution of pollen quantity and quality to pollen limitation. METHODS We partition variation in pollen deposition and pollen tube production across individuals, populations and species to identify the main sources of variation in components of reproductive success. We further quantify the relative contribution of pollen quantity and quality limitation to the reproductive success of the four Clarkia species using piecewise regression analyses. Finally, we evaluate how variation in the number of co-flowering Clarkia species in the community affects the strength of pollen quality and quality limitation. RESULTS Across all contexts, pollen deposition and the proportion of pollen tubes produced varied greatly among individuals, populations and species, and these were not always correlated. For instance, C. xantiana received the smallest pollen loads yet produced the highest proportion of pollen tubes, while C. speciosa exhibited the opposite pattern. Yet, co-flowering richness had variable effects on the strength of pollen quantity and quality limitation among populations. Specifically, breakpoint values, which are an indicator of overall pollen limitation, were two-fold higher in the four-species community compared with one- and two-species communities for two Clarkia species, suggesting that pollen limitation can increase with increasing richness of co-flowering congeners. CONCLUSIONS Our results reveal a complex interplay between the quantity and quality of pollen limitation and co-flowering context that may have different evolutionary outcomes across species and populations.
Collapse
Affiliation(s)
- Cristopher Albor
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Katherine Eisen
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Emma Moore
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Monica Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
2
|
Rosenberger NM, Hemberger JA, Williams NM. Heatwaves exacerbate pollen limitation through reductions in pollen production and pollen vigour. AOB PLANTS 2024; 16:plae045. [PMID: 39363930 PMCID: PMC11447236 DOI: 10.1093/aobpla/plae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Increasingly frequent heat waves threaten the reproduction of flowering plants; compromising the future persistence, adaptive capacity, and dispersal of wild plant populations, and also the yield of fruit-bearing crop plants. Heat damages the development of sensitive floral organs and gametes, which inhibits pollen germination, pollen tube growth, and fertilization. However, the role of heat has not been integrated into the framework of pollen quantity and quality limitation and how heat influences the success of cross and self-pollination. We exposed developing flowers to either controlled temperature (25 °C:20 °C) or extreme heat (35 °C:20 °C) over 72 h. We then hand-pollinated them with either crossed or self-derived pollen from the same temperature treatment to determine the direct and interactive effects of simulated heatwaves on pollen tube growth and resulting seed set. We also collected anthers from virgin flowers to measure heat impacts on pollen production. Under cooler control temperatures pollen tube survival of self-derived pollen was approximately 27% lower than that of crossed pollen. Pollen tube survival in heat-treated cross-pollinated and heat-treated self-pollinated flowers were 71% and 77% lower compared to flowers cross-pollinated at control temperatures. These differences in pollen tube survival rate between heat-treated cross-pollinated and heat-treated self-pollinated flowers were insignificant. Furthermore, extreme heat reduced seed set by 87%, regardless of pollen origin, and also reduced pollen production during flower development by approximately 20%. Our results suggest flowers that develop during heatwaves are likely to experience exacerbated pollen quantity and quality limitation driven by changes in pollen production and pollen vigour. Heatwave-induced pollen limitation will likely reduce crop yields in agricultural systems, and depress mating and reproduction in wild plant species, the latter of which may hinder the adaptive capacity of plants to a rapidly changing world.
Collapse
Affiliation(s)
- Nick M Rosenberger
- Graduate Group in Ecology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
- Department of Entomology and Nematology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jeremy A Hemberger
- Department of Entomology and Nematology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
- Department of Entomology, University of Wisconsin – Madison, 1630 Linden Dr, Madison, WI 53706, USA
| | - Neal M Williams
- Department of Entomology and Nematology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
3
|
Ladinig U, Hörandl E, Klatt S, Wagner J. Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids. Life (Basel) 2024; 14:1202. [PMID: 39337984 PMCID: PMC11433044 DOI: 10.3390/life14091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Previous studies on the mountain plant Ranunculus kuepferi concluded that apomictic self-compatible tetraploids have experienced a niche shift toward a colder climate during the Holocene, which suggests a fitness advantage over the sexual, self-sterile diploid parents under cold and stressful high-mountain conditions. However, there is still a lack of information on whether reproductive development would be advantageous for tetraploids. Here, we report on microsporogenesis, megagametogenesis, the dynamics of flower and seed development, and the consequences for reproductive success in a common garden experiment along a 1000 m climatic elevation gradient and in natural populations. Flower buds were initiated in the year preceding anthesis and passed winter in a pre-meiotic stage. Flower morphology differed in the known cytotype-specific way in that tetraploid flowers produced about twice as many carpels and fewer petals, stamens, and pollen grains than diploid flowers. Tetraploids developed precociously aposporous embryo sacs and showed a high rate of developmental disturbances. Sexual seed formation prevailed in diploids and pseudogamous apomixis in tetraploids. Along the elevation gradient, stigma pollen load, pollen performance, and seed output decreased. Combinations of reproductive traits, namely, bypass of meiosis irregularities and uniparental reproduction, might have promoted the vast expansion of apomictic R. kuepferi lines across the European Alps.
Collapse
Affiliation(s)
- Ursula Ladinig
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
- Central Administration, University of Goettingen, Humboldtallee 15, D-37073 Goettingen, Germany
| | - Johanna Wagner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Jalali T, Rosinger HS, Hodgins KA, Fournier‐Level AJ. Pollen competition in hybridizing Cakile species: How does a latecomer win the race? AMERICAN JOURNAL OF BOTANY 2022; 109:1290-1304. [PMID: 35844035 PMCID: PMC9544311 DOI: 10.1002/ajb2.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Hybridization between cross-compatible species depends on the extent of competition between alternative mates. Even if stigmatic compatibility allows for hybridization, hybridization requires the heterospecific pollen to be competitive. Here, we determined whether conspecific pollen has an advantage in the race to fertilize ovules and the potential handicap to be overcome by heterospecific pollen in invasive Cakile species. METHODS We used fluorescence microscopy to measure pollen tube growth after conspecific and heterospecific hand-pollination treatments. We then determined siring success in the progeny relative to the timing of heterospecific pollen arrival on the stigma using CAPS markers. RESULTS In the absence of pollen competition, pollination time and pollen recipient species had a significant effect on the ratio of pollen tube growth. In long-styled C. maritima (outcrosser), pollen tubes grew similarly in both directions. In short-styled C. edentula (selfer), conspecific and heterospecific pollen tubes grew differently. Cakile edentula pollen produced more pollen tubes, revealing the potential for a mating asymmetry whereby C. edentula pollen had an advantage relative to C. maritima. In the presence of pollen competition, siring success was equivalent when pollen deposition was synchronous. However, a moderate 1-h advantage in the timing of conspecific pollination resulted in almost complete assortative mating, while an equivalent delay in conspecific pollination resulted in substantial hybrid formation. CONCLUSIONS Hybridization can aid the establishment of invasive species through the transfer of adaptive alleles from cross-compatible species, but also lead to extinction through demographic or genetic swamping. Time of pollen arrival on the stigma substantially affected hybridization rate, pointing to the importance of pollination timing in driving introgression and genetic swamping.
Collapse
Affiliation(s)
- Tara Jalali
- School of BiosciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Hanna S. Rosinger
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | | |
Collapse
|
5
|
Madjidian JA, Smith HG, Andersson S, Lankinen Å. Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following two-donor crosses. J Evol Biol 2020; 33:1452-1467. [PMID: 33463845 PMCID: PMC7589368 DOI: 10.1111/jeb.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Mate choice in plants is poorly understood, in particular its indirect genetic benefits, but also the direct benefits of avoiding harmful matings. In the herb Collinsia heterophylla, delayed stigma receptivity has been suggested to enhance pollen competition, potentially functioning as a female mate choice trait. Previous studies show that this trait can mitigate the cost of early fertilization caused by pollen, thus providing a direct benefit. We performed two-donor pollinations during successive floral stages to assess how this stigma receptivity trait and two pollen traits known to affect siring success influence indirect benefits in terms of offspring performance. We also investigated differential resource allocation by studying the influence of sibling performance in the same capsule. Offspring performance in terms of flower number was mainly affected by parental identities and differential resource allocation. Offspring seed production showed some influence of resource allocation, but was also affected by pollen donor identity and varied positively with late stigma receptivity. However, the effect of late stigma receptivity on offspring seed production was weakened in matings with pollen that advanced stigma receptivity. In conclusion, delayed stigma receptivity may be selected through both direct and indirect fitness effects in C. heterophylla, where pollen-based delay on stigma receptivity might act as a cue for mate choice. However, selection may also be counteracted by antagonistic selection on pollen to advance stigma receptivity. Our results highlight the challenges of studying indirect genetic benefits and other factors that influence mate choice in plants.
Collapse
Affiliation(s)
- Josefin A. Madjidian
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | - Henrik G. Smith
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | | | - Åsa Lankinen
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
6
|
Christopher DA, Mitchell RJ, Karron JD. Pollination intensity and paternity in flowering plants. ANNALS OF BOTANY 2020; 125:1-9. [PMID: 31586397 PMCID: PMC6948204 DOI: 10.1093/aob/mcz159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. SCOPE In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. CONCLUSIONS The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success.
Collapse
Affiliation(s)
- Dorothy A Christopher
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
7
|
Aizen MA, Arbetman MP, Chacoff NP, Chalcoff VR, Feinsinger P, Garibaldi LA, Harder LD, Morales CL, Sáez A, Vanbergen AJ. Invasive bees and their impact on agriculture. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Koski MH, Galloway LF, Busch JW. Pollen limitation and autonomous selfing ability interact to shape variation in outcrossing rate across a species range. AMERICAN JOURNAL OF BOTANY 2019; 106:1240-1247. [PMID: 31415107 DOI: 10.1002/ajb2.1342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Hermaphroditic plants commonly reproduce through a mixture of selfing and outcrossing. The degree to which outcrossing rates reflect the availability of outcross pollen, genetic differentiation in the ability to autonomously self-fertilize, or both is often unclear. Despite the potential for autonomy and the pollination environment to jointly influence outcrossing, this interaction is rarely studied. METHODS We reviewed studies from the literature that tested whether the pollination environment or floral traits that cause autonomous selfing predict variation in outcrossing rate among populations. We also measured outcrossing rates in 23 populations of Campanula americana and examined associations with the pollination environment, autonomy, and their interaction. RESULTS Our review revealed that traits that facilitate selfing were often negatively associated with outcrossing rates whereas most aspects of the pollination environment poorly predicted outcrossing. Populations of C. americana varied from mixed mating to highly outcrossing, but variation was unrelated to population size, density, pollen limitation, or autonomous selfing ability. Outcrossing rate was significantly influenced by an interaction between autonomous selfing ability and pollen limitation. Across highly autonomous populations, elevated pollen limitation was associated with reduced outcrossing, while there was no relationship for less autonomous populations. CONCLUSIONS Both the ability to self autonomously and pollen limitation interact to shape outcrossing rates in C. americana. This work suggests that autonomy affords mating-system flexibility, though it is not ubiquitous in all populations across the species range. Interactions between traits influencing autonomy and pollen limitation are likely to explain variation in outcrossing rates among populations of flowering plants.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904, USA
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina, 29631, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904, USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, Washington, 99164, USA
| |
Collapse
|
9
|
Minnaar C, Anderson B, de Jager ML, Karron JD. Plant-pollinator interactions along the pathway to paternity. ANNALS OF BOTANY 2019; 123:225-245. [PMID: 30535041 PMCID: PMC6344347 DOI: 10.1093/aob/mcy167] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/23/2018] [Indexed: 05/09/2023]
Abstract
Background The male fitness pathway, from pollen production to ovule fertilization, is thought to strongly influence reproductive trait evolution in animal-pollinated plants. This pathway is characterized by multiple avenues of pollen loss which may lead to reductions in male fitness. However, empirical data on the mechanistic processes leading to pollen loss during transport are limited, and we therefore lack a comprehensive understanding of how male fitness is influenced by each step in the pollination process. Scope This review assesses the history of studying male function in plants and identifies critical gaps in our understanding of the ecology and evolution of pollen transport. We explore male reproductive function along the steps of the pathway to paternity and discuss evolutionary options to overcome barriers to siring success. In particular, we present a newly emerging idea that bodies of pollinators function as a dynamic arena facilitating intense male-male competition, where pollen of rival males is constantly covered or displaced by competitors. This perspective extends the pollen-competitive arena beyond the confines of the stigma and style, and highlights the opportunity for important new breakthroughs in the study of male reproductive strategies and floral evolution.
Collapse
Affiliation(s)
- Corneile Minnaar
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Bruce Anderson
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Marinus L de Jager
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
10
|
Abstract
With the origin of pollination in ancient seed plants, the male gametophyte ("pollen") began to evolve a new and unique life history stage, the progamic phase, a post-pollination period in which pollen sexual maturation occurs in interaction with sporophyte-derived tissues. Pollen performance traits mediate the timing of the fertilization process, often in competition with other pollen, via the speed of pollen germination, sperm development, and pollen tube growth. Studies of pollen development rarely address the issue of performance or its evolution, which involves linking variation in developmental rates to relative fitness within populations or to adaptations on a macroevolutionary scale. Modifications to the pollen tube pathway and changes in the intensity of pollen competition affect the direction and strength of selection on pollen performance. Hence, pollen developmental evolution is always contextual-it involves both the population biology of pollen reaching stigmas and the co-evolution of sporophytic traits, such as the pollen tube pathway and mating system. For most species, performance evolution generally reflects a wandering history of periods of directional selection and relaxed selection, channeled by developmental limitations, a pattern that favors the accumulation of diversity and redundancy in developmental mechanisms and the genetic machinery. Developmental biologists are focused on finding universal mechanisms that underlie pollen function, and these are largely mechanisms that have evolved through their effects on performance. Here, we suggest ways in which studies of pollen performance or function could progress by cross-fertilization between the "evo" and "devo" fields.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
11
|
Alonso-Marcos H, Hülber K, Myllynen T, Rodríguez PP, Dobeš C. Pollen precedence in sexual Potentilla puberula and its role as a protective reproductive barrier against apomictic cytotypes. TAXON 2018; 67:1132-1142. [PMID: 30745710 PMCID: PMC6368848 DOI: 10.12705/676.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/06/2018] [Indexed: 05/31/2023]
Abstract
Cross-pollination is a major factor determining the demographic dynamics of mixed-ploidy populations. Typically, rare cytotypes are suppressed due to reduced female fertility by losing gametes in heteroploid crosses (i.e., through minority cytotype exclusion). In species with reproductive differentiation into sexual and apomictic cytotypes, sexuals might be reproductively suppressed by apomicts (or transformed due to introgression of apomixis genes). Pollen precedence potentially acts as a post-pollination pre-fertilization barrier protecting sexuals against their apomictic counterparts. We estimated the role of pollen precedence as a barrier against cross-fertilization of tetraploid sexuals by penta- and heptaploid gametophytic apomicts in Potentilla puberula (Rosaceae) by means of controlled crosses, and inference of the paternity through DNA ploidy estimation of embryos. Individuals from five regions spanning an elevational and biogeographic gradient were used to account for the variation in the relative frequencies of reproductive modes across the study area. We tested (1) whether the application of heteroploid pollen (sexual × apomictic) causes a reduction of seed yield compared to homoploid crosses (sexual × sexual), and (2) if so, whether pollen precedence recovers the seed yield in simultaneous applications of pollen from sexuals and apomicts (mixed-ploidy). Seed yield was significantly lower in hetero- than in homoploid crosses. We found clear evidence for precedence of homoploid pollen, despite a 13% to 15% of embryos experienced a change in ploidy due to heteroploid fertilizations. Thus, our study indicates that pollen precedence operates as a barrier against intercytotype fertilization in P. puberula, promoting the integrity of the sexual cytotype and their co-existence with apomictic individuals.
Collapse
Affiliation(s)
- Henar Alonso-Marcos
- Department of Forest Genetics, Austrian Research Centre for Forests, Seckendorf-Gudent-Weg 8, 1131 Vienna, Austria
| | - Karl Hülber
- Department of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Tuuli Myllynen
- Department of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Patricia Pérez Rodríguez
- Department of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Christoph Dobeš
- Department of Forest Genetics, Austrian Research Centre for Forests, Seckendorf-Gudent-Weg 8, 1131 Vienna, Austria
| |
Collapse
|
12
|
Rosbakh S, Pacini E, Nepi M, Poschlod P. An Unexplored Side of Regeneration Niche: Seed Quantity and Quality Are Determined by the Effect of Temperature on Pollen Performance. FRONTIERS IN PLANT SCIENCE 2018; 9:1036. [PMID: 30073009 PMCID: PMC6058057 DOI: 10.3389/fpls.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/26/2018] [Indexed: 05/21/2023]
Abstract
In 1977, Peter Grubb introduced the regeneration niche concept, which assumes that a plant species cannot persist if the environmental conditions are only suitable for adult plant growth and survival, but not for seed production, dispersal, germination, and seedling establishment. During the last decade, this concept has received considerable research attention as it helps to better understand community assembly, population dynamics, and plant responses to environmental changes. Yet, in its present form, it focuses too much on the post-fertilization stages of plant sexual reproduction, neglecting the fact that the environment can operate as a constraint at many points in the chain of processes necessary for successful regeneration. In this review, we draw the attention of the plant ecology research community to the pre-fertilization stages of plant sexual reproduction, an almost ignored but important aspect of the regeneration niche, and their potential consequences for successful seed production. Particularly, we focus on how temperature affects pollen performance and determines plant reproduction success by playing an important role in the temporal and spatial variations in seed quality and quantity. We also review the pollen adaptations to temperature stresses at different levels of plant organization and discuss the plasticity of the performance of pollen under changing temperature conditions. The reviewed literature demonstrates that pre-fertilization stages of seed production, particularly the extreme sensitivity of male gametophyte performance to temperature, are the key determinants of a species' regeneration niche. Thus, we suggest that previous views stating that the regeneration niche begins with the production of seeds should be modified to include the preceding stages. Lastly, we identify several gaps in pollen-related studies revealing a framework of opportunities for future research, particularly how these findings could be used in the field of plant biology and ecology.
Collapse
Affiliation(s)
- Sergey Rosbakh
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Peter Poschlod
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Sáez A, Morales JM, Morales CL, Harder LD, Aizen MA. The costs and benefits of pollinator dependence: empirically based simulations predict raspberry fruit quality. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1215-1222. [PMID: 29575300 DOI: 10.1002/eap.1720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Globally, agriculture increasingly depends on pollinators to produce many seed and fruit crops. However, what constitutes optimal pollination service for pollinator-dependent crops remains unanswered. We developed a simulation model to identify the optimal pollination service that maximizes fruit quality in crops. The model depicts the pollination (i.e., autonomous self-fertilization, pollen deposition) and post-pollination (i.e., pollen germination, and time from germination to ovule fertilization) processes leading to fruit and seed set and allows for negative flower-pollinator interactions, specifically pistil damage. We parameterized and validated the model based on empirical observations of commercial raspberry in western Argentina. To assess the effects of pollination intensity for fruit production, we conducted simulations over a range of visit number per flower by the two primary managed pollinators worldwide, Apis mellifera and Bombus terrestris. Simulations identified that ~15-35 visits per flower by A. mellifera or ~10-20 visits by B. terrestris provide adequate pollination and maximize raspberry fruit quality (i.e., estimated as the proportion of ovules that develop into drupelets). Visits in excess of these optima reduce simulated fruit quality, and flowers receiving >670 honey bee visits or >470 bumble bee visits would produce fruits of poorer quality than those receiving no bee visits. The simulations generated consistent, unbiased predictions of fruit quality for 12 raspberry fields. This model could be adapted easily to other animal-pollinated crops and used to guide efficient pollinator management in any agro-ecosystem.
Collapse
Affiliation(s)
- Agustín Sáez
- Grupo de Ecología de la Polinización, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche (CP8400), Rio Negro, Argentina
| | - Juan M Morales
- Grupo de Ecología Cuantitativa, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche (CP8400), Rio Negro, Argentina
| | - Carolina L Morales
- Grupo de Ecología de la Polinización, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche (CP8400), Rio Negro, Argentina
| | - Lawrence D Harder
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Marcelo A Aizen
- Grupo de Ecología de la Polinización, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche (CP8400), Rio Negro, Argentina
| |
Collapse
|
14
|
Gotelli MM, Lattar EC, Zini LM, Galati BG. Style morphology and pollen tube pathway. PLANT REPRODUCTION 2017; 30:155-170. [PMID: 29116403 DOI: 10.1007/s00497-017-0312-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The style morphology and anatomy vary among different species. Three basic types are: open, closed, and semi-closed. Cells involved in the pollen tube pathway in the different types of styles present abundant endoplasmic reticulum, dictyosomes, mitochondria, and ribosomes. These secretory characteristics are related to the secretion where pollen tube grows. This secretion can be represented by the substances either in the canal or in the intercellular matrix or in the cell wall. Most studies suggest that pollen tubes only grow through the secretion of the canal in open styles. However, some species present pollen tubes that penetrate the epithelial cells of the canal, or grow through the middle lamella between these cells and subepithelial cells. In species with a closed style, a pathway is provided by the presence of an extracellular matrix, or by the thickened cell walls of the stylar transmitting tissue. There are reports in some species where pollen tubes can also penetrate the transmitting tissue cells and continue their growth through the cell lumen. In this review, we define subtypes of styles according to the path of the pollen tube. Style types were mapped on an angiosperm phylogenetic tree following the maximum parsimony principle. In line with this, it could be hypothesized that: the open style appeared in the early divergent angiosperms; the closed type of style originated in Asparagales, Poales, and Eudicots; and the semi-closed style appeared in Rosids, Ericales, and Gentianales. The open style seems to have been lost in core Eudicots, with reversions in some Rosids and Asterids.
Collapse
Affiliation(s)
- M M Gotelli
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
- CONICET, Buenos Aires, Argentina.
| | - E C Lattar
- IBONE-UNNE-CONICET, Corrientes, Argentina
- Cátedra de Morfología de Plantas Vasculares, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes, Argentina
| | - L M Zini
- IBONE-UNNE-CONICET, Corrientes, Argentina
| | - B G Galati
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Losada JM, Herrero M. Pollen tube access to the ovule is mediated by glycoprotein secretion on the obturator of apple (Malus × domestica, Borkh). ANNALS OF BOTANY 2017; 119:989-1000. [PMID: 28137704 PMCID: PMC5604596 DOI: 10.1093/aob/mcw276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Within the ovary, the obturator bridges the pathway of the pollen tube from the style to the ovule. Despite its widespread presence among flowering plants, its function has only been studied in a handful of species, and the molecules involved in pollen tube-obturator cross-talk have not been explored hitherto. This work evaluates the involvement of glucans and glycoproteins on pollen tube growth in the obturator of apple flowers ( Malus × domestica) . METHODS Pollen tube kinetics were sequentially examined in the pistil and related to changes occurring on the obturator using histochemistry and inmunocytochemistry. To discriminate between changes in the obturator induced by pollen tubes from those developmentally regulated, both pollinated and unpollinated pistils were examined. KEY RESULTS Pollen tube growth rates were slow in the stigma, faster in the style and slow again in the ovary. The arrival of pollen tubes at the obturator was concomitant with the secretion of proteins, saccharides and glycoprotein epitopes belonging to extensins and arabinogalactan proteins (AGPs). While some of these secretions - extensins and AGPs labelled by JIM13 - were developmentally regulated, others - AGPs labelled by JIM8 - were elicited by the presence of pollen tubes. Following pollen tube passage, all these glycoproteins were depleted. CONCLUSIONS The results show a timely secretion of glycoproteins on the obturator surface concomitant with pollen tube arrival at this structure. The fact that their secretion is depleted following pollen tube passage strongly suggests their role in regulating pollen tube access to the ovule. Remarkably, both the regulation of the secretion of the different glycoproteins, as well as their association with the performance of pollen tubes exhibit similarities with those observed in the stigma, in line with their common developmental origin.
Collapse
Affiliation(s)
- Juan M. Losada
- Arnold Arboretum of Harvard University, 1300 Centre St, Boston, MA 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
- Pomology Department, Aula Dei Experimental Station-CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Maria Herrero
- Pomology Department, Aula Dei Experimental Station-CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| |
Collapse
|
16
|
Harder LD, Aizen MA, Richards SA. The population ecology of male gametophytes: the link between pollination and seed production. Ecol Lett 2016; 19:497-509. [DOI: 10.1111/ele.12596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Lawrence D. Harder
- Department of Biological Sciences; University of Calgary; Calgary Alberta Canada T2N 1N4
| | - Marcelo A. Aizen
- Laboratorio Ecotono; INIBIOMA-CONICET and Centro Regional Bariloche; Universidad Nacional del Comahue; Quintral 1250 8400 Bariloche Río Negro Argentina
| | - Shane A. Richards
- School of Biological and Biomedical Sciences; Durham University; South Road Durham DH1 3LE UK
| |
Collapse
|
17
|
Swanson RJ, Hammond AT, Carlson AL, Gong H, Donovan TK. Pollen performance traits reveal prezygotic nonrandom mating and interference competition in Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2016; 103:498-513. [PMID: 26928008 DOI: 10.3732/ajb.1500172] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
PREMISE The lack of ability to measure pollen performance traits in mixed pollinations has been a major hurdle in understanding the mechanisms of differential success of compatible pollen donors. In previous work, we demonstrated that nonrandom mating between two accessions of Arabidopsis thaliana, Columbia (Col) and Landsberg (Ler), is mediated by the male genotype. Despite these genetic insights, it was unclear at what stage of reproduction these genes were acting. Here, we used an experimental strategy that allowed us to differentiate different pollen populations in mixed pollinations to ask: (1) What pollen performance traits differed between Col and Ler accessions that direct nonrandom mating? (2) Is there evidence of interference competition? METHODS We used genetically marked pollen that can be visualized colorimetrically to quantify pollen performance of single populations of pollen in mixed pollinations. We used this and other assays to measure pollen viability, germination, tube growth, patterns of fertilization, and seed abortion. Finally, we assessed interference competition. RESULTS In mixed pollinations on Col pistils, Col pollen sired significantly more seeds than Ler pollen. Col pollen displayed higher pollen viability, faster and greater pollen germination, and faster pollen tube growth. We saw no evidence of nonrandom seed abortion. Finally, we found interference competition occurs in mixed pollinations. CONCLUSION The lack of differences in postzygotic processes coupled with direct observation of pollen performance traits indicates that nonrandom mating in Arabidopsis thaliana is prezygotic, due mostly to differential pollen germination and pollen tube growth rates. Finally, this study unambiguously demonstrates the existence of interference competition.
Collapse
Affiliation(s)
- Robert J Swanson
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 USA
| | - Adam T Hammond
- Biophysical Sciences, The University of Chicago, Chicago, Illinois 60637 USA
| | - Ann L Carlson
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 USA
| | - Hui Gong
- Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, Indiana 46383 USA
| | - Thad K Donovan
- Smith Donovan Marketing & Communications, Chesterton, Indiana 46304 USA
| |
Collapse
|
18
|
Williams JH, Edwards JA, Ramsey AJ. Economy, efficiency, and the evolution of pollen tube growth rates. AMERICAN JOURNAL OF BOTANY 2016; 103:471-483. [PMID: 26936897 DOI: 10.3732/ajb.1500264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
PREMISE Pollen tube growth rate (PTGR) is an important aspect of male gametophyte performance because of its central role in the fertilization process. Theory suggests that under intense competition, PTGRs should evolve to be faster, especially if PTGR accurately reflects gametophyte quality. Oddly, we know remarkably little about how effectively the work of tube construction is translated to elongation (growth and growth rate). Here we test the prediction that pollen tubes grow equally efficiently by comparing the scaling of wall production rate (WPR) to PTGR in three water lilies that flower concurrently: Nymphaea odorata, Nuphar advena and Brasenia schreberi. METHODS Single-donor pollinations on flower or carpel pairs were fixed just after pollen germination (time A) and 45 min later (time B). Mean PTGR was calculated as the average increase in tube length over that growth period. Tube circumferences (C) and wall thicknesses (W) were measured at time B. For each donor, WPR = mean (C × W) × mean PTGR. KEY RESULTS Within species, pollen tubes maintained a constant WPR to PTGR ratio, but species had significantly different ratios. N. odorata and N. advena had similar PTGRs, but for any given PTGR, they had the lowest and highest WPRs, respectively. CONCLUSIONS We showed that growth rate efficiencies evolved by changes in the volume of wall material used for growth and in how that material was partitioned between lateral and length dimensions. The economics of pollen tube growth are determined by tube design, which is consequent on trade-offs between efficient growth and other pollen tube functions.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| | - Jacob A Edwards
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| | - Adam J Ramsey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| |
Collapse
|
19
|
Williams JH, Mazer SJ. Pollen--tiny and ephemeral but not forgotten: New ideas on their ecology and evolution. AMERICAN JOURNAL OF BOTANY 2016; 103:365-74. [PMID: 26980838 DOI: 10.3732/ajb.1600074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 05/08/2023]
Abstract
Ecologists and evolutionary biologists have been interested in the functional biology of pollen since the discovery in the 1800s that pollen grains encompass tiny plants (male gametophytes) that develop and produce sperm cells. After the discovery of double fertilization in flowering plants, botanists in the early 1900s were quick to explore the effects of temperature and maternal nutrients on pollen performance, while evolutionary biologists began studying the nature of haploid selection and pollen competition. A series of technical and theoretic developments have subsequently, but usually separately, expanded our knowledge of the nature of pollen performance and how it evolves. Today, there is a tremendous diversity of interests that touch on pollen performance, ranging from the ecological setting on the stigma, structural and physiological aspects of pollen germination and tube growth, the form of pollen competition and its role in sexual selection in plants, virus transmission, mating system evolution, and inbreeding depression. Given the explosion of technical knowledge of pollen cell biology, computer modeling, and new methods to deal with diversity in a phylogenetic context, we are now more than ever poised for a new era of research that includes complex functional traits that limit or enhance the evolution of these deceptively simple organisms.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| | - Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93105 USA
| |
Collapse
|
20
|
Wagner J, Lechleitner M, Hosp D. Pollen limitation is not the rule in nival plants: A study from the European Central Alps. AMERICAN JOURNAL OF BOTANY 2016; 103:375-387. [PMID: 26933013 DOI: 10.3732/ajb.1500214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Seed output of high-mountain plants in the uppermost life zones is highly variable. One possible reason might be pollen limitation due to inadequate pollinator services. METHODS We tested this hypothesis for the insect-pollinated species Cerastium uniflorum, Ranunculus glacialis, and Saxifraga bryoides, which have their distribution center in the subnival and nival zone of the European Central Alps. We recorded insect visitors and determined their impact as pollinators. By analyzing pollination success and seed set following natural and saturating hand pollination, the magnitude of quantitative and qualitative pollen limitation was assessed. KEY RESULTS Anthomyiid and muscid flies had the highest pollination impact for R. glacialis and S. bryoides and syrphids for C. uniflorum. Natural stigma pollen load was highly variable in individual flowers of all species, but in most cases the number of conspecific pollen grains clearly exceeded the number of ovules to be fertilized. There was also a surplus in germinated pollen grains, whereas the pollen tube to ovule ratio was only sufficient in R. glacialis (2.6 on average) and S. bryoides (1.3), but not in C. uniflorum (0.6). Accordingly, seed to ovule ratio was around 0.8 in R. glacialis, 0.7 in S. bryoides but 0.4 in C. uniflorum. In C. uniflorum, saturating pollination slightly increased seed set. Regression analyses revealed that natural pollination success was more frequently limited by quality than by quantity. CONCLUSIONS Our results do not support the idea of chronic, widespread pollen limitation in the subnival but rather fit into the concept of parental optimism by overinvesting in the number of ovules as an adaptation to variable resource availability.
Collapse
Affiliation(s)
- Johanna Wagner
- Institute of Botany, Faculty of Biology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Martin Lechleitner
- Institute of Botany, Faculty of Biology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Daniela Hosp
- Institute of Botany, Faculty of Biology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Castilla AR, Alonso C, Herrera CM. To be or not to be better pollinated: Differences between sex morphs in marginal gynodioecious populations. AMERICAN JOURNAL OF BOTANY 2016; 103:388-395. [PMID: 26928007 DOI: 10.3732/ajb.1500167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Changes in the pollinator communities of marginal plant populations can affect their pollination quantity or quality. Geographic variation in pollination success can alter the reproductive advantage that female plants require to persist within gynodioecious populations. Particularly valuable is determining the pollination success at the prezygotic stage in self-compatible gynodioecious species whose females do not exhibit enhanced seed production. METHODS In core and marginal populations of Daphne laureola, we analyzed the differences between hermaphrodites and females in the proportion of flowers visited, the stigma pollen loads, and the quantity of pollen tubes in styles. We also examined the relationship between the number of pollen tubes in styles vs. the number of pollen grains on stigmas using piecewise regression and binomial generalized linear mixed models. KEY RESULTS Pollinators deposited larger pollen loads on flowers in marginal populations. In marginal populations, female flowers received more pollinator visits and more pollen grains on their stigmas, and they had more pollen tubes in their styles than did female flowers in core populations. Both piecewise regression and binomial GLMM analyses showed that females in marginal populations had a lower proportion of grains that developed tubes than females in the core populations, which suggests decreased pollination quality. CONCLUSIONS More efficient pollination services in marginal populations decreased the overall differences in the prezygotic pollination success between the sex morphs. Our results also suggest that pollination quality is lower in females of marginal populations, which could be counteracting the increased pollination in females in marginal populations.
Collapse
Affiliation(s)
- Antonio R Castilla
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio s/n 41092 Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio s/n 41092 Sevilla, Spain
| | - Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio s/n 41092 Sevilla, Spain
| |
Collapse
|