1
|
Hansda A, Goswami S, Mukherjee S, Basak AJ, Dasgupta S, Roy PK, Samanta D, Mukherjee G. N-terminal ectodomain of BTNL2 inhibits T cell activation via a non-canonical interaction with its putative receptor that results in a delayed progression of DSS-induced ulcerative colitis. Mol Immunol 2024; 166:39-49. [PMID: 38219401 DOI: 10.1016/j.molimm.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Butyrophilin-like 2 (BTNL2) is a T cell inhibitory molecule that interacts with unknown binding partners to modulate the immune response in a number of inflammatory and autoimmune diseases. In this study, we found that the inhibitory effects of BTNL2 on T cell activation and effector functions can be executed by its N-terminal IgV domain (BTNL2 IgV1) alone. Structure-guided mutation of key residues on BTNL2 IgV1 based on known receptor-ligand interfaces involving immunoglobulin superfamily members revealed that BTNL2 uses a non-canonical binding interface with its putative receptor. A high avidity BTNL2 IgV1 probe revealed that in an inducible model of ulcerative colitis, severe colitis was accompanied by a selective enrichment of BTNL2-receptor expressing effector-memory CD4+ and CD8+ T cells in the Peyer's patches. Intraperitoneal administration of BTNL2 IgV1 resulted in a significant delay in the progression of DSS-induced colitis and also showed reduced activation of the BTNL2-receptor-expressing T cells in the Peyer's patches. Thus, this study demonstrates that the BTNL2-receptor-expressing T cells in the Peyer's patches participate in the disease pathogenesis and can serve as a novel therapeutic target in ulcerative colitis, which can be modulated by BTNL2 IgV1.
Collapse
Affiliation(s)
- Anita Hansda
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | | | | | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology, Kharagpur, India
| | - Shirin Dasgupta
- Dr. B C Roy Multi Speciality Medical Research Centre, IIT Kharagpur, India
| | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology, Kharagpur, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
2
|
Kobayashi S, Sullivan C, Bialkowska AB, Saltz JH, Yang VW. Computational immunohistochemical mapping adds immune context to histological phenotypes in mouse models of colitis. Sci Rep 2023; 13:14386. [PMID: 37658187 PMCID: PMC10474139 DOI: 10.1038/s41598-023-41574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic, dysregulated inflammation in the gastrointestinal tract. The heterogeneity of IBD is reflected through two major subtypes, Crohn's Disease (CD) and Ulcerative Colitis (UC). CD and UC differ across symptomatic presentation, histology, immune responses, and treatment. While colitis mouse models have been influential in deciphering IBD pathogenesis, no single model captures the full heterogeneity of clinical disease. The translational capacity of mouse models may be augmented by shifting to multi-mouse model studies that aggregate analysis across various well-controlled phenotypes. Here, we evaluate the value of histology in multi-mouse model characterizations by building upon a previous pipeline that detects histological disease classes in hematoxylin and eosin (H&E)-stained murine colons. Specifically, we map immune marker positivity across serially-sectioned slides to H&E histological classes across the dextran sodium sulfate (DSS) chemical induction model and the intestinal epithelium-specific, inducible Villin-CreERT2;Klf5fl/fl (Klf5ΔIND) genetic model. In this study, we construct the beginning frameworks to define H&E-patch-based immunophenotypes based on IHC-H&E mappings.
Collapse
Affiliation(s)
- Soma Kobayashi
- Department of Biomedical Informatics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA
| | - Christopher Sullivan
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Joel H Saltz
- Department of Biomedical Informatics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Vincent W Yang
- Department of Biomedical Informatics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Renner TM, Agbayani G, Dudani R, McCluskie MJ, Akache B. Blood-Based Immune Protein Markers of Disease Progression in Murine Models of Acute and Chronic Inflammatory Bowel Disease. Biomedicines 2023; 11:biomedicines11010140. [PMID: 36672648 PMCID: PMC9855888 DOI: 10.3390/biomedicines11010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic ailment afflicting millions of people worldwide, with the majority of recognized cases within industrialized countries. The impacts of IBD at the individual level are long-lasting with few effective treatments available, resulting in a large burden on the health care system. A number of existing animal models are utilized to evaluate novel treatment strategies. Two commonly used models are (1) acute colitis mediated by dextran sulphate sodium (DSS) treatment of wild-type mice and (2) chronic colitis mediated by the transfer of proinflammatory T cells into immunodeficient mice. Despite the wide use of these particular systems to evaluate IBD therapeutics, the typical readouts of clinical disease progression vary depending on the model used, which may be reflective of mechanistic differences of disease induction. The most reliable indicator of disease in both models remains intestinal damage which is typically evaluated upon experimental endpoint. Herein, we evaluated the expression profile of a panel of cytokines and chemokines in both DSS and T cell transfer models in an effort to identify a number of inflammatory markers in the blood that could serve as reliable indicators of the relative disease state. Out of the panel of 25 markers tested, 6 showed statistically significant shifts with the DSS model, compared to 11 in the T cell transfer model with IL-6, IL-13, IL-22, TNF-α and IFN-γ being common markers of disease in both models. Our data highlights biological differences between animal models of IBD and helps to guide future studies when selecting efficacy readouts during the evaluation of experimental IBD therapeutics.
Collapse
|
5
|
Ghosh S, Moorthy B, Haribabu B, Jala VR. Cytochrome P450 1A1 is essential for the microbial metabolite, Urolithin A-mediated protection against colitis. Front Immunol 2022; 13:1004603. [PMID: 36159798 PMCID: PMC9493474 DOI: 10.3389/fimmu.2022.1004603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) pathway, which is regulated by aryl hydrocarbon receptor (AhR) plays an important role in chemical carcinogenesis and xenobiotic metabolism. Recently, we demonstrated that the microbial metabolite Urolithin A (UroA) mitigates colitis through its gut barrier protective and anti-inflammatory activities in an AhR-dependent manner. Here, we explored role of CYP1A1 in UroA-mediated gut barrier and immune functions in regulation of inflammatory bowel disease (IBD). Methods To determine the role of CYP1A1 in UroA-mediated protectives activities against colitis, we subjected C57BL/6 mice and Cyp1a1-/- mice to dextran sodium sulphate (DSS)-induced acute colitis model. The phenotypes of the mice were characterized by determining loss of body weight, intestinal permeability, systemic and colonic inflammation. Further, we evaluated the impact of UroA on regulation of immune cell populations by flow cytometry and confocal imaging using both in vivo and ex vivo model systems. Results UroA treatment mitigated DSS-induced acute colitis in the wildtype mice. However, UroA-failed to protect Cyp1a1-/- mice against colitis, as evident from non-recovery of body weight loss, shortened colon lengths and colon weight/length ratios. Further, UroA failed to reduce DSS-induced inflammation, intestinal permeability and upregulate tight junction proteins in Cyp1a1-/- mice. Interestingly, UroA induced the expansion of T-reg cells in a CYP1A1-dependent manner both in vivo and ex vivo models. Conclusion Our results suggest that CYP1A1 expression is essential for UroA-mediated enhanced gut barrier functions and protective activities against colitis. We postulate that CYP1A1 plays critical and yet unknown functions beyond xenobiotic metabolism in the regulation of gut epithelial integrity and immune systems to maintain gut homeostasis in IBD pathogenesis.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, United States
| | - Bhagavatula Moorthy
- Department of Pediatrics and Neonatology, Baylor College of Medicine, Houston, TX, United States
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, United States
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, United States
- *Correspondence: Venkatakrishna Rao Jala,
| |
Collapse
|
6
|
Inflammatory Bowel Disease: A Review of Pre-Clinical Murine Models of Human Disease. Int J Mol Sci 2022; 23:ijms23169344. [PMID: 36012618 PMCID: PMC9409205 DOI: 10.3390/ijms23169344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD pathology. Here, we discuss the current pre-clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the translation of experimental findings into novel clinical therapeutics is also discussed.
Collapse
|
7
|
Di Paola D, Natale S, Iaria C, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Intestinal Disorder in Zebrafish Larvae (Danio rerio): The Protective Action of N-Palmitoylethanolamide-oxazoline. Life (Basel) 2022; 12:life12010125. [PMID: 35054518 PMCID: PMC8778351 DOI: 10.3390/life12010125] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
IBD (Inflammatory Bowel Disease) is an inflammatory disease affecting the gastrointestinal tract that is common in both humans and veterinarians. Several studies have revealed the pharmacological properties of the oxazoline of palmitoylethanolamide (PEAOXA). Zebrafish larvae were exposed to sodium dextran sulphate (DSS) to induce enterocolitis and study the protective action of PEAOXA. After repetitive exposure with 0.25% DSS, larvae presented gut alteration with an increase in mucus production. Furthermore, DSS exposure induced an increase in the inflammatory pathway in the intestine, related to an increase in the Endoplasmic-reticulum (ER) stress genes. PEAOXA exposure at a concentration of 10 mg/L decreased the DSS-induced gut damage and mucus production, as well as being able to reduce the inflammatory and ER stress-related genes expression. In conclusion, our results demonstrate that the alterations induced by repeated exposure to DSS were counteracted by PEAOXA action that was able to inhibit the increase in inflammation and ER stress involved in the progression of enterocolitis.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.); +39-90-6765210 (N.S.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.); +39-90-6765210 (N.S.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| |
Collapse
|
8
|
Creyns B, Cremer J, De Hertogh G, Boon L, Ferrante M, Vermeire S, Van Assche G, Ceuppens JL, Breynaert C. Fibrogenesis in chronic murine colitis is independent of innate lymphoid cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:393-407. [PMID: 32567222 PMCID: PMC7416052 DOI: 10.1002/iid3.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Introduction Insight in the pathogenesis of intestinal fibrosis is an unmet medical need in inflammatory bowel diseases. Studies in murine models and human organ fibrosis point to a potential role of innate lymphoid cells (ILC) in chronic intestinal inflammation and fibrosis. Materials and Methods Dextran sodium sulfate (DSS) in drinking water was used to induce chronic colitis and remodeling in C57Bl/6 wild type (WT), RAG‐deficient, RAG−/− common γ chain deficient and anti‐CD90.2 monoclonal antibody treated RAG−/− mice. Inflammation was scored by macroscopic and histological examination and fibrosis was evaluated by hydroxyproline quantification and histology. Results In RAG−/− mice (which have a normal ILC population but no adaptive immunity), chronic intestinal inflammation and fibrosis developed similarly as in WT mice, with a relative increase in ILC2 during repeated DSS exposure. Chronic colitis could also be induced in the absence of ILC (RAG−/−γc−/− or anti‐CD90.2 treated RAG−/− mice) with no attenuation of fibrosis. Importantly, clinical recovery based on weight gain after stopping DSS exposure was impaired in ILC‐deficient or ILC‐depleted mice. Conclusion These data argue against a profibrotic effect of ILC in chronic colitis, but rather suggest that ILC have a protective and recovery‐enhancing effect after repeated intestinal injury.
Collapse
Affiliation(s)
- Brecht Creyns
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | | | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jan L Ceuppens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Colombo G, Clemente N, Zito A, Bracci C, Colombo FS, Sangaletti S, Jachetti E, Ribaldone DG, Caviglia GP, Pastorelli L, De Andrea M, Naviglio S, Lucafò M, Stocco G, Grolla AA, Campolo M, Casili G, Cuzzocrea S, Esposito E, Malavasi F, Genazzani AA, Porta C, Travelli C. Neutralization of extracellular NAMPT (nicotinamide phosphoribosyltransferase) ameliorates experimental murine colitis. J Mol Med (Berl) 2020; 98:595-612. [PMID: 32338310 DOI: 10.1007/s00109-020-01892-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is increased in inflammatory bowel disease (IBD) patients, and its serum levels correlate with a worse prognosis. In the present manuscript, we show that eNAMPT serum levels are increased in IBD patients that fail to respond to anti-TNFα therapy (infliximab or adalimumab) and that its levels drop in patients that are responsive to these therapies, with values comparable with healthy subjects. Furthermore, eNAMPT administration in dinitrobenzene sulfonic acid (DNBS)-treated mice exacerbates the symptoms of colitis, suggesting a causative role of this protein in IBD. To determine the druggability of this cytokine, we developed a novel monoclonal antibody (C269) that neutralizes in vitro the cytokine-like action of eNAMPT and that reduces its serum levels in rodents. Of note, this newly generated antibody is able to significantly reduce acute and chronic colitis in both DNBS- and dextran sulfate sodium (DSS)-induced colitis. Importantly, C269 ameliorates the symptoms by reducing pro-inflammatory cytokines. Specifically, in the lamina propria, a reduced number of inflammatory monocytes, neutrophils, Th1, and cytotoxic T lymphocytes are found upon C269 treatment. Our data demonstrate that eNAMPT participates in IBD and, more importantly, that eNAMPT-neutralizing antibodies are endowed with a therapeutic potential in IBD. KEY MESSAGES: What are the new findings? Higher serum eNAMPT levels in IBD patients might decrease response to anti-TNF therapy. The cytokine-like activity of eNAMPT may be neutralized with a monoclonal antibody. Neutralization of eNAMPT ameliorates acute and chronic experimental colitis. Neutralization of eNAMPT limits the expression of IBD inflammatory signature. Neutralization of eNAMPT impairs immune cell infiltration in lamina propria.
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Nausicaa Clemente
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
| | - Andrea Zito
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Cristiano Bracci
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Federico Simone Colombo
- Flow Cytometry and Cell Sorting Unit, Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, MI, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Luca Pastorelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Gastroenterology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, 10126, Turin, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34137, Trieste, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Fabio Malavasi
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy.
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy.
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università degli Studi di Pavia, 27100, Pavia, Italy.
| |
Collapse
|
10
|
Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol 2020; 18:29. [PMID: 32183814 PMCID: PMC7079427 DOI: 10.1186/s12915-020-00765-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Immune checkpoint inhibitor (ICPI) can augment the anti-tumour response by blocking negative immunoregulators with monoclonal antibodies. The anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody is the first ICPI which has shown remarkable benefits in the clinical treatment of cancers. However, the increased activity of the immune system also causes some side effects called immune-related adverse events (irAEs). Colitis is one of the most common irAEs related to anti-CTLA-4 immunotherapy. Results We identified that CD4+ T cells were the primary responders in CTLA-4 blockade and that the expansion of gut-homing CD4+ T cells by anti-CTLA-4 therapy was independent of CD103. We used dextran sulfate sodium (DSS)-induced colitis mice as our model and tested the possibility of using a trafficking-blocking antibody to treat anti-CTLA-4 antibody-induced irAEs. We found that blocking T cell homing increased colitis severity in the context of CTLA-4 blockade and that gut-trafficking blockade had different effects on different Th subsets and could facilitate the proliferation of Th17 cells in the lamina propria (LP). Conclusions Our data reveals the fundamental mechanism underlying trafficking-blocking antibody therapy for CTLA-4 blockade-induced colitis and provide a caution in regard to apply trafficking-blocking antibody treatment under CTLA-4 blockade condition.
Collapse
Affiliation(s)
- Shashuang Zhang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhua Liang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Luo
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Sun
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,The Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Xuan H, Ou A, Hao S, Shi J, Jin X. Galangin Protects against Symptoms of Dextran Sodium Sulfate-induced Acute Colitis by Activating Autophagy and Modulating the Gut Microbiota. Nutrients 2020; 12:E347. [PMID: 32013062 PMCID: PMC7071155 DOI: 10.3390/nu12020347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Galangin is a natural flavonoid that has been reported to provide substantial health benefits. Nevertheless, little is known about the potential effects of galangin against inflammatory bowel diseases. Here, an in vivo study was performed to investigate the preventive effects of galangin against dextran sulphate sodium (DSS)-induced acute murine colitis, which mimics the symptoms of human ulcerative colitis (UC). Pre-treatment with galangin (15 mg/kg, p.o.) resulted in a significant decreased in the macroscopic signs of DSS-induced colitic symptoms, including a decreased disease activity index, prevention of the colon length shortening, and alleviation of the pathological changes occurring in the colon. Colonic pro-inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1 beta, and IL-6, as well as myeloperoxidase activities were decreased following galangin pre-treatment when compared with the DSS control group. Moreover, galangin pre-treatment significantly increased the expressions of autophagy-related proteins and promoted the formation of autophagosome in the colon. Galangin pre-treatment increased the diversity of the gut microbiota, and this was accompanied by increased levels of short-chain fatty acids. These observed changes could involve the modulating effects conferred by galangin in relation to some specific bacteria populations, including the recovery of Lactobacillus spp., and increased Butyricimonas spp. Overall, these results support the use of galangin in the prevention of UC.
Collapse
Affiliation(s)
- Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China;
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Aiqun Ou
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Jiajun Shi
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
12
|
Galectin-3 Regulates Indoleamine-2,3-dioxygenase-Dependent Cross-Talk between Colon-Infiltrating Dendritic Cells and T Regulatory Cells and May Represent a Valuable Biomarker for Monitoring the Progression of Ulcerative Colitis. Cells 2019; 8:cells8070709. [PMID: 31336879 PMCID: PMC6678202 DOI: 10.3390/cells8070709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 regulates numerous biological processes in the gut. We investigated molecular mechanisms responsible for the Galectin-3-dependent regulation of colon inflammation and evaluated whether Galectin-3 may be used as biomarker for monitoring the progression of ulcerative colitis (UC). The differences in disease progression between dextran sodium sulphate-treated wild type and Galectin-3-deficient mice were investigated and confirmed in clinical settings, in 65 patients suffering from mild, moderate, and severe colitis. During the induction phase of colitis, Galectin-3 promoted interleukin-1β-induced polarization of colonic macrophages towards inflammatory phenotype. In the recovery phase of colitis, Galectin-3 was required for the immunosuppressive function of regulatory dendritic cells (DCs). Regulatory DCs in Galectin-3:Toll-like receptor-4:Kynurenine-dependent manner promoted the expansion of colon-infiltrated T regulatory cells (Tregs) and suppressed Th1 and Th17 cell-driven colon inflammation. Concentration of Galectin-3 in serum and stool samples of UC patients negatively correlated with clinical, endoscopic, and histological parameters of colitis. The cutoff serum values of Galectin-3 that allowed the discrimination of mild from moderate and moderate from severe colitis were 954 pg/mL and 580 pg/mL, respectively. Fecal levels of Galectin-3 higher than 553.44 pg/mL indicated attenuation of UC. In summing up, Galectin-3 regulates the cross-talk between colon-infiltrating DCs and Tregs and represents a new biomarker for monitoring the progression of UC.
Collapse
|
13
|
Steimle A, Menz S, Bender A, Ball B, Weber ANR, Hagemann T, Lange A, Maerz JK, Parusel R, Michaelis L, Schäfer A, Yao H, Löw HC, Beier S, Tesfazgi Mebrhatu M, Gronbach K, Wagner S, Voehringer D, Schaller M, Fehrenbacher B, Autenrieth IB, Oelschlaeger TA, Frick JS. Flagellin hypervariable region determines symbiotic properties of commensal Escherichia coli strains. PLoS Biol 2019; 17:e3000334. [PMID: 31206517 PMCID: PMC6597123 DOI: 10.1371/journal.pbio.3000334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/27/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli represents a classical intestinal gram-negative commensal. Despite this commensalism, different E. coli strains can mediate disparate immunogenic properties in a given host. Symbiotic E. coli strains such as E. coli Nissle 1917 (EcN) are attributed beneficial properties, e.g., promotion of intestinal homeostasis. Therefore, we aimed to identify molecular features derived from symbiotic bacteria that might help to develop innovative therapeutic alternatives for the treatment of intestinal immune disorders. This study was performed using the dextran sodium sulphate (DSS)-induced colitis mouse model, which is routinely used to evaluate potential therapeutics for the treatment of Inflammatory Bowel Diseases (IBDs). We focused on the analysis of flagellin structures of different E. coli strains. EcN flagellin was found to harbor a substantially longer hypervariable region (HVR) compared to other commensal E. coli strains, and this longer HVR mediated symbiotic properties through stronger activation of Toll-like receptor (TLR)5, thereby resulting in interleukin (IL)-22–mediated protection of mice against DSS-induced colitis. Furthermore, using bone-marrow–chimeric mice (BMCM), CD11c+ cells of the colonic lamina propria (LP) were identified as the main mediators of these flagellin-induced symbiotic effects. We propose flagellin from symbiotic E. coli strains as a potential therapeutic to restore intestinal immune homeostasis, e.g., for the treatment of IBD patients. A flagellum renders bacteria motile, but this study reveals another property important for symbiosis: the hypervariable region of Escherichia coli flagellin strongly determines activation of TLR5, mediating benefits for the host such as protection against colitis.
Collapse
Affiliation(s)
- Alex Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Sarah Menz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Annika Bender
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Brianna Ball
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | | | - Thomas Hagemann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Anna Lange
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Jan K. Maerz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Hans Yao
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Sina Beier
- Chair of Algorithms in Bioinformatics, Faculty of Computer Science, University of Tübingen, Tübingen, Germany
| | - Mehari Tesfazgi Mebrhatu
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Kerstin Gronbach
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Ingo B. Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | | | - Julia-Stefanie Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
14
|
Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, Enyati N, Pasia G, Maesincee D, Ocon V, Abdulridha M, Longo VD. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019; 26:2704-2719.e6. [PMID: 30840892 PMCID: PMC6528490 DOI: 10.1016/j.celrep.2019.02.019] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary interventions are potentially effective therapies for inflammatory bowel diseases (IBDs). We tested the effect of 4-day fasting-mimicking diet (FMD) cycles on a chronic dextran sodium sulfate (DSS)-induced murine model resulting in symptoms and pathology associated with IBD. These FMD cycles reduced intestinal inflammation, increased stem cell number, stimulated protective gut microbiota, and reversed intestinal pathology caused by DSS, whereas water-only fasting increased regenerative and reduced inflammatory markers without reversing pathology. Transplants of Lactobacillus or fecal microbiota from DSS- and FMD-treated mice reversed DSS-induced colon shortening, reduced inflammation, and increased colonic stem cells. In a clinical trial, three FMD cycles reduced markers associated with systemic inflammation. The effect of FMD cycles on microbiota composition, immune cell profile, intestinal stem cell levels and the reversal of pathology associated with IBD in mice, and the anti-inflammatory effects demonstrated in a clinical trial show promise for FMD cycles to ameliorate IBD-associated inflammation in humans.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Inyoung Choi
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Gerardo Navarrete
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Nobel Enyati
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA
| | - Gab Pasia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Daral Maesincee
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Vanessa Ocon
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Maya Abdulridha
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano 20139, Italy.
| |
Collapse
|
15
|
Anti-inflammatory activity of Alpinia officinarum hance on rat colon inflammation and tissue damage in DSS induced acute and chronic colitis models. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Roig J, Saiz ML, Galiano A, Trelis M, Cantalapiedra F, Monteagudo C, Giner E, Giner RM, Recio MC, Bernal D, Sánchez-Madrid F, Marcilla A. Extracellular Vesicles From the Helminth Fasciola hepatica Prevent DSS-Induced Acute Ulcerative Colitis in a T-Lymphocyte Independent Mode. Front Microbiol 2018; 9:1036. [PMID: 29875750 PMCID: PMC5974114 DOI: 10.3389/fmicb.2018.01036] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/01/2018] [Indexed: 12/26/2022] Open
Abstract
The complexity of the pathogenesis of inflammatory bowel disease (ulcerative colitis and Crohn's disease) has led to the quest of empirically drug therapies, combining immunosuppressant agents, biological therapy and modulators of the microbiota. Helminth parasites have been proposed as an alternative treatment of these diseases based on the hygiene hypothesis, but ethical and medical problems arise. Recent reports have proved the utility of parasite materials, mainly excretory/secretory products as therapeutic agents. The identification of extracellular vesicles on those secreted products opens a new field of investigation, since they exert potent immunomodulating effects. To assess the effect of extracellular vesicles produced by helminth parasites to treat ulcerative colitis, we have analyzed whether extracellular vesicles produced by the parasitic helminth Fasciola hepatica can prevent colitis induced by chemical agents in a mouse model. Adult parasites were cultured in vitro and secreted extracellular vesicles were purified and used for immunizing both wild type C57BL/6 and RAG1-/- mice. Control and immunized mice groups were treated with dextran sulfate sodium 7 days after last immunization to promote experimental colitis. The severity of colitis was assessed by disease activity index and histopathological scores. Mucosal cytokine expression was evaluated by ELISA. The activation of NF-kB, COX-2, and MAPK were evaluated by immunoblotting. Administration of extracellular vesicles from F. hepatica ameliorates the pathological symptoms reducing the amount of pro-inflammatory cytokines and interfering with both MAPK and NF-kB pathways. Interestingly, the observed effects do not seem to be mediated by T-cells. Our results indicate that extracellular vesicles from parasitic helminths can modulate immune responses in dextran sulfate sodium (DSS)-induced colitis, exerting a protective effect that should be mediated by other cells distinct from B- and T-lymphocytes.
Collapse
Affiliation(s)
- Javier Roig
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Burjassot, Spain
| | - Maria L Saiz
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alicia Galiano
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| | - Maria Trelis
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, Burjassot, Spain
| | - Fernando Cantalapiedra
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Veterinari de Salut Pública, Centre de Salut Pública de Manises, Burjassot, Spain
| | | | - Elisa Giner
- Departament de Farmacologia, Universitat de València, Burjassot, Spain
| | - Rosa M Giner
- Departament de Farmacologia, Universitat de València, Burjassot, Spain
| | - M C Recio
- Departament de Farmacologia, Universitat de València, Burjassot, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Francisco Sánchez-Madrid
- Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Burjassot, Spain.,Immunology Service, Hospital de La Princesa, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, Burjassot, Spain
| |
Collapse
|
17
|
Wang D, Li Q, Yang Y, Hao S, Han X, Song J, Yin Y, Li X, Tanaka M, Qiu CH. Macrophage Subset Expressing CD169 in Peritoneal Cavity-Regulated Mucosal Inflammation Together with Lower Levels of CCL22. Inflammation 2017; 40:1191-1203. [DOI: 10.1007/s10753-017-0562-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
CD45 regulates GM-CSF, retinoic acid and T-cell homing in intestinal inflammation. Mucosal Immunol 2016; 9:1514-1527. [PMID: 27007678 DOI: 10.1038/mi.2016.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
CD45 is a leukocyte-specific tyrosine phosphatase important for T-cell development, and as a result, CD45-/- mice have substantially reduced numbers of T cells. Here we show that, upon dextran sodium sulfate (DSS)-induced colitis, CD45-/- mice have equivalent intestinal pathology and T-cell numbers in their colon as C57BL/6 mice and show enhanced weight loss. CD45-/- mice have a greater percentage of α4β7+ T cells prior to and after colitis and an increased percentage of T cells producing inflammatory cytokines in the inflamed colon, suggesting that CD45-/- effector T cells preferentially home to the intestine. In DSS-induced colitis in CD45RAG-/- mice lacking an adaptive immune system, CD45 was required for optimal granulocyte-macrophage colony-stimulating factor (GM-CSF) and retinoic acid (RA) production by innate immune cells. Addition of CD45+/+ T cells led to greater weight loss in the RAG-/- mice compared with CD45RAG-/- mice that correlated with reduced α4β7+ T cells and lower recruitment to the colon of CD45RAG-/- mice in DSS-induced colitis. Addition of exogenous GM-CSF to CD45RAG-/- mice rescued RA production, increased colonic T-cell numbers, and increased weight loss. This demonstrates opposing effects of CD45 in innate and adaptive immune cells in proinflammatory responses and the expression of the gut-homing molecule, α4β7.
Collapse
|
19
|
Lei A, Yang Q, Li X, Chen H, Shi M, Xiao Q, Cao Y, He Y, Zhou J. Atorvastatin promotes the expansion of myeloid-derived suppressor cells and attenuates murine colitis. Immunology 2016; 149:432-446. [PMID: 27548304 DOI: 10.1111/imm.12662] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Statins, widely prescribed as cholesterol-lowering drugs, have recently been extensively studied for their pleiotropic effects on immune systems, especially their beneficial effects on autoimmune and inflammatory disorders. However, the mechanism of statin-induced immunosuppression is far from understood. Here, we found that atorvastatin promoted the expansion of myeloid-derived suppressor cells (MDSCs) both in vitro and in vivo. Atorvastatin-derived MDSCs suppressed T-cell responses by nitric oxide production. Addition of mevalonate, a downstream metabolite of 3-hydroxy-3-methylglutaryl coenzyme A reductase, almost completely abrogated the effect of atorvastatin on MDSCs, indicating that the mevalonate pathway was involved. Along with the amelioration of dextran sodium sulphate (DSS) -induced murine acute and chronic colitis, we observed a higher MDSC level both in spleen and intestine tissue compared with that from DSS control mice. More importantly, transfer of atorvastatin-derived MDSCs attenuated DSS acute colitis and T-cell transfer of chronic colitis. Hence, our data suggest that the expansion of MDSCs induced by statins may exert a beneficial effect on autoimmune diseases. In summary, our study provides a novel potential mechanism for statins-based treatment in inflammatory bowel disease and perhaps other autoimmune diseases.
Collapse
Affiliation(s)
- Aihua Lei
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yang
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xing Li
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Haiwen Chen
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Maohua Shi
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Yingjiao Cao
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Yumei He
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Programme in Immunology, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou, China.
| |
Collapse
|
20
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
|
21
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
Affiliation(s)
- Mei Lan Chen
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Mark S. Sundrud
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| |
Collapse
|
22
|
Laubitz D, Harrison CA, Midura-Kiela MT, Ramalingam R, Larmonier CB, Chase JH, Caporaso JG, Besselsen DG, Ghishan FK, Kiela PR. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis. PLoS One 2016; 11:e0152044. [PMID: 27050757 PMCID: PMC4822813 DOI: 10.1371/journal.pone.0152044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community.
Collapse
Affiliation(s)
- Daniel Laubitz
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Christy A. Harrison
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Monica T. Midura-Kiela
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Rajalakshmy Ramalingam
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Claire B. Larmonier
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - John H. Chase
- Department of Biological Sciences, Center for Microbial Genetics and Genomics at Northern Arizona University, Flagstaff, Arizona, United States of America
| | - J. Gregory Caporaso
- Department of Biological Sciences, Center for Microbial Genetics and Genomics at Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David G. Besselsen
- University Animal Care, University of Arizona, Tucson, Arizona, United States of America
| | - Fayez K. Ghishan
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Pawel R. Kiela
- Department of Pediatrics—Steele Children’s Research Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
23
|
β7-Integrin exacerbates experimental DSS-induced colitis in mice by directing inflammatory monocytes into the colon. Mucosal Immunol 2016; 9:527-38. [PMID: 26349655 PMCID: PMC4801899 DOI: 10.1038/mi.2015.82] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Leukocyte recruitment is pivotal for the initiation and perpetuation of inflammatory bowel disease (IBD) and controlled by the specificity and interactions of chemokines and adhesion molecules. Interactions of the adhesion molecules α4β7-integrin and mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) promote the accumulation of pathogenic T-cell populations in the inflamed intestine. We aimed to elucidate the significance of β7-integrin expression on innate immune cells for the pathogenesis of IBD. We demonstrate that β7-integrin deficiency protects recombination-activating gene-2 (RAG-2)-deficient mice from dextran sodium sulfate (DSS)-induced colitis and coincides with decreased numbers of colonic effector monocytes. We also show that β7-integrin is expressed on most CD11b(+)CD64(low)Ly6C(+) bone marrow progenitors and contributes to colonic recruitment of these proinflammatory monocytes. Importantly, adoptive transfer of CD115(+) wild-type (WT) monocytes partially restored the susceptibility of RAG-2/β7-integrin double-deficient mice to DSS-induced colitis, thereby demonstrating the functional importance of β7-integrin-expressing monocytes for the development of DSS colitis. We also reveal that genetic ablation of MAdCAM-1 ameliorates experimental colitis in RAG-2-deficient mice as well. In summary, we demonstrate a previously unknown role of α4β7-integrin-MAdCAM-1 interactions as drivers of colitis by directing inflammatory monocytes into the colon.
Collapse
|
24
|
Larmonier CB, Shehab KW, Laubitz D, Jamwal DR, Ghishan FK, Kiela PR. Transcriptional Reprogramming and Resistance to Colonic Mucosal Injury in Poly(ADP-ribose) Polymerase 1 (PARP1)-deficient Mice. J Biol Chem 2016; 291:8918-30. [PMID: 26912654 DOI: 10.1074/jbc.m116.714386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/23/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) synthesize and bind branched polymers of ADP-ribose to acceptor proteins using NAD as a substrate and participate in the control of gene transcription and DNA repair. PARP1, the most abundant isoform, regulates the expression of proinflammatory mediator cytokines, chemokines, and adhesion molecules, and inhibition of PARP1 enzymatic activity reduced or ameliorated autoimmune diseases in several experimental models, including colitis. However, the mechanism(s) underlying the protective effects of PARP1 inhibition in colitis and the cell types in which Parp1 deletion has the most significant impact are unknown. The objective of the current study was to determine the impact of Parp1 deletion on the innate immune response to mucosal injury and on the gut microbiome composition. Parp1 deficiency was evaluated in DSS-induced colitis in WT, Parp1(-/-), Rag2(-/-), and Rag2(-/-)×Parp1(-/-) double knock-out mice. Genome-wide analysis of the colonic transcriptome and fecal 16S amplicon profiling was performed. Compared with WT, we demonstrated that Parp1(-/-) were protected from dextran-sulfate sodium-induced colitis and that this protection was associated with a dramatic transcriptional reprogramming in the colon. PARP1 deficiency was also associated with a modulation of the colonic microbiota (increases relative abundance of Clostridia clusters IV and XIVa) and a concomitant increase in the frequency of mucosal CD4(+)CD25(+) Foxp3(+) regulatory T cells. The protective effects conferred by Parp1 deletion were lost in Rag2(-/-) × Parp1(-/-) mice, highlighting the role of the adaptive immune system for full protection.
Collapse
Affiliation(s)
- Claire B Larmonier
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Kareem W Shehab
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Daniel Laubitz
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Deepa R Jamwal
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Fayez K Ghishan
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Pawel R Kiela
- From the Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|
25
|
Kanai T, Mikami Y, Hayashi A. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J Gastroenterol 2015; 50:928-39. [PMID: 25940150 DOI: 10.1007/s00535-015-1084-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 02/04/2023]
Abstract
Intestinal immune homeostasis is regulated by gut microbiota, including beneficial and pathogenic microorganisms. Imbalance in gut bacterial constituents provokes host proinflammatory responses causing diseases such as inflammatory bowel disease (IBD). The development of next-generation sequencing technology allows the identification of microbiota alterations in IBD. Several studies have shown reduced diversity in the gut microbiota of patients with IBD. Advances in gnotobiotic technology have made possible analysis of the role of specific bacterial strains in immune cells in the intestine. Using these techniques, we have shown that Clostridium butyricum as a probiotic induces interleukin-10-producing macrophages in inflamed mucosa via the Toll-like receptor 2/myeloid differentiation primary response gene 88 pathway to prevent acute experimental colitis. In this review, we focus on the new approaches for the role of specific bacterial strains in immunological responses, as well as the potential of bacterial therapy for IBD treatments.
Collapse
Affiliation(s)
- Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan,
| | | | | |
Collapse
|
26
|
Asano K, Takahashi N, Ushiki M, Monya M, Aihara F, Kuboki E, Moriyama S, Iida M, Kitamura H, Qiu CH, Watanabe T, Tanaka M. Intestinal CD169(+) macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nat Commun 2015; 6:7802. [PMID: 26193821 PMCID: PMC4518321 DOI: 10.1038/ncomms8802] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
Lamina propria (LP) macrophages are constantly exposed to commensal bacteria, and are refractory to those antigens in an interleukin (IL)-10-dependent fashion. However, the mechanisms that discriminate hazardous invasion by bacteria from peaceful co-existence with them remain elusive. Here we show that CD169+ macrophages reside not at the villus tip, but at the bottom-end of the LP microenvironment. Following mucosal injury, the CD169+ macrophages recruit inflammatory monocytes by secreting CCL8. Selective depletion of CD169+ macrophages or administration of neutralizing anti-CCL8 antibody ameliorates the symptoms of experimentally induced colitis in mice. Collectively, we identify an LP-resident macrophage subset that links mucosal damage and inflammatory monocyte recruitment. Our results suggest that CD169+ macrophage-derived CCL8 serves as an emergency alert for the collapse of barrier defence, and is a promising target for the suppression of mucosal injury. Macrophages and dendritic cells residing in the lamina propria are involved in controlling mucosal immune balance. Here, the authors identify CD169+ macrophages as contributors to the inflammation of DSS colitis through their role in mediating the recruitment of monocytes by secreting the cytokine CCL8.
Collapse
Affiliation(s)
- Kenichi Asano
- 1] Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan [2] Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Naomichi Takahashi
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mikiko Ushiki
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Misa Monya
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumiaki Aihara
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Erika Kuboki
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shigetaka Moriyama
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mayumi Iida
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Chun-Hong Qiu
- Institute of Cell Biology, Shandong University School of Medicine, PO Box 73, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Takashi Watanabe
- Immunogenomics Laboratory, RIKEN Center for Integrated Medical Sciences, 1-7-22 Suehirocho, Tsurumi, Yokohama 227-0045, Japan
| | - Masato Tanaka
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
27
|
Abstract
BACKGROUND Although inflammation-induced expansion of the intestinal lymphatic vasculature (lymphangiogenesis) is known to be a crucial event in limiting inflammatory processes, through clearance of interstitial fluid and immune cells, considerably less is known about the impact of an impaired lymphatic clearance function (as seen in inflammatory bowel diseases) on this cascade. We aimed to investigate whether the impaired intestinal lymphatic drainage function observed in FoxC2 mice would influence the course of disease in a model of experimental colitis. METHODS Acute dextran sodium sulfate colitis was induced in wild-type and haploinsufficient FoxC2 mice, and survival, disease activity, colonic histopathological injury, neutrophil, T-cell, and macrophage infiltration were evaluated. Functional and structural changes in the intestinal lymphatic vessel network were analyzed, including submucosal edema, vessel morphology, and lymphatic vessel density. RESULTS We found that FoxC2 downregulation in FoxC2 mice significantly increased the severity and susceptibility to experimental colitis, as displayed by lower survival rates, increased disease activity, greater histopathological injury, and elevated colonic neutrophil, T-cell, and macrophage infiltration. These findings were accompanied by structural (dilated torturous lymphatic vessels) and functional (greater submucosal edema, higher immune cell burden) changes in the intestinal lymphatic vasculature. CONCLUSIONS These results indicate that sufficient lymphatic clearance plays a crucial role in limiting the initiation and perpetuation of experimental colitis and those disturbances in the integrity of the intestinal lymphatic vessel network could intensify intestinal inflammation. Future therapies might be able to exploit these processes to restore and maintain adequate lymphatic clearance function in inflammatory bowel disease.
Collapse
|
28
|
Anselmi L, Huynh J, Duraffourd C, Jaramillo I, Vegezzi G, Saccani F, Boschetti E, Brecha N, De Giorgio R, Sternini C. Activation of μ opioid receptors modulates inflammation in acute experimental colitis. Neurogastroenterol Motil 2015; 27:509-23. [PMID: 25690069 PMCID: PMC4405133 DOI: 10.1111/nmo.12521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 12/31/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND μ opioid receptors (μORs) are expressed by neurons and inflammatory cells, and mediate immune response. We tested whether activation of peripheral μORs ameliorates the acute and delayed phase of colitis. METHODS C57BL/6J mice were treated with 3% dextran sodium sulfate (DSS) in water, 5 days with or without the peripherally acting μOR agonist, [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or with DAMGO+μOR antagonist at day 2-5, then euthanized. Other mice received DSS followed by water for 4 weeks, or DSS with DAMGO starting at day 2 of DSS for 2 or 3 weeks followed by water, then euthanized at 4 weeks. Disease activity index (DAI), histological damage, and myeloperoxidase assay (MPO), as index of neutrophil infiltration, were evaluated. Cytokines and μOR mRNAs were measured with RT-PCR, and nuclear factor-kB (NF-kB), the antiapoptotic factor Bcl-xL, and caspase 3 and 7 with Western blot. KEY RESULTS DSS induced acute colitis with elevated DAI, tissue damage, apoptosis and increased MPO, cytokines, μOR mRNA, and NF-kB. DAMGO significantly reduced DAI, inflammatory indexes, cytokines, caspases, and NF-kB, and upregulated Bcl-xL, effects prevented by μOR antagonist. In DSS mice plus 4 weeks of water, DAI, NF-kB, and μOR were normal, whereas MPO, histological damage, and cytokines were still elevated; DAMGO did not reduce inflammation, and did not upregulate Bcl-xL. CONCLUSIONS & INFERENCES μOR activation ameliorated the acute but not the delayed phase of DSS colitis by reducing cytokines, likely through activation of the antiapoptotic factor, Bcl-xL, and suppression of NF-kB, a potentiator of inflammation.
Collapse
Affiliation(s)
- L. Anselmi
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA
| | - J. Huynh
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA
| | - C. Duraffourd
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Neurobiology, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA
| | - I. Jaramillo
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA
| | - G. Vegezzi
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA
| | - F Saccani
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA
| | - E. Boschetti
- Department of Medical and Surgical Sciences, Centro di Ricerca
Biomedica Applicata (C.R.B.A.), University of Bologna, Italy, St. Orsola-Malpighi Hospital,
Bologna, Italy
| | - N.C. Brecha
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Neurobiology, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA,Veteran Administration Greater Los Angeles Health System, Los
Angeles, California 90073, USA
| | - R. De Giorgio
- Department of Medical and Surgical Sciences, Centro di Ricerca
Biomedica Applicata (C.R.B.A.), University of Bologna, Italy, St. Orsola-Malpighi Hospital,
Bologna, Italy
| | - C Sternini
- CURE Digestive Diseases Research Center, Digestive Diseases
Division, David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Medicine, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA,Department of Neurobiology, University of California Los Angeles,
David Geffen School of Medicine, Los Angeles, California 90095, USA,Veteran Administration Greater Los Angeles Health System, Los
Angeles, California 90073, USA,Corresponding author: Catia Sternini, MD, CURE/DDRC,
Division of Digestive Diseases, David Geffen School of Medicine UCLA, 650 C. Young Dr.
South, CHS 44-146, Los Angeles, CA 90095, USA, ,
Tel:+1-310-825-6526
| |
Collapse
|
29
|
Song MY, Hong CP, Park SJ, Kim JH, Yang BG, Park Y, Kim SW, Kim KS, Lee JY, Lee SW, Jang MH, Sung YC. Protective effects of Fc-fused PD-L1 on two different animal models of colitis. Gut 2015; 64:260-71. [PMID: 24902766 DOI: 10.1136/gutjnl-2014-307311] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Programmed death-ligand 1 (PD-L1) has been shown to negatively regulate immune responses via its interaction with PD-1 receptor. In this study, we investigated the effects of PD-L1-Fc treatment on intestinal inflammation using two murine models of inflammatory colitis induced by dextran sulfate sodium (DSS) and T-cell transfer. DESIGN The anti-colitis effect of adenovirus expressing Fc-conjugated PD-L1 (Ad/PD-L1-Fc) and recombinant PD-L1-Fc protein was evaluated in DSS-treated wild-type and Rag-1 knockout (KO) mice. We examined differentiation of T-helper cells, frequency of innate immune cells, and cytokine production by dendritic cells (DCs) in the colon from DSS-treated mice after PD-L1-Fc administration. In Rag-1 KO mice reconstituted with CD4 CD45RB(high) T cells, we assessed the treatment effect of PD-L1-Fc protein on the development of colitis. RESULTS Administration of Ad/PD-L1-Fc significantly ameliorated DSS-induced colitis, which was accompanied by diminished frequency of interleukin (IL)-17A-producing CD4 T cells and increased interferon-γ-producing CD4 T cells in the colon of DSS-fed mice. The anti-colitic effect of PD-L1-Fc treatment was also observed in DSS-treated Rag-1 KO mice, indicating lymphoid cell independency. PD-L1-Fc modulated cytokine production by colonic DCs and the effect was dependent on PD-1 expression. Furthermore, PD-L1-Fc protein could significantly reduce the severity of colitis in CD4 CD45RB(high) T-cell-transferred Rag-1 KO mice. CONCLUSIONS Based on the protective effect of PD-L1-Fc against DSS-induced and T-cell-induced colitis, our results suggest that PD-1-mediated inhibitory signals have a crucial role in limiting the development of colonic inflammation. This implicates that PD-L1-Fc may provide a novel therapeutic approach to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Mi-Young Song
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chun-Pyo Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
| | - Seong Jeong Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jung-Hwan Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
| | - Bo-Gie Yang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sae Won Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
| | - Ji Yeung Lee
- Research Institute, Genexine Co., Seongnam, Republic of Korea
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Myoung Ho Jang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
| | - Young-Chul Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea Research Institute, Genexine Co., Seongnam, Republic of Korea
| |
Collapse
|
30
|
Bär F, Föh B, Pagel R, Schröder T, Schlichting H, Hirose M, Lemcke S, Klinger A, König P, Karsten CM, Büning J, Lehnert H, Fellermann K, Ibrahim SM, Sina C. Carboxypeptidase E modulates intestinal immune homeostasis and protects against experimental colitis in mice. PLoS One 2014; 9:e102347. [PMID: 25051500 PMCID: PMC4106776 DOI: 10.1371/journal.pone.0102347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022] Open
Abstract
Enteroendocrine cells (EEC) produce neuropeptides, which are crucially involved in the maintenance of the intestinal barrier. Hence, EEC dysfunction is suggested to be involved in the complex pathophysiology of inflammatory bowel disease (IBD), which is characterized by decreased intestinal barrier function. However, the underlying mechanisms for EEC dysfunction are not clear and suitable models for a better understanding are lacking. Here, we demonstrate that Carboxypeptidase E (CPE) is specifically expressed in EEC of the murine colon and ileum and that its deficiency is associated with reduced intestinal levels of Neuropeptide Y (NPY) and Peptide YY (PYY), which are both produced by EEC. Moreover, cpe−/− mice exhibit an aggravated course of DSS-induced chronic colitis compared to wildtype littermates. In addition, we observed elevated mucosal IL-6 and KC transcript levels already at baseline conditions in cpe−/− mice. Moreover, supernatants obtained from isolated intestinal crypts of cpe−/− mice lead to increased IL-6 and KC expression in MODE-K cells in the presence of LPS. This effect was reversible by co-administration of recombinant NPY, suggesting a CPE mediated immunosuppressive effect in the intestines by influencing the processing of specific neuropeptides. In this context, the chemotaxis of bone marrow derived macrophages towards respective supernatants was enhanced. In conclusion, our data point to an anti-inflammatory role of CPE in the intestine by influencing local cytokine levels and thus regulating the migration of myeloid immune cells into the mucosa. These findings highlight the importance of EEC for intestinal homeostasis and propose EEC as potential therapeutic targets in IBD.
Collapse
Affiliation(s)
- Florian Bär
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Bandik Föh
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - René Pagel
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Torsten Schröder
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Heidi Schlichting
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Misa Hirose
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Lemcke
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Antje Klinger
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jürgen Büning
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Hendrik Lehnert
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Klaus Fellermann
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Saleh M. Ibrahim
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
- * E-mail:
| |
Collapse
|
31
|
Targeted inhibition of heat shock protein 90 suppresses tumor necrosis factor-α and ameliorates murine intestinal inflammation. Inflamm Bowel Dis 2014; 20:685-94. [PMID: 24552830 PMCID: PMC4418437 DOI: 10.1097/01.mib.0000442839.28664.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases are chronic intestinal inflammatory diseases thought to reflect a dysregulated immune response. Although antibody-based inhibition of tumor necrosis factor-α (TNF-α) has provided relief to many inflammatory bowel diseases patients, these therapies are either ineffective in a patient subset or lose their efficacy over time, leaving an unmet need for alternatives. Given the critical role of the heat shock response in regulating inflammation, this study proposed to define the impact of selective inhibition of heat shock protein 90 (HSP90) on intestinal inflammation. Using multiple preclinical mouse models of inflammatory bowel diseases, we demonstrate a potent anti-inflammatory effect of selective inhibition of the HSP90 C-terminal ATPase using the compound novobiocin. Novobiocin-attenuated dextran sulfate sodium-induced colitis and CD45RB adoptive-transfer colitis through the suppression of inflammatory cytokine secretion, including TNF-α. In vitro assays demonstrate that CD4 T cells treated with novobiocin produced significantly less TNF-α measured by intracellular cytokine staining and by enzyme-linked immunosorbent assay. This corresponded to significantly decreased nuclear p65 translocation by Western blot and a decrease in nuclear factor-κB luciferase activity in Jurkat T cells. Finally, to verify the anti-TNF action of novobiocin, 20-week-old TNFΔ mice were treated for 2 weeks with subcutaneous administration of novobiocin. This model has high levels of circulating TNF-α and exhibits spontaneous transmural segmental ileitis. Novobiocin treatment significantly reduced inflammatory cell infiltrate in the ileal lamina propria. HSP90 inhibition with novobiocin offers a novel method of inflammatory cytokine suppression without potential for the development of tolerance that limits current antibody-based methods.
Collapse
|
32
|
Matsuo S, Yang WL, Aziz M, Kameoka S, Wang P. Fatty acid synthase inhibitor C75 ameliorates experimental colitis. Mol Med 2014; 20:1-9. [PMID: 24306512 DOI: 10.2119/molmed.2013.00113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022] Open
Abstract
Abnormalities of lipid metabolism through overexpression of fatty acid synthase (FASN), which catalyzes the formation of long-chain fatty acids, are associated with the development of inflammatory bowel disease (IBD). C75 is a synthetic α-methylene-γ-butyrolactone compound that inhibits FASN activity. We hypothesized that C75 treatment could effectively reduce the severity of experimental colitis. Male C57BL/6 mice were fed 4% dextran sodium sulfate (DSS) for 7 d. C75 (5 mg/kg body weight) or dimethyl sulfoxide (DMSO) (vehicle) was administered intraperitoneally from d 2 to 6. Clinical parameters were monitored daily. Mice were euthanized on d 8 for histological evaluation and measurements of colon length, chemokine, cytokine and inflammatory mediator expression. C75 significantly reduced body weight loss from 23% to 15% on d 8, compared with the vehicle group. The fecal bleeding, diarrhea and colon histological damage scores in the C75-treated group were significantly lower than scores in the vehicle animals. Colon shortening was significantly improved after C75 treatment. C75 protected colon tissues from DSS-induced apoptosis by inhibiting caspase-3 activity. Macrophage inflammatory protein 2, keratinocyte-derived chemokine, myeloperoxidase activity and proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β and IL-6) in the colon were significantly downregulated in the C75-treated group, compared with the vehicle group. Treatment with C75 in colitis mice inhibited the elevation of FASN, cyclooxygenase-2 and inducible nitric oxide synthase expression as well as IκB degradation in colon tissues. C75 administration alleviates the severity of colon damage and inhibits the activation of inflammatory pathways in DSS-induced colitis. Thus, inhibition of FASN may represent an attractive therapeutic potential for treating IBD.
Collapse
Affiliation(s)
- Shingo Matsuo
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America Department of Surgery II, Tokyo Women's Medical University, Tokyo, Japan
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Monowar Aziz
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Shingo Kameoka
- Department of Surgery II, Tokyo Women's Medical University, Tokyo, Japan
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-Long Island Jewish School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
33
|
Abstract
Animal models of human disease are a critical tool in both basic research and drug development. The results of preclinical efficacy studies often inform progression of therapeutic candidates through the drug development pipeline; however, the extent to which results in inflammatory bowel disease (IBD) models predict human drug response is an ongoing concern. This review discusses how murine models are currently being used in IBD research. We focus on the considerations and caveats for commonly used models in preclinical efficacy studies and discuss the value of models that utilize specific pathogenic pathways of interest rather than model all aspects of human disease.
Collapse
Affiliation(s)
- Jason DeVoss
- Department of Immunology, Genentech, Inc., San Francisco, California, USA
| | - Lauri Diehl
- Department of Pathology, Genentech, Inc., San Francisco, California, USA
| |
Collapse
|
34
|
Singh K, Coburn LA, Barry DP, Asim M, Scull BP, Allaman MM, Lewis ND, Washington MK, Rosen MJ, Williams CS, Chaturvedi R, Wilson KT. Deletion of cationic amino acid transporter 2 exacerbates dextran sulfate sodium colitis and leads to an IL-17-predominant T cell response. Am J Physiol Gastrointest Liver Physiol 2013; 305:G225-40. [PMID: 23703655 PMCID: PMC3742860 DOI: 10.1152/ajpgi.00091.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
L-Arginine (L-Arg) is a semiessential amino acid that has altered availability in human ulcerative colitis (UC), a form of inflammatory bowel disease, and is beneficial in murine colitis induced by dextran sulfate sodium (DSS), a model with similarity to UC. We assessed the role of cationic amino acid transporter 2 (CAT2), the inducible transporter of L-Arg, in DSS colitis. Expression of CAT2 was upregulated in tissues from colitic mice and localized predominantly to colonic macrophages. CAT2-deficient (CAT2-/-) mice exposed to DSS exhibited worsening of survival, body weight loss, colon weight, and histological injury. These effects were associated with increased serum L-Arg and decreased tissue L-Arg uptake and inducible nitric oxide synthase protein expression. Clinical benefits of L-Arg supplementation in wild-type mice were lost in CAT2-/- mice. There was increased infiltration of macrophages, dendritic cells, granulocytes, and T cells in colitic CAT2-/- compared with wild-type mice. Cytokine profiling revealed increases in proinflammatory granulocyte colony-stimulating factor, macrophage inflammatory protein-1α, IL-15, and regulated and normal T cell-expressed and -secreted and a shift from an IFN-γ- to an IL-17-predominant T cell response, as well as an increase in IL-13, in tissues from colitic CAT2-/- mice. However, there were no increases in other T helper cell type 2 cytokines, nor was there a global increase in macrophage-derived proinflammatory cytokines. The increase in IL-17 derived from both CD4 and γδ T cells and was associated with colonic IL-6 expression. Thus CAT2 plays an important role in controlling inflammation and IL-17 activation in an injury model of colitis, and impaired L-Arg availability may contribute to UC pathogenesis.
Collapse
Affiliation(s)
- Kshipra Singh
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Lori A. Coburn
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Daniel P. Barry
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Mohammad Asim
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Brooks P. Scull
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Margaret M. Allaman
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nuruddeen D. Lewis
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - M. Kay Washington
- 3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Michael J. Rosen
- 4Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Christopher S. Williams
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Rupesh Chaturvedi
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Keith T. Wilson
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
35
|
Osborne LC, Joyce KL, Alenghat T, Sonnenberg GF, Giacomin PR, Du Y, Bergstrom KS, Vallance BA, Nair MG. Resistin-like molecule α promotes pathogenic Th17 cell responses and bacterial-induced intestinal inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2292-300. [PMID: 23355735 PMCID: PMC3601830 DOI: 10.4049/jimmunol.1200706] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Resistin-like molecule (RELM)α belongs to a family of secreted mammalian proteins that have putative immunomodulatory functions. Recent studies have identified a pathogenic role for RELMα in chemically induced colitis through effects on innate cell populations. However, whether RELMα regulates intestinal adaptive immunity to enteric pathogens is unknown. In this study, we employed Citrobacter rodentium as a physiologic model of pathogenic Escherichia coli-induced diarrheal disease, colitis, and Th17 cell responses. In response to Citrobacter, RELMα expression was induced in intestinal epithelial cells, infiltrating macrophages, and eosinophils of the infected colons. Citrobacter-infected RELMα(-/-) mice exhibited reduced infection-induced intestinal inflammation, characterized by decreased leukocyte recruitment to the colons and reduced immune cell activation compared with wild-type (WT) mice. Interestingly, Citrobacter colonization and clearance were unaffected in RELMα(-/-) mice, suggesting that the immune stimulatory effects of RELMα following Citrobacter infection were pathologic rather than host-protective. Furthermore, infected RELMα(-/-) mice exhibited decreased CD4(+) T cell expression of the proinflammatory cytokine IL-17A. To directly test whether RELMα promoted Citrobacter-induced intestinal inflammation via IL-17A, infected WT and IL-17A(-/-) mice were treated with rRELMα. RELMα treatment of Citrobacter-infected WT mice exacerbated intestinal inflammation and IL-17A expression whereas IL-17A(-/-) mice were protected from RELMα-induced intestinal inflammation. Finally, infected RELMα(-/-) mice exhibited reduced levels of serum IL-23p19 compared with WT mice, and RELMα(-/-) peritoneal macrophages showed deficient IL-23p19 induction. Taken together, these data identify a proinflammatory role for RELMα in bacterial-induced colitis and suggest that the IL-23/Th17 axis is a critical mediator of RELMα-induced inflammation.
Collapse
Affiliation(s)
- Lisa C. Osborne
- Institute of Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Karen L. Joyce
- Institute of Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa Alenghat
- Institute of Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory F. Sonnenberg
- Institute of Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul R. Giacomin
- Institute of Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yurong Du
- Institute of Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kirk S. Bergstrom
- Child and Family Institute, University of British Columbia, Vancouver, BC
| | - Bruce A. Vallance
- Child and Family Institute, University of British Columbia, Vancouver, BC
| | - Meera G. Nair
- Institute of Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA
| |
Collapse
|
36
|
Oehlers SH, Flores MV, Hall CJ, Okuda KS, Sison JO, Crosier KE, Crosier PS. Chemically induced intestinal damage models in zebrafish larvae. Zebrafish 2013; 10:184-93. [PMID: 23448252 DOI: 10.1089/zeb.2012.0824] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.
Collapse
Affiliation(s)
- Stefan H Oehlers
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
37
|
Yao Y, Han W, Liang J, Ji J, Wang J, Cantor H, Lu L. Glatiramer acetate ameliorates inflammatory bowel disease in mice through the induction of Qa-1-restricted CD8⁺ regulatory cells. Eur J Immunol 2012; 43:125-36. [PMID: 23002042 DOI: 10.1002/eji.201242758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/17/2012] [Accepted: 09/18/2012] [Indexed: 01/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) are complex multifactorial immunological disorders characterized by dysregulated immune reactivity in the intestine. Here, we investigated the contribution of Qa-1-restricted CD8(+) Treg cells in regulating experimental IBD in mice. We found that CD8(+) T cells induced by T-cell vaccination ameliorated the pathological manifestations of dextran sulfate sodium induced IBD when adoptively transferred into IBD mice. In addition, CD8(+) cell suppressive activity was induced by vaccination with glatiramer acetate (GA), an FDA-approved drug for multiple sclerosis (MS). We next showed that GA-induced CD8(+) Treg cells worked in a Qa-1-dependent manner and their suppressive activity depends on perforin-mediated cytotoxicity. Finally, we confirmed the role of CD4(+) T cells in dextran sulfate sodium induced colitis progression, and clarified that GA-induced CD8(+) T cells exerted their therapeutic effects on colitis by targeting pathogenic CD4(+) T cells. Our results reveal a new regulatory role of Qa-1-restricted CD8(+) Treg cells in IBD and suggest their induction by GA vaccination as a potential therapeutic approach to IBD.
Collapse
Affiliation(s)
- Yunliang Yao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, P R China
| | | | | | | | | | | | | |
Collapse
|
38
|
Frantz AL, Bruno ME, Rogier EW, Tuna H, Cohen DA, Bondada S, Chelvarajan RL, Brandon JA, Jennings CD, Kaetzel CS. Multifactorial patterns of gene expression in colonic epithelial cells predict disease phenotypes in experimental colitis. Inflamm Bowel Dis 2012; 18:2138-48. [PMID: 23070952 PMCID: PMC3476470 DOI: 10.1002/ibd.22923] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/27/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND The pathogenesis of inflammatory bowel disease (IBD) is complex and the need to identify molecular biomarkers is critical. Epithelial cells play a central role in maintaining intestinal homeostasis. We previously identified five "signature" biomarkers in colonic epithelial cells (CEC) that are predictive of disease phenotype in Crohn's disease. Here we investigate the ability of CEC biomarkers to define the mechanism and severity of intestinal inflammation. METHODS We analyzed the expression of RelA, A20, pIgR, tumor necrosis factor (TNF), and macrophage inflammatory protein (MIP)-2 in CEC of mice with dextran sodium sulfate (DSS) acute colitis or T-cell-mediated chronic colitis. Factor analysis was used to combine the five biomarkers into two multifactorial principal components (PCs). PC scores for individual mice were correlated with disease severity. RESULTS For both colitis models, PC1 was strongly weighted toward RelA, A20, and pIgR, and PC2 was strongly weighted toward TNF and MIP-2, while the contributions of other biomarkers varied depending on the etiology of inflammation. Disease severity was correlated with elevated PC2 scores in DSS colitis and reduced PC1 scores in T-cell transfer colitis. Downregulation of pIgR was a common feature observed in both colitis models and was associated with altered cellular localization of pIgR and failure to transport IgA. CONCLUSIONS A multifactorial analysis of epithelial gene expression may be more informative than examining single gene responses in IBD. These results provide insight into the homeostatic and proinflammatory functions of CEC in IBD pathogenesis and suggest that biomarker analysis could be useful for evaluating therapeutic options for IBD patients.
Collapse
Affiliation(s)
- Aubrey L. Frantz
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Maria E.C. Bruno
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Eric W. Rogier
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Halide Tuna
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Donald A. Cohen
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - R. Lakshman Chelvarajan
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - J. Anthony Brandon
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - C. Darrell Jennings
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte S. Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
39
|
Powell N, Walker AW, Stolarczyk E, Canavan JB, Gökmen MR, Marks E, Jackson I, Hashim A, Curtis MA, Jenner RG, Howard JK, Parkhill J, MacDonald TT, Lord GM. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012; 37:674-84. [PMID: 23063332 PMCID: PMC3540260 DOI: 10.1016/j.immuni.2012.09.008] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 07/02/2012] [Indexed: 01/06/2023]
Abstract
Mice lacking the transcription factor T-bet in the innate immune system develop microbiota-dependent colitis. Here, we show that interleukin-17A (IL-17A)-producing IL-7Rα(+) innate lymphoid cells (ILCs) were potent promoters of disease in Tbx21(-/-)Rag2(-/-) ulcerative colitis (TRUC) mice. TNF-α produced by CD103(-)CD11b(+) dendritic cells synergized with IL-23 to drive IL-17A production by ILCs, demonstrating a previously unrecognized layer of cellular crosstalk between dendritic cells and ILCs. We have identified Helicobacter typhlonius as a key disease trigger driving excess TNF-α production and promoting colitis in TRUC mice. Crucially, T-bet also suppressed the expression of IL-7R, a key molecule involved in controlling intestinal ILC homeostasis. The importance of IL-7R signaling in TRUC disease was highlighted by the dramatic reduction in intestinal ILCs and attenuated colitis following IL-7R blockade. Taken together, these data demonstrate the mechanism by which T-bet regulates the complex interplay between mucosal dendritic cells, ILCs, and the intestinal microbiota.
Collapse
Affiliation(s)
- Nick Powell
- Department of Experimental Immunobiology, Division of Transplantation Immunology and Mucosal Biology, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ustyugova IV, Zhi L, Abramowitz J, Birnbaumer L, Wu MX. IEX-1 deficiency protects against colonic cancer. Mol Cancer Res 2012; 10:760-7. [PMID: 22550081 DOI: 10.1158/1541-7786.mcr-11-0556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The immediate early response gene X-1 (IEX-1) is involved in regulation of various cellular processes including proliferation, apoptosis in part by controlling homeostasis of reactive oxygen species (ROS) at mitochondria. The present study shows reduced inflammatory responses and colorectal cancer in IEX-1 knockout (KO) mice treated with azoxymethane/dextran sulfate sodium (DSS). However, DSS induced worse colitis in RAG(-/-)IEX-1(-/-) double KO mice than in RAG and IEX-1 single KO mice, underscoring an importance of T cells in IEX-1 deficiency-induced protection against colon inflammation. Lack of IEX-1 promoted the differentiation of interleukin (IL)-17-producing T cells, concomitant with upregulation of Gαi2 expression, a gene that is well-documented for its role in the control of inflammation in the colon. In accordance with this, T-helper 17 (T(H)17) cell differentiation was compromised in the absence of Gαi2, and deletion of Gαi2 in T cells alone aggravated colon inflammation and colorectal cancer development after azoxymethane/DSS treatment. Null mutation of IEX-1 also enhanced both proliferation and apoptosis of intestinal epithelial cells (IEC) after injury. A potential impact of this altered IEC turnover on colon inflammation and cancer development is discussed. These observations provide a linkage of IEX-1 and Gαi2 expression in the regulation of T(H)17 cell differentiation and suggest a previously unappreciated role for IEX-1 in the control of colon epithelial homeostasis.
Collapse
Affiliation(s)
- Irina V Ustyugova
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
41
|
Sydora BC, Albert EJ, Foshaug RR, Doyle JSG, Churchill TA, Fedorak RN. Intravenous injection of endogenous microbial components abrogates DSS-induced colitis. Dig Dis Sci 2012; 57:345-54. [PMID: 21881971 DOI: 10.1007/s10620-011-1878-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 08/16/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND The etiology of inflammatory bowel diseases (IBD) is largely unknown, but appears to be perpetuated by uncontrolled responses to antigenic components of the endogenous flora. Tolerance to antigenic stimulation can be achieved by exposure to a given antigen in high amounts (high dose tolerance). Colitis induced by feeding of Dextran Sodium Sulfate (DSS) is an often-used animal model mimicking clinical and histological features of human IBD. AIMS We investigated whether treatment with high doses of endogenous bacterial components can affect the response to these antigenic components and thus impact the course of the inflammatory response induced by DSS. METHODS 129/SvEv mice were injected intravenously in the tail vein with lysates prepared from fecal material of conventionally-raised mice. Control mice received a solution of bacterial antigen-free lysates prepared from fecal material of germ-free mice. Seven days later, colitis was induced in these mice by introducing DSS (3.5%) in the drinking water for 5 days. Onset and course of the inflammatory response was monitored by assessment of weight loss. Mice were sacrificed at day 7 post colitis induction and tested for histopathologic injury, intestinal cytokine release, and systemic response to bacterial antigens. RESULTS Intravenous injection with fecal lysates reduced intestinal and antigen-stimulated systemic pro-inflammatory cytokine release and prevented DSS-induced weight loss and intestinal injury. CONCLUSION Pretreatment with high amount of endogenous bacterial components has a profound tolerogenic effect on the systemic and mucosal immune responses resulting in reduced intestinal inflammation and abrogates colitis-induced weight loss.
Collapse
Affiliation(s)
- Beate C Sydora
- Division of Gastroenterology, Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Chen GY, Núñez G. Inflammasomes in intestinal inflammation and cancer. Gastroenterology 2011; 141:1986-99. [PMID: 22005480 PMCID: PMC3442608 DOI: 10.1053/j.gastro.2011.10.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 02/08/2023]
Abstract
Inflammasomes are multi-protein complexes that mediate activation of caspase-1, which promotes secretion of the proinflammatory cytokines interleukin-1β and interleukin-18 and pyroptosis, a form of phagocyte cell death induced by bacterial pathogens. Members of the Nod-like receptor family (including Nlrp1, Nlrp3, and Nlrc4), the DNA sensor Aim2, the adaptor apoptosis-associated speck-like protein (ASC), and pro-caspase-1 are important components of inflammasomes. Stimulation with specific microbial and endogenous molecules leads to inflammasome assembly and caspase-1 activation. Inflammasomes are believed to mediate host defense against microbial pathogens and tissue homeostasis within the intestine, and their dysregulation might contribute to inflammatory diseases and intestinal cancer. Improving our understanding of inflammasome signaling pathways could provide insights into the pathogenesis of many gastrointestinal disorders and the development of therapeutic targets and approaches to treat diseases such as inflammatory bowel diseases and gastrointestinal cancers.
Collapse
Affiliation(s)
- Grace Y. Chen
- Division of Hematology and Oncology, Department of Internal Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Gabriel Núñez
- Department of Pathology, and Comprehensive Cancer Center, University of Michigan, MI 48109
| |
Collapse
|
43
|
Pils MC, Bleich A, Prinz I, Fasnacht N, Bollati-Fogolin M, Schippers A, Rozell B, Müller W. Commensal gut flora reduces susceptibility to experimentally induced colitis via T-cell-derived interleukin-10. Inflamm Bowel Dis 2011; 17:2038-46. [PMID: 21182023 DOI: 10.1002/ibd.21587] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/27/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regulatory cytokines are well known to modify experimental colitis in mice. The aim of this study was to elucidate the effect of interleukin (IL)-10 derived from different cellular sources and the effect of commensal gut flora in dextran sulfate sodium (DSS)-induced colitis in mice. METHODS Wildtype (WT) and IL-10 deficient (IL-10(-/-) ) mice either harboring a characterized specific pathogen-free (SPF) gut flora or germfree were exposed to 2% DSS. Moreover, cell type-specific IL-10, IL-4, and IL-12 knockout mice and animals combining the T-cell-specific IL-10 knockout with a deficiency in IL-12 or IL-4 were exposed to DSS. RESULTS SPF IL-10(-/-) mice showed an increased susceptibility to DSS-induced colitis compared to WT mice determined by histopathology and proinflammatory cytokine and chemokine responses. Under germfree conditions, both WT and IL-10(-/-) mice were highly susceptible to DSS. IL-10 mRNA was increased upon DSS exposure in WT SPF but not in germfree mice. Mice carrying a specific deletion of IL-10 in T-cells exhibited a tendency towards an enhanced susceptibility to DSS. The lack of T-cell-derived IL-10 in combination with the lack of IL-4 increased the susceptibility to DSS colitis, as did the lack of IL-12 alone. CONCLUSIONS IL-10 is a crucial factor inhibiting the innate proinflammatory immune response induced by DSS. Intestinal bacteria are necessary for the induction of protective IL-10, which is mainly T-cell-derived. T-cell-derived IL-10 can only mediate its protective effect in a Th1-dominated milieu. If the balance is shifted towards a Th2 response, IL-10 is not protective.
Collapse
Affiliation(s)
- Marina C Pils
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chaniotou Z, Giannogonas P, Theoharis S, Teli T, Gay J, Savidge T, Koutmani Y, Brugni J, Kokkotou E, Pothoulakis C, Karalis KP. Corticotropin-releasing factor regulates TLR4 expression in the colon and protects mice from colitis. Gastroenterology 2010; 139:2083-92. [PMID: 20732324 DOI: 10.1053/j.gastro.2010.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 07/09/2010] [Accepted: 08/12/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Defects in the colonic innate immune response have been associated with inflammatory bowel disease (IBD). Corticotropin-releasing hormone (CRH, or corticotropin-releasing factor [CRF]) is a neuropeptide that mediates the stress response in humans, is an immunomodulatory factor with proinflammatory effects, and regulates transcription of Toll-like receptors (TLR)-2 and TLR4. We investigated the role of CRF in an innate immunity-dependent mouse model of IBD. METHODS Crh(-/-) and wild-type (Crh(+/+)) mice, which are glucocorticoid insufficient, were given dextran sodium sulfate in their drinking water to induce colitis; in some experiments, mice were also given glucocorticoids. Phenotypes of mice were compared; tissues were analyzed by histology and for expression of immune mediators. RESULTS Crh(-/-) mice had more colonic inflammation than Crh(+/+) mice, characterized by reduced numbers of crypts and severe epithelial damage and ulcerations. Colonic tissue levels of the proinflammatory factors interleukin-12 and prostaglandin E(2) were increased in the Crh(-/-) mice. Colons of Crh(-/-) mice expressed lower levels of Tlr4 than wild-type mice before, but not after, colitis was induced. Administration of glucocorticoid at low levels did not prevent Crh(-/-) mice from developing severe colitis. Crh(-/-) mice were unable to recover from acute colitis, as indicated by their increased death rate. CONCLUSIONS Mice deficient in CRF down-regulate TLR4 and are more susceptible to dextran sodium sulfate-induced colitis. CRF has anti-inflammatory effects in innate immunity-dependent colitis and its recovery phase; these are independent of glucocorticoid administration. CRF might therefore be developed as a therapeutic target for patients with IBD.
Collapse
Affiliation(s)
- Zoi Chaniotou
- Developmental Biology Section, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Márquez L, Pérez-Nievas BG, Gárate I, García-Bueno B, Madrigal JLM, Menchén L, Garrido G, Leza JC. Anti-inflammatory effects of Mangifera indica L. extract in a model of colitis. World J Gastroenterol 2010; 16:4922-31. [PMID: 20954278 PMCID: PMC2957600 DOI: 10.3748/wjg.v16.i39.4922] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of aqueous extract from Mangifera indica L. (MIE) on dextran sulfate sodium (DSS)-induced colitis in rats.
METHODS: MIE (150 mg/kg) was administered in two different protocols: (1) rectally, over 7 d at the same time as DSS administration; and (2) once daily over 14 d (by oral gavage, 7 d before starting DSS, and rectally for 7 d during DSS administration). General observations of clinical signs were performed. Anti-inflammatory activity of MIE was assessed by myeloperoxidase (MPO) activity. Colonic lipid peroxidation was determined by measuring the levels of thiobarbituric acid reactive substances (TBARS). Reduced glutathione (GSH) levels, expression of inflammatory related mediators [inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, respectively] and cytokines [tumor necrosis factor (TNF)-α and TNF receptors 1 and 2] in colonic tissue were also assessed. Interleukin (IL)-6 and TNF-α serum levels were also measured.
RESULTS: The results demonstrated that MIE has anti-inflammatory properties by improvement of clinical signs, reduction of ulceration and reduced MPO activity when administered before DSS. In addition, administration of MIE for 14 d resulted in an increase in GSH and reduction of TBARS levels and iNOS, COX-2, TNF-α and TNF R-2 expression in colonic tissue, and a decrease in IL-6 and TNF-α serum levels.
CONCLUSION: MIE has anti-inflammatory activity in a DSS-induced rat colitis model and preventive administration (prior to DSS) seems to be a more effective protocol.
Collapse
|
46
|
Beck PL, Ihara E, Hirota SA, MacDonald JA, Meng D, Nanthakumar NN, Podolsky DK, Xavier RJ. Exploring the interplay of barrier function and leukocyte recruitment in intestinal inflammation by targeting fucosyltransferase VII and trefoil factor 3. Am J Physiol Gastrointest Liver Physiol 2010; 299:G43-53. [PMID: 20299601 PMCID: PMC2904110 DOI: 10.1152/ajpgi.00228.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal mucosal integrity is dependent on epithelial function and a regulated immune response to injury. Fucosyltransferase VII (Fuc-TVII) is an essential enzyme required for the expression of the functional ligand for E- and P-selectin. Trefoil factor 3 (TFF3) is involved in both protecting the intestinal epithelium against injury as well as aiding in wound repair following injury. The aim of the present study was to assess the interplay between barrier function and leukocyte recruitment in intestinal inflammation. More specifically, we aimed to examine how targeted disruption of Fuc-TVII either in wild-type or TFF3(-/-) mice would alter their susceptibility to colonic injury. TFF3 and Fuc-TVII double-knockout mice (TFF3/Fuc-TVII(-/-) mice) were generated by mating TFF3(-/-) and Fuc-TVII(-/-) mice. Colitis was induced by administration of dextran sodium sulfate (DSS) (2.5% wt/vol) in the drinking water. Changes in baseline body weight, diarrhea, and fecal blood were assessed daily. Upon euthanasia, extents of colonic inflammation were assessed macroscopically, microscopically, and through quantification of myeloperoxidase (MPO) activity. Colonic lymphocyte subpopulations were assessed at 6 days after administration of DSS by flow cytometry and immunohistochemistry. No baseline intestinal inflammation was found in TFF3/Fuc-TVII(-/-), TFF3(-/-), Fuc-TVII(-/-), or wild-type mice. Loss of Fuc-TVII resulted in a reduction in disease severity whereas TFF3(-/-) mice were markedly more susceptible to DSS-induced colitis. Remarkably, the loss of Fuc-TVII in TFF3(-/-) mice markedly decreased the severity of DSS-induced colitis as evidenced by reduced weight loss, diarrhea, decreased colonic MPO levels and improved survival. Furthermore, the loss of TFF3 resulted in increased severity of spontaneous colitis in IL-2/beta-microglobulin-deficient mice. These studies highlight the importance of the interplay between factors involved in the innate immune response, mucosal barrier function, and genes involved in regulating leukocyte recruitment and other aspects of the immune response.
Collapse
Affiliation(s)
- P. L. Beck
- 1Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada;
| | - E. Ihara
- 1Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada;
| | - S. A. Hirota
- 1Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada;
| | - J. A. MacDonald
- 1Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada;
| | - D. Meng
- 3Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; and
| | - N. N. Nanthakumar
- 3Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; and
| | - D. K. Podolsky
- 4University of Texas, Southwestern Medical Center, Dallas, Texas
| | - R. J. Xavier
- 2Gastrointestinal Unit and Center for Study of Inflammatory Bowel Disease;
| |
Collapse
|
47
|
Onyeagocha C, Hossain MS, Kumar A, Jones RM, Roback J, Gewirtz AT. Latent cytomegalovirus infection exacerbates experimental colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2034-42. [PMID: 19815702 DOI: 10.2353/ajpath.2009.090471] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammatory bowel disease (IBD) severity is positively correlated with cytomegalovirus (CMV) infection. This may reflect CMV triggering and/or exacerbating flares of IBD and/or IBD or immunosuppressive drugs administered to patients with IBD increasing susceptibility to CMV infection. Herein, we performed studies in mice to investigate these possibilities. Mice administered murine CMV (MCMV) developed signs of acute viral infection (malaise and weight loss) and had MCMV loads that were readily detected in numerous organs including the intestine. By 4 weeks, these mice manifested a "latent" infection in which MCMV levels were low but detectable by PCR. Such MCMV infection did not induce acute colitis in either wild-type mice or IL-10(-/-) mice, which are highly prone to developing colitis. However, underlying MCMV infection in an acute or latent state exacerbated the severity of colitis induced by dextran sodium sulfate (DSS). Such potentiation of DSS colitis by latent MCMV infection seemed to occur without viral reactivation. Whereas initial MCMV infection induced acute alterations in serum and intestinal cytokines, such cytokine levels returned to baseline before administration of DSS. However, the initial infection resulted in lasting elevation of antibodies to commensal bacterial antigens, suggesting that MCMV infection may have potentiated colitis via priming of the intestinal immune response to gut microbiota. Thus, underlying CMV infection can alter mucosal immunity, potentially increasing the tendency of CMV-infected hosts to develop colitis.
Collapse
|
48
|
Sagiv Y, Kaminitz A, Lorberboum-Galski H, Askenasy N, Yarkoni S. A Fusion Protein Composed of IL-2 and Caspase-3 Ameliorates the Outcome of Experimental Inflammatory Colitis. Ann N Y Acad Sci 2009; 1173:791-7. [DOI: 10.1111/j.1749-6632.2009.04877.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Troy AE, Zaph C, Du Y, Taylor BC, Guild KJ, Hunter CA, Saris CJM, Artis D. IL-27 regulates homeostasis of the intestinal CD4+ effector T cell pool and limits intestinal inflammation in a murine model of colitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:2037-44. [PMID: 19596985 DOI: 10.4049/jimmunol.0802918] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IL-27 limits CD4(+) T(H)17 cell development in vitro and during inflammatory responses in the CNS. However, whether IL-27-IL-27R interactions regulate the homeostasis or function of CD4(+) T cell populations in the intestine is unknown. To test this, we examined CD4(+) T cell populations in the intestine of wild-type and IL-27R(-/-) mice. Naive IL-27R(-/-) mice exhibited a selective decrease in the frequency of IFN-gamma producing CD4(+) T(H)1 cells and an increase in the frequency of T(H)17 cells in gut-associated lymphoid tissues. Associated with elevated expression of IL-17A, IL-27R(-/-) mice exhibited earlier onset and significantly increased severity of clinical disease compared with wild-type controls in a murine model of intestinal inflammation. Rag(-/-)/IL-27R(-/-) mice were also more susceptible than Rag(-/-) mice to development of dextran sodium sulfate-induced intestinal inflammation, indicating an additional role for IL-27-IL-27R in the regulation of innate immune cell function. Consistent with this, IL-27 inhibited proinflammatory cytokine production by activated neutrophils. Collectively, these data identify a role for IL-27-IL-27R interaction in controlling the homeostasis of the intestinal T cell pool and in limiting intestinal inflammation through regulation of innate and adaptive immune cell function.
Collapse
Affiliation(s)
- Amy E Troy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
McGuckin MA, Eri R, Simms LA, Florin THJ, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 2009; 15:100-13. [PMID: 18623167 DOI: 10.1002/ibd.20539] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The etiology of human inflammatory bowel diseases (IBDs) is believed to involve inappropriate host responses to the complex commensal microbial flora in the gut, although an altered commensal flora is not completely excluded. A multifunctional cellular and secreted barrier separates the microbial flora from host tissues. Altered function of this barrier remains a major largely unexplored pathway to IBD. Although there is evidence of barrier dysfunction in IBD, it remains unclear whether this is a primary contributor to disease or a consequence of mucosal inflammation. Recent evidence from animal models demonstrating that genetic defects restricted to the epithelium can initiate intestinal inflammation in the presence of normal underlying immunity has refocused attention on epithelial dysfunction in IBD. We review the components of the secreted and cellular barrier, their regulation, including interactions with underlying innate and adaptive immunity, evidence from animal models of the barrier's role in preventing intestinal inflammation, and evidence of barrier dysfunction in both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|