1
|
Wu X, Yuan C, Pan J, Zhou Y, Pan X, Kang J, Ren L, Gong L, Li Y. CXCL9, IL2RB, and SPP1, potential diagnostic biomarkers in the co-morbidity pattern of atherosclerosis and non-alcoholic steatohepatitis. Sci Rep 2024; 14:16364. [PMID: 39013959 PMCID: PMC11252365 DOI: 10.1038/s41598-024-66287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.
Collapse
Affiliation(s)
- Xize Wu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China
| | - Changbin Yuan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Lihong Ren
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
2
|
Lee J, Hong I, Lee C, Kim D, Kim S, Lee Y. SNPs in microRNA seed region and impact of miR-375 in concurrent regulation of multiple lipid accumulation-related genes. Sci Rep 2024; 14:10924. [PMID: 38740866 PMCID: PMC11091151 DOI: 10.1038/s41598-024-61673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.
Collapse
Affiliation(s)
- Jiyeon Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Inpyo Hong
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Chanwoo Lee
- Nuonbio Inc., 906, A, 302 Galmachi-ro, Jungwon-gu, Seongnam-si, South Korea
| | - Daehyun Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea
| | - Sunghak Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea.
| | - Yoonseok Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
- Center for Genetic Information, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
| |
Collapse
|
3
|
Mitra T, Gulati R, Ramachandran K, Rajiv R, Enninga EAL, Pierret CK, Kumari R S, Janardhanan R. Endocrine disrupting chemicals: gestational diabetes and beyond. Diabetol Metab Syndr 2024; 16:95. [PMID: 38664841 PMCID: PMC11046910 DOI: 10.1186/s13098-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin resistance as well as β-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to triaging of patients based on increasing risk factor of the clinicopathological condition.
Collapse
Affiliation(s)
- Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Krithika Ramachandran
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Chris K Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sajeetha Kumari R
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
4
|
Guzeldemir-Akcakanat E, Sunnetci-Akkoyunlu D, Balta-Uysal VM, Özer T, Işik EB, Cine N. Differentially expressed miRNAs associated with generalized aggressive periodontitis. Clin Oral Investig 2023; 28:7. [PMID: 38123758 DOI: 10.1007/s00784-023-05404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE This study aimed to investigate miRNA expression profiles in individuals with periodontitis which is a chronic inflammatory condition affecting the integrity of the periodontal attachment. miRNAs play a crucial role in gene regulation through various mechanisms, making them potential diagnostic markers and therapeutic targets for various diseases. MATERIALS AND METHODS A total of 25 individuals with aggressive periodontitis and 25 controls were included in the study. Gingival tissues were collected for miRNA isolation and cDNA synthesis. miRNAs associated with periodontitis, including hsa-miR-185-5p, hsa-miR-17, hs-miR-146a, hs-miR-146b, hs-miR-155, hs-miR-203, hs-miR-205, hs-miR-223, and hsa-miR-21-3p, were analyzed using a combination of miRTarBase database analysis and literature mining was performed. Real-time PCR was used to assess the expression patterns of the target miRNAs, and the data were analyzed using the REST program. RESULTS The study revealed upregulated expression levels of hsa-miR-223-3p, hsa-miR-203b-5p, hsa-miR-146a-5p, hsa-miR-146b-5p, and hsa-miR-155-5p in individuals with periodontitis. Conversely, downregulated expression was observed for hsa-miR-185-5p, hsa-miR-21-3p, and hsa-miR-17-3p. CONCLUSION The findings suggest significant differences in the expression of specific miRNAs associated with inflammation in periodontitis. MZB1 acts as a hormone-regulated adipokine/pro-inflammatory cytokine, driving chronic inflammation and influencing cellular expansion. Predominantly expressed in marginal zone and B1 B cells, specialized subsets that respond rapidly to infections, MZB1 impacts immune protein synthesis and immune cell maturation, notably targeting microRNA-185 to potentially impede T cell development. Further research is needed to elucidate the functional significance and potential implications of these miRNAs. CLINICAL RELEVANCE miRNAs regulate the expression of target genes by finely tuning protein expression levels. The current findings provide compelling evidence of notable variations in the expression levels of specific miRNAs associated with inflammation in individuals affected by periodontitis; hence, miRNAs hold promise as potential therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Esra Guzeldemir-Akcakanat
- Department of Periodontology, Faculty of Dentistry, Kocaeli University, 41190 Basiskele, Kocaeli, Turkey.
| | | | - V Merve Balta-Uysal
- Department of Periodontology, Faculty of Dentistry, Kocaeli University, 41190 Basiskele, Kocaeli, Turkey
| | - Tolgahan Özer
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Elif Büşra Işik
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Naci Cine
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
5
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sarangi R, Mishra S, Das S, Mishra A. Nonalcoholic Fatty Liver Disease and MicroRNAs: A Weighty Consideration. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_319_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Khalifeh M, Santos RD, Oskuee RK, Badiee A, Aghaee-Bakhtiari SH, Sahebkar A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog Lipid Res 2023; 89:101197. [PMID: 36400247 DOI: 10.1016/j.plipres.2022.101197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.
Collapse
Affiliation(s)
- Masoumeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Xie Y, Cao Y, Guo CJ, Guo XY, He YF, Xu QY, Shen F, Pan Q. Profile analysis and functional modeling identify circular RNAs in nonalcoholic fatty liver disease as regulators of hepatic lipid metabolism. Front Genet 2022; 13:884037. [PMID: 36186461 PMCID: PMC9520628 DOI: 10.3389/fgene.2022.884037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, associated with an outcome of hepatic fibrosis/cirrhosis and hepatocellular carcinoma. However, limited exploration of the underlying mechanisms hinders its prevention and treatment. To investigate the mechanisms of epigenetic regulation in NAFLD, the expression profile of circular RNA (circRNA) of rodents in which NAFLD was induced by a high-fat, high-cholesterol (HFHC) diet was studied. Modeling of the circRNA-microRNA (miRNA) -mRNA regulatory network revealed the functional characteristics of NAFLD-specific circRNAs. The targets and effects in the liver of such NAFLD-specific circRNAs were further assessed. Our results uncovered that the downregulation of 28 annotated circRNAs characterizes HFHC diet-induced NAFLD. Among the downregulated circRNAs, long intergenic non-protein coding RNA, P53 induced transcript (LNCPINT) -derived circRNAs (circ_0001452, circ_0001453, and circ_0001454) targeted both miR-466i-3p and miR-669c-3p. Their deficiency in NAFLD abrogated the circRNA-based inhibitory effect on both miRNAs, which further inactivated the AMPK signaling pathway via AMPK-α1 suppression. Inhibition of the AMPK signaling pathway promotes hepatic steatosis, depending on the transcriptional and translational upregulation of lipogenic genes, such as those encoding sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN) in hepatocytes. The levels of LNCPINT-derived circRNAs displayed a negative association with hepatic triglyceride (TG) concentration. These findings suggest that loss of LNCPINT-derived circRNAs may underlie NAFLD via miR-466i-3p- and miR-669c-3p-dependent inactivation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cao
- Department of Pediatric Digestion and Nutrition, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Can-Jie Guo
- Department of Gastroenterology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Ya Guo
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Fang He
- Department of Pediatric Respiratory, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Yang Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Shen
- Endoscopy Center, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Feng Shen, ; Qin Pan,
| | - Qin Pan
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Research Center, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Feng Shen, ; Qin Pan,
| |
Collapse
|
9
|
Role of microRNA-185 in the FoxO1-CYP7A1 mediated regulation of bile acid and cholesterol metabolism: A novel target for drug discovery? Atherosclerosis 2022; 348:53-55. [DOI: 10.1016/j.atherosclerosis.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
|
10
|
Ma X, Liu H, Zhu J, Zhang C, Peng Y, Mao Z, Jing Y, Chen F. miR-185-5p Regulates Inflammation and Phagocytosis through CDC42/JNK Pathway in Macrophages. Genes (Basel) 2022; 13:genes13030468. [PMID: 35328023 PMCID: PMC8955717 DOI: 10.3390/genes13030468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
Macrophage activation is an essential component of systemic chronic inflammation and chronic inflammatory diseases. Emerging evidence implicates miR-185-5p in chronic inflammation diseases. However, the regulatory role of miR-185-5p in macrophage pro-inflammatory activation has not been studied previously. Here, we identified that miR-185-5p was one of the top genes and effectively downregulated in two macrophage miRNA expression datasets from GEO. Under LPS stress, miR-185-5p overexpression reduced pro-inflammatory cytokine expression, suppressed phagocytosis in RAW264.7 macrophage. miR-185-5p inhibitors augmented pro-inflammatory effects of LPS in macrophage. Mechanically, miR-185-5p sponged and negatively regulated the protein expression of CDC42. Ablation of CDC42 with selective CDC42 inhibitor CASIN reversed the pro-inflammatory effect of miR-185-5p inhibitors through inhibiting MAPK/JNK pathways. Collectively, these data demonstrate that miR-185-5p exhibited anti-inflammatory functions in LPS-induced RAW264.7 macrophages at least partially through CDC42/JNK pathways. Our findings yield insights into the understanding of miR-185-5p-regulated network in macrophages inflammation, which is beneficial for exploring miRNA-protein interaction in atherosclerotic inflammation.
Collapse
|
11
|
MicroRNA-185 modulates CYP7A1 mediated cholesterol-bile acid metabolism through post-transcriptional and post-translational regulation of FoxO1. Atherosclerosis 2022; 348:56-67. [DOI: 10.1016/j.atherosclerosis.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
12
|
Miao Y, Fu C, Liao M, Fang F. Differences in Liver microRNA profiling in pigs with low and high
feed efficiency. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:312-329. [PMID: 35530409 PMCID: PMC9039951 DOI: 10.5187/jast.2022.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022]
Abstract
Feed cost is the main factor affecting the economic benefits of pig industry.
Improving the feed efficiency (FE) can reduce the feed cost and improve the
economic benefits of pig breeding enterprises. Liver is a complex metabolic
organ which affects the distribution of nutrients and regulates the efficiency
of energy conversion from nutrients to muscle or fat, thereby affecting feed
efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed
efficiency through the modulation of gene expression at the post-transcriptional
level. In this study, we analyzed miRNA profiling of liver tissues in High-FE
and Low-FE pigs for the purpose of identifying key miRNAs related to feed
efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel
miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were
co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly
differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of
which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes
and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs
indicated that the target genes of DE miRNAs were significantly enriched in
insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and
mammalian target of rapamycin signaling pathway. To verify the reliability of
sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse
transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs
were confirmed to be consistent with sequencing data. DE miRNA data indicated
that liver-specific miRNAs synergistically acted with mRNAs to improve feed
efficiency. The liver miRNAs expression analysis revealed the metabolic pathways
by which the liver miRNAs regulate pig feed efficiency.
Collapse
Affiliation(s)
- Yuanxin Miao
- College of Bioengineering,Jingchu
University of Technology, Jingmen 448000, Hubei, China
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Mingxing Liao
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Fang Fang
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
- National Center for International Research
on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong
Agricultural University, Wuhan 430070, China
- Corresponding author: Fang Fang, Key Laboratory of
Agricultural Animal Genetics, Breeding and Reproduction of Ministry of
Education, Huazhong Agricultural University, Wuhan 430070, China. Tel:
+86-278-728-2091, E-mail:
| |
Collapse
|
13
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Potential role of microRNAs in selective hepatic insulin resistance: From paradox to the paradigm. Front Endocrinol (Lausanne) 2022; 13:1028846. [PMID: 36479211 PMCID: PMC9720316 DOI: 10.3389/fendo.2022.1028846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The paradoxical action of insulin on hepatic glucose metabolism and lipid metabolism in the insulin-resistant state has been of much research interest in recent years. Generally, insulin resistance would promote hepatic gluconeogenesis and demote hepatic de novo lipogenesis. The underlying major drivers of these mechanisms were insulin-dependent, via FOXO-1-mediated gluconeogenesis and SREBP1c-mediated lipogenesis. However, insulin-resistant mouse models have shown high glucose levels as well as excess lipid accumulation. As suggested, the inert insulin resistance causes the activation of the FOXO-1 pathway promoting gluconeogenesis. However, it does not affect the SREBP1c pathway; therefore, cells continue de novo lipogenesis. Many hypotheses were suggested for this paradoxical action occurring in insulin-resistant rodent models. A "downstream branch point" in the insulin-mediated pathway was suggested to act differentially on the FOXO-1 and SREBP1c pathways. MicroRNAs have been widely studied for their action of pathway mediation via suppressing the intermediate protein expressions. Many in vitro studies have postulated the roles of hepato-specific expressions of miRNAs on insulin cascade. Thus, miRNA would play a pivotal role in selective hepatic insulin resistance. As observed, there were confirmations and contradictions between the outcomes of gene knockout studies conducted on selective hepatic insulin resistance and hepato-specific miRNA expression studies. Furthermore, these studies had evaluated only the effect of miRNAs on glucose metabolism and few on hepatic de novo lipogenesis, limiting the ability to conclude their role in selective hepatic insulin resistance. Future studies conducted on the role of miRNAs on selective hepatic insulin resistance warrant the understanding of this paradoxical action of insulin.
Collapse
Affiliation(s)
| | | | | | | | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | | | - Panduka Karunanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Upul Senarath
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Dilan Amila Satharasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
- *Correspondence: Dilan Amila Satharasinghe,
| |
Collapse
|
14
|
Chen C, Matye D, Wang Y, Li T. Liver-specific microRNA-185 knockout promotes cholesterol dysregulation in mice. LIVER RESEARCH 2021; 5:232-238. [PMID: 35173984 PMCID: PMC8846416 DOI: 10.1016/j.livres.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The liver plays a key role in regulating whole body cholesterol homeostasis. Hepatic cholesterol accumulation causes liver injury in fatty liver disease and hypercholesterolemia increases the risk of cardiovascular disease. MicroRNAs (miRNAs, miRs) have been shown to regulate various pathways in cholesterol metabolism. Recently, miR-185 has been shown to regulate sterol regulatory element-binding protein 2 (SREBP2) and low-density lipoprotein receptor (LDLR) to modulate cholesterol synthesis and uptake. MATERIALS AND METHODS The role of miR-185 in regulating diet-induced metabolic disorders were studied in liver-specific miRNA-185 knockout (L-miR-185 KO) mice. RESULTS L-miR-185 KO mice developed worsened hepatic steatosis upon high fat high cholesterol Western diet feeding with accumulation of triglyceride and cholesterol in the liver. In addition, L-miR-185 KO mice developed hypercholesterolemia upon Western diet feeding. Gene expression analysis showed that L-miR-185 KO mice did not show increased hepatic mRNA expression of SREBP2 or its targets LDLR and HMG-CoA reductase (HMGCR). Although expression of miR-185 mimic inhibited the mRNA of SREBP2, HMGCR and LDLR in HepG2 cells, miR-185 inhibitor did not increase the mRNA of SREBP2, HMGCR or LDLR in HepG2 cells. CONCLUSIONS In conclusion, we reported that L-miR-185 KO mice were more sensitive to Western diet induced hepatic steatosis and hypercholesterolemia. The molecular mechanisms underlying these metabolic changes remain to be investigated in future studies.
Collapse
|
15
|
Wang Y, Feng Y, Zhang H, Niu Q, Liang K, Bian C, Li H. Clinical Value and Role of miR-129-5p in Non-Alcoholic Fatty Liver Disease. Horm Metab Res 2021; 53:692-698. [PMID: 34528223 DOI: 10.1055/a-1587-9211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study was to evaluate the expression of miR-129-5p in non-alcoholic fatty liver (NAFLD) patients and its clinical value and explore its regulatory effect on insulin resistance (IR). A total of 117 NAFLD patients and 110 healthy controls were included. The levels of miR-129-5p were detected by qRT-PCR. To assess the diagnostic value of miR-129-5p for NAFLD, the receiver operating characteristic curve (ROC) was established. C57Bl/6 mice were supplied with high-fat diet to establish NAFLD model. Intraperitoneal insulin tolerance test (IPITT) was carried out to evaluate the effect of miR-129-5p on IR in NAFLD animal model. miR-129-5p was highly expressed in the serum of NAFLD patients, and patients with HOMA-IR ≥2.5 had higher level of miR-129-5p than those with HOMA-IR <2.5. miR-129-5p had the ability to differentiate NAFLD patients from healthy individuals and might be associated with the development of IR. Serum miR-129-5p was positively correlated with the levels of HOMA-IR, BMI, total cholesterol (TC), and triglyceride (TG) in NAFLD patients. Downregulation of miR-129-5p regulates lipid metabolism and insulin sensitivity in NAFLD mice model. MiR-129-5p was upregulated in NAFLD patients and might be a potential diagnostic biomarker. The regulatory effect of miR-129-5p on NAFLD may function by regulating lipid accumulation and insulin sensitivity.
Collapse
Affiliation(s)
- Yuan Wang
- Sub-Health Clinic of Physical Examination Center, Beijing Fengtai Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Yujia Feng
- Department of Gastroenterology, People's Hospital of Rizhao, Rizhao, China
| | - Han Zhang
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinghui Niu
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Liang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng Bian
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
17
|
Sui G, Jia L, Song N, Min D, Chen S, Wu Y, Yang G. Aberrant expression of HDL-bound microRNA induced by a high-fat diet in a pig model: implications in the pathogenesis of dyslipidaemia. BMC Cardiovasc Disord 2021; 21:280. [PMID: 34090327 PMCID: PMC8180175 DOI: 10.1186/s12872-021-02084-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A high-fat diet can affect lipid metabolism and trigger cardiovascular diseases. A growing body of studies has revealed the HDL-bound miRNA profiles in familial hypercholesterolaemia; in sharp contrast, relevant studies on high-fat diet-induced dyslipidaemia are lacking. In the current study, HDL-bound miRNAs altered by a high-fat diet were explored to offer some clues for elucidating their effects on the pathogenesis of dyslipidaemia. METHODS Six pigs were randomly divided into two groups of three pigs each, namely, the high-fat diet and the balanced diet groups, which were fed a high-fat diet and balanced diet separately for six months. HDL was separated from plasma, which was followed by dissociation of the miRNA bound to HDL. miRNA sequencing of the isolated miRNA was performed to identify the differential expression profiles between the two groups, which was validated by real-time PCR. TargetScan, miRDB, and miRWalk were used for the prediction of genes targeted by the differential miRNAs. RESULTS Compared with the balanced diet group, the high-fat diet group had significantly higher levels of TG, TC, LDL-C and HDL-C at six months. miRNA sequencing revealed 6 upregulated and 14 downregulated HDL-bound miRNAs in the high-fat diet group compared to the balanced diet group, which was validated by real-time PCR. GO enrichment analysis showed that dysregulated miRNAs in the high-fat diet group were associated with the positive regulation of lipid metabolic processes, positive regulation of lipid biosynthetic processes, and positive regulation of Ras protein signal transduction. Insulin resistance and the Ras signalling pathway were enriched in the KEGG pathway enrichment analysis. CONCLUSIONS Twenty HDL-bound miRNAs are significantly dysregulated in high-fat diet-induced dyslipidaemia. This study presents an analysis of a new set of HDL-bound miRNAs that are altered by a high-fat diet and offers some valuable clues for novel mechanistic insights into high-fat diet-induced dyslipidaemia. Further functional verification study using a larger sample size will be required.
Collapse
Affiliation(s)
- Guoyuan Sui
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China.
| | - Nan Song
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Dongyu Min
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Si Chen
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Yao Wu
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Guanlin Yang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
18
|
Paul S, Bravo Vázquez LA, Uribe SP, Manzanero Cárdenas LA, Ruíz Aguilar MF, Chakraborty S, Sharma A. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021; 187:83-93. [PMID: 34082043 DOI: 10.1016/j.biochi.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21 nucleotides), endogenous, non-coding RNA molecules implicated in the post-transcriptional gene regulation performed through target mRNA cleavage or translational inhibition. In recent years, several investigations have demonstrated that miRNAs are involved in regulating both carbohydrate and lipid homeostasis in humans and other organisms. Moreover, it has been observed that the dysregulation of these metabolism-related miRNAs leads to the development of several metabolic disorders, such as type 2 diabetes, obesity, nonalcoholic fatty liver, insulin resistance, and hyperlipidemia. Hence, in this current review, with the aim to impulse the research arena of the micro-transcriptome implications in vital metabolic pathways as well as to highlight the remarkable potential of miRNAs as therapeutic targets for metabolic disorders in humans, we provide an overview of the regulatory roles of metabolism-associated miRNAs in humans and murine models.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Samantha Pérez Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Luis Aarón Manzanero Cárdenas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - María Fernanda Ruíz Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, 02115, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
19
|
Filip R, Desrochers GF, Lefebvre DM, Reed A, Singaravelu R, Cravatt BF, Pezacki JP. Profiling of MicroRNA Targets Using Activity-Based Protein Profiling: Linking Enzyme Activity to MicroRNA-185 Function. Cell Chem Biol 2021; 28:202-212.e6. [PMID: 33450181 DOI: 10.1016/j.chembiol.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) act as cellular signal transducers through repression of protein translation. Elucidating targets using bioinformatics and traditional quantitation methods is often insufficient to uncover global miRNA function. Herein, alteration of protein function caused by miRNA-185 (miR-185), an immunometabolic miRNA, was determined using activity-based protein profiling, transcriptomics, and lipidomics. Fluorophosphonate-based activity-based protein profiling of miR-185-induced changes to human liver cells revealed that exclusively metabolic serine hydrolase enzymes were regulated in activity, some with roles in lipid and endocannabinoid metabolism. Lipidomic analysis linked enzymatic changes to levels of cellular lipid species, such as components of very-low-density lipoprotein particles. Additionally, inhibition of one miR-185 target, monoglyceride lipase, led to decreased hepatitis C virus levels in an infectious model. Overall, the approaches used here were able to identify key functional changes in serine hydrolases caused by miR-185 that are targetable pharmacologically, such that a small molecule inhibitor can recapitulate the miRNA phenotype.
Collapse
Affiliation(s)
- Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Geneviève F Desrochers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - David M Lefebvre
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Alex Reed
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ragunath Singaravelu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
20
|
La Sala L, Crestani M, Garavelli S, de Candia P, Pontiroli AE. Does microRNA Perturbation Control the Mechanisms Linking Obesity and Diabetes? Implications for Cardiovascular Risk. Int J Mol Sci 2020; 22:ijms22010143. [PMID: 33375647 PMCID: PMC7795227 DOI: 10.3390/ijms22010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders such as obesity and type 2 diabetes (T2D) are considered the major risk factors for the development of cardiovascular diseases (CVD). Although the pathological mechanisms underlying the mutual development of obesity and T2D are difficult to define, a better understanding of the molecular aspects is of utmost importance to identify novel therapeutic targets. Recently, a class of non-coding RNAs, called microRNAs (miRNAs), are emerging as key modulators of metabolic abnormalities. There is increasing evidence supporting the role of intra- and extracellular miRNAs as determinants of the crosstalk between adipose tissues, liver, skeletal muscle and other organs, triggering the paracrine communication among different tissues. miRNAs may be considered as risk factors for CVD due to their correlation with cardiovascular events, and in particular, may be related to the most prominent risk factors. In this review, we describe the associations observed between miRNAs expression levels and the most common cardiovascular risk factors. Furthermore, we sought to depict the molecular aspect of the interplay between obesity and diabetes, investigating the role of microRNAs in the interorgan crosstalk. Finally, we discussed the fascinating hypothesis of the loss of protective factors, such as antioxidant defense systems regulated by such miRNAs.
Collapse
Affiliation(s)
- Lucia La Sala
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
- Correspondence:
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy;
| | - Paola de Candia
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Antonio E. Pontiroli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
21
|
Wei J, Zhao Y. MiR-185-5p Protects Against Angiogenesis in Polycystic Ovary Syndrome by Targeting VEGFA. Front Pharmacol 2020; 11:1030. [PMID: 32760272 PMCID: PMC7373746 DOI: 10.3389/fphar.2020.01030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a heterogeneous endocrine disease with high incidences in women of reproductive age. Although miR-185-5p (miR-185) was decreased in PCOS patients, the exact function of miR-185 on PCOS development still requires further investigation. In this study, rat injected with dehydroepiandrosterone (DHEA) was established as a PCOS model. A lentivirus carrying miR-185 was employed to examine its effect on PCOS symptoms. Then we performed the luciferase reporter assay to validate the interactions between miR-185 and vascular endothelial growth factor A (VEGFA). Finally, human ovarian microvascular endothelial cells (HOMECs) were induced by VEGF to explore the role of miR-185 in the angiogenic process. The results showed that miR-185 overexpression improved insulin level alteration and ovarian histological lesion in PCOS rats. We also found that miR-185 reduced the excessive angiogenesis as indicated by alterations of VEGFA, ANGPT1/2, PDGFB/D, α-SMA and CD31 in the ovary of PCOS rats. Luciferase reporter assay identified that VEGFA directly interacted with miR-185, and its expression level was negatively regulated by miR-185. The in vitro results further demonstrated that miR-185-induced suppression of cell proliferation, migration and tube formation was attenuated by VEGF in HOMECs. In summary, this is the first study to show that miR-185 can target VEGFA to inhibit angiogenesis, thus improving the development of PCOS. These findings develop a molecular candidate for PCOS prevention and therapy.
Collapse
Affiliation(s)
- Jingzan Wei
- Department of Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Suksangrat T, Phannasil P, Jitrapakdee S. miRNA Regulation of Glucose and Lipid Metabolism in Relation to Diabetes and Non-alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:129-148. [DOI: 10.1007/978-3-030-12668-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Puppala S, Li C, Glenn JP, Saxena R, Gawrieh S, Quinn A, Palarczyk J, Dick EJ, Nathanielsz PW, Cox LA. Primate fetal hepatic responses to maternal obesity: epigenetic signalling pathways and lipid accumulation. J Physiol 2018; 596:5823-5837. [PMID: 29516496 PMCID: PMC6265567 DOI: 10.1113/jp275422] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Maternal obesity (MO) and exposure to a high-fat, high-simple-carbohydrate diet during pregnancy predisposes offspring to obesity, metabolic and cardiovascular disorders in later life. Underlying molecular pathways and potential epigenetic factors that are dysregulated in MO were identified using unbiased transcriptomic methods. There was increased lipid accumulation and severe steatosis in the MO baboon fetal liver suggesting that these offspring are on an early trajectory of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. ABSTRACT Maternal obesity (MO) increases offspring cardiometabolic disease risk. Altered fetal liver development in response to the challenge of MO has metabolic consequences underlying adverse offspring life-course health outcomes. Little is known about the molecular pathways and potential epigenetic changes regulating primate fetal liver responses to MO. We hypothesized that MO would induce fetal baboon liver epigenetic changes resulting in dysregulation of key metabolic pathways that impact lipid metabolism. MO was induced prior to pregnancy by a high-fat, high-fructose diet. Unbiased gene and microRNA (small RNA Seq) abundance analyses were performed on fetal baboon livers at 0.9 gestation and subjected to pathway analyses to identify fetal liver molecular responses to MO. Fetal baboon liver lipid and glycogen content were quantified by the Computer Assisted Stereology Toolbox. In response to MO, fetal livers revealed dysregulation of TCA cycle, proteasome, oxidative phosphorylation, glycolysis and Wnt/β-catenin signalling pathways together with marked lipid accumulation supporting our hypothesis that multiple pathway dysregulation detrimentally impacts lipid management. This is the first study of MO programming of the non-human primate fetal liver using unbiased transcriptome analysis to detect changes in hepatic gene expression levels and identify potential microRNA epigenetic regulators of metabolic disruption.
Collapse
Affiliation(s)
- Sobha Puppala
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest BaptistMedical CenterWinston‐SalemNCUSA
| | - Cun Li
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
| | - Jeremy P. Glenn
- Department of GeneticsTexas Biomedical Research InstituteSan AntonioTXUSA
| | - Romil Saxena
- Department of Pathology, Indiana University School of MedicineIndianapolisINUSA
| | - Samer Gawrieh
- Division of Gastroenterology and HepatologyIndiana University School of MedicineIndianapolisINUSA
| | - Amy Quinn
- Department of Pediatrics, Division of NeonatologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| | - Jennifer Palarczyk
- Department of Pediatrics, Division of NeonatologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| | - Edward J. Dick
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTXUSA
| | - Peter W. Nathanielsz
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
- Department of GeneticsTexas Biomedical Research InstituteSan AntonioTXUSA
| | - Laura A. Cox
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest BaptistMedical CenterWinston‐SalemNCUSA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTXUSA
| |
Collapse
|
24
|
Liang X, Zheng S, Cui J, Yu D, Yang G, Zhou L, Wang B, Cai L, Li W. Alterations of MicroRNA Expression in the Liver, Heart, and Testis of Mice Upon Exposure to Repeated Low-Dose Radiation. Dose Response 2018; 16:1559325818799561. [PMID: 30263020 PMCID: PMC6153535 DOI: 10.1177/1559325818799561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRs), which regulate target gene expression at the
post-transcriptional level, play a crucial role in inducing biological effects
upon high-dose ionizing radiation. Yet, the miR expression profiles in response
to repeated low-dose radiation (LDR) in vivo have not been elucidated. This
study investigated the response profiles of 11 miRs with functions involved in
metabolism, DNA damage and repair, inflammation, and fibrosis in mouse liver,
heart, and testis upon repeated LDR exposure for 4 months. The expression
profiles were evaluated using stem-loop quantitative reverse transcription
polymerase chain reaction immediately and at 2 months after LDR exposure. The
expression profiles varied significantly at both time points. At the organ
level, the heart was the most affected, followed by the liver and testis, in
which significant miR upregulation related to DNA damage response was found.
Metabolism-related miRs decreased in the liver and increased in the testis. The
current results showed immediate and long-lasting alterations in the miR
expression profiles in response to repeated LDR in different organs.
Collapse
Affiliation(s)
- Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA
| | - Shirong Zheng
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Brain Wang
- Department of Radiation Oncology, The University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA.,Department of Radiation Oncology, The University of Louisville, Louisville, KY, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Obesity-induced overexpression of miRNA-24 regulates cholesterol uptake and lipid metabolism by targeting SR-B1. Gene 2018; 668:196-203. [DOI: 10.1016/j.gene.2018.05.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
|
26
|
Matoušková P, Hanousková B, Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int J Mol Sci 2018; 19:ijms19041199. [PMID: 29662007 PMCID: PMC5979329 DOI: 10.3390/ijms19041199] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3′untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins’ expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Collapse
Affiliation(s)
- Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Hanousková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
27
|
Jin Y, Liu W, Liu X, Ma T, Yang C, Cai Q, Liu Z. Transplantation of endothelial progenitor cells attenuated paraquat-induced acute lung injury via miR-141-3p-Notch-Nrf2 axis. Cell Biosci 2018; 8:21. [PMID: 29568483 PMCID: PMC5859660 DOI: 10.1186/s13578-018-0219-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Paraquat (PQ) presents with high toxicity for humans and animals, and the lungs become the main target organ by the poisoning of PQ leading to acute lung injury. Endothelial progenitor cells (EPCs) were proved to have the repair function on acute lung injury (ALI). We aimed to invatigate the underlying mechanism of EPCs in PQ-induced ALI involving miR-141-3p. Methods Endothelial progenitor cells were isolated from peripheral blood of C57BL/6J mice and identified by flow cytometry. Lung wet-to-dry (W/D) weight ratios, lung injury score and the number of total leukocyte and the number of neutrophils in BALF were used to analyze the degree of lung injury. The transfection was performed with Lipofectamine 2000. The levels of miRNA and mRNA were determined by qRT-PCR, and the protein levels were detected by Western blot assay. Results Endothelial progenitor cells alleviated lung wet-to-dry (W/D) weight ratios, lung injury score and the number of total leukocyte and the number of neutrophils in BALF in PQ-induced ALI mice. EPCs inhibited miR-141-3p expression, and enhanced the levels of Notch-Nrf2 axis in PQ-induced ALI mice. MiR-141-3p knockdown reversed the PQ induced-inhibition on Notch-1 and Hesr1 expression. MiR-141-3p over-expression could inhibit the expression of Notch-1 pathway significantly in the pulmonary epithelial cell line MLE-12. Both miR-141-3p over-expression and si-Notch-1 abolished the protection effect of EPCs on lung injury induced by PQ in vivo. Conclusions Endothelial progenitor cells could provide therapeutic effect on PQ-induced ALI via miR-141-3p-Notch-Nrf2 Axis.
Collapse
Affiliation(s)
- Yan Jin
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Wei Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Xiaowei Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Tao Ma
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Chen Yang
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Quan Cai
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Zhi Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| |
Collapse
|
28
|
Zhong H, Chen K, Feng M, Shao W, Wu J, Chen K, Liang T, Liu C. Genipin alleviates high-fat diet-induced hyperlipidemia and hepatic lipid accumulation in mice via miR-142a-5p/SREBP-1c axis. FEBS J 2017; 285:501-517. [PMID: 29197188 DOI: 10.1111/febs.14349] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Hyperlipidemia is a chronic disorder which plays an important role in the development of cardiovascular diseases, type 2 diabetes, atherosclerosis, hypertension, and nonalcoholic fatty liver disease. Genipin (GNP) is a metabolite from genipioside, which is an active component of the traditional Chinese medicine Gardenia jasminoides Ellis, and has been recognized as a beneficial compound against metabolic disorders. However, whether it can correct overnutrition-induced dyslipidemia is still unknown. In this study, the effects of GNP on attenuating hyperlipidemia and hepatic lipid accumulation were investigated using normal and obese mice induced with a high-fat diet (HFD) and primary hepatocytes treated with free fatty acids. We also sought to identify potential targets of GNP to mediate its effects in the liver. We found that obese mice treated with GNP showed a decrease in the body weight, serum lipid levels, as well as hepatic lipid accumulation. Besides, GNP regulated hepatic expression levels of lipid metabolic genes, which are important in maintaining systemic lipid homeostasis. At the molecular level, GNP increased the expression levels of miR-142a-5p, which bound to 3' untranslated region of Srebp-1c, an important regulator of lipogenesis, which thus led to the inhibition of lipogenesis. Collectively, our data demonstrated that GNP effectively antagonized HFD-induced hyperlipidemia and hepatic lipid accumulation in mice. Such effects were achieved by regulating miR-142a-5p/SREBP-1c axis.
Collapse
Affiliation(s)
- Hong Zhong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Ke Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Mengyang Feng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Wei Shao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Jun Wu
- Department of Geriatric Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
29
|
Guo Y, Yu J, Wang C, Li K, Liu B, Du Y, Xiao F, Chen S, Guo F. miR-212-5p suppresses lipid accumulation by targeting FAS and SCD1. J Mol Endocrinol 2017; 59:205-217. [PMID: 28667176 DOI: 10.1530/jme-16-0179] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
MicroRNAs, a class of small noncoding RNAs, are implicated in controlling a variety of biological processes. We have shown that leucine deprivation suppresses lipogenesis by inhibiting fatty acid synthase (FAS) expression in the liver previously; the aim of our current study is to investigate which kind of microRNA is involved in the regulation of FAS expression in response to leucine deprivation. Here, we indicated that microRNA-212-5p specifically binds to mouse FAS 3'UTR and inhibits its activity. Leucine deficiency significantly increased the mRNA levels of miR-212-5p in the livers of mice. Further studies proved that miR-212-5p also directly binds to the 3'UTR of stearoyl-CoA desaturase-1 (SCD1) to inhibit its activity. Overexpression of miR-212-5p decreases the protein levels of FAS and SCD1 in vitro and in vivo, and silencing of miR-212-5p has the opposite effects in mouse primary hepatocytes. Moreover, overexpression of miR-212-5p significantly decreases triglyceride (TG) accumulation in primary hepatocytes and in the livers of mice injected with adenovirus-mediated overexpressing of miR-212-5p (Ad-miR-212). Interestingly, inhibition of miR-212-5p reverses the suppressive effects of leucine deficiency on FAS and SCD1 expression, as well as TG accumulation in mouse primary hepatocytes. Finally, we demonstrate that leucine deficiency induces the expression of miR-212-5p in a GCN2/ATF4-dependent manner. Taken together, our results demonstrate a novel function of hepatic miR-212-5p in the regulation of lipid metabolism which represents a potential therapeutic target for the treatment of non-alcohol fatty liver diseases (NAFLD).
Collapse
Affiliation(s)
- Yajie Guo
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Junjie Yu
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chunxia Wang
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai Li
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Bin Liu
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Ying Du
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Fei Xiao
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shanghai Chen
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feifan Guo
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Wang X. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway. J Cell Biochem 2017; 119:1567-1574. [PMID: 28771824 DOI: 10.1002/jcb.26317] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
Without effective medical interventions for complete reverse of NAFLD, it needs to urgently explore the underlying molecular mechanisms of non-alcoholic fatty liver disease (NAFLD) to offer a novel therapeutic strategy for people suffering from NAFLD. Sprague-Dawley (SD) rats were used to establish the NAFLD animal model. Lipofectamine 2000 was used to silence or over-express NEAT1. The expression of NEAT1 and the mRNA levels of ACC and FAS were determined by qRT-PCR. Western blot assays were performed to detect the expression of ACC and FAS at protein levels and the related protein levels of mTOR/S6K1 signaling pathway. The levels of liver triglyceride (TG), serum total cholesterol (TC), ALT, and AST were assessed by an automatic biochemistry analyzer. The levels of liver TG and serum cholesterol were obviously up-regulated in NAFLD rat model. The level of NEAT1 expression and the mRNA levels of ACC and FAS were obviously enhanced in NAFLD model both in vivo and in vitro. Knockdown of NEAT1 could also reduce the elevation of ACC and FAS induced by FFA in liver cells. Moreover, inhibition of mTOR/S6K1 pathway presented with the same effect with knockdown of NEAT1 on the expression of ACC and FAS mRNA levels. The injection of si-NEAT1 lentivirus was performed to treat NAFLD of rats and the obvious efficacy for NAFLD rats was achieved. In a word, the down-regulated level of NEAT1 could remit the non-alcoholic fatty liver disease through mTOR/S6K1 signaling pathway in rats.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
circRNA_0046367 Prevents Hepatoxicity of Lipid Peroxidation: An Inhibitory Role against Hepatic Steatosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3960197. [PMID: 29018509 PMCID: PMC5605923 DOI: 10.1155/2017/3960197] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Hepatic steatosis reflects the miRNA-related pathological disorder with triglyceride accumulation and lipid peroxidation, which leads to nonalcoholic steatohepatitis, liver fibrosis/cirrhosis, and even hepatocellular carcinoma. Circular RNA (circRNA)/miRNA interaction reveals a novel layer of epigenetic regulation, yet the miRNA-targeting circRNA remains uncertain in hepatic steatosis. Here, we uncover circRNA_0046367 to be endogenous modulator of miR-34a that underlies hepatic steatosis. In contrast to its expression loss during the hepatocellular steatosis in vivo and in vitro, circRNA_0046367 normalization abolished miR-34a's inhibitory effect on peroxisome proliferator-activated receptor α (PPARα) via blocking the miRNA/mRNA interaction with miRNA response elements (MREs). PPARα restoration led to the transcriptional activation of genes associated with lipid metabolism, including carnitine palmitoyltransferase 2 (CPT2) and acyl-CoA binding domain containing 3 (ACBD3), and then resulted in the steatosis resolution. Hepatotoxicity of steatosis-related lipid peroxidation, being characterized by mitochondrial dysfunction, growth arrest, and apoptosis, is resultantly prevented after the circRNA_0046367 administration. These findings indicate a circRNA_0046367/miR-34a/PPARα regulatory system underlying hepatic steatosis. Normalized expression of circRNA_0046367 may ameliorate the lipoxidative stress on the basis of steatosis attenuation. circRNA_0046367, therefore, is suggested to be potential approach to the therapy of lipid peroxidative damage.
Collapse
|
32
|
Ning C, Li G, You L, Ma Y, Jin L, Ma J, Li X, Li M, Liu H. MiR-185 inhibits 3T3-L1 cell differentiation by targeting SREBP-1. Biosci Biotechnol Biochem 2017; 81:1747-1754. [DOI: 10.1080/09168451.2017.1347485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Adipogenesis involves a highly orchestrated series of complex events in which microRNAs (miRNAs) may play an essential role. In this study, we found that the miR-185 expression increased gradually during 3T3-L1 cells differentiation. To explore the role of miR-185 in adipogenesis, miRNA agomirs and antagomirs were used to perform miR-185 overexpression and knockdown, respectively. Overexpression of miR-185 dramatically reduced the mRNA expression of the adipogenic markers, PPARγ, FABP4, FAS, and LPL, and the protein level of PPARγ and FAS. MiR-185 overexpression also led to a notable reduction in lipid accumulation. In contrast, miR-185 inhibition promoted differentiation of 3T3-L1 cells. By target gene prediction and luciferase reporter assay, we demonstrated that sterol regulatory element binding protein 1 (SREBP-1) may be the target of miR-185. These results indicate that miR-185 negatively regulates the differentiation of 3T3-L1 cells by targeting SREBP-1, further highlighting the importance of miRNAs in adipogenesis.
Collapse
Affiliation(s)
- Chunyou Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guilin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lu You
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
de Castro MRT, Ferreira APDO, Busanello GL, da Silva LRH, da Silveira Junior MEP, Fiorin FDS, Arrifano G, Crespo-López ME, Barcelos RP, Cuevas MJ, Bresciani G, González-Gallego J, Fighera MR, Royes LFF. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 2017; 595:6023-6044. [PMID: 28726269 DOI: 10.1113/jp273933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. ABSTRACT Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as inhibition of citrate synthase activity) and ion gradient homeostasis (inhibition of Na+ ,K+ -ATPase activity inhibition) when analysed 24 h after TBI. Previous exercise training also protected against dysglycaemia, impaired hepatic signalling (increase in phosphorylated c-Jun NH2-terminal kinase, phosphorylated decreases in insulin receptor substrate and phosphorylated AKT expression), high levels of circulating and neuronal cytokines, the opening of the blood-brain barrier, neutrophil infiltration and Na+ ,K+ -ATPase activity inhibition in the ipsilateral cortex after TBI. Moreover, the impairment of protein function, neurobehavioural (neuromotor dysfunction and spatial learning) disability and hippocampal cell damage in sedentary rats suggests that exercise training also modulates peripheral oxidative/inflammatory pathways in TBI, which corroborates the ever increasing evidence regarding health-related outcomes with respect to a physically active lifestyle.
Collapse
Affiliation(s)
- Mauro Robson Torres de Castro
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | - Guilherme Lago Busanello
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | | | - Fernando da Silva Fiorin
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Gabriela Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Maria Elena Crespo-López
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Rômulo Pillon Barcelos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Guilherme Bresciani
- Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso (PUCV), Valparaiso, Chile
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Michele Rechia Fighera
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
34
|
Carreras-Badosa G, Bonmatí A, Ortega FJ, Mercader JM, Guindo-Martínez M, Torrents D, Prats-Puig A, Martinez-Calcerrada JM, de Zegher F, Ibáñez L, Fernandez-Real JM, Lopez-Bermejo A, Bassols J. Dysregulation of Placental miRNA in Maternal Obesity Is Associated With Pre- and Postnatal Growth. J Clin Endocrinol Metab 2017; 102:2584-2594. [PMID: 28368446 DOI: 10.1210/jc.2017-00089] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
CONTEXT Human placenta exhibits a specific microRNA (miRNA) expression pattern. Some of these miRNAs are dysregulated in pregnancy disorders such as preeclampsia and intrauterine growth restriction and are potential biomarkers for these pathologies. OBJECTIVE To study the placental miRNA profile in pregnant women with pregestational overweight/obesity (preOB) or gestational obesity (gestOB) and explore the associations between placental miRNAs dysregulated in maternal obesity and prenatal and postnatal growth. METHODS TaqMan Low Density Arrays and real-time polymerase chain reaction were used to profile the placental miRNAs in 70 pregnant women (20 preOB, 25 gestOB, and 25 control). Placentas and newborns were weighed at delivery, and infants were weighed at 1, 4, and 12 months of age. RESULTS Eight miRNAs were decreased in placentas from preOB or gestOB (miR-100, miR-1269, miR-1285, miR-181, miR-185, miR-214, miR-296, and miR-487) (all P < 0.05). Among them, miR-100, miR-1285, miR-296, and miR-487 were associated with maternal metabolic parameters (all P < 0.05) and were predictors of lower birth weight (all P < 0.05; R2 > 30%) and increased postnatal weight gain (all P < 0.05; R2 > 20%). In silico analysis showed that these miRNAs were related to cell proliferation and insulin signaling pathways. miR-296 was also present in plasma samples and associated with placental expression and prenatal and postnatal growth parameters (all P < 0.05). CONCLUSIONS We identified a specific placental miRNA profile in maternal obesity. Placental miRNAs dysregulated in maternal obesity may be involved in mediation of growth-promoting effects of maternal obesity on offspring and could be used as early markers of prenatal and postnatal growth.
Collapse
Affiliation(s)
- Gemma Carreras-Badosa
- Pediatric Endocrinology Group, Girona Biomedical Research Institute (IDIBGI), Dr. Trueta University Hospital, Girona 17007, Spain
| | - Alexandra Bonmatí
- Department of Gynecology, Dr. Trueta University Hospital, Girona 17007, Spain
| | - Francisco-Jose Ortega
- Diabetes, Endocrinology and Nutrition Group, Girona Biomedical Research Institute (IDIBGI), Dr. Trueta University Hospital, Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona 17007, Spain
| | - Josep-Maria Mercader
- Joint Barcelona Supercomputing Center, Centre for Genomic Regulation, Institute for Research in Biomedicine (BSC-CRG-IRB) Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona 08028, Spain
| | - Marta Guindo-Martínez
- Joint Barcelona Supercomputing Center, Centre for Genomic Regulation, Institute for Research in Biomedicine (BSC-CRG-IRB) Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona 08028, Spain
| | - David Torrents
- Joint Barcelona Supercomputing Center, Centre for Genomic Regulation, Institute for Research in Biomedicine (BSC-CRG-IRB) Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Anna Prats-Puig
- Department of Physical Therapy, Escola Universitària de la Salut i l'Esport, University of Girona, 17007 Girona, Spain
| | | | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology, Hospital Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Jose-Manuel Fernandez-Real
- Diabetes, Endocrinology and Nutrition Group, Girona Biomedical Research Institute (IDIBGI), Dr. Trueta University Hospital, Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona 17007, Spain
| | - Abel Lopez-Bermejo
- Pediatric Endocrinology Group, Girona Biomedical Research Institute (IDIBGI), Dr. Trueta University Hospital, Girona 17007, Spain
| | - Judit Bassols
- Pediatric Endocrinology Group, Girona Biomedical Research Institute (IDIBGI), Dr. Trueta University Hospital, Girona 17007, Spain
| |
Collapse
|
35
|
Zhou L, Liu S, Han M, Feng S, Liang J, Li Z, Li Y, Lu H, Liu T, Ma Y, Cheng J. MicroRNA-185 induces potent autophagy via AKT signaling in hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317694313. [PMID: 28240051 DOI: 10.1177/1010428317694313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies have demonstrated that microRNA 185 may be a promising therapeutic target in liver cancer. However, its role in hepatocellular carcinoma is largely unknown. In this study, the proliferation of human HepG2 cells was inhibited by transfection of microRNA 185 mimics. Cell-cycle analysis revealed arrest at the G0/G1 phase. Transfection of HepG2 cells with microRNA 185 mimics significantly induced apoptosis. These data confirmed microRNA 185 as a potent cancer suppressor. We demonstrated that microRNA 185 was a compelling inducer of autophagy, for the first time. When cell autophagy was inhibited by chloroquine or 3-methyladenine, microRNA 185 induced more cell apoptosis. MicroRNA 185 acted as a cancer suppressor by regulating AKT1 expression and phosphorylation. Dual-luciferase reporter assays indicated that microRNA 185 suppressed the expression of target genes including RHEB, RICTOR, and AKT1 by directly interacting with their 3'-untranslated regions. Binding site mutations eliminated microRNA 185 responsiveness. Our findings demonstrate a new role of microRNA 185 as a key regulator of hepatocellular carcinoma via autophagy by dysregulation of AKT1 pathway.
Collapse
Affiliation(s)
- Li Zhou
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shunai Liu
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ming Han
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shenghu Feng
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jinqiu Liang
- 4 Division of Infectious Disease, Civil Aviation General Hospital, Beijing, China
| | - Zhongshu Li
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaru Li
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongping Lu
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ting Liu
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yanhua Ma
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jun Cheng
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Xiao K, Luo X, Wang X, Gao Z. MicroRNA‑185 regulates transforming growth factor‑β1 and collagen‑1 in hypertrophic scar fibroblasts. Mol Med Rep 2017; 15:1489-1496. [PMID: 28259900 PMCID: PMC5364971 DOI: 10.3892/mmr.2017.6179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) and collagen type I (Col-1) serve a critical role in the development and progression of hypertrophic scarring (HS). The present study hypothesized that a post‑translational mechanism of microRNAs (miR) regulated the expression of TGF‑β1 and Col‑1 in HS fibroblasts (HSFBs). A collection of 20 HS tissues was compared with corresponding normal tissues from clinical patients, and the expression of miR‑185 was measured. Using PicTar, TargetScan and miRBase databases, it was identified that miR‑185 may be a regulator of TGF‑β1 and Col‑1 in humans. Based on these hypotheses, the expression of miR‑185, TGF‑β1 and Col‑1 in HS tissues was investigated. The results demonstrated that the expression of miR‑185 was markedly suppressed, and TGF‑β1 and Col‑1 levels were increased, in HS tissues. The expression levels of endogenous miR‑185 negatively correlated with the TGF‑β1 and Col‑1 mRNA levels (Pearson's correlation coefficient r=‑0.674, P<0.01 and r=‑0.590, P<0.01, respectively). In vitro, miR‑185 can regulate TGF‑β1 and Col‑1 through the predicted binding sites in its 3'‑untranslated region. miR‑185 had an effect on cell proliferation and apoptosis, thereby regulating HSFBs growth. In addition, miR‑185 gain‑of‑function decreased TGF‑β1 and Col‑1 protein expression, and miR‑185 loss‑of‑function increased TGF‑β1 and Col‑1 protein expression in HSFBs. In conclusion, overexpressed miR‑185 could inhibit HSFBs growth, and the underlying mechanism was mediated, at least partly, through the suppression of TGF‑β1 and Col‑1 expression. However, above all, miR‑185 might serve as a potential therapeutic approach for the treatment of HS.
Collapse
Affiliation(s)
- Kaiyan Xiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
37
|
Wang X, Meng Y, Zhang J. Ezetimibe alleviates non-alcoholic fatty liver disease through the miR-16 inhibiting mTOR/p70S6K1 pathway. RSC Adv 2017. [DOI: 10.1039/c7ra03949b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Emerging studies have indicated the role of ezetimibe, miR-16 and mTOR signaling in non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Xiang Wang
- Department of Endocrinology and Metabolism
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Yunbing Meng
- Department of Endocrinology and Metabolism
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Junrong Zhang
- Department of Endocrinology and Metabolism
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
38
|
Tao X, Xu Z, Men X. Analysis of Serum microRNA Expression Profiles and Comparison with Small Intestinal microRNA Expression Profiles in Weaned Piglets. PLoS One 2016; 11:e0162776. [PMID: 27632531 PMCID: PMC5025173 DOI: 10.1371/journal.pone.0162776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/29/2016] [Indexed: 01/27/2023] Open
Abstract
Weaning stress induces tissue injuries and impairs health and growth in piglets, especially during the first week post-weaning. MicroRNAs (miRNAs) play vital roles in regulating stresses and diseases. Our previous study found multiple differentially expressed miRNAs in small intestine of piglets at four days post-weaning. To better understand the roles of miRNAs during weaning stress, we analyzed the serum miRNA expressional profile in weaned piglets (at four days post-weaning) and in suckling piglets (control) of the same age using miRNA microarray technology. We detected a total of 300 expressed miRNAs, 179 miRNAs of which were differentially expressed between the two groups. The miRNA microarray results were validated by RT-qPCR. The biological functions of these differentially expressed miRNAs were predicted by GO terms and KEGG pathway annotations. We identified 10 highly expressed miRNAs in weaned piglets including miR-31, miR-205, and miR-21 (upregulated) and miR-144, miR-30c-5p, miR-363, miR-194a, miR-186, miR-150, and miR-194b-5p (downregulated). Additionally, miR-194b-5p expression was significantly downregulated in serum and small intestine of weaned piglets. Our results suggest that weaning stress affects serum miRNA profiles in piglets. And serum miR-194b-5p levels can reflect its expressional changes in small intestine of piglets by weaning stress.
Collapse
Affiliation(s)
- Xin Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- * E-mail:
| | - Xiaoming Men
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Letelier P, Riquelme I, Hernández AH, Guzmán N, Farías JG, Roa JC. Circulating MicroRNAs as Biomarkers in Biliary Tract Cancers. Int J Mol Sci 2016; 17:ijms17050791. [PMID: 27223281 PMCID: PMC4881607 DOI: 10.3390/ijms17050791] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers (BTCs) are a group of highly aggressive malignant tumors with a poor prognosis. The current diagnosis is based mainly on imaging and intraoperative exploration due to brush cytology havinga low sensitivity and the standard markers, such as carcinoembryonic antigen (CEA) and carbohydrate 19-9 (CA19-9), not having enough sensitivity nor specificity to be used in a differential diagnosis and early stage detection. Thus, better non-invasive methods that can distinguish between normal and pathological tissue are needed. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules of ~20–22 nucleotides that regulate relevant physiological mechanisms and can also be involved in carcinogenesis. Recent studies have demonstrated that miRNAs are detectable in multiple body fluids, showing great stability, either free or trapped in circulating microvesicles, such as exosomes. miRNAs are ideal biomarkers that may be used in screening and prognosis in biliary tract cancers, aiding also in the clinical decisions at different stages of cancer treatment. This review highlights the progress in the analysis of circulating miRNAs in serum, plasma and bile as potential diagnostic and prognostic markers of BTCs.
Collapse
Affiliation(s)
- Pablo Letelier
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Ismael Riquelme
- Molecular Pathology Laboratory, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, 3rd Floor, 4810296 Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla, 54-D Temuco, Chile.
| | - Alfonso H Hernández
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Neftalí Guzmán
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, 54-D Temuco, Chile.
| | - Juan Carlos Roa
- Department of Pathology, Centre for Investigational Oncology (CITO), Advanced Centre for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Marcoleta 377, 7rd Floor, 8330024 Santiago, Chile.
| |
Collapse
|
40
|
Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health. Int J Mol Sci 2016; 17:299. [PMID: 26927084 PMCID: PMC4813163 DOI: 10.3390/ijms17030299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/15/2022] Open
Abstract
Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future.
Collapse
|
41
|
Baffy G. MicroRNAs in Nonalcoholic Fatty Liver Disease. J Clin Med 2015; 4:1977-88. [PMID: 26690233 PMCID: PMC4693153 DOI: 10.3390/jcm4121953] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disorder. Strongly linked to obesity and diabetes, NAFLD has the characteristics of complex diseases with substantial heterogeneity. Accordingly, our ability to predict the risk of advanced NAFLD and provide efficient treatment may improve by a better understanding of the relationship between genotype and phenotype. MicroRNAs (miRNAs) play a major role in the fine-tuning of gene expression and they have recently emerged as novel biomarkers and therapeutic tools in the management of NAFLD. These short non-coding RNA sequences act by partial repression or degradation of targeted mRNAs. Deregulation of miRNAs has been associated with different stages of NAFLD, while their biological role in the pathogenesis remains to be fully understood. Systems biology analyses based on predicted target genes have associated hepatic miRNAs with molecular pathways involved in NAFLD progression such as cholesterol and lipid metabolism, insulin signaling, oxidative stress, inflammation, and pathways of cell survival and proliferation. Moreover, circulating miRNAs have been identified as promising noninvasive biomarkers of NAFLD and linked to disease severity. This rapidly growing field is likely to result in major advances in the pathomechanism, prognostication, and treatment of NAFLD.
Collapse
Affiliation(s)
- György Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, 150 S. Huntington Ave., Room 6A-46, Boston, MA 02130, USA.
| |
Collapse
|
42
|
Liu W, Cao H, Yan J, Huang R, Ying H. 'Micro-managers' of hepatic lipid metabolism and NAFLD. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015. [PMID: 26198708 DOI: 10.1002/wrna.1295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is tightly associated with insulin resistance, type 2 diabetes, and obesity. As the defining feature of NAFLD, hepatic steatosis develops as a consequence of metabolic dysregulation of de novo lipogenesis, fatty acid uptake, fatty acid oxidation, and triglycerides (TG) export. MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs, play critical roles in various biological processes through regulating gene expression at post-transcriptional level. A growing body of evidence suggests that miRNAs not only maintain hepatic TG homeostasis under physiological condition, but also participate in the pathogenesis of NAFLD. In this review, we focus on the current knowledge of the hepatic miRNAs associated with the development of liver steatosis and the regulatory mechanisms involved, which might be helpful to further understand the nature of NAFLD and provide a sound scientific basis for the drug development.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, China
| | - Hongchao Cao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
| | - Ruimin Huang
- SIBS (Institute of Health Sciences)-Changhai Hospital Joint Center for Translational Research, Institutes for Translational Research (CAS-SMMU), Shanghai, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
43
|
Qiu X, Gao DH, Xiang X, Xiong YF, Zhu TS, Liu LG, Sun XF, Hao LP. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats. World J Gastroenterol 2015; 21:8061-8072. [PMID: 26185377 PMCID: PMC4499348 DOI: 10.3748/wjg.v21.i26.8061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of lutein against non-alcoholic fatty liver disease (NAFLD) and the related underlying mechanism.
METHODS: After 9 d of acclimation to a constant temperature-controlled room (20 °C-22 °C) under 12 h light/dark cycles, male Sprague-Darley rats were randomly divided into two groups and fed a standard commercial diet (n = 8) or a high-fat diet (HFD) (n = 32) for 10 d. Animals receiving HFD were then randomly divided into 4 groups and administered with 0, 12.5, 25, or 50 mg/kg (body weight) per day of lutein for the next 45 d. At the end of the experiment, the perinephric and abdominal adipose tissues of the rats were isolated and weighed. Additionally, serum and liver lipid metabolic condition parameters were measured, and liver function and insulin resistance state indexes were assessed. Liver samples were collected and stained with hematoxylin eosin and Oil Red O, and the expression of the key factors related to insulin signaling and lipid metabolism in the liver were detected using Western blot and real-time polymerase chain reaction analyses.
RESULTS: Our data showed that after being fed a high-fat diet for 10 d, the rats showed a significant gain in body weight, energy efficiency, and serum total cholesterol (TC) and triglyceride (TG) levels. Lutein supplementation induced fat loss in rats fed a high-fat diet, without influencing body weight or energy efficiency, and decreased serum TC and hepatic TC and TG levels. Moreover, lutein supplementation decreased hepatic levels of lipid accumulation and glutamic pyruvic transaminase content, and also improved insulin sensitivity. Lutein administration also increased the expression of key factors in hepatic insulin signaling, such as insulin receptor substrate-2, phosphatidylinositol 3-kinase, and glucose transporter-2 at the gene and protein levels. Furthermore, high-dose lutein increased the expression of peroxisome proliferators activated receptor-α and sirtuin 1, which are associated with lipid metabolism and insulin signaling.
CONCLUSION: These results demonstrate that lutein has positive effects on NAFLD via the modulation of hepatic lipid accumulation and insulin resistance.
Collapse
|
44
|
Zhang SR, Fan XM. Ghrelin-ghrelin O-acyltransferase system in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:3214-3222. [PMID: 25805927 PMCID: PMC4363750 DOI: 10.3748/wjg.v21.i11.3214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently considered as the most common liver disease in Western countries, and is rapidly becoming a serious threat to public health worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. The ghrelin-ghrelin O-acyltransferase (GOAT) system has recently been found to play a crucial role in both the development of steatosis and its progression to nonalcoholic steatohepatitis. Ghrelin, the natural ligand of the growth hormone secretagogue receptor, is a 28-amino acid peptide possessing a unique acylation on the serine in position 3 catalyzed by GOAT. The ghrelin-GOAT system is involved in insulin resistance, lipid metabolism dysfunction, and inflammation, all of which play important roles in the pathogenesis of NAFLD. A better understanding of ghrelin-GOAT system biology led to the identification of its potential roles in NAFLD. Molecular targets modulating ghrelin-GOAT levels and the biologic effects are being studied, which provide a new insight into the pathogenesis of NAFLD. This review probes into the possible relationship between the ghrelin-GOAT system and NAFLD, and considers the potential mechanisms by which the ghrelin-GOAT system brings about insulin resistance and other aspects concerning NAFLD.
Collapse
|