1
|
Zhang F, Xu LD, Wu S, Wang B, Xu P, Huang YW. Deciphering the hepatitis E virus ORF1: Functional domains, protein processing, and patient-derived mutations. Virology 2025; 603:110350. [PMID: 39675187 DOI: 10.1016/j.virol.2024.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Hepatitis E virus (HEV) is a major cause of acute and chronic hepatitis in humans. The HEV open reading frames (ORF1) encodes a large non-structural protein essential for viral replication, which contains several functional domains, including helicase and RNA-dependent RNA polymerase. A confusing aspect is that, while RNA viruses typically encode large polyproteins that rely on their enzymatic activity for processing into functional units, the processing of the ORF1 protein and the mechanisms involved remain unclear. The ORF1 plays a pivotal role in the viral life cycle, thus mutations in this region, especially those occurring under environmental pressures such as during antiviral drug treatment, could significantly affect viral replication and survival. Here, we summarize the recent advances in the functional domains, processing, and mutations of ORF1. Gaining a deeper understanding of HEV biology, particularly focusing on ORF1, could facilitate the development of new strategies to control HEV infections.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ling-Dong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Laboratory Animal Center, Zhejiang University, Hangzhou, 310058, China
| | - Shiying Wu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Bin Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Nagashima S, Primadharsini PP, Takahashi M, Nishiyama T, Murata K, Okamoto H. Role of Rab13, Protein Kinase A, and Zonula Occludens-1 in Hepatitis E Virus Entry and Cell-to-Cell Spread: Comparative Analysis of Quasi-Enveloped and Non-Enveloped Forms. Pathogens 2024; 13:1130. [PMID: 39770389 PMCID: PMC11678111 DOI: 10.3390/pathogens13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA. Further investigation into the involvement of tight junction (TJ) proteins revealed that the targeted knockdown of zonula occludens-1 (ZO-1) significantly impaired the entry of both eHEV and neHEV. In addition, in ZO-1 knockout (KO) cells inoculated with either viral form, HEV RNA levels in culture supernatants did not increase, even up to 16 days post-inoculation. Notably, the absence of ZO-1 did not affect the adsorption efficiency of eHEV or neHEV, nor did it influence HEV RNA replication. In cell-to-cell spread assays, ZO-1 KO cells inoculated with eHEV showed a lack of expression of HEV ORF2 and ORF3 proteins. In contrast, neHEV-infected ZO-1 KO cells showed markedly reduced ORF2 and ORF3 protein expression within virus-infected foci, compared to non-targeting knockout (NC KO) cells. These findings underscore the crucial role of ZO-1 in facilitating eHEV entry and mediating the cell-to-cell spread of neHEV in infected cells.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| | | | | | | | | | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| |
Collapse
|
3
|
Ruiz-Ponsell L, Monastiri A, López-Roig M, Sauleda S, Bes M, Mentaberre G, Escobar-González M, Costafreda MI, López-Olvera JR, Serra-Cobo J. Endemic maintenance of human-related hepatitis E virus strains in synurbic wild boars, Barcelona Metropolitan Area, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176871. [PMID: 39395489 DOI: 10.1016/j.scitotenv.2024.176871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Hepatitis E virus (HEV), shared by humans, domestic animals, and wildlife, is an emerging global public health threat. Because wild boars are a major reservoir of HEV, the new zoonotic interfaces resulting from wild boar population increase and synurbization significantly contribute to increasing the risk of zoonotic transmission of HEV. This study characterizes HEV strains of synurbic wild boars and assesses their relationship with sympatric human and domestic swine HEV strains. We analyzed the faeces of 312 synurbic wild boars collected from 2016 to 2021 in the Barcelona Metropolitan Area (BMA), where there is a high density of wild boars, and found 7 HEV-positive samples among those collected between 2019 and 2020. The molecular analysis of these isolates, along with 6 additional wild boar HEV isolates from a previous study, allowed us to establish a close phylogenetic relationship between these HEV strains and human HEV isolates from sympatric blood donors and domestic pigs from Catalonia. HEV-positive wild boar samples belonged to piglet, juvenile and yearling individuals, but not adults, indicating the endemic maintenance of HEV in the wild boar population of the BMA by naïve young individuals. All wild boar HEV isolates in this study classified within HEV genotype 3. The results show, for the first time, a close molecular similarity between the HEV strains endemically maintained by the synurbic wild boars in the BMA and citizens from the same area and period. The data could also indicate that HEV infection presents a seasonal and interannual variability in wild boars of BMA. Further investigation is required to unveil the HEV transmission routes between synurbic wild boars and sympatric citizens. These findings can serve in other synurbic wildlife-human interfaces throughout the world.
Collapse
Affiliation(s)
| | - Abir Monastiri
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| | - Marc López-Roig
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| | - Sílvia Sauleda
- Banc de Sang i Teixits de Catalunya, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Bes
- Banc de Sang i Teixits de Catalunya, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Gregorio Mentaberre
- Wildlife Ecology and Health Group, Barcelona, Spain; Universitat de Lleida, Lleida, Spain
| | - María Escobar-González
- Wildlife Ecology and Health Group, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Barcelona, Spain
| | - Maria I Costafreda
- Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Santa Coloma de Gramanet, Spain.
| | - Jorge R López-Olvera
- Wildlife Ecology and Health Group, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Barcelona, Spain
| | - Jordi Serra-Cobo
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| |
Collapse
|
4
|
Gu L, Cai J, Feng Y, Zhan Y, Zhu Z, Liu N, Guan X, Li X. Spatio-temporal pattern and associate factors study on intestinal infectious diseases based on panel model in Zhejiang Province. BMC Public Health 2024; 24:3041. [PMID: 39491019 PMCID: PMC11533294 DOI: 10.1186/s12889-024-20411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Intestinal infectious diseases (IIDs) can impact the growth and development of children and weaken adults. This study aimed to establish a spatial panel model to analyze the relationship between factors such as population, economy and health resources, and the incidence of common IIDs. The objective was to provide a scientific basis for the formulation diseases prevention measures. METHODS Data on monthly reported cases of IIDs in each district and county of Zhejiang Province were collected from 2011 to 2021. The spatial distribution trend was plotted, and nine factors related to population, economy and health resources were selected for analysis. A spatial panel model was developed to identify statistically significant spatial patterns of influencing factors (P < 0.05). RESULTS The results revealed that each type of IIDs exhibited a certain level of clustering. Each IIDs had a significant radiation effect, HEV (b = 0.28, P < 0.05), bacillary dysentery (b = 0.38, P < 0.05), typhoid (b = 0.36, P < 0.05), other infectious diarrheas (OIDs) (b = 0.28, P < 0.05) and hand, foot and mouth disease (HFMD) (b = 0.39, P < 0.05), indicating that regions with high morbidity rates spread to neighboring areas. Among the population characteristics, density of population acted as a protective factor for bacillary dysentery (b=-1.81, P < 0.05), sex ratio acted as a protective factor for HFMD (b=-0.07, P < 0.05), and aging rate increased the risk of OIDs (b = 2.39, P < 0.05). Urbanization ratio posed a hazard factor for bacillary dysentery (b = 5.17, P < 0.05) and OIDs (b = 0.64, P < 0.05) while serving as a protective factor for typhoid (b=-1.61, P < 0.05) and HFMD (b=-0.39, P < 0.05). Per capita GDP was a risk factor for typhoid (b = 0.54, P < 0.05), but acted as a protective factor for OIDs (b=-0.45, P < 0.05) and HFMD (b=-0.27, P < 0.05). Additionally, the subsistence allowances ratio was a risk factor for HEV (b = 0.24, P < 0.05). CONCLUSION The incidence of IIDs in Zhejiang Province exhibited a certain degree of clustering, with major hotspots identified in Hangzhou, Shaoxing, and Jinhua. It would be essential to consider the spillover effects from neighboring regions and implement targeted measures to enhance disease prevention based on regional development.
Collapse
Affiliation(s)
- Lanfang Gu
- Department of Big Data in Health Science, Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Cai
- Institute for Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Feng
- Institute for Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yancen Zhan
- Department of Big Data in Health Science, Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhixin Zhu
- Department of Big Data in Health Science, Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nawen Liu
- Department of Big Data in Health Science, Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xifei Guan
- Department of Big Data in Health Science, Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuyang Li
- Department of Big Data in Health Science, Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Malakar S, Kumar S, Rungta S, Kothalkar S, Kumar A, Kohli KP, Jangra R, Shukla GP, Agarwal M, Yadav D, Parwar A, Mishra S, Bhardwaj A. Acute Viral Hepatitis E Presenting With Bell's Palsy and Acute Pancreatitis: A Case Report. Cureus 2024; 16:e73260. [PMID: 39650935 PMCID: PMC11625187 DOI: 10.7759/cureus.73260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
Hepatitis E is a hepatotropic virus and the most common cause of acute viral hepatitis among adults in India. It has four genotypes, and genotype 1 is mostly associated with sporadic cases. It typically causes self-limiting acute hepatitis following a prodromal course. However, a subset of patients presents with cholestatic features mimicking primary cholestatic liver diseases like primary biliary cholangitis or primary sclerosing cholangitis. Liver injury ranges from asymptomatic rise of liver enzymes to fulminant liver failure. The hepatitis E virus (HEV) has also been implicated in various extrahepatic manifestations such as acute pancreatitis, Guillain-Barré syndrome (GBS), radiculopathy, autoimmune hemolysis, and Bell's palsy. We present an interesting case of acute viral hepatitis E presenting with cholestatic jaundice and extrahepatic manifestations.
Collapse
Affiliation(s)
- Sayan Malakar
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Sanjit Kumar
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Sumit Rungta
- Gastroenterology, King George's Medical University, Lucknow, IND
| | | | - Arvind Kumar
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Krishna P Kohli
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Rahul Jangra
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Gaya P Shukla
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Mayank Agarwal
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Dheeraj Yadav
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Anubhav Parwar
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Saurabh Mishra
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Akriti Bhardwaj
- Gastroenterology, King George's Medical University, Lucknow, IND
| |
Collapse
|
6
|
Mirzaev UK, Ko K, E B, Phyo Z, Chhoung C, Ataa AG, Sugiyama A, Akita T, Takahashi K, Tanaka J. Epidemiological assessment of hepatitis E virus infection among 1565 pregnant women in Siem Reap, Cambodia using an in-house double antigen sandwich ELISA. Hepatol Res 2024; 54:899-911. [PMID: 38573773 DOI: 10.1111/hepr.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
AIM This study investigated hepatitis E virus (HEV) prevalence among pregnant women in Siem Reap, Cambodia, by developing a cost-effective, user-friendly in-house enzyme-linked immunosorbent assay (ELISA) for detecting total anti-HEV immunoglobulins (Ig). METHODS The in-house ELISA was designed for large-scale screening in resource-limited settings. Its performance was benchmarked against two commercial tests: the Anti-HEV IgG EIA (Institute of Immunology, Co. Ltd) and the Anti-HEV IgG RecomLine LIA (Mikrogen). The in-house ELISA demonstrated a sensitivity of 76% and 71.4%, and a specificity of 94.1% and 98.6%, against the two commercial tests, respectively, with overall agreement rates of 92.4% and 94.3%. RESULTS Among 1565 tested pregnant women, 11.6% were anti-HEV positive. Prevalence increased with age, particularly in women aged 35-40 years and over 40 years. No significant associations were found with education, number of children, family size, or history of blood transfusion and surgery, except for the occupation of the family head as a public officer. Of the total anti-HEV positive women, 22.7% had anti-HEV IgM, indicating recent or ongoing infection. CONCLUSION The study concluded that the in-house ELISA is a viable option for HEV screening in regions with limited resources due to its high accuracy and cost-effectiveness. It is particularly suitable for large-scale studies and public health interventions in areas where HEV is endemic and poses a significant risk to pregnant women.
Collapse
Affiliation(s)
- Ulugbek Khudayberdievich Mirzaev
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
- Department of Hepatology, Research Institute of Virology, Tashkent, Uzbekistan
| | - Ko Ko
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Bunthen E
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
- National Payment Certification Agency, Ministry of Economy and Finance, Phnom Penh, Cambodia
| | - Zayar Phyo
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Chanroth Chhoung
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Akuffo Golda Ataa
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Takahashi
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Shahini E, Argentiero A, Andriano A, Losito F, Maida M, Facciorusso A, Cozzolongo R, Villa E. Hepatitis E Virus: What More Do We Need to Know? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:998. [PMID: 38929615 PMCID: PMC11205503 DOI: 10.3390/medicina60060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hepatitis E virus (HEV) infection is typically a self-limiting, acute illness that spreads through the gastrointestinal tract but replicates in the liver. However, chronic infections are possible in immunocompromised individuals. The HEV virion has two shapes: exosome-like membrane-associated quasi-enveloped virions (eHEV) found in circulating blood or in the supernatant of infected cell cultures and non-enveloped virions ("naked") found in infected hosts' feces and bile to mediate inter-host transmission. Although HEV is mainly spread via enteric routes, it is unclear how it penetrates the gut wall to reach the portal bloodstream. Both virion types are infectious, but they infect cells in different ways. To develop personalized treatment/prevention strategies and reduce HEV impact on public health, it is necessary to decipher the entry mechanism for both virion types using robust cell culture and animal models. The contemporary knowledge of the cell entry mechanism for these two HEV virions as possible therapeutic target candidates is summarized in this narrative review.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy;
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Erica Villa
- Gastroenterology Unit, CHIMOMO Department, University of Modena & Reggio Emilia, Via del Pozzo 71, 41121 Modena, Italy
| |
Collapse
|
8
|
Miao Z, Cao K, Wu X, Zhang C, Gao J, Chen Y, Sun Z, Ren X, Chen Y, Yang M, Chen C, Jiang D, Du Y, Lv X, Yang S. An outbreak of hepatitis E virus genotype 4d caused by consuming undercooked pig liver in a nursing home in Zhejiang Province, China. Int J Food Microbiol 2024; 417:110682. [PMID: 38626694 DOI: 10.1016/j.ijfoodmicro.2024.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024]
Abstract
Hepatitis E infection is typically caused by contaminated water or food. In July and August 2022, an outbreak of hepatitis E was reported in a nursing home in Zhejiang Province, China. Local authorities and workers took immediate actions to confirm the outbreak, investigated the sources of infection and routes of transmission, took measures to terminate the outbreak, and summarized the lessons learned. An epidemiological investigation was conducted on all individuals in the nursing home, including demographic information, clinical symptoms, history of dietary, water intake and contact. Stool and blood samples were collected from these populations for laboratory examinations. The hygiene environment of the nursing home was also investigated. A case-control study was conducted to identify the risk factors for this outbreak. Of the 722 subjects in the nursing home, 77 were diagnosed with hepatitis E, for an attack rate of 10.66 %. Among them, 18 (23.38 %, 18/77) individuals had symptoms such as jaundice, fever, and loss of appetite and were defined as the population with hepatitis E. The average age of people infected with hepatitis E virus (HEV) was 59.96 years and the attack rate of hepatitis E among women (12.02 %, 59/491) was greater than that among men (7.79 %, 18/231). The rate was the highest among caregivers (22.22 %, 32/144) and lowest among logistics personnel (6.25 %, 2/32); however, these differences were not statistically significant (P > 0.05). Laboratory sequencing results indicated that the genotype of this hepatitis E outbreak was 4d. A case-control study showed that consuming pig liver (odds ratio (OR) = 7.50; 95 % confidence interval [CI]: 3.84-16.14, P < 0.001) and consuming raw fruits and vegetables (OR = 5.92; 95 % CI: 1.74-37.13, P = 0.017) were risk factors for this outbreak of Hepatitis E. Moreover, a monitoring video showed that the canteen personnel did not separate raw and cooked foods, and pig livers were cooked for only 2 min and 10 s. Approximately 1 month after the outbreak, an emergency vaccination for HEV was administered. No new cases were reported after two long incubation periods (approximately 4 months). The outbreak of HEV genotype 4d was likely caused by consuming undercooked pig liver, resulting in an attack rate of 10.66 %. This was related to the rapid stir-frying cooking method and the hygiene habit of not separating raw and cooked foods.
Collapse
Affiliation(s)
- Ziping Miao
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenye Zhang
- Hangzhou Gongshu District Center for Disease Control and Prevention, Hangzhou, China
| | - Jian Gao
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Yin Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaobin Ren
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yijuan Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Mengya Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Daixi Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxia Du
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Lv
- Hangzhou Gongshu District Center for Disease Control and Prevention, Hangzhou, China.
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Shrestha A, Basnet S, Kc S. Subclinical hepatitis E virus genotype 1 infection: The concept of "dynamic human reservoir". World J Hepatol 2024; 16:506-510. [PMID: 38689746 PMCID: PMC11056895 DOI: 10.4254/wjh.v16.i4.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/24/2024] Open
Abstract
Hepatitis E virus (HEV) is hyperendemic in South Asia and Africa accounting for half of total Global HEV burden. There are eight genotypes of HEV. Among them, the four common ones known to infect humans, genotypes 1 and 2 are prevalent in the developing world and genotypes 3 and 4 are causing challenge in the industrialized world. Asymptomatic HEV viremia in the general population, especially among blood donors, has been reported in the literature worldwide. The clinical implications related to this asymptomatic viremia are unclear and need further exploration. Detection of viremia due to HEV genotype 1 infection, apparently among healthy blood donors is also reported without much knowledge about its infection rate. Similarly, while HEV genotype 3 is known to be transmitted via blood transfusion in humans and has been subjected to screening in many European nations, instances of transmission have also been documented albeit without significant clinical consequences. Epidemiology of HEV genotype 1 in endemic areas often show waxing and waning pattern. Occasional sporadic occurrence of HEV infection interrupted by outbreaks have been frequently seen. In absence of known animal reservoir, where HEV exists in between outbreak is a mystery that needs further exploration. However, occurrence of asymptomatic HEV viremia due to HEV genotype 1 during epidemiologically quiescent period may explain that this phenomenon may act as a dynamic reservoir. Since HEV genotype 1 infection cannot cause chronicity, subclinical transient infection and transmission of virus might be the reason it sustains in interepidemic period. This might be the similar phenomenon with SARS COVID-19 corona virus infection which is circulating worldwide in distinct phases with peaks and plateaus despite vaccination against it. In view of existing evidence, we propose the concept of "Dynamic Human Reservoir." Quiescent subclinical infection of HEV without any clinical consequences and subsequent transmission may contribute to the existence of the virus in a community. The potential for transmitting HEV infection by asymptomatic HEV infected individuals by fecal shedding of virus has not been reported in literature. This missing link may be a key to Pandora's box in understanding epidemiology of HEV infection in genotype 1 predominant region.
Collapse
Affiliation(s)
- Ananta Shrestha
- Department of Hepatology, Alka Hospital, Kathmandu 44600, Nepal
| | - Suresh Basnet
- Department of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Sudhamshu Kc
- Department of Hepatology, National Academy of Medical Sciences, Kathmandu 44600, Nepal.
| |
Collapse
|
10
|
León-Janampa N, Caballero-Posadas I, Barc C, Darrouzain F, Moreau A, Guinoiseau T, Gatault P, Fleurot I, Riou M, Pinard A, Pezant J, Rossignol C, Gaudy-Graffin C, Brand D, Marlet J. A pig model of chronic hepatitis E displaying persistent viremia and a downregulation of innate immune responses in the liver. Hepatol Commun 2023; 7:e0274. [PMID: 37938097 PMCID: PMC10635601 DOI: 10.1097/hc9.0000000000000274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a zoonotic virus transmitted by pig meat and responsible for chronic hepatitis E in immunocompromised patients. It has proved challenging to reproduce this disease in its natural reservoir. We therefore aimed to develop a pig model of chronic hepatitis E to improve the characterization of this disease. METHODS Ten pigs were treated with a tacrolimus-based regimen and intravenously inoculated with HEV. Tacrolimus trough concentration, HEV viremia, viral diversity, innate immune responses, liver histology, clinical disease and biochemical markers were monitored for 11 weeks post-infection (p.i.). RESULTS HEV viremia persisted for 11 weeks p.i. HEV RNA was detected in the liver, small intestine, and colon at necropsy. Histological analysis revealed liver inflammation and fibrosis. Several mutations selected in the HEV genome were associated with compartmentalization in the feces and intestinal tissues, consistent with the hypothesis of extrahepatic replication in the digestive tract. Antiviral responses were characterized by a downregulation of IFN pathways in the liver, despite an upregulation of RIG-I and ISGs in the blood and liver. CONCLUSIONS We developed a pig model of chronic hepatitis E that reproduced the major hallmarks of this disease. This model revealed a compartmentalization of HEV genomes in the digestive tract and a downregulation of innate immune responses in the liver. These original features highlight the relevance of our model for studies of the pathogenesis of chronic hepatitis E and for validating future treatments.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | | | - Céline Barc
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - François Darrouzain
- Department of Pharmacology and Toxicology, Tours University Hospital, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | - Thibault Guinoiseau
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Philippe Gatault
- Department of Nephrology and Transplantation, Tours University Hospital, Tours, France
- EA4245, University of Tours, Tours, France
| | | | - Mickaël Riou
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Anne Pinard
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Jérémy Pezant
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | | | - Catherine Gaudy-Graffin
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| |
Collapse
|
11
|
Jiang X, Liu J, Xi Y, Zhang Q, Wang Y, Zhao M, Lu X, Wu H, Shan T, Ni B, Zhang W, Ma X. Virome of high-altitude canine digestive tract and genetic characterization of novel viruses potentially threatening human health. mSphere 2023; 8:e0034523. [PMID: 37724888 PMCID: PMC10597464 DOI: 10.1128/msphere.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
The majority of currently emerging infectious illnesses are zoonotic infections, which have caused serious public health and economic implications. The development of viral metagenomics has helped us to explore unknown viruses. We collected 1,970 canine feces from Yushu and Guoluo in the plateau region of China for this study to do a metagenomics analysis of the viral community of the canine digestive tract. Our analysis identified 203 novel viruses, classified into 11 known families and 2 unclassified groups. These viruses include the hepatitis E virus, first identified in dogs, and the astrovirus, coronavirus, polyomavirus, and others. The relationship between the newly identified canine viruses and known viruses was investigated through the use of phylogenetic analysis. Furthermore, we demonstrated the cross-species transmission of viruses and predicted new viruses that may cause diseases in both humans and animals, providing technical support for the prevention and control of diseases caused by environmental pollution viruses. IMPORTANCE Most emerging infectious diseases are due to zoonotic disease agents. Because of their effects on the security of human or animal life, agriculture production, and food safety, zoonotic illnesses and livestock diseases are of worldwide significance. Because dogs are closely related to humans and domestic animals, they serve as one of the important links in the transmission of zoonotic and livestock diseases. Canines can contaminate the environment in which humans live such as water and soil through secretions, potentially altering the human gut microbiota or causing diseases. Our study enriched the viral community in the digestive tract microbiome of dogs and found types of viruses that threaten human health, providing technical support for the prevention and control of early warning of diseases caused by environmental contaminant viruses.
Collapse
Affiliation(s)
- Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| |
Collapse
|
12
|
Augustyniak A, Pomorska-Mól M. An Update in Knowledge of Pigs as the Source of Zoonotic Pathogens. Animals (Basel) 2023; 13:3281. [PMID: 37894005 PMCID: PMC10603695 DOI: 10.3390/ani13203281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The available data indicate that the human world population will constantly grow in the subsequent decades. This constant increase in the number of people on the Earth will lead to growth in food demand, especially in food of high nutritional value. Therefore, it is expected that the world livestock population will also increase. Such a phenomenon enhances the risk of transmitting pathogens to humans. As pig production is one of the most significant branches of the world's livestock production, zoonoses of porcine origins seem to be of particular importance. Therefore, in this review, we aim to introduce the latest data concerning, among other things, epidemiology and available preventive measures to control the most significant porcine zoonoses of viral, bacterial, and parasitic origin.
Collapse
Affiliation(s)
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| |
Collapse
|
13
|
Nagashima S, Primadharsini PP, Nishiyama T, Takahashi M, Murata K, Okamoto H. Development of a HiBiT-tagged reporter hepatitis E virus and its utility as an antiviral drug screening platform. J Virol 2023; 97:e0050823. [PMID: 37681960 PMCID: PMC10537679 DOI: 10.1128/jvi.00508-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023] Open
Abstract
Previously, we developed an infectious hepatitis E virus (HEV) harboring the nanoKAZ gene in the hypervariable region of the open reading frame 1 (ORF1) of the HEV3b (JE03-1760F/P10) genome and demonstrated the usefulness for screening anti-HEV drugs that inhibit the early infection process. In the present study, we constructed another reporter HEV (HEV3b-HiBiT) by placing a minimized HiBiT tag derived from NanoLuc luciferase at the 3'-end of the viral capsid (ORF2) coding sequence. It replicated efficiently in PLC/PRF/5 cells, produced membrane-associated particles identical to those of the parental virus, and was genetically stable and infectious. The HiBiT tag was fused to both secreted ORF2s (ORF2s-HiBiT) and ORF2c capsid protein (ORF2c-HiBiT). The ORF2c-HiBiT formed membrane-associated HEV particles (eHEV3b-HiBiT). By treating these particles with digitonin, we demonstrated that the HiBiT tag was expressed on the surface of capsid and was present inside the lipid membrane. To simplify the measurement of luciferase activity and provide a more convenient screening platform, we constructed an ORF2s-defective mutant (HEV3b-HiBiT/ΔORF2s) in which the secreted ORF2s are suppressed. We used this system to evaluate the effects of introducing small interfering RNAs and treatment with an inhibitor or accelerator of exosomal release on HEV egress and demonstrated that the effects on virus release can readily be analyzed. Therefore, HEV3b-HiBiT and HEV3b-HiBiT/ΔORF2s reporters may be useful for investigating the virus life cycle and can serve as a more convenient screening platform to search for candidate drugs targeting the late stage of HEV infection such as particle formation and release. IMPORTANCE The construction of recombinant infectious viruses harboring a stable luminescence reporter gene is essential for investigations of the viral life cycle, such as viral replication and pathogenesis, and the development of novel antiviral drugs. However, it is difficult to maintain the stability of a large foreign gene inserted into the viral genome. In the present study, we successfully generated a recombinant HEV harboring the 11-amino acid HiBiT tag in the ORF2 coding region and demonstrated the infectivity, efficient virus growth, particle morphology, and genetic stability, suggesting that this recombinant HEV is useful for in vitro assays. Furthermore, this system can serve as a more convenient screening platform for anti-HEV drugs. Thus, an infectious recombinant HEV is a powerful approach not only for elucidating the molecular mechanisms of the viral life cycle but also for the screening and development of novel antiviral agents.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Nishiyama
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
14
|
Khongviwatsathien S, Thaweerat W, Atthakitmongkol T, Chotiyaputta W, Tanwandee T. A Comparison of Clinical Manifestations and Outcomes between Acute Sporadic Hepatitis A and Hepatitis E Infections in Thailand. Viruses 2023; 15:1888. [PMID: 37766294 PMCID: PMC10538055 DOI: 10.3390/v15091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) infections often present as acute hepatitis with prodromal symptoms. These infections, transmitted via the oral-enteral route, constitute significant public health challenges, particularly in developing countries with subpar sanitary systems. The aim of the study was to describe the clinical manifestations, laboratory findings, and outcomes of hepatitis A and hepatitis E infections in Thailand. We conducted a retrospective chart review and analysis of 152 patients diagnosed with acute hepatitis A or hepatitis E from January 2007 to August 2018 at Siriraj Hospital. The hepatitis E cohort was older with a greater prevalence of comorbidities (hypertension, diabetes mellitus, chronic kidney disease, chronic hepatitis B, and post-kidney transplantation status) than the hepatitis A cohort. While the majority of hepatitis A patients presented with fever (98%) and jaundice (96%), these symptoms were less pronounced in hepatitis E patients. Furthermore, hepatitis A patients exhibited significantly higher aminotransferase and total bilirubin levels. However, clinical outcomes, such as hospitalization rates, progression to acute liver failure, and mortality, were comparable across both groups. In conclusion, although the clinical manifestations of hepatitis A and hepatitis E were similar, fever and jaundice were more prevalent and aminotransferase and bilirubin levels were higher in the HAV-infected group.
Collapse
Affiliation(s)
| | | | | | | | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand (W.T.); (W.C.)
| |
Collapse
|
15
|
Jang ES, Choi GH, Kim YS, Kim IH, Lee YJ, Cho SB, Kim YT, Jeong SH. Prevalence, incidence, and outcomes of hepatitis E virus coinfection in patients with chronic hepatitis C. Sci Rep 2023; 13:13632. [PMID: 37604848 PMCID: PMC10442446 DOI: 10.1038/s41598-023-39019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
This study aimed to elucidate the anti-hepatitis E virus (HEV) immunoglobulin G (IgG) prevalence and incidence of seroconversion and seroreversion as well as its risk factors and to analyze the clinical outcomes of HEV and hepatitis C virus (HCV) coinfected patients compared to those of HCV-monoinfected patients. We prospectively enrolled 502 viremic HCV patients with paired plasma samples (at intervals of ≥ 12 months) from 5 tertiary hospitals. Anti-HEV IgG positivity was tested using the Wantai ELISA kit in all paired samples. Mean age was 58.2 ± 11.5 years old, 48.2% were male, 29.9% of patients had liver cirrhosis, and 9.4% of patients were diagnosed with hepatocellular carcinoma (HCC). The overall prevalence of anti-HEV IgG positivity at enrollment was 33.3%, with a higher prevalence in males and increasing prevalence according to the subject's age. During the 916.4 person-year, the HEV incidence rate was 0.98/100 person-years (9/335, 2.7%). Hepatic decompensation or liver-related mortality was not observed. There were six seroreversion cases among 172 anti-HEV-positive patients (1.22/100 person-years). In conclusion, approximately one-third of the adult Korean chronic HCV patients were anti-HEV IgG positive. The HEV incidence rate was 1 in 100 persons per year, without adverse hepatic outcomes or mortality.
Collapse
Affiliation(s)
- Eun Sun Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Gwang Hyeon Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Gyeonggi, Republic of Korea
| | - In Hee Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University College of Medicine, Chonju, Republic of Korea
| | - Youn Jae Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Beom Cho
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| | - Yun-Tae Kim
- Center for Technology Innovation, Seoul Clinical Laboratories, Yongin, Gyeonggi, Republic of Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea.
| |
Collapse
|
16
|
Khuroo MS. Discovery of Hepatitis E and Its Impact on Global Health: A Journey of 44 Years about an Incredible Human-Interest Story. Viruses 2023; 15:1745. [PMID: 37632090 PMCID: PMC10459142 DOI: 10.3390/v15081745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The story of the discovery of hepatitis E originated in the late 1970s with my extreme belief that there was a hidden saga in the relationship between jaundice and pregnancy in developing countries and the opportunity for a massive epidemic of viral hepatitis, which hit the Gulmarg Kashmir region in November 1978. Based on data collected from a door-to-door survey, the existence of a new disease, epidemic non-A, non-B hepatitis, caused by a hitherto unknown hepatitis virus, was announced. This news was received by the world community with hype and skepticism. In the early 1980s, the world watched in awe as an extreme example of human self-experimentation led to the identification of VLP. In 1990, a cDNA clone from the virus responsible for epidemic non-A, non-B hepatitis was isolated. Over the years, we traversed three eras of ambiguity, hope, and hype of hepatitis E research and conducted several seminal studies to understand the biology of HEV and manifestations of hepatitis E. Many milestones have been reached on the long and winding road of hepatitis E research to understand the structure, biology, and diversity of the agent, changing the behavior of the pathogen in developed countries, and the discovery of a highly effective vaccine.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu & Kashmir 190010, India
| |
Collapse
|
17
|
Zahedi MJ, Shafieipour S, Hayatbakhsh Abassi MM, Pourjamali N, Nakhaie M, Charostad J, Rezaei Zadeh Rukerd M, Lashkarizadeh MM, Karami Robati F, Dehghani A, Jahani Y, Arabzadeh SAM, Mollaei HR, Ranjbar E. Higher Risk of Chronic Hepatitis E Virus Infection in Patients with Human Immunodeficiency Virus-1: An Iranian Cross-sectional Study. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:125-133. [PMID: 37600571 PMCID: PMC10439753 DOI: 10.30699/ijp.2023.551657.2870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 02/28/2023] [Indexed: 08/22/2023]
Abstract
Background & Objective Occurrence of Hepatitis E Virus (HEV) infection may be common in Human Immunodeficiency Virus (HIV-1) patients and may lead to chronic infection as well as cirrhosis. We intended to determine the incidence of HEV infection among HIV-1 patients compared to individuals without HIV-1 infection. Methods In our cross-sectional study, 87 HIV-1-positive patients were compared to 93 healthy individuals in Kerman, Iran. Plasma and peripheral blood mononuclear cells (PBMCs) were obtained from all the participants. Plasma samples were evaluated for HEV IgM and IgG using the ELISA kit. Then, reverse transcriptase-nested polymerase chain reaction (RT-nested PCR) was used in RNA extractions from PBMCs to check for the presence of HEV RNA. Results Among the subjects examined in our study, 61 (70.1%) and 71 (77.4%) out of patients with HIV-1 infection and healthy individuals were male, respectively. The average ages of patients with HIV-1 and the control group were 40.2 years and 39.9 years, respectively. No discernible differences were found between the two groups based on IgM and IgG seropositivity against the HEV. However, HEV-RNA was found in 8% of patients with HIV-1 and 1.1% of HIV-1-negative individuals (P=0.03). There was also an association between the HEV genome and anti-HEV and anti-HCV antibodies in HIV-1-positive patients (P=0.02 and P=0.014, respectively). Conclusion HEV infection may be more common in HIV-1 patients and may develop a chronic infection in immunocompromised individuals. Molecular-based HEV diagnostic tests, including RT-PCR assays, should be performed in HIV-1 patients with unknown impaired liver function tests.
Collapse
Affiliation(s)
- Mohammad Javad Zahedi
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Department of Cardiology, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Shafieipour
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Department of Cardiology, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mahdi Hayatbakhsh Abassi
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Pourjamali
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Karami Robati
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Dehghani
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yunes Jahani
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hamid Reza Mollaei
- Department of Medical Microbiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ebrahim Ranjbar
- Behavioral Disease Counseling Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Songtanin B, Molehin AJ, Brittan K, Manatsathit W, Nugent K. Hepatitis E Virus Infections: Epidemiology, Genetic Diversity, and Clinical Considerations. Viruses 2023; 15:1389. [PMID: 37376687 DOI: 10.3390/v15061389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
According to the World Health Organization, approximately 20 million people worldwide are infected annually with the hepatitis E virus (HEV). There are four main genotypes of HEV. Genotype 1 and genotype 2 are common in developing countries and are transmitted by contaminated water from a fecal-oral route. Genotype 3 and genotype 4 are common in developed countries and can lead to occasional transmission to humans via undercooked meat. Hepatitis E virus 1 and HEV3 can lead to fulminant hepatitis, and HEV3 can lead to chronic hepatitis and cirrhosis in immunocompromised patients. The majority of patients with HEV infection are asymptomatic and usually have spontaneous viral clearance without treatment. However, infection in immunocompromised individuals can lead to chronic HEV infection. Both acute and chronic HEV infections can have extrahepatic manifestations. No specific treatment is required for acute HEV infection, no treatment has been approved in chronic infection, and no HEV vaccine has been approved by the (United States) Food and Drug Administration. This review focuses on the molecular virology (HEV life cycle, genotypes, model systems, zoonosis), pathogenesis, clinical manifestation, and treatment of chronic HEV infection, especially in immunocompromised patients, to provide clinicians a better understanding of the global distribution of these infections and the significant effect they can have on immunocompromised patients.
Collapse
Affiliation(s)
- Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Adebayo J Molehin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Kevin Brittan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wuttiporn Manatsathit
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
19
|
Al-Shimari FH, Rencken CA, Kirkwood CD, Kumar R, Vannice KS, Stewart BT. Systematic review of global hepatitis E outbreaks to inform response and coordination initiatives. BMC Public Health 2023; 23:1120. [PMID: 37308896 DOI: 10.1186/s12889-023-15792-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION Hepatitis E virus (HEV) is the most common cause of acute hepatitis. While symptoms are generally mild and resolve within weeks, some populations (e.g., pregnant women, immunocompromised adults) are at high-risk of severe HEV-related morbidity and mortality. There has not been a recent comprehensive review of contemporary HEV outbreaks, which limits the validity of current disease burden estimates. Therefore, we aimed to characterize global HEV outbreaks and describe data gaps to inform HEV outbreak prevention and response initiatives. METHODS We performed a systematic review of peer-reviewed (PubMed, Embase) and gray literature (ProMED) to identify reports of outbreaks published between 2011 and 2022. We included (1) reports with ≥ 5 cases of HEV, and/or (2) reports with 1.5 times the baseline incidence of HEV in a specific population, and (3) all reports with suspected (e.g., clinical case definition) or confirmed (e.g., ELISA or PCR test) cases if they met criterium 1 and/or 2. We describe key outbreak epidemiological, prevention and response characteristics and major data gaps. RESULTS We identified 907 records from PubMed, 468 from Embase, and 247 from ProMED. We screened 1,362 potentially relevant records after deduplication. Seventy-one reports were synthesized, representing 44 HEV outbreaks in 19 countries. The populations at risk, case fatalities, and outbreak durations were not reported in 66% of outbreak reports. No reports described using HEV vaccines. Reported intervention efforts included improving sanitation and hygiene, contact tracing/case surveillance, chlorinating boreholes, and advising residents to boil water. Commonly missing data elements included specific case definitions used, testing strategy and methods, seroprevalence, impacts of interventions, and outbreak response costs. Approximately 20% of HEV outbreaks we found were not published in the peer-reviewed literature. CONCLUSION HEV represents a significant public health problem. Unfortunately, extensive data shortages and a lack of standardized reporting make it difficult to estimate the HEV disease burden accurately and to implement effective prevention and response activities. Our study has identified major gaps to guide future studies and outbreak reporting systems. Our results support the development of standardized reporting procedures/platforms for HEV outbreaks to ensure accurate and timely data distribution, including active and passive coordinated surveillance systems, particularly among high-risk populations.
Collapse
Affiliation(s)
- Fatima H Al-Shimari
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA.
- Strategic Analysis, Research and Training (START) Center, Seattle, WA, USA.
| | - Camerin A Rencken
- Strategic Analysis, Research and Training (START) Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Carl D Kirkwood
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Ramya Kumar
- Strategic Analysis, Research and Training (START) Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Kirsten S Vannice
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Barclay T Stewart
- Strategic Analysis, Research and Training (START) Center, Seattle, WA, USA
- Department of Surgery, University of Washington, Seattle, WA, USA
- Harborview Injury Prevention and Research Center, Seattle, WA, USA
| |
Collapse
|
20
|
Kogias D, Skeva A, Smyrlis A, Mourvati E, Kantartzi K, Romanidou G, Kalientzidou M, Rekari V, Konstantinidou E, Kiorteve P, Paroglou I, Papadopoulos V, Konstantinidis T, Panopoulou M, Mimidis K. Hepatitis E Virus (HEV) Infection in Hemodialysis Patients: A Multicenter Epidemiological Cohort Study in North-Eastern Greece. Pathogens 2023; 12:pathogens12050667. [PMID: 37242337 DOI: 10.3390/pathogens12050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hepatitis E virus (HEV), a common cause of viral hepatitis in developing countries, is mainly transmitted via the fecal-oral route, but also may be a prevalent hospital-transmitted agent among patients on regular hemodialysis due to parenteral transmission. Previous epidemiological studies among hemodialysis patients in Greece, using different diagnostic techniques, gave conflicting results. Τhe present study aimed to measure the exposure rate of hemodialysis patients of north-eastern Greece to HEV by estimating the overall seroprevalence, and to identify potential risk factors. Serum samples from all patients attending the hemodialysis centers of north-eastern Greece (n = 6) were tested for the presence of anti-HEV IgG antibodies using a modern and sensitive ELISA (Enzyme-linked Immunosorbent Assay) technique (Wantai). In total, 42 out of 405 hemodialysis patients were positive for anti-HEV IgG (10.4%), while all samples were negative for HEV RNA when tested using nested RT-PCR. HEV seropositivity among hemodialysis patients was significantly associated with area of residence and contact with specific animals (pork, deer). No association was found with religion, gender distribution and hemodialysis duration. This study showed an increased seroprevalence of HEV among hemodialysis patients in Greece. Agricultural or livestock occupation and place of residence seem to be independent factors that increase the risk of HEV infection. In conclusion, HEV infection calls for the regular screening of hemodialysis patients regardless of the hemodialysis duration or clinical symptoms.
Collapse
Affiliation(s)
- Dionysios Kogias
- First Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Aikaterini Skeva
- Laboratory of Microbiology, Department of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Andreas Smyrlis
- Department of Nephrology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efthymia Mourvati
- Department of Nephrology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinia Kantartzi
- Department of Nephrology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Gioulia Romanidou
- Nephrology Department, General Hospital "Sismanogleio", 69100 Komotini, Greece
| | - Maria Kalientzidou
- Department of Nephrology, General Hospital of Kavala, 65500 Kavala, Greece
| | - Vasiliki Rekari
- Blood Transfusion Center, General Hospital of Xanthi, 67100 Xanthi, Greece
| | | | - Parthena Kiorteve
- Nephrology Department, General Hospital of Drama, 66100 Drama, Greece
| | - Ioannis Paroglou
- Nephrology Department, General Hospital of Didymoteicho, 68300 Didymoteicho, Greece
| | | | - Theocharis Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis and Laboratory of Microbiology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panopoulou
- Laboratory of Microbiology, Department of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Mimidis
- First Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Laboratory for the Study of Gastrointestinal System and Liver, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
21
|
Jha K, Tandukar A, Aryal R, Shrestha P, Bajracharya S, Bista KD. Severe hepatitis E infection in pregnancy: a case report. Ann Med Surg (Lond) 2023; 85:1213-1215. [PMID: 37113858 PMCID: PMC10129118 DOI: 10.1097/ms9.0000000000000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis E virus causes self limiting hepatitis most of the times but, during pregnancy it can lead to severe hepatitis along with various complications thereby increasing the mortality. Case presentation A 27-year-old woman gravida two, para one at 38 weeks and 6 days of gestation presented with multiple episodes of nonbilious vomiting, severe dehydration, and later developed right upper quadrant abdominal pain. The patient had a positive serological test for the hepatitis E virus, and liver enzymes were severely elevated. Under supportive treatment she delivered a healthy baby, and her liver enzymes returned to normal levels after 2 weeks of delivery. Clinical discussion Although the hepatitis E virus usually causes self-limiting hepatitis, it can quickly progress to severe hepatitis, liver failure, and even death during pregnancy. Immunological change with a Th2 biased response and increased hormonal levels during pregnancy could possibly facilitate the development of severe liver damage. No particular drug has been approved for the treatment of hepatitis E viral infection in pregnant women, and the commonly used drugs are contraindicated due to the risk of teratogenicity. Supportive therapy and intensive monitoring are the core management techniques for hepatitis E virus infection in pregnant women. Conclusion Due to the high mortality risk, pregnant women should try to avoid possible exposure to the hepatitis E virus, but once infected, symptomatic therapy is the mainstay.
Collapse
Affiliation(s)
- Kritika Jha
- Department of Obstetrics and Gynecology, Tribhuvan University Teaching Hospital
| | - Alina Tandukar
- Department of Obstetrics and Gynecology, Tribhuvan University Teaching Hospital
| | - Roshan Aryal
- Maharajgunj Medical Campus, Institute of Medicine, Maharajgunj, Nepal
- Corresponding author. Address: Maharajgunj Medical Campus, Institute of Medicine, Maharajgunj, Kathmandu,1524, Nepal. Tel.: +977-9860012492. E-mail address: (R. Aryal)
| | - Prezma Shrestha
- Department of Obstetrics and Gynecology, Tribhuvan University Teaching Hospital
| | - Sunita Bajracharya
- Department of Obstetrics and Gynecology, Tribhuvan University Teaching Hospital
| | - Kesang D. Bista
- Department of Obstetrics and Gynecology, Tribhuvan University Teaching Hospital
| |
Collapse
|
22
|
Mättö J, Putkuri N, Rimhanen-Finne R, Laurila P, Clancy J, Ihalainen J, Ekblom-Kullberg S. Hepatitis E Virus in Finland: Epidemiology and Risk in Blood Donors and in the General Population. Pathogens 2023; 12:pathogens12030484. [PMID: 36986406 PMCID: PMC10054892 DOI: 10.3390/pathogens12030484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Autochthonous hepatitis E (HEV) cases have been increasingly recognized and reported in Europe, caused predominantly by the zoonotic HEV genotype 3. The clinical picture is highly variable, from asymptomatic to acute severe or prolonged hepatitis in immunocompromised patients. The main route of transmission to humans in Europe is the ingestion of undercooked pork meat. Transfusion-transmitted HEV infections have also been reported. The aim of the study was to determine the HEV epidemiology and risk in the Finnish blood donor population. A total of 23,137 samples from Finnish blood donors were screened for HEV RNA from individual samples and 1012 samples for HEV antibodies. Additionally, laboratory-confirmed hepatitis E cases in 2016-2022 were extracted from national surveillance data. The HEV RNA prevalence data was used to estimate the risk of transfusion transmission of HEV in the Finnish blood transfusion setting. Four HEV RNA-positive were found, resulting in 1:5784 (0.02%) RNA prevalence. All HEV RNA-positive samples were IgM-negative, and genotyped samples represented genotype HEV 3c. HEV IgG seroprevalence was 7.4%. From the HEV RNA rate found in this study and data on blood component usage in Finland in 2020, the risk estimate for a severe transfusion-transmitted HEV infection is 1:1,377,000 components or one in every 6-7 years. In conclusion, the results indicate that the risk of transfusion-transmitted HEV (HEV TTI) in Finland is low. However, continuous follow-up of the HEV epidemiology in relation to the transfusion risk landscape in Finland is necessary, as well as promoting awareness in the medical community of the small risk for HEV TTI, especially for immunocompromised patients.
Collapse
Affiliation(s)
- Jaana Mättö
- Finnish Red Cross Blood Service, 01730 Vantaa, Finland
| | - Niina Putkuri
- Finnish Red Cross Blood Service, 01730 Vantaa, Finland
| | | | - Päivi Laurila
- Finnish Institute for Health and Welfare, 00100 Helsinki, Finland
| | - Jonna Clancy
- Finnish Red Cross Blood Service Biobank, 01730 Vantaa, Finland
| | | | | |
Collapse
|
23
|
Kounis I, Renou C, Nahon S, Heluwaert F, Macaigne G, Amil M, Talom S, Lambare B, Charpignon C, Paupard T, Stetiu M, Ripault MP, Yamaga A, Ehrhard F, Audemar F, Ortiz Correro MC, Zanditenas D, Skinazi F, Agostini H, Coilly A, Roque-Afonso AM. Hepatitis E Virus Infection in Patients with Chronic Inflammatory Bowel Disease Treated with Immunosuppressive Therapy. Pathogens 2023; 12:pathogens12020332. [PMID: 36839604 PMCID: PMC9966788 DOI: 10.3390/pathogens12020332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Medical treatment of inflammatory bowel disease (IBD) has evolved significantly, and treatment with immunomodulators is recommended. These medications may alter the patient's immune response and increase the risk of opportunistic infections. Our aim was to evaluate the prevalence and the incidence of acute or chronic HEV infection in IBD patients under immunomodulatory treatment. PATIENTS AND METHODS We conducted a retrospective, multicenter, observational study between 2017 and 2018. IBD outpatients hospitalized for the infusion of immunomodulators were included in 16 French centers. During their daily hospitalization, blood samples were drawn for HEV serology (IgM and IgG) and HEV RNA detection. RESULTS A total of 488 patients were included, of which 327 (67%) patients had Crohn's disease and 161 (33%) ulcerative colitis. HEV IgM was detected in 3 patients, but HEV RNA was undetectable in all patients. The HEV IgG seroprevalence rate was 14.2%. IgG-positive patients were older at sampling (p = 0.01) and IBD diagnosis (p = 0.03), had higher seafood consumption (p = 0.01) and higher doses of azathioprine (p = 0.03). Ileal and upper digestive tract involvement was more frequent in IgG-positive patients (p = 0.009), and ileocolic involvement was more frequent in IgG-negative patients (p = 0.01). Under multivariate analysis, age > 50 years [OR: 2.21 (1.26, to 3.85), p = 0.004] was associated with previous HEV infection. CONCLUSION Systematic screening for HEV infection is not needed among IBD patients on immunomodulatory medications. However, in the event of abnormal liver test findings, HEV should be part of the classic diagnostic assessment.
Collapse
Affiliation(s)
- Ilias Kounis
- Centre Hépato-Biliaire, AP-HP Hôpital Paul-Brousse, 94800 Villejuif, France
- Inserm, UMR-S 1193, Université Paris-Saclay, 94800 Villejuif, France
- Inserm, Physiopathogénèse et Traitement des Maladies du Foie, Université Paris-Saclay, 94800 Villejuif, France
- FHU Hepatinov, 94805 Villejuif, France
- Correspondence: (I.K.); (A.M.R.-A.)
| | | | - Stephane Nahon
- Groupe Hospitalier Intercommunal Le Raincy-Montfermeil, 78515 Le Raincy, France
| | | | - Gilles Macaigne
- Centre Hospitalier Marne-La-Vallée, 77420 Marne La Vallee, France
| | - Morgane Amil
- Centre Hospitalier Departemental Vendée, 85000 La Roche sur Yon, France
| | | | | | | | | | | | | | - Armand Yamaga
- Centre Hospitalier Intercommunal de Poissy-St-Germain-en-Laye, 78100 St-Germain-en-Laye, France
| | | | | | | | | | | | - Helene Agostini
- Clinical Research Unit, Université Paris-Sud, Université Paris-Saclay, 94800 Villejuif, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, AP-HP Hôpital Paul-Brousse, 94800 Villejuif, France
- Inserm, UMR-S 1193, Université Paris-Saclay, 94800 Villejuif, France
- Inserm, Physiopathogénèse et Traitement des Maladies du Foie, Université Paris-Saclay, 94800 Villejuif, France
- FHU Hepatinov, 94805 Villejuif, France
| | - Anne Marie Roque-Afonso
- Inserm, UMR-S 1193, Université Paris-Saclay, 94800 Villejuif, France
- Inserm, Physiopathogénèse et Traitement des Maladies du Foie, Université Paris-Saclay, 94800 Villejuif, France
- FHU Hepatinov, 94805 Villejuif, France
- Département de Virologie, AP-HP Hôpital Paul-Brousse, 94800 Villejuif, France
- Correspondence: (I.K.); (A.M.R.-A.)
| |
Collapse
|
24
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
25
|
Bhilegaonkar KN, Kolhe RP. Transfer of viruses implicated in human disease through food. PRESENT KNOWLEDGE IN FOOD SAFETY 2023:786-811. [DOI: 10.1016/b978-0-12-819470-6.00060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
26
|
Primadharsini PP, Nagashima S, Takahashi M, Murata K, Okamoto H. Ritonavir Blocks Hepatitis E Virus Internalization and Clears Hepatitis E Virus In Vitro with Ribavirin. Viruses 2022; 14:v14112440. [PMID: 36366538 PMCID: PMC9697947 DOI: 10.3390/v14112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatitis E virus (HEV) is increasingly recognized as the leading cause of acute hepatitis. Although HEV infections are mostly self-limiting, a chronic course can develop especially in those with immunocompromised state. Ribavirin is currently used to treat such patients. According to various reports on chronic HEV infections, a sustained virological response (SVR) was achieved in approximately 80% of patients receiving ribavirin monotherapy. To increase the SVR rate, drug combination might be a viable strategy, which we attempted in the current study. Ritonavir was identified in our previous drug screening while searching for candidate novel anti-HEV drugs. It demonstrated potent inhibition of HEV growth in cultured cells. In the present study, ritonavir blocked HEV internalization as shown through time-of-addition and immunofluorescence assays. Its combination with ribavirin significantly increased the efficiency of inhibiting HEV growth compared to that shown by ribavirin monotherapy, even in PLC/PRF/5 cells with robust HEV production, and resulted in viral clearance. Similar efficiency was seen for HEV genotypes 3 and 4, the main causes of chronic infection. The present findings provide insight concerning the advantage of combination therapy using drugs blocking different steps in the HEV life cycle (internalization and RNA replication) as a potential novel treatment strategy for chronic hepatitis E.
Collapse
|
27
|
Sadio BD, Faye M, Kaiser M, Diarra M, Balique F, Diagne CT, Faye O, Diagne MM, Fall G, Ndiaye O, Loucoubar C, Sow A, Faye O, Faye A, Boye CSB, Sall AA. First hepatitis E outbreak in Southeastern Senegal. Sci Rep 2022; 12:17878. [PMID: 36284151 PMCID: PMC9596447 DOI: 10.1038/s41598-022-22491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
The Rapid proliferation of traditional gold mining sites in the Kedougou region has led to massive migration of people from neighbouring West African countries and the establishment of several small villages where poor hygiene and sanitation conditions exist. In this context, a Hepatitis E virus outbreak was reported in Kedougou in 2014 with several cases among the traditional mining workers. Herein, we described epidemiological and laboratory data collected during the outbreak's investigation from February 2012 to November 2014. Any suspected, contact or probable case was investigated, clinical and epidemiological data were collected. In our study, sera were collected and tested for viral RNA and anti-Hepatitis E virus (HEV) IgM. Archived serum samples from Kedougou were retrospectively screened by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). A total of 65 water samples collected from ponds and wells surrounding gold panners' sites and habitats and 75 tissues samples from rats captured in the environment of traditional gold mining sites were also tested. A total of 1617 sera were collected from 698 suspected cases, 862 contacts and 57 persons with missing information. The median age was 20 (1-88 years-old) and the sex ratio was 1.72. An overall rate of 64.62% (1045/1617) of these patients tested positive for HEV with a high case fatality rate in pregnant women. All water samples and animal tissues tested negative for HEV. Our data help not only determining of the beginning of the HEV outbreak to March 2012, but also identifying risk factors associated to its emergence. However, there is a need to implement routine diagnosis, surveillance and training of health personnel in order to reduce mortality especially among pregnant women. In addition, further studies are needed to identify the virus reservoir and environmental risk factors for HEV in the Kedougou region.
Collapse
Affiliation(s)
- Bacary Djilocalisse Sadio
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
- Service de Santé Publique et Appui à la Recherche (CHU Fann), Institut de Santé et Développement, Dakar, Senegal
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Martin Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal.
| | | | - Maryam Diarra
- Epidemiology, Clinical Research and Data Science Unit, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Fanny Balique
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
- OZ Biosciences SAS, 13288, Marseille Cedex 09, France
| | - Cheikh Tidiane Diagne
- MIVEGEC (Infectious Diseases and Vector: Ecology, Genetics, Evolution and Control), Univ. Montpelier, IRD, CNRS, 34394, Montpellier, France
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| | - Moussa Moïse Diagne
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| | - Oumar Ndiaye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Unit, Institut Pasteur de Dakar, 220, Dakar, Senegal
| | - Abdourahmane Sow
- West African Health Organisation, 175, Avenue Ouezzin Coulibaly, 01BP: 153, Bobo Dioulasso 01, Burkina Faso
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| | - Adama Faye
- Service de Santé Publique et Appui à la Recherche (CHU Fann), Institut de Santé et Développement, Dakar, Senegal
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Cheikh Saad Bouh Boye
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Unité de Recherche et Biotechnologie Microbienne, Faculté de Médecine, de Pharmacie et d'Odontostomatologie (FMPOS), Dakar, Senegal
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| |
Collapse
|
28
|
López‐López P, Frias M, Camacho A, Machuca I, Caballero‐Gómez J, Risalde MA, García‐Bocanegra I, Pérez‐Valero I, Gomez‐Villamandos JC, Rivero‐Juárez A, Rivero A. Seroreversion of IgG anti-HEV in HIV cirrhotic patients: A long-term multi-sampling longitudinal study. Transbound Emerg Dis 2022; 69:e1541-e1548. [PMID: 35184415 PMCID: PMC9790577 DOI: 10.1111/tbed.14486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
The aim of our study was to evaluate HEV antibody kinetics in HIV/HCV-coinfected patients with cirrhosis. A longitudinal retrospective study was designed. Patients were followed up every 6 months; anti-HEV IgG and IgM antibodies levels and HEV-RNA by qPCR were analysed. The prevalence and incidence of every HEV infection marker were calculated. The kinetics of anti-HEV IgG and IgM during the follow-up were evaluated. Seventy-five patients comprised the study population. The seroprevalence observed was 17.3%. None showed IgM antibodies or HEV-RNA at baseline. None showed detectable HEV viral load during the study period. After a median follow-up of 5.1 years, two of 62 seronegative patients (3.2%) seroconverted to IgG antibody. The incidence for IgM was 2.7%. Of the 13 patients with IgG seropositivity at baseline, five (38.5%) seroreverted. Meanwhile, of the two patients who exhibited IgM positivity during the study, one (50%) showed intermittent positivity. We found that HEV seropositivity is common in HIV/HCV-coinfected cirrhotic patients. A remarkable rate of IgG seroreversions and IgM intermittence was found, limiting the use of antibodies for the diagnosis of HEV infection in this population.
Collapse
Affiliation(s)
- Pedro López‐López
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC
| | - Mario Frias
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC
| | - Angela Camacho
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC
| | - Isabel Machuca
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC
| | - Javier Caballero‐Gómez
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC,Animal Health and Zoonoses Research Group (GISAZ), Animal Health DepartmentUniversity of CordobaCordobaSpain
| | - María A. Risalde
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC,Animal Health and Zoonoses Research Group (GISAZ), Animal Pathology and Toxicology DepartmentUniversity of CordobaCordobaSpain
| | - Ignacio García‐Bocanegra
- CIBERINFEC,Animal Health and Zoonoses Research Group (GISAZ), Animal Health DepartmentUniversity of CordobaCordobaSpain
| | - Ignacio Pérez‐Valero
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC
| | - Jose C. Gomez‐Villamandos
- CIBERINFEC,Animal Health and Zoonoses Research Group (GISAZ), Animal Pathology and Toxicology DepartmentUniversity of CordobaCordobaSpain
| | - Antonio Rivero‐Juárez
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC
| | - Antonio Rivero
- Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia HospitalUniversity of CordobaCordobaSpain,CIBERINFEC
| |
Collapse
|
29
|
Markakis GE, Papatheodoridis GV, Cholongitas E. Epidemiology and treatment of hepatitis E in the liver transplantation setting: A literature review. J Viral Hepat 2022; 29:698-718. [PMID: 35644040 DOI: 10.1111/jvh.13709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 05/10/2022] [Indexed: 12/09/2022]
Abstract
Hepatitis E virus (HEV) is a common cause of acute hepatitis in developing countries, but it can also take a chronic course especially in immunocompromised patients. Its epidemiology after liver transplantation (LT) is hard to assess and treatment options are still explored. Between 2009 and 2020, literature reporting HEV prevalence and treatment in LT recipients was searched and a synthesis was attempted. Sixteen studies reported HEV prevalence in consecutive LT patients: HEV RNA positivity ranged between 0%-1.4% and 0%-7.7% for Western and Eastern cohorts, respectively. In studies published between 2009-2014 and 2015-2020, HEV RNA positivity ranged between 0.35%-1.3% (all European) and 0%-7.7% (European: 0%-1.4%), respectively. Five studies evaluated HEV prevalence in LT recipients with abnormal liver enzymes: HEV RNA positivity was 2.9% in studies published between 2009 and 2014 and from 3.5% to 20% in studies published between 2015 and 2020. Twenty-seven studies reported HEV treatment in LT recipients: sustained virologic response was achieved in 15% by immunosuppression reduction alone and in 83% of cases by ribavirin regiments. Chronic HEV infection is affecting LT recipients, mostly those with abnormal liver enzymes and in Eastern countries. HEV diagnoses should be based on PCR techniques. Successful treatment can be achieved with ribavirin in most cases.
Collapse
Affiliation(s)
- George E Markakis
- Department of Gastroenterology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George V Papatheodoridis
- Department of Gastroenterology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Hepatitis E Virus; An Underestimated Threat for the Viral Hepatitis Elimination Program. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
31
|
Goulet A, Cambillau C, Roussel A, Imbert I. Structure Prediction and Analysis of Hepatitis E Virus Non-Structural Proteins from the Replication and Transcription Machinery by AlphaFold2. Viruses 2022; 14:1537. [PMID: 35891516 PMCID: PMC9316534 DOI: 10.3390/v14071537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.
Collapse
Affiliation(s)
- Adeline Goulet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| | - Christian Cambillau
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
- AlphaGraphix, 24 Carrer d’Amont, 66210 Formiguères, France
| | - Alain Roussel
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| | - Isabelle Imbert
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| |
Collapse
|
32
|
Repeated cross-sectional sampling of pigs at slaughter indicates varying age of hepatitis E virus infection within and between pig farms. Vet Res 2022; 53:50. [PMID: 35799280 PMCID: PMC9264715 DOI: 10.1186/s13567-022-01068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Humans can become infected with hepatitis E virus (HEV) by consumption of undercooked pork. To reduce the burden of HEV in humans, mitigation on pig farms is needed. HEV is found on most pig farms globally, yet within-farm seroprevalence estimates vary considerably. Understanding of the underlying variation in infection dynamics within and between farms currently lacks. Therefore, we investigated HEV infection dynamics by sampling 1711 batches of slaughter pigs from 208 Dutch farms over an 8-month period. Four farm types, conventional, organic, and two types with strict focus on biosecurity, were included. Sera were tested individually with an anti-HEV antibody ELISA and pooled per batch with PCR. All farms delivered seropositive pigs to slaughter, yet batches (resembling farm compartments) had varying results. By combining PCR and ELISA results, infection moment and extent per batch could be classified as low transmission, early, intermediate or late. Cluster analysis of batch infection moments per farm resulted in four clusters with distinct infection patterns. Cluster 1 farms delivered almost exclusively PCR negative, ELISA positive batches to slaughter (PCR−ELISA+), indicating relatively early age of HEV infection. Cluster 2 and 3 farms delivered 0.3 and 0.7 of batches with intermediate infection moment (PCR+ELISA+) respectively and only few batches with early infection. Cluster 4 farms delivered low transmission (PCR−ELISA−) and late infection (PCR+ELISA−) batches, demonstrating that those farms can prevent or delay HEV transmission to farm compartments. Farm type partly coincided with cluster assignment, indicating that biosecurity and management are related to age of HEV infection.
Collapse
|
33
|
Damiris K, Aghaie Meybodi M, Niazi M, Pyrsopoulos N. Hepatitis E in immunocompromised individuals. World J Hepatol 2022; 14:482-494. [PMID: 35582299 PMCID: PMC9055194 DOI: 10.4254/wjh.v14.i3.482] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) originally identified as a cause of acute icteric hepatitis in developing countries has grown to be a cause of zoonotic viral hepatitis in developed countries such as the United States. While there are eight identified genotypes to date, genotype 1 (HEV1), HEV2, HEV3, HEV4 are the most common to infect humans. HEV1 and HEV2 are most common in developing countries including Latina America, Africa and Asia, and are commonly transmitted through contaminated water supplies leading to regional outbreaks. In contrast HEV3 and HEV4 circulate freely in many mammalian animals and can lead to occasional transmission to humans through fecal contamination or consumption of undercooked meat. The incidence and prevalence of HEV in the United States is undetermined given the absence of FDA approved serological assays and the lack of commercially available testing. In majority of cases, HEV infection is a self-limiting hepatitis requiring only symptomatic treatment. However, this is not the case in immunocompromised individuals, including those that have undergone solid organ or stem cell transplantation. In this subset of patients, chronic infection can be life threatening as hepatic insult can lead to inflammation and fibrosis with subsequent cirrhosis and death. The need for re-transplantation as a result of post-transplant hepatitis is of great concern. In addition, there have been many reported incidents of extrahepatic manifestations, for which the exact mechanisms remain to be elucidated. The cornerstone of treatment in immunocompromised solid organ transplant recipients is reduction of immunosuppressive therapies, while attempting to minimize the risk of organ rejection. Subsequent treatment options include ribavirin, and pegylated interferon alpha in those who have demonstrated ribavirin resistance. Further investigation assessing safety and efficacy of anti-viral therapy is imperative given the rising global health burden. Given this concern, vaccination has been approved in China with other investigations underway throughout the world. In this review we introduce the epidemiology, diagnosis, clinical manifestations, and treatment of HEV, with emphasis on immunocompromised individuals in the United States.
Collapse
Affiliation(s)
- Konstantinos Damiris
- Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ 07103, United States
| | - Mohamad Aghaie Meybodi
- Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ 07103, United States
| | - Mumtaz Niazi
- Department of Medicine - Gastroenterology and Hepatology, Rutgers - New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Department of Medicine - Gastroenterology and Hepatology, Rutgers - New Jersey Medical School, Newark, NJ 07103, United States
| |
Collapse
|
34
|
Salami KA, Mandi HE, Imbault N, Tornieporth NG. The promise, problems, and pitfalls of including pregnant women in clinical trials of Lassa fever vaccine: a qualitative assessment of sub-Sahara Africa investigators' perception. Pan Afr Med J 2022; 41:242. [PMID: 35734313 PMCID: PMC9187998 DOI: 10.11604/pamj.2022.41.242.33863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Lassa fever runs a uniquely severe course in pregnancy. There are plans for Lassa fever vaccine clinical trials in endemic West African countries. We assessed the perception of West African investigators to include pregnant women in these studies. Methods interviews were conducted with eight sub-Saharan African investigators. These investigators, listed as speakers at the 9th European and developing countries clinical trials partnership (EDCTP) congress and had clinical research experience in sub-Saharan Africa, were purposefully included as study participants. Six are from West Africa. The information was analyzed thematically. Results we interviewed eight (six in-person and two on the phone) out of fifteen earmarked investigators. Respondents had limited experience with pregnant women in clinical trials, but desired a paradigm shift. They identified pregnant women's willingness, a robust community engagement strategy, and adequate safety data as enablers, while lack of safety data, persistent fears about potential harm to pregnant women and offspring, and inappropriate community engagement activities as potential barriers. Conclusion the inclusion of pregnant women in Lassa fever vaccine clinical trials should be a priority of vaccine developers. Investigators are willing to conduct these studies provided adequate measures to ensure safety is in place.
Collapse
Affiliation(s)
- Kolawole Akeem Salami
- World Health Organization, Geneva, Switzerland,,Corresponding author: Kolawole Akeem Salami, World Health Organization, Geneva, Switzerland.
| | | | - Nathalie Imbault
- Coalition for Epidemic Preparedness and Innovations, London, United Kingdom
| | | |
Collapse
|
35
|
Li B, Wagner AL, Song Y, Chen X, Lu Y. Distribution and phylogenetics of hepatitis E virus genotype 4 in humans and animals. Zoonoses Public Health 2022; 69:458-467. [PMID: 35246959 DOI: 10.1111/zph.12934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/06/2021] [Accepted: 02/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Worldwide, hepatitis E virus (HEV) infection is considered a significant public health concern. In particular, HEV genotype 4 (HEV-4) has spread to more areas and host species. In this study, we describe the global distribution of HEV-4 and characterize HEV-4 subtypes by host, country and year of isolation. METHODS We retrospectively collected HEV-4 sequences available before December 31, 2019, in GenBank. HEV-4 and its subtypes were determined using phylogenetic comparison with HEV reference sequences. Information on the isolation of the sequences was extracted from the GenBank or original publications. Temporal, spatial and host characteristics of the sequences were summarized and nucleotide similarity was calculated based on five amplified fragments within HEV genome, stratified by host, country and year. RESULTS A total of 2295 HEV-4 complete and partial nucleotide sequences were studied. The majority (92.7%) was isolated in China's mainland, Japan, Hong Kong and France. A total of 20 animal hosts were documented, though swine remained predominant (71.7%). Globally, prevalent HEV-4 subtypes changed remarkably over the last 18 years. Subtypes 4a, 4b, 4d and 4h were most commonly isolated (80.3%). Subtypes 4c, 4e, 4f, 4g and 4i remained limited in temporal distribution. High nucleotide similarities were observed between the sequences amplified in HEV ORF2, in the same and neighbouring countries, and in similar animal hosts. CONCLUSION China and Japan are endemic for HEV-4, and have all the subtypes. In Europe, France has a high prevalence of HEV-4. Increases in affected areas and animal hosts imply consistent cross-border and cross-species transmission.
Collapse
Affiliation(s)
- Bingzhe Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Abram L Wagner
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Yujian Song
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xiangxiang Chen
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Public Health Safety (Fudan University), Shanghai, China.,Global Health Institute, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
37
|
El-Kafrawy SA, El-Daly MM. Hepatitis E virus in Saudi Arabia: more surveillance needed. Future Virol 2022. [DOI: 10.2217/fvl-2021-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis E virus (HEV) is a small quasi-enveloped ssRNA causing acute hepatitis. HEV is the leading cause of intermittent acute hepatitis and fulminant hepatic failure. Risk factors include drinking contaminated water in developing countries and consumption of infected animal products in developed countries. Previous reports on HEV prevalence in Saudi Arabia had small sample sizes. Nationwide systematic seroprevalence studies are needed to investigate risk factors and annual incidence. Camels play a cultural and economic role in the life of Saudi citizens with frequent human contact and potential role in zoonotic transmission. Future research needs to include larger sample-sizes and nationwide studies. Future studies should also focus on raising awareness of HEV infection and the need for wider population testing and screening.
Collapse
Affiliation(s)
- Sherif Aly El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mai Mohamed El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
38
|
Li P, Li Y, Wang Y, Liu J, Lavrijsen M, Li Y, Zhang R, Verstegen MMA, Wang Y, Li TC, Ma Z, Kainov DE, Bruno MJ, de Man RA, van der Laan LJW, Peppelenbosch MP, Pan Q. Recapitulating hepatitis E virus-host interactions and facilitating antiviral drug discovery in human liver-derived organoids. SCIENCE ADVANCES 2022; 8:eabj5908. [PMID: 35044825 PMCID: PMC8769558 DOI: 10.1126/sciadv.abj5908] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hepatotropic viruses naturally have narrow host and tissue tropisms, challenging the development of robust experimental models. The advent of organoid technology provides a unique opportunity for moving the field forward. Here, we demonstrate that three-dimensional cultured organoids from fetal and adult human liver with cholangiocyte or hepatocyte phenotype support hepatitis E virus (HEV) replication. Inoculation with infectious HEV particles demonstrates that human liver–derived organoids support the full life cycle of HEV infection. By directing organoids toward polarized monolayers in a transwell system, we observed predominantly apical secretion of HEV particles. Genome-wide transcriptomic and tRNAome analyses revealed robust host responses triggered by viral replication. Drug screening in organoids identified brequinar and homoharringtonine as potent HEV inhibitors, which are also effective against the ribavirin resistance variant harboring G1634R mutation. Thus, successful recapitulation of HEV infection in liver-derived organoids shall facilitate the study of virus-host interactions and development of antiviral therapies.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Corresponding author. (Q.P.); (Y.W.)
| | - Jiaye Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Marla Lavrijsen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Monique M. A. Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway
- Institute of Technology, University of Tartu, Tartu 50090, Estonia
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
- Corresponding author. (Q.P.); (Y.W.)
| |
Collapse
|
39
|
Cheung CKM, Wong SH, Law AWH, Law MF. Transfusion-transmitted hepatitis E: What we know so far? World J Gastroenterol 2022; 28:47-75. [PMID: 35125819 PMCID: PMC8793017 DOI: 10.3748/wjg.v28.i1.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of viral hepatitis globally. There is growing concern about transfusion-transmitted HEV (TT-HEV) as an emerging global health problem. HEV can potentially result in chronic infection in immunocompromised patients, leading to a higher risk of liver cirrhosis and even death. Between 0.0013% and 0.281% of asymptomatic blood donors around the world have HEV viremia, and 0.27% to 60.5% have anti-HEV immunoglobulin G. HEV is infectious even at very low blood concentrations of the virus. Immunosuppressed patients who develop persistent hepatitis E infection should have their immunosuppressant regimen reduced; ribavirin may be considered as treatment. Pegylated interferon can be considered in those who are refractory or intolerant to ribavirin. Sofosbuvir, a nucleotide analog, showed modest antiviral activity in some clinical studies but sustained viral response was not achieved. Therefore, rescue treatment remains an unmet need. The need for HEV screening of all blood donations remains controversial. Universal screening has been adopted in some countries after consideration of risk and resource availability. Various pathogen reduction methods have also been proposed to reduce the risk of TT-HEV. Future studies are needed to define the incidence of transmission through transfusion, their clinical features, outcomes and prognosis.
Collapse
Affiliation(s)
| | - Sunny Hei Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong 852, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Man Fai Law
- Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| |
Collapse
|
40
|
Gordeychuk I, Kyuregyan K, Kondrashova A, Bayurova E, Gulyaev S, Gulyaeva T, Potemkin I, Karlsen A, Isaeva O, Belyakova A, Lyashenko A, Sorokin A, Chumakov A, Morozov I, Isaguliants M, Ishmukhametov A, Mikhailov M. Immunization with recombinant ORF2 p551 protein protects common marmosets (Callithrix jacchus) against homologous and heterologous hepatitis E virus challenge. Vaccine 2022; 40:89-99. [PMID: 34836660 DOI: 10.1016/j.vaccine.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major causative agent of acute hepatitis worldwide, prompting continuous HEV vaccine efforts. Vaccine development is hampered by the lack of convenient animal models susceptible to infection with different HEV genotypes. We produced recombinant open reading frame 2 protein (pORF2; p551) of HEV genotype (GT) 3 and assessed its immunogenicity and protectivity against HEV challenge in common marmosets (Callithrix jacchus, CM). METHODS p551 with consensus sequence corresponding to amino acid residues 110-660 of HEV GT3 pORF2 was expressed in E. coli and purified by affinity chromatography. CMs were immunized intramuscularly with 20 μg of p551 VLPs with alum adjuvant (n = 4) or adjuvant alone (n = 2) at weeks 0, 3, 7 and 19. At week 27, p551-immunized and control animals were challenged with HEV GT1 or GT3 and thereafter longitudinally screened for markers of liver function, anti-HEV IgG and HEV RNA in feces and sera. RESULTS Purified p551 formed VLPs with particle size of 27.71 ± 2.42 nm. Two immunizations with p551 induced anti-HEV IgG mean titer of 1:1810. Immunized CMs challenged with homologous and heterologous HEV genotype did not develop HEV infection during the follow-up. Control CMs infected with both HEV GT1 and GT3 demonstrated signs of HEV infection with virus shedding and elevation of the levels of liver enzymes. High levels of anti-HEV IgG persisted in vaccinated CMs and control CMs that resolved HEV infection, for up to two years post challenge. CONCLUSIONS CMs are shown to be a convenient laboratory animal model susceptible to infection with HEV GT1 and GT3. Immunization with HEV GT3 ORF2/p551 triggers potent anti-HEV antibody response protecting CMs from homologous and heterologous HEV challenge. This advances p551 in VLPs as a prototype vaccine against HEV.
Collapse
Affiliation(s)
- Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Karen Kyuregyan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Stanislav Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Tatiana Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilya Potemkin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Anastasia Karlsen
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia
| | - Olga Isaeva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Anna Lyashenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Alexey Sorokin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Alexey Chumakov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Igor Morozov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Maria Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Mikhail Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| |
Collapse
|
41
|
Althobaiti SO, Alhumaidi GO, Alwagdani WM, Almarwani KM, Altowairqi BS, Alhaddad MS, Abdelwahab SF. Assessment of Knowledge, Attitude, and Practice among Saudi Residents Regarding Hepatitis E Virus. Am J Trop Med Hyg 2021; 106:626-631. [PMID: 34781257 PMCID: PMC8832907 DOI: 10.4269/ajtmh.21-0841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Global data, including those from Saudi Arabia, that examined public knowledge, attitudes, and practices (KAP) toward hepatitis E virus (HEV) are limited. This study examined KAP levels of the general population in Saudi Arabia toward HEV. A cross-sectional study was conducted among 768 participants. An Arabic electronic questionnaire that contained demographic data and had 35 questions was used to measure KAP of the participants concerning HEV. Collected data were analyzed at a significance level of 0.05. A total of 768 individuals participated in the study, of whom 16.3% (N = 125) were males and 83.7% (N = 643) were females. Study subjects were 18 years and above. Most of the participants were Saudi citizens (95.6%; N = 734), and from Western Saudi Arabia (76.4%; N = 587). Thirty-four percent (N = 261) of the participants had not heard of HEV, and 48% were aware that yellowish skin or eyes are the most important sign of hepatitis. The level of participants' knowledge about HEV was low (39.5%). However, positive attitudes and practices were apparent and tended to aim at how to avoid becoming infected with HEV. In conclusion, the level of HEV-related knowledge among the participants was low, and their practices and attitudes were aimed at avoiding HEV infection. Awareness campaigns are required to increase the public's HEV-related knowledge.
Collapse
Affiliation(s)
- Shaima O. Althobaiti
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Ghaida O. Alhumaidi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Waad M. Alwagdani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Kawther M. Almarwani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Batool S. Altowairqi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | | | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
- Address correspondence to Sayed F. Abdelwahab, Professor of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Kingdom of Saudi Arabia. E-mail:
| |
Collapse
|
42
|
Ribeiro da Cunha M, Marques T. A Case of Hepatitis E Persistence in a Patient With Myelofibrosis Under Ruxolitinib. ACG Case Rep J 2021; 8:e00674. [PMID: 34820465 PMCID: PMC8608255 DOI: 10.14309/crj.0000000000000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatitis E virus (HEV) is a mostly enterically transmitted agent of viral, usually acute hepatitis. In recent years, however, it has been proven to establish chronicity in immunosuppressed patients. We report the first case of HEV infection in a patient with myelofibrosis under ruxolitinib, a tyrosine kinase inhibitor. Although this patient was able to mount a humoral response with specific immunoglobulin G, viral replication could not be controlled until ruxolitinib suspension. After normalization of liver enzymes and clearance of HEV, ruxolitinib was reintroduced with no disease relapse, suggesting spontaneous eradication of the virus.
Collapse
Affiliation(s)
- Maria Ribeiro da Cunha
- Department of Infectious Diseases, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Tiago Marques
- Department of Infectious Diseases, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
43
|
Wu J, Ling B, Guo N, Zhai G, Li M, Guo Y. Immunological Manifestations of Hepatitis E-Associated Acute and Chronic Liver Failure and Its Regulatory Mechanisms. Front Med (Lausanne) 2021; 8:725993. [PMID: 34434948 PMCID: PMC8380956 DOI: 10.3389/fmed.2021.725993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is a common cause of viral hepatitis in developing countries, most commonly transmitted through the fecal-oral route. The virus is mainly of genotypes (GT) 1 and GT2 genotypes, and patients usually show symptoms of acute hepatitis. Due to the rising trend of HEV serological prevalence in global population, HEV has become an important public health problem in developed countries. Severe hepatitis caused by HEV includes acute and chronic liver failure (ACLF). ACLF frequently occurs in developed countries and is caused by overlapping chronic liver diseases of HEV with genotypes GT3 and GT4. Because the onset of hepatitis E is closely associated with immunity, it is critical to understand the immunological mechanism of hepatitis E associated with acute and chronic liver failure (HEV-ACLF). This review discusses the immunological manifestations and mechanisms of HEV-ACLF, intrahepatic immune microenvironment and treatment, and raises outstanding questions about the immunological mechanism and treatment of the disease.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Bai Ling
- Department of Pharmacy, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Naizhou Guo
- Department of Clinical Laboratory, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Meifen Li
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Yurong Guo
- Department of Laboratory Medicine, Yancheng Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Yancheng, China
| |
Collapse
|
44
|
Khuroo MS. Hepatitis E and Pregnancy: An Unholy Alliance Unmasked from Kashmir, India. Viruses 2021; 13:1329. [PMID: 34372535 PMCID: PMC8310059 DOI: 10.3390/v13071329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The adverse relationship between viral hepatitis and pregnancy in developing countries had been interpreted as a reflection of retrospectively biased hospital-based data collection by the West. However, the discovery of hepatitis E virus (HEV) as the etiological agent of an epidemic of non-A, non-B hepatitis in Kashmir, and the documenting of the increased incidence and severity of hepatitis E in pregnancy via a house-to-house survey, unmasked this unholy alliance. In the Hepeviridae family, HEV-genotype (gt)1 from genus Orthohepevirus A has a unique open reading frame (ORF)4-encoded protein which enhances viral polymerase activity and viral replication. The epidemics caused by HEV-gt1, but not any other Orthohepevirus A genotype, show an adverse relationship with pregnancy in humans. The pathogenesis of the association is complex and at present not well understood. Possibly multiple factors play a role in causing severe liver disease in the pregnant women including infection and damage to the maternal-fetal interface by HEV-gt1; vertical transmission of HEV to fetus causing severe fetal/neonatal hepatitis; and combined viral and hormone related immune dysfunction of diverse nature in the pregnant women, promoting viral replication. Management is multidisciplinary and needs a close watch for the development and management of acute liver failure. (ALF). Preliminary data suggest beneficial maternal outcomes by early termination of pregnancy in patients with lower grades of encephalopathy.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu and Kashmir 190010, India
| |
Collapse
|
45
|
Hartard C, Fenaux H, Gentilhomme A, Murray JM, Akand E, Laugel E, Berger S, Maul A, de Rougemont A, Jeulin H, Remen T, Bensenane M, Bronowicki JP, Gantzer C, Bertrand I, Schvoerer E. Variability in molecular characteristics of Hepatitis E virus quasispecies could modify viral surface properties and transmission. J Viral Hepat 2021; 28:1078-1090. [PMID: 33877740 DOI: 10.1111/jvh.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 04/04/2021] [Indexed: 12/09/2022]
Abstract
Hepatitis E virus (HEV) usually causes self-limited liver diseases but can also result in severe cases. Genotypes 1 (G1) and 2 circulate in developing countries are human-restricted and waterborne, while zoonotic G3 and G4 circulating in industrialized countries preferentially infect human through consumption of contaminated meat. Our aims were to identify amino acid patterns in HEV variants that could be involved in pathogenicity or in transmission modes, related to their impact on antigenicity and viral surface hydrophobicity. HEV sequences from human (n = 37) and environmental origins (wild boar [n = 3], pig slaughterhouse effluent [n = 6] and urban wastewater [n = 2]) were collected for the characterization of quasispecies using ultra-deep sequencing (ORF2/ORF3 overlap). Predictive and functional assays were carried out to investigate viral particle antigenicity and hydrophobicity. Most quasispecies showed a major variant while a mixture was observed in urban wastewater and in one chronically infected patient. Amino acid signatures were identified, as a rabbit-linked HEV pattern in two infected patients, or the S68L (ORF2) / H81C (ORF3) residue mostly identified in wild boars. By comparison with environmental strains, molecular patterns less likely represented in humans were identified. Patterns impacting viral hydrophobicity and/or antigenicity were also observed, and the higher hydrophobicity of HEV naked particles compared with the enveloped forms was demonstrated. HEV variants isolated from human and environment present molecular patterns that could impact their surface properties as well as their transmission. These molecular patterns may concern only one minor variant of a quasispecies and could emerge under selective pressure.
Collapse
Affiliation(s)
- Cédric Hartard
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CNRS, LCPME, Nancy, France
| | - Honorine Fenaux
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CNRS, LCPME, Nancy, France
| | - Alexis Gentilhomme
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France
| | - John M Murray
- School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia
| | - Elma Akand
- School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia
| | - Elodie Laugel
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CNRS, LCPME, Nancy, France
| | - Sibel Berger
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France
| | - Armand Maul
- LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), Université de Lorraine, CNRS, Metz, France
| | - Alexis de Rougemont
- CHU de Dijon, Centre national de référence des virus entériques, Dijon, France
| | - Hélène Jeulin
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CNRS, LCPME, Nancy, France
| | - Thomas Remen
- DRCI, Délégation à la Recherche Clinique et à l'Innovation, Unité de Méthodologie, Data Management et Statistique, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France
| | - Mouni Bensenane
- Service d'hépato-gastro-entérologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Service d'hépato-gastro-entérologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France
| | | | | | - Evelyne Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CNRS, LCPME, Nancy, France
| |
Collapse
|
46
|
Rajput R, Sharma J. SARS-CoV-2 in Pregnancy: Fitting Into the Existing Viral Repertoire. Front Glob Womens Health 2021; 2:647836. [PMID: 34816202 PMCID: PMC8594046 DOI: 10.3389/fgwh.2021.647836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The risk of viral infection during pregnancy is well-documented; however, the intervention modalities that in practice enable maternal-fetal protection are restricted by limited understanding. This becomes all the more challenging during pandemics. During many different epidemic and pandemic viral outbreaks, worse outcomes (fetal abnormalities, mortality, preterm labor, etc.) seem to affect pregnant women than what has been evident when compared to non-pregnant women. The condition of pregnancy, which is widely understood as "immunosuppressed," needs to be re-understood in terms of the way the immune system works during such a state. The immune system gets transformed to accommodate and facilitate fetal growth. The interference of such supportive conversion by viral infection and the risk of co-infection lead to adverse fetal outcomes. Hence, it is crucial to understand the risk and impact of potent viral infections likely to be encountered during pregnancy. In the present article, we review the effects imposed by previously established and recently emerging/re-emerging viral infections on maternal and fetal health. Such understanding is important in devising strategies for better preparedness and knowing the treatment options available to mitigate the relevant adverse outcomes.
Collapse
Affiliation(s)
| | - Jitender Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| |
Collapse
|
47
|
Kucharzik T, Ellul P, Greuter T, Rahier JF, Verstockt B, Abreu C, Albuquerque A, Allocca M, Esteve M, Farraye FA, Gordon H, Karmiris K, Kopylov U, Kirchgesner J, MacMahon E, Magro F, Maaser C, de Ridder L, Taxonera C, Toruner M, Tremblay L, Scharl M, Viget N, Zabana Y, Vavricka S. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:879-913. [PMID: 33730753 DOI: 10.1093/ecco-jcc/jjab052] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- T Kucharzik
- Department of Gastroenterology, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - P Ellul
- Department of Medicine, Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| | - T Greuter
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland, and Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois CHUV, University Hospital Lausanne, Lausanne, Switzerland
| | - J F Rahier
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Yvoir, Belgium
| | - B Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium, and Department of Chronic Diseases, Metabolism and Ageing, TARGID-IBD, KU Leuven, Leuven, Belgium
| | - C Abreu
- Infectious Diseases Service, Centro Hospitalar Universitário São João, Porto, Portugal.,Instituto de Inovação e Investigação em Saúde [I3s], Faculty of Medicine, Department of Medicine, University of Porto, Portugal
| | - A Albuquerque
- Gastroenterology Department, St James University Hospital, Leeds, UK
| | - M Allocca
- Humanitas Clinical and Research Center - IRCCS -, Rozzano [Mi], Italy.,Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - M Esteve
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - F A Farraye
- Inflammatory Bowel Disease Center, Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - H Gordon
- Department of Gastroenterology, Barts Health NHS Trust, Royal London Hospital, London, UK
| | - K Karmiris
- Department of Gastroenterology, Venizeleio General Hospital, Heraklion, Greece
| | - U Kopylov
- Department of Gastroenterology, Sheba Medical Center, Ramat Gan, Israel, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - J Kirchgesner
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, Department of Gastroenterology, Paris, France
| | - E MacMahon
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - F Magro
- Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal.,Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal
| | - C Maaser
- Outpatient Department of Gastroenterology, Department of Geriatrics, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - L de Ridder
- Department of Paediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Taxonera
- IBD Unit, Department of Gastroenterology, Hospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC], Madrid, Spain
| | - M Toruner
- Ankara University School of Medicine, Department of Gastroenterology, Ankara, Turkey
| | - L Tremblay
- Centre Hospitalier de l'Université de Montréal [CHUM] Pharmacy Department and Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - M Scharl
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| | - N Viget
- Department of Infectious Diseases, Tourcoing Hospital, Tourcoing, France
| | - Y Zabana
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - S Vavricka
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| |
Collapse
|
48
|
Capozza P, Decaro N, Beikpour F, Buonavoglia C, Martella V. Emerging Hepatotropic Viruses in Cats: A Brief Review. Viruses 2021; 13:v13061162. [PMID: 34204394 PMCID: PMC8233973 DOI: 10.3390/v13061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The possible role of viruses in feline liver disease has long remained neglected. However, in 2018, an analogue of human hepatitis B virus was identified in cats. Moreover, antibodies for human hepatitis E have been detected consistently at various prevalence rates in cats. Although the correlation between these viruses and the liver injury in cats must be clarified, hepatotropic viruses might represent an increasing risk for feline and public health.
Collapse
|
49
|
Caetano KAA, Bergamaschi FPR, Carneiro MAS, Pinheiro RS, Araújo LA, Matos MA, Carvalho PMRS, de Souza MM, de Matos MAD, Del-Rios NHA, Martins RMB, Motta-Castro ARC, Soares CC, Cook RL, Teles SA. Hepatotropic viruses (hepatitis A, B, C, D and E) in a rural Brazilian population: prevalence, genotypes, risk factors and vaccination. Trans R Soc Trop Med Hyg 2021; 114:91-98. [PMID: 31608957 DOI: 10.1093/trstmh/trz080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND People living in settlement projects represent an emergent rural population in Brazil. Data on their health is scarce and there are no data on viral hepatitis in this population. This study investigated the epidemiology of viral hepatitis A-E in residents of settlement projects in central Brazil. METHODS During 2011 and 2012, 923 people living in rural settlements in central Brazil were interviewed and tested to estimate the prevalence of exposure to viral hepatitis A-E, to identify the circulating hepatitis B virus (HBV)/hepatitis C virus (HCV) genotypes and risk factors for HBV exposure and to evaluate adherence to the hepatitis B vaccination series. RESULTS Overall, 85.9, 3.9, 0.4 and 17.3% of individuals showed evidence of exposure to hepatitis A virus (HAV), hepatitis E virus, HCV and HBV, respectively. Among HBV-DNA positive samples (n=8), subgenotypes A1 (n=3) and A2 (n=1) and genotype D/subgenotype D3 (n=4) were identified. Hepatitis D virus superinfection was detected in 0/16 HBsAg-positive participants. A total of 229 individuals showed serological evidence of HBV vaccination. In total, 442 settlers were eligible for vaccination, but only 150 individuals completed the vaccine series. All anti-HCV-positive samples (n=4) were also HCV-RNA positive and identified as subtype 1a. CONCLUSIONS The intermediate endemicity of HAV, the higher prevalence of HBV exposure compared with urban areas and the low compliance with HBV vaccination requires preventive measures focused on rural populations, emphasizing the need for HAV and HBV vaccination.
Collapse
Affiliation(s)
- Karlla A A Caetano
- Faculty of Nursing, Federal University of Goias, Goiânia, GO, 74605080, Brazil
| | | | - Megmar A S Carneiro
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, GO, 74605050, Brazil
| | - Raquel S Pinheiro
- Federal Institute of Education, Science, and Technology of Goias, Goiânia, GO, 74130012, Brazil
| | - Lyriane A Araújo
- Federal Institute of Education, Science, and Technology of Goias, Goiânia, GO, 74130012, Brazil
| | - Marcos A Matos
- Faculty of Nursing, Federal University of Goias, Goiânia, GO, 74605080, Brazil
| | | | - Márcia M de Souza
- Faculty of Nursing, Federal University of Goias, Goiânia, GO, 74605080, Brazil
| | - Márcia A D de Matos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, GO, 74605050, Brazil
| | - Nativa Helena A Del-Rios
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, GO, 74605050, Brazil
| | - Regina M B Martins
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, GO, 74605050, Brazil
| | - Ana Rita C Motta-Castro
- Center for Biological and Health Sciences, Federal University of Mato Grosso do Sul, Campo Grande, MS, 79080190, Brazil
| | - Caroline C Soares
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040900, Brazil
| | - Robert L Cook
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, 100231, USA
| | - Sheila A Teles
- Faculty of Nursing, Federal University of Goias, Goiânia, GO, 74605080, Brazil
| |
Collapse
|
50
|
Low prevalence of anti-hepatitis E virus IgG antibodies in Tepehuanos in Mexico. Ann Hepatol 2021; 19:186-189. [PMID: 31771821 DOI: 10.1016/j.aohep.2019.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVE The epidemiology of infection with hepatitis E virus (HEV) in Tepehuanos (a Mexican ethnic group living in rural areas) is largely unknown. This study aimed to determine the seroprevalence of and risk factors associated with HEV infection in Tepehuanos in Durango, Mexico, and to compare this seroprevalence with that in non-Tepehuanos. MATERIALS AND METHODS Through a case-control seroprevalence study, we studied 146 Tepehuanos and 146 age- and gender-matched control subjects of the general population from rural settings. The frequency of anti-HEV IgG antibodies was determined using an enzyme-linked immunoassay. Bivariate and multivariate analyses were used to assess the association between seropositivity and socio-demographic, clinical and behavioral characteristics of the Tepehuanos. RESULTS IgG antibodies against HEV were found in 5 (3.4%; 95% CI: 1.1-7.8) of 146 Tepehuanos and in 46 (31.5%; 95% CI: 24.1-39.7) of 146 control subjects (OR=0.01; 95% CI: 0.0007-0.20; P<0.000001). Bivariate analysis showed that HEV seropositivity was associated with age, consumption of meat from goat, sheep, boar, turkey and pigeon, and concrete flooring at home. However, these variables were no longer significant when analyzed by logistic regression. CONCLUSIONS This is first study on the epidemiology of HEV exposure in Tepehuanos. We demonstrated serological evidence of HEV infection in this ethnic group. The seroprevalence of HEV exposure in Tepehuanos is low as compared with that found in non-Tepehuano people living in rural Durango. Further studies to determine the risk factors associated with HEV exposure in Tepehuanos are needed.
Collapse
|