1
|
Georgakopoulou VE, Lempesis IG, Trakas N, Sklapani P, He Y, Spandidos DA. Lung cancer and obesity: A contentious relationship (Review). Oncol Rep 2024; 52:158. [PMID: 39497438 PMCID: PMC11462394 DOI: 10.3892/or.2024.8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
The global obesity epidemic, attributed to sedentary lifestyles, unhealthy diets, genetics and environmental factors, has led to over 1.9 billion adults being classified as overweight and 650 million living with obesity. Despite advancements in early detection and treatment, lung cancer prognosis remains poor due to late diagnoses and limited therapies. The obesity paradox challenges conventional thinking by suggesting that individuals with obesity and certain diseases, including cancer, may have an improved prognosis compared with their counterparts of a normal weight. This observation has prompted investigations to understand protective mechanisms, including potentially favorable adipokine secretion and metabolic reserves that contribute to tolerating cancer treatments. However, understanding the association between obesity and lung cancer is complex. While smoking is the primary risk factor of lung cancer, obesity may independently impact lung cancer risk, particularly in non‑smokers. Adipose tissue dysfunction, including low‑grade chronic inflammation, and hormonal changes contribute to lung cancer development and progression. Obesity‑related factors may also influence treatment responses and survival outcomes in patients with lung cancer. The impact of obesity on treatment modalities such as chemotherapy, radiotherapy and surgery is still under investigation. Challenges in managing patients with obesity and cancer include increased surgical complexity, higher rates of postoperative complications and limited treatment options due to comorbidities. Targeted interventions aimed at reducing obesity prevalence and promoting healthy lifestyles are crucial for lung cancer prevention. The impact of obesity on lung cancer is multifaceted and requires further research to elucidate the underlying mechanisms and develop personalized interventions for prevention and treatment.
Collapse
Affiliation(s)
| | - Ioannis G. Lempesis
- Medical Chronobiology Program, Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| | - Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
2
|
Dondossola D, Lonati C, Pini A, Bignamini D, Zanella A, Lombardi R, Scaravilli V, La Mura V, Forzenigo L, Biondetti P, Grasselli G, Fracanzani A, Paleari C, Cespiati A, Todaro S, Cattaneo E, Di Feliciantonio M, Sigon G, Valsecchi C, Guzzardella A, Battistin M, Iuculano F. Portal hypertension-like pattern in coronavirus disease 2019 acute respiratory distress syndrome. J Crit Care 2024; 82:154759. [PMID: 38461659 DOI: 10.1016/j.jcrc.2024.154759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVES Although respiratory failure is the most common feature in coronavirus disease 2019 (COVID-19), abdominal organ involvement is likewise frequently observed. To investigate visceral and thoracic circulation and abdominal organ damage in COVID-19 patients. MATERIALS AND METHODS A monocentric observational study was carried on. In COVID-19 patients affected by acute respiratory distress syndrome (ARDS) (n = 31) or mild pneumonia (n = 60) thoracoabdominal circulation was evaluated using Doppler-ultrasound and computed tomography. The study also included non-COVID-19 patients affected by ARDS (n = 10) or portal hypertension (n = 10) for comparison of the main circulatory changes. RESULTS Patients affected by COVID-19 ARDS showed hyperdynamic visceral flow and increased portal velocity, hepatic artery resistance-index, and spleen diameter relative to those with mild-pneumonia (p = 0.001). Splanchnic circulatory parameters significantly correlated with the main respiratory indexes (p < 0.001) and pulmonary artery diameter (p = 0.02). The chest and abdominal vascular remodeling pattern of COVID-19 ARDS patients resembled the picture observed in the PH group, while differed from that of the non-COVID ARDS group. A more severe COVID-19 presentation was associated with worse liver dysfunction and enhanced inflammatory activation; these parameters both correlated with abdominal (p = 0.04) and chest imaging measures (p = 0.03). CONCLUSION In COVID-19 ARDS patients there are abdominal and lung vascular modifications that depict a portal hypertension-like pattern. The correlation between visceral vascular remodeling, pulmonary artery enlargement, and organ damage in these critically ill patients is consistent with a portal hyperlfow-like syndrome that could contribute to the peculiar characteristics of respiratory failure in these patients. CLINICAL RELEVANCE STATEMENT our data suggest that the severity of COVID-19 lung involvement is directly related to the development of a portal hyperflow-like syndrome. These observations should help in defining the need for a closer monitoring, but also to develop dedicated therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi of Milan, 20019 Milan, Italy.
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| | - Alessia Pini
- Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Daniela Bignamini
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, Università degli Studi of Milan, 20019 Milan, Italy; Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Rosa Lombardi
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| | - Vittorio Scaravilli
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Vincenzo La Mura
- Internal Medicine, Hemostasis and Thrombosis Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy; Department of Biomedical Science for Health, Università degli Studi of Milan, 20019 Milan, Italy
| | - Laura Forzenigo
- Division of Radiology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Pierpaolo Biondetti
- Division of Radiology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, Università degli Studi of Milan, 20019 Milan, Italy; Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Anna Fracanzani
- Department of Pathophysiology and Transplantation, Università degli Studi of Milan, 20019 Milan, Italy; Medicine and Metabolic Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| | - Chiara Paleari
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Annalisa Cespiati
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| | - Serena Todaro
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Emanuele Cattaneo
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Marianna Di Feliciantonio
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Giordano Sigon
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| | - Carlo Valsecchi
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Amedeo Guzzardella
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20019, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| | - Federica Iuculano
- Medicine and Metabolic Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20019 Milan, Italy
| |
Collapse
|
3
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Paramythiotis D, Karlafti E, Didagelos M, Fafouti M, Veroplidou K, Protopapas AA, Kaiafa G, Netta S, Michalopoulos A, Savopoulos C. Post-COVID-19 and Irritable Bowel Syndrome: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1961. [PMID: 38004010 PMCID: PMC10673195 DOI: 10.3390/medicina59111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
The emergence of post-COVID-19 syndrome (PCS), a complex and multifactorial condition that follows the acute COVID-19 infection, has raised serious concerns within the global medical community. Concurrently, Irritable Bowel Syndrome (IBS), a widespread chronic gastrointestinal (GI) dysfunction, is considered to be one of the most common disorders of gut-brain interaction (DGBI) that significantly affects the quality of life and social functioning of patients. PCS presents a wide range of symptoms and GI manifestations, including IBS. This review aims to analyze the GI involvement and the prolonged symptoms of COVID-19 infection as part of PCS, in order to explore the potential development of post-infection IBS (PI-IBS) in COVID-19 patients. Irritating factors such as enteric infection, psychosocial conditions, food antigens, and antibiotics may lead to abnormalities in the physiological function of the GI system and could be involved in the development of PI-IBS. Through the presentation of the pathophysiological mechanisms and epidemiological studies that assessed the prevalence of IBS as part of PCS, we attempted to provide a better understanding of the long-term consequences of COVID-19 and the pathogenesis of PI-IBS. Even though PI-IBS is becoming a global challenge, there are only a few studies about it and therefore limited knowledge. Currently, the majority of the existing treatment options are referred to non-COVID-19-associated DGBIs. Forthcoming studies may shed light on the mechanisms of PI-IBS that could be targeted for treatment development.
Collapse
Affiliation(s)
- Daniel Paramythiotis
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (D.P.); (K.V.); (S.N.); (A.M.)
| | - Eleni Karlafti
- Emergency Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.P.); (G.K.); (C.S.)
| | - Matthaios Didagelos
- Intensive Care Unit, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Fafouti
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (D.P.); (K.V.); (S.N.); (A.M.)
| | - Kalliopi Veroplidou
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (D.P.); (K.V.); (S.N.); (A.M.)
| | - Adonis A. Protopapas
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.P.); (G.K.); (C.S.)
| | - Georgia Kaiafa
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.P.); (G.K.); (C.S.)
| | - Smaro Netta
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (D.P.); (K.V.); (S.N.); (A.M.)
| | - Antonios Michalopoulos
- First Propaedeutic Department of Surgery, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (D.P.); (K.V.); (S.N.); (A.M.)
| | - Christos Savopoulos
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.P.); (G.K.); (C.S.)
| |
Collapse
|
5
|
Lempesis IG, Georgakopoulou VE, Papalexis P, Chrousos GP, Spandidos DA. Role of stress in the pathogenesis of cancer (Review). Int J Oncol 2023; 63:124. [PMID: 37711028 PMCID: PMC10552722 DOI: 10.3892/ijo.2023.5572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Stress is a state of disrupted homeostasis, triggered by intrinsic or extrinsic factors, the stressors, which are counteracted by various physiological and behavioural adaptive responses. Stress has been linked to cancer development and incidence for decades; however, epidemiological studies and clinical trials have yielded contradictory results. The present review discusses the effects of stress on cancer development and the various underlying mechanisms. Animal studies have revealed a clear link between stress and cancer progression, revealing molecular, cellular and endocrine processes that are implicated in these effects. Thus, stress hormones, their receptor systems and their intracellular molecular pathways mediate the effects of stress on cancer initiation, progression and the development of metastases. The mechanisms linking stress and cancer progression can either be indirect, mediated by changes in the cancer microenvironment or immune system dysregulation, or direct, through the binding of neuroendocrine stress‑related signalling molecules to cancer cell receptors. Stress affects numerous anti‑ and pro‑cancer immune system components, including host resistance to metastasis, tumour retention and/or immune suppression. Chronic psychological stress through the elevation of catecholamine levels may increase cancer cell death resistance. On the whole, stress is linked to cancer development and incidence, with psychological stressors playing a crucial role. Animal studies have revealed a better link than human ones, with stress‑related hormones influencing tumour development, migration, invasion and cell proliferation. Randomized controlled trials are required to further evaluate the long‑term cancer outcomes of stress and its management.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Georgios P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
Lempesis IG, Varrias D, Sagris M, Attaran RR, Altin ES, Bakoyiannis C, Palaiodimos L, Dalamaga M, Kokkinidis DG. Obesity and Peripheral Artery Disease: Current Evidence and Controversies. Curr Obes Rep 2023; 12:264-279. [PMID: 37243875 PMCID: PMC10220347 DOI: 10.1007/s13679-023-00510-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE OF REVIEW Obesity is a significant public health problem and a major risk factor for the development and progression of atherosclerosis and its cardiovascular manifestations. Lower extremity peripheral artery disease (PAD) affects 3%-10% of the Western population and, if left untreated, can lead to devastating outcomes with both an increased risk of morbidity and mortality. Interestingly, the association between obesity and PAD remains debatable. Whereas it is well known that PAD and obesity frequently overlap in the same patients, many studies have demonstrated a negative association between obesity and PAD and a protective effect of obesity on disease development and progression, a phenomenon described as the "obesity paradox." Possible mechanisms for this paradox may include genetic background, as assessed by mendelian randomization studies, adipose tissue dysfunction, and body fat distribution rather than adiposity, while other factors, such as sex, ethnicity, sarcopenia in the elderly population, or aggressive treatment of co-existing metabolic conditions in individuals with obesity compared to those with normal weight, could have some impact as well. RECENT RINDINGS Few reviews and meta-analyses examining systematically the relationship between obesity and PAD exist. The impact of PAD development due to the presence of obesity remains largely controversial. However, the most current evidence, backed by a recent meta-analysis, suggests a potential protective role of a higher body mass index on PAD-related complications and mortality. In this review, we discuss the association between obesity and PAD development, progression, and management, and the potential pathophysiologic mechanisms linking the two diseases.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Department of Biologic Chemistry, School of Medicine, National and Kapodistrian, University of Athens, Mikras Asias 75, 115 27, Athens, Greece.
| | - Dimitrios Varrias
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marios Sagris
- General Hospital of Nikaia, Piraeus, 184 54, Athens, Greece
| | - Robert R Attaran
- Section of Cardiovascular Medicine, Yale University/Yale New Haven Hospital, 06519, New Haven, CT, USA
| | - Elissa S Altin
- Section of Cardiovascular Medicine, Yale University/Yale New Haven Hospital, 06519, New Haven, CT, USA
| | - Christos Bakoyiannis
- Department of Surgery, Division of Vascular Surgery, Laikon General Hospital, National Kapodistrian University of Athens, 15772, Athens, Greece
| | - Leonidas Palaiodimos
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Dalamaga
- Department of Biologic Chemistry, School of Medicine, National and Kapodistrian, University of Athens, Mikras Asias 75, 115 27, Athens, Greece
| | - Damianos G Kokkinidis
- Section of Cardiovascular Medicine, Yale University/Yale New Haven Hospital, 06519, New Haven, CT, USA
| |
Collapse
|
7
|
Lempesis IG, Georgakopoulou VE. Physiopathological mechanisms related to inflammation in obesity and type 2 diabetes mellitus. World J Exp Med 2023; 13:7-16. [PMID: 37396883 PMCID: PMC10308320 DOI: 10.5493/wjem.v13.i3.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Overweight, obesity, and type 2 diabetes mellitus pose global health problems that are ever-increasing. A chronic low-grade inflammatory status and the presence of various pro-inflammatory markers either in circulation or within dysfunctional metabolic tissues are well established. The presence of these factors can, to some extent, predict disease development and progression. A central role is played by the presence of dysfunctional adipose tissue, liver dysfunction, and skeletal muscle dysfunction, which collectively contribute to the increased circulatory levels of proinflammatory factors. Weight loss and classical metabolic interventions achieve a decrease in many of these factors' circulating levels, implying that a better understanding of the processes or even the modulation of inflammation may alleviate these diseases. This review suggests that inflammation plays a significant role in the development and progression of these conditions and that measuring inflammatory markers may be useful for assessing disease risk and development of future treatment methods.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Athens 11527, Greece
| | | |
Collapse
|
8
|
Lempesis IG, Georgakopoulou VE. Implications of obesity and adiposopathy on respiratory infections; focus on emerging challenges. World J Clin Cases 2023; 11:2925-2933. [PMID: 37215426 PMCID: PMC10198078 DOI: 10.12998/wjcc.v11.i13.2925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Obesity is characterized by excessive adipose tissue accumulation, which impacts physiological, metabolic, and immune functions. Several respiratory infections, including bacterial pneumonia, influenza, and coronavirus disease 2019, appear to be linked to unfavorable results in individuals with obesity. These may be attributed to the direct mechanical/physiological effects of excess body fat on the lungs’ function. Notably, adipose tissue dysfunction is associated with a low-grade chronic inflammatory status and hyperleptinemia, among other characteristics. These have all been linked to immune system dysfunction and weakened immune responses to these infections. A better understanding and clinical awareness of these risk factors are necessary for better disease outcomes.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Athens 11527, Greece
| | | |
Collapse
|