1
|
Qiu M, Huang Y, Zhou X, Yu J, Li J, Wang W, Zippi M, Fiorino S, Hong W. Hyperlipidemia exacerbates acute pancreatitis via interactions between P38MAPK and oxidative stress. Cell Signal 2024; 125:111504. [PMID: 39505288 DOI: 10.1016/j.cellsig.2024.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The mechanisms involved in the hyperlipidemia-associated acute pancreatitis (HLAP) is not yet fully understood. AIMS To investigate the role of P38MAPK (mitogen-activated protein kinases) and oxidative stress in the pathogenesis of HLAP. METHODS In AP (acute pancreatitis) patients, the GEO database retrieved gene expression profiles of cytokines, MAPK14, nuclear factor kappa B subunit 1 (NF-κB 1) and superoxide dismutase 2 (SOD 2). GeneMANIA has been used for the prediction of potential interaction mechanisms. Validation was carried out using an experimental AP model and a bi-directional Mendelian randomization (MR) analysis. RESULTS Compared to mild AP, patients with severe AP had higher gene expression of MAPK14, NF-κB1, SOD2, IL-1β and IL-6R. GeneMANIA revealed 77.6 % physical interactions among MAPK14, NF-κB1, SOD2, IL-1β and IL-6R. Our results indicated that HLAP group had a more severe pancreatic injury, a stronger inflammatory response with higher serum levels of TNF-α, IL-6 and IL-1β in comparison with the AP group, which were significantly mitigated in HLAP-Pi group. Furthermore, SB 203580 inhibited increasing levels of malondialdehyde (MDA) in serum and of inducible nitric oxide synthase (iNOS), P38MAPK, p-P38MAPK and NF-κB p65 in pancreatic tissue as well as decreasing serum values of SOD and GSH-PX in HLAP group. MR analysis suggested that MAPK14 levels were negatively associated with the SOD levels, by using the inverse variance weighted (IVW) method (b = -0.193: se = 0.225; P = 1.03e-17). Reverse MR analysis indicated that SOD was negatively associated with the MAPK14 levels in the IVW analysis (b = -0.163: se = 0.020; P = 1.38e-15). CONCLUSION Interactions between P38MAPK and oxidative stress may play an important role in the pathogenesis of HLAP.
Collapse
Affiliation(s)
- Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Yining Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Xiaoying Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Junyu Yu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Jianmin Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Sirio Fiorino
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, 40054 Bologna, Budrio, Italy.
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ravi H, Das S, Devi Rajeswari V, Venkatraman G, Choudhury AA, Chakraborty S, Ramanathan G. Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:257-291. [PMID: 39059988 DOI: 10.1016/bs.apcsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.
Collapse
Affiliation(s)
- Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Wang F, Wang Z, Cao J, Lu Y. Long- and short-term dietary β-glucan improves intestinal health and disease resistance in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:973-988. [PMID: 38421537 DOI: 10.1007/s10695-024-01310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
β-Glucans are immunostimulants and are widely used in aquaculture industry. The present study was conducted to evaluate the effects of different periods of β-glucan management on growth performance, intestinal health, and disease resistance in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). A commercial feed was used as control diet (CD), and the β-glucan diet (βD) was based on CD and further supplemented with 0.1% β-glucan. Grouper in control and long-term β-glucan diet (LGD) groups were fed with CD and βD for 8 weeks, respectively. Groupers in short-term β-glucan diet (SGD) group were fed with CD for the first 4 weeks and βD for the last 4 weeks. We found that LGD and SGD had no effect on growth performance but reduced the mortalities of grouper after challenging with Vibrio harveyi. In addition, both LGD and SGD increased intestinal morphology, enhanced antioxidant capacity, enhanced immunity, inhibited apoptosis, altered the transcriptional profile, and activated mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathway in the intestine of grouper. Furthermore, the effect of LGD on most of the above parameters was comparable to that of SGD. In conclusion, LGD and SGD did not affect growth rate parameters but enhanced the intestinal health and disease resistance of pearl gentian grouper.
Collapse
Affiliation(s)
- Fan Wang
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530000, China
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhiwen Wang
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junming Cao
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China.
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
4
|
Liu Y, Xu L, Fang Q, Rong H, Zheng H. Network pharmacology-based investigation and experimental validation of the therapeutic potential and molecular mechanism of Danshen Chuanxiongqin injection in acute pancreatitis. Technol Health Care 2024; 32:2307-2320. [PMID: 38393937 DOI: 10.3233/thc-231086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND Danshen Chuanxiong Injection (DCI) has demonstrated significant clinical efficacy in the treatment of acute pancreatitis (AP); however, the precise molecular mechanisms underlying its therapeutic effects remain incompletely understood. OBJECTIVE In this study, we employed network pharmacology analysis to comprehensively investigate the active components, potential targets, and signaling pathways involved in DCI-mediated treatment of AP. METHODS We utilized the mouse pancreatic acinar cell line 266-6 to establish an cholecystokinin (CCK)-induced AP cell injury model and evaluated cell viability using the Cell counting kit-8 assay. Western blotting and quantitative PCR were employed to determine the expression levels of key target proteins and genes. RESULTS Network pharmacology analysis identified a total of 144 active components and 430 potential targets within DCI. By integrating data from public databases, we identified 762 AP-related genes. Among these, we identified 93 potential targets that may be involved in the therapeutic effects of DCI for AP. These targets were significantly enriched in biological processes such as oxidative stress, regulation of cytokine production, leukocyte migration, and the TNF signaling pathway. Molecular docking studies revealed a high binding affinity between the active components and the key targets AKT1 and NFKBA, indicative of potential interaction. Additionally, CCK-induced acinar cell injury led to upregulation of AKT1, NFKBA, and P53 proteins, as well as TNF, IL6, and MMP9 genes. Conversely, treatment with DCI dose-dependently attenuated CCK-induced acinar cell injury and restored the expression levels of the aforementioned proteins and genes. CONCLUSION Overall, this study provides a comprehensive understanding of the molecular mechanisms underlying the therapeutic effects of DCI in the treatment of AP. Our findings confirm the protective effect of DCI against CCK-induced acinar cell injury and its regulation of key targets.
Collapse
Affiliation(s)
- Yining Liu
- Department of Pharmacy, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Liming Xu
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiongyan Fang
- Department of Pharmacy, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Hui Rong
- Department of Pharmacy, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Huaiyu Zheng
- Department of Pharmacy, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| |
Collapse
|
5
|
Giri SS, Kim SG, Jung WJ, Lee SB, Lee YM, Jo SJ, Hwang MH, Park JH, Kim JH, Saha S, Sukumaran V, Park SC. Dietary Syzygium cumini leaf extract influences growth performance, immunological responses and gene expression in pathogen-challenged Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2023:108830. [PMID: 37244318 DOI: 10.1016/j.fsi.2023.108830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
This study evaluated the effects of jamun leaf extract (JLE) as a feed supplement on growth performance, haemato-immunological, oxidative stress-related parameters, and cytokine gene expression in Cyprinus carpio challenged with Aeromonas hydrophila.. Diets containing four different JLE concentrations, that is, 0 (basal diet), 5 (JLE5), 10 (JLE10), and 15 g kg-1 (JLE15), were fed to carp (6.27 ± 0.43 g) for eight weeks. Growth performance was significantly higher in JLE10. Haemato-immunological and antioxidant parameters were determined in fish at 48 h post-challenge with A. hydrohila. The cumulative survival was highest in JLE10 (69.69%) 14 days post-challenge. Serum protein (2.18 ± 0.06 g dL-1), lysozyme (32.38 ± 1.2 U mL-1), alternative complement pathway (70.43 ± 1.61 U mL-1), phagocytic activity (21.18 ± 0.48%), respiratory burst activity (0.289 ± 0.09 OD630nm), and immunoglobulin levels (6.67 ± 0.36 U mg mL-1) were significantly higher in JLE10 than in the control. Serum alanine aminotransferase (44.06 ± 1.62 Unit mL-1), aspartate aminotransferase (31.58 ± 1.82 Unit mL-1), and malondialdehyde (2.57 ± 0.26 nmol mL-1) levels were lower in JLE10 than in the control (p < 0.05), whereas myeloperoxidase activity was significantly higher in JLE5 and JLE10 than in the control. Superoxide dismutase levels in the serum were higher (p < 0.05) in JLE5 and JLE10 than in the other groups. Gene expression analysis revealed that the mRNA expression of pro-inflammatory cytokines TNF-α and IL-1β was upregulated (p < 0.05) in the liver, head-kidney, and intestine of challenged carp in JLE10. The signalling molecule NF-κB p65 was upregulated in lymphoid organs in JLE10 but not in the liver. The anti-inflammatory cytokine IL-10 was significantly downregulated in challenged carp in JLE10 compared with that in the control. Quadratic regression analysis showed that optimal dietary JLE was estimated to be 9.03-10.15 g kg-1 to maximize the growth performance. Results of the present study revealed that dietary JLE at 10 g kg-1 can significantly improve the immunity and disease resistance of C. carpio. Thus, JLE is a promising food additive for carp aquaculture.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Subrata Saha
- Department of Materials and Production, Aalborg University, 9220, Aalborg, Denmark.
| | - Venkatachalam Sukumaran
- Department of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, 613007, Tamil Nadu, India.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
7
|
Kim YK, Hwang JH, Lee HT. Differential susceptibility to lipopolysaccharide affects the activation of toll-like-receptor 4 signaling in THP-1 cells and PMA-differentiated THP-1 cells. Innate Immun 2022; 28:122-129. [PMID: 35612375 PMCID: PMC9136465 DOI: 10.1177/17534259221100170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Monocytes and macrophages that originate from common myeloid progenitors perform various crucial roles in the innate immune system. Stimulation with LPS combined with TLR4 drives the production of pro-inflammatory cytokines through MAPKs and NF-κB pathway in different cells. However, the difference in LPS susceptibility between monocytes and macrophages is poorly understood. In this study, we found that pro-inflammatory cytokines-IL-1β, IL-6 and TNFα showed greater induction in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells than in THP-1 cells. To determine the difference in cytokine expression, the surface proteins such as TLR4-related proteins and intracellular adaptor proteins were more preserved in PMA-differentiated THP-1 cells than in THP-1 cells. MyD88 is a key molecule responsible for the difference in LPS susceptibility. Moreover, MAPKs and NF-κB pathway-related molecules showed higher levels of phosphorylation in PMA-differentiated THP-1 cells than in THP-1 cells. Upon MyD88 depletion, there was no difference in the phosphorylation of MAPK pathway-related molecules. Therefore, these results demonstrate that the difference in LPS susceptibility between THP-1 cells and PMA-differentiated THP-1 cells occur as a result of gap between the activated MAPKs and NF-κB pathways via changes in the expression of LPS-related receptors and MyD88.
Collapse
Affiliation(s)
- Young Kyu Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul-si, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, Jeollabuk-do, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeollabuk-do, Republic of Korea
| | - Hoon Taek Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul-si, Republic of Korea
| |
Collapse
|
8
|
Huang H, Wang M, Guo Z, Wu D, Wang H, Jia Y, Liu H, Ding J, Peng J. Rutaecarpine alleviates acute pancreatitis in mice and AR42J cells by suppressing the MAPK and NF-κB signaling pathways via calcitonin gene-related peptide. Phytother Res 2021; 35:6472-6485. [PMID: 34661951 DOI: 10.1002/ptr.7301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. Previous studies have shown that rutaecarpine (RUT), an important alkaloid component of Evodia rutaecarpa, exhibits certain protective effects against AP in rats by upregulating calcitonin gene-related peptide (CGRP). However, the molecular mechanism of RUT in AP remains unknown. This study aimed to investigate the effects of RUT on cerulein-induced AP in vivo and in vitro, and to explore the underlying molecular mechanisms. In cerulein/LPS-treated wild-type mice, but not CGRP gene knock-out mice, RUT significantly ameliorated pancreatic inflammation by alleviating histopathological changes, reducing IL-6 and TNF-α levels, and increasing in IL-10 levels. Moreover, RUT improved AP by suppressing the MAPK and NF-κB signaling pathways. These effects were mostly mediated through CGRP. Cell-based studies revealed that RUT significantly improved cell viability while suppressing the apoptosis of AR42J cells with cerulein-induced AP, downregulating IL-6 and TNF-α, stimulating IL-10 release, and inhibiting MAPK, NF-κB, and STAT3 signaling activation, all in a CGRP-dependent manner. RUT ameliorated cerulein/LPS-induced AP inflammatory responses in mice and AR42J cells in a CGRP-dependent manner and thus may represent a potential therapeutic option for AP patients. Our study provides valuable insights for AP drug development.
Collapse
Affiliation(s)
- Haosu Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Zimeng Guo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanyue Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Jia
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Honghui Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Ding
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Guzel A, Yunusoglu S, Calapoglu M, Candan IA, Onaran I, Oncu M, Ergun O, Oksay T. Protective Effects of Quercetin on Oxidative Stress-Induced Tubular Epithelial Damage in the Experimental Rat Hyperoxaluria Model. ACTA ACUST UNITED AC 2021; 57:medicina57060566. [PMID: 34204866 PMCID: PMC8228054 DOI: 10.3390/medicina57060566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Background and Objectives: The most common kidney stones are calcium stones and calcium oxalate (CaOx) stones are the most common type of calcium stones. Hyperoxaluria is an essential risk factor for the formation of these stones. Quercetin is a polyphenol with antioxidant, anti-inflammatory, and many other physiological effects. The aim of this study was to investigate the protective effect of quercetin in hyperoxaluria-induced nephrolithiasis. Materials and Methods: Male Wistar-Albino rats weighing 250–300 g (n = 24) were randomized into three groups: Control (n = 8), ethylene glycol (EG) (n = 8), and EG + quercetin (n = 8). One percent EG-water solution was given to all rats except for the control group as drinking water for five weeks. Quercetin-water solution was given to the EG + quercetin group by oral gavage at a dose of 10 mg/kg/day. Malondialdehyde (MDA), catalase (CAT), urea, calcium, and oxalate levels were analyzed in blood and urine samples. Histopathological assessments and immunohistochemical analyses for oxidative stress and inflammation indicators p38 mitogen-activated protein kinase (p38-MAPK) and nuclear factor kappa B (NF-kB) were performed on renal tissues. Results: The MDA levels were significantly lower in the quercetin-treated group than in the EG-treated group (p = 0.001). Although CAT levels were higher in the quercetin-treated group than the EG-administered group, they were not significantly different between these groups. The expression of p38 MAPK was significantly less in the quercetin-treated group than the EG group (p < 0.004). There was no statistically significant difference between the quercetin and EG groups in terms of NF-kB expression. Conclusions: We conclude that hyperoxaluria activated the signaling pathways, which facilitate the oxidative processes leading to oxalate stone formation in the kidneys. Our findings indicated that quercetin reduced damage due to hyperoxaluria. These results imply that quercetin can be considered a therapeutic agent for decreasing oxalate stone formation, especially in patients with recurrent stones due to hyperoxaluria.
Collapse
Affiliation(s)
- Ahmet Guzel
- Department of Urology, Aydın State Hospital, Aydın 09100, Turkey
- Correspondence: ; Tel.: +90-505-303-94-14
| | - Sedat Yunusoglu
- Department of Urology, Afyonkarahisar State Hospital, Afyonkarahisar 03100, Turkey;
| | - Mustafa Calapoglu
- Department of Biochemistry, Faculty of Arts and Science, Suleyman Demirel University, Isparta 32100, Turkey;
| | - Ibrahim Aydın Candan
- Department of Histology and Embryology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07100, Turkey;
| | - Ibrahim Onaran
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey;
| | - Meral Oncu
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey;
| | - Osman Ergun
- Department of Urology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey; (O.E.); (T.O.)
| | - Taylan Oksay
- Department of Urology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey; (O.E.); (T.O.)
| |
Collapse
|
10
|
Insuan O, Janchai P, Thongchuai B, Chaiwongsa R, Khamchun S, Saoin S, Insuan W, Pothacharoen P, Apiwatanapiwat W, Boondaeng A, Vaithanomsat P. Anti-Inflammatory Effect of Pineapple Rhizome Bromelain through Downregulation of the NF-κB- and MAPKs-Signaling Pathways in Lipopolysaccharide (LPS)-Stimulated RAW264.7 Cells. Curr Issues Mol Biol 2021; 43:93-106. [PMID: 34067064 PMCID: PMC8929103 DOI: 10.3390/cimb43010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Bromelain is a mixture of proteolytic enzymes derived from pineapple (Ananas comosus) fruit and stem possessing several beneficial properties, particularly anti-inflammatory activity. However, the molecular mechanisms underlying the anti-inflammatory effects of bromelain are unclear. This study investigated the anti-inflammatory effects and inhibitory molecular mechanisms of crude and purified rhizome bromelains on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. RAW264.7 cells were pre-treated with various concentrations of crude bromelain (CB) or purified bromelain (PB), and then treated with LPS. The production levels of pro-inflammatory cytokines and mediators, including nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined by Griess and ELISA assays. The expressions of inducible nitric oxide synthetase (iNOS), cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs)-signaling pathway-related proteins were examined by western blot analysis. The pre-treatment of bromelain dose-dependently reduced LPS-induced pro-inflammatory cytokines and mediators, which correlated with downregulation of iNOS and COX-2 expressions. The inhibitory potency of PB was stronger than that of CB. PB also suppressed phosphorylated NF-κB (p65), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 proteins in LPS-treated cells. PB then exhibited potent anti-inflammatory effects on LPS-induced inflammatory responses in RAW264.7 cells by inhibiting the NF-κB and MAPKs-signaling pathways.
Collapse
Affiliation(s)
- Orapin Insuan
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand; (O.I.); (B.T.); (S.K.); (S.S.)
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Phornphimon Janchai
- Nanotechnology and Biotechnology Research Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand; (P.J.); (W.A.); (A.B.)
| | - Benchaluk Thongchuai
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand; (O.I.); (B.T.); (S.K.); (S.S.)
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Rujirek Chaiwongsa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supaporn Khamchun
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand; (O.I.); (B.T.); (S.K.); (S.S.)
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Somphot Saoin
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand; (O.I.); (B.T.); (S.K.); (S.S.)
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Wimonrut Insuan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Peraphan Pothacharoen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Waraporn Apiwatanapiwat
- Nanotechnology and Biotechnology Research Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand; (P.J.); (W.A.); (A.B.)
| | - Antika Boondaeng
- Nanotechnology and Biotechnology Research Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand; (P.J.); (W.A.); (A.B.)
| | - Pilanee Vaithanomsat
- Nanotechnology and Biotechnology Research Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand; (P.J.); (W.A.); (A.B.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, Xiao GG. Pancreatitis initiated pancreatic ductal adenocarcinoma: Pathophysiology explaining clinical evidence. Pharmacol Res 2021; 168:105595. [PMID: 33823219 DOI: 10.1016/j.phrs.2021.105595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.
Collapse
Affiliation(s)
- Xufeng Tao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Pan
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junchao Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gary Guishan Xiao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China; The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States.
| |
Collapse
|
12
|
The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors. Cells 2020; 9:cells9092040. [PMID: 32900001 PMCID: PMC7565932 DOI: 10.3390/cells9092040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. PARP inhibitors, which prevent protein ADP-ribosylation, and PARP1‒DNA traps, which capture the enzyme on chromatin, may allow us to modulate immune responses and the development of particular cell types. They can be also effective in the treatment of monocytic leukemia and other cancers by reverting the anti- to the proinflammatory phenotype in tumor-associated macrophages.
Collapse
|
13
|
Jung KH, Son MK, Yan HH, Fang Z, Kim J, Kim SJ, Park JH, Lee JE, Yoon Y, Seo MS, Han BS, Ko S, Suh YJ, Lim JH, Lee D, Teo Z, Wee JWK, Tan NS, Hong S. ANGPTL4 exacerbates pancreatitis by augmenting acinar cell injury through upregulation of C5a. EMBO Mol Med 2020; 12:e11222. [PMID: 32638512 PMCID: PMC7411571 DOI: 10.15252/emmm.201911222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Pancreatitis is the inflammation of the pancreas. However, little is known about the genes associated with pancreatitis severity. Our microarray analysis of pancreatic tissues from mild and severe acute pancreatitis mice models identified angiopoietin-like 4 (ANGPTL4) as one of the most significantly upregulated genes. Clinically, ANGPTL4 expression was also increased in the serum and pancreatic tissues of pancreatitis patients. The deficiency in ANGPTL4 in mice, either by gene deletion or neutralizing antibody, mitigated pancreatitis-associated pathological outcomes. Conversely, exogenous ANGPTL4 exacerbated pancreatic injury with elevated cytokine levels and apoptotic cell death. High ANGPTL4 enhanced macrophage activation and infiltration into the pancreas, which increased complement component 5a (C5a) level through PI3K/AKT signaling. The activation of the C5a receptor led to hypercytokinemia that accelerated acinar cell damage and furthered pancreatitis. Indeed, C5a neutralizing antibody decreased inflammatory response in LPS-activated macrophages and alleviated pancreatitis severity. In agreement, there was a significant positive correlation between C5a and ANGPTL4 levels in pancreatitis patients. Taken together, our study suggests that targeting ANGPTL4 is a potential strategy for the treatment of pancreatitis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Mi Kwon Son
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Hong Hua Yan
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Zhenghuan Fang
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Juyoung Kim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Soo Jung Kim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Jung Hee Park
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Ji Eun Lee
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Young‐Chan Yoon
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Myeong Seong Seo
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Beom Seok Han
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Soyeon Ko
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Young Ju Suh
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Joo Han Lim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Don‐Haeng Lee
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Ziqiang Teo
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
| | - Jonathan Wei Kiat Wee
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
| | - Nguan Soon Tan
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingapore CitySingapore
| | - Soon‐Sun Hong
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| |
Collapse
|
14
|
Chen Z, Ceballos-Francisco D, Guardiola FA, Esteban MÁ. Influence of skin wounds on the intestinal inflammatory response and barrier function: Protective role of dietary Shewanella putrefaciens SpPdp11 administration to gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2020; 99:414-423. [PMID: 32070784 DOI: 10.1016/j.fsi.2020.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The effects of skin wounds on the intestinal barrier function and the beneficial effects of the dietary administration of Shewanella putrefaciens (known as SpPdp11) in gilthead seabream (Sparus aurata L.) were studied. Two replicates of fish were fed a commercial diet (control, CON) or CON diet enriched with 109 cfu g-1 SpPdp11 (SP diet) for 30 days. After this time, half of the fish were sampled, while the others were injured below the lateral line (wounded fish, W) and fed the same diets for an extra week before sampling (CON + W and SP + W groups). The intestinal histology and gene expression of different genes relevant for the intestinal barrier function were studied. The results showed that injured fish had a disordered enterocyte nucleus disposition, a more intense infiltration of mixed leucocytes and a thicker lamina propria in the intestine compared to the control fish. However, the fish in the SP + W group did not present these pathological symptoms in the intestine. No significant variations in the number of goblet cells were detected among the different experimental groups. Pro-inflammatory cytokines (colony-stimulating factor receptor 1, CSF1R, myeloperoxidase, MPO and interleukin-1β, IL-1β), mucins (intestinal mucin, IMUC and mucin 2, MUC2), and immunoglobulin T heavy chain (IGHT) were up-regulated, while tight junction protein occludin was down-regulated in the intestine from fish of the CON + W group. Similarly, the dietary administration of SpPdp11 markedly depressed the gene expression of pro-inflammatory cytokines, MUC2 and IGHT, but increased the gene expression of anti-inflammatory cytokine transforming growth factor-β1 (TGF-β1) and the tight junction proteins tricellulin and occluding after wounding. In brief, the skin wounds provoked an intestinal inflammatory response that included changes in the mucus layer and tight junction disruptions. Besides this, preventive administration of SpPdp11 alleviated the intestinal dysfunctions caused by skin wounds in gilthead seabream.
Collapse
Affiliation(s)
- Zhichu Chen
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Francisco A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
15
|
Ming J, Ye J, Zhang Y, Xu Q, Yang X, Shao X, Qiang J, Xu P. Optimal dietary curcumin improved growth performance, and modulated innate immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 97:540-553. [PMID: 31881329 DOI: 10.1016/j.fsi.2019.12.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the effects of dietary curcumin on growth performance, non-specific immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella). A total of 525 juvenile grass carps with mean initial body weight of (5.30 ± 0.10) g were randomly distributed into five groups with three replicates each, fed five diets containing graded levels of curcumin (0, 196.11, 393.67, 591.46 and 788.52 mg/kg diet) for 60 days. After feeding trial, fifteen fish per tank were challenged with Aeromonas hydrophila and the mortalities were recorded for 7 days. The results showed that optimal dietary curcumin (393.67 mg/kg diet) improved the weight gain (WG) and specific growth rate (SGR) of juvenile grass carp, reduced feed conversion ratio (FCR) and the mortalities after challenge (P < 0.05). Moreover, optimal dietary curcumin increased the activities of lysozyme (LYZ) and acid phosphatase (ACP), and complement 3 (C3) and C4 levels, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of LYZ, C3 and antimicrobial peptides [hepcidin, liver-expressed antimicrobial peptide-2 (LEAP-2), β-defensin], and anti-inflammatory cytokines of interleukin-10 (IL-10) and transforming growth factor β1 (TGF-β1), and inhibitor of κBα (IκBα), whereas down-regulated pro-inflammatory cytokines of tumor necrosis factor-α (TNF-α), IL-1β, IL-6 and IL-8, and nuclear factor kappa B p65 (NF-κB p65), IκB kinases (IKKα, IKKβ and IKKγ) mRNA levels in the liver and blood of grass carp after injection with A. hydrophila (P < 0.05). In addition, optimal dietary curcumin increased the reduced glutathione (GSH) content and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the liver of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of these antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2), whereas down-regulated Kelch-like ECH-associated protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the liver and blood of grass carp after injection with A. hydrophila. Thus, optimal dietary curcumin supplementation could promote growth of juvenile grass carp, reduce FCR, and enhance disease resistance, innate immunity and antioxidant capacity of fish, attenuating inflammatory response. However, dietary excessive curcumin had negative effect on fish. Based on second-order regression analysis between dietary curcumin contents and weight gain, the optimum requirement of dietary curcumin in juvenile grass carp was determined to be 438.20 mg/kg diet.
Collapse
Affiliation(s)
- Jianhua Ming
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China; Huzhou Central Hospital, Huzhou University, Huzhou, 313000, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jinyun Ye
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China; Huzhou Central Hospital, Huzhou University, Huzhou, 313000, China.
| | - Yixiang Zhang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Qiyou Xu
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Xia Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Xianping Shao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
16
|
Zhao S, Chen Z, Zheng J, Dai J, Ou W, Xu W, Ai Q, Zhang W, Niu J, Mai K, Zhang Y. Citric acid mitigates soybean meal induced inflammatory response and tight junction disruption by altering TLR signal transduction in the intestine of turbot, Scophthalmus maximus L. FISH & SHELLFISH IMMUNOLOGY 2019; 92:181-187. [PMID: 31176009 DOI: 10.1016/j.fsi.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of citric acid on the involvement of TLRs in the soybean meal induced inflammatory response and tight junction disruption in the distal intestine of juvenile turbot (Scophthalmus maximus L.). Four isonitrogenous and isolipidic practical diets were formulated: fish meal-based diet (FM); 40% fish meal protein in FM replaced with soybean meal protein (SBM); SBM + 1.5% citric acid and SBM + 3% citric acid. Compared to the FM, diet SBM significantly increased the gene expression of TLRs (TLR2, TLR3, TLR5b, TLR9, TLR21, TLR22) and MyD88, as well as TLR related molecules (NF-κB, IRF-3, p38 and JNK), which were remarkably reduced by dietary citric acid. Similarly, citric acid supplementation in SBM markedly depressed gene expression of pro-inflammatory cytokines (TNF-α and IFN-γ) and pore-forming tight junction protein Claudin-7, and enhanced gene expression of the anti-inflammatory cytokine TGF-β1 and TJ proteins related to the decrease in paracellular permeability (Claudin-3, Claudin-4, Occludin, Tricellulin and ZO-1). Compared to the SBM, the concentration of IgM and C4 in serum was significantly reduced by dietary citric acid. In brief, dietary citric acid could synchronously inhibit TLRs-dependent inflammatory response regulated by NF-κB and IRF3, as well as cause TLRs-dependent tight junction disruption modulated by p38 and JNK. Therefore, citric acid could function on mitigating soybean meal induced enteropathy in the distal intestine of juvenile turbot.
Collapse
Affiliation(s)
- Sifan Zhao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Zhichu Chen
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jing Zheng
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Weiqi Xu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jin Niu
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, PR China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
17
|
Ye J, Ye C, Huang Y, Zhang N, Zhang X, Xiao M. Ginkgo biloba sarcotesta polysaccharide inhibits inflammatory responses through suppressing both NF-κB and MAPK signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2329-2339. [PMID: 30338529 DOI: 10.1002/jsfa.9431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Polysaccharides, common components of natural products extensively studied as dietary supplements and functional foods, have been found to have various activities. In the present study, a water-soluble polysaccharide, namely GBSP3a, was isolated and purified from G. biloba sarcotesta. The anti-inflammatory activity of GBSP3a in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and the potential underlying molecular mechanisms were then assessed. RESULTS GBSP3a exerted its anti-inflammatory effect by remarkably inhibiting the secretion of pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin E2 (PGE2 ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in LPS-stimulated RAW264.7 macrophages. Excessive mRNA and protein expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dose-dependently inhibited by GBSP3a in LPS-stimulated RAW264.7 cells. Further research suggested that the anti-inflammatory effect of GBSP3a can be attributed to the modulation of the NF-κB and MAPK signaling pathways. CONCLUSION GBSP3a exhibits anti-inflammatory activity and exerts its anti-inflammatory effect probably through suppressing both NF-κB and MAPK signaling pathway, indicating that GBSP3a could be used for the development of anti-inflammatory agent or nutraceuticals. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Changqing Ye
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yayan Huang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Na Zhang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Xueqin Zhang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Meitian Xiao
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|
18
|
Kowalska K, Olejnik A, Zielińska-Wasielica J, Olkowicz M. Inhibitory effects of lingonberry (Vaccinium vitis-idaea L.) fruit extract on obesity-induced inflammation in 3T3-L1 adipocytes and RAW 264.7 macrophages. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
Hu SH, Guang Y, Wang WX. Protective Effects of Calcitonin Gene-Related Peptide-Mediated p38 Mitogen-Activated Protein Kinase Pathway on Severe Acute Pancreatitis in Rats. Dig Dis Sci 2019; 64:447-455. [PMID: 30370491 DOI: 10.1007/s10620-018-5345-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) has antioxidant and anti-inflammatory activities on the pathological damage of acute pancreatitis. However, its molecular mechanism on severe acute pancreatitis (SAP) remains unknown. AIMS To evaluate the influence of CGRP-mediated p38MAPK signaling pathway in rats with SAP. METHODS SD rats were randomly divided into Sham group, SAP group, CGRP group (SAP rats injected with CGRP), SB203580 group (rats injected with p38MAPK pathway inhibitor SB203580), and CGRP8-37 group (SAP rats injected with CGRP8-37). Serum amylase and lipase activities were determined. Histopathological observations were evaluated, and the expression of inflammatory cytokines and oxidative stress-related indexes were measured. RESULTS Compared with Sham group, SAP rats were increased in the activities of serum amylase and lipase, the pathologic assessment of pancreatic tissue, the levels of TNF-α, IL-1β, IL-6, and IL-8, the content of MDA and MPO, and the expressions of CGRP, and p-p38MAPK protein, but they were decreased in SOD activity and GSH content. The above alterations were aggravated in the CGRP8-37 group when compared with SAP group. Besides, in comparison with SAP group, rats in the CGRP and SB203580 groups presented a reduction in the activities of serum amylase and lipase, the levels of inflammatory cytokines, the content of MDA and MPO, and the expressions of p-p38MAPK protein, while showed an elevation in SOD activity and GSH content. CONCLUSION Pretreatment with CGRP alleviated oxidative stress and inflammatory response of SAP rats possibly by suppressing the activity of p38MAPK pathway, and thereby postponing the disease progression.
Collapse
Affiliation(s)
- Shao-Hui Hu
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, No. 99, Zhang Zhidong Road (Formerly Ziyang Road), Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yi Guang
- Department of Gynecology, Xiaogan Central Hospital, Xiaogan, 432000, Hubei Province, People's Republic of China
| | - Wei-Xing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, No. 99, Zhang Zhidong Road (Formerly Ziyang Road), Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
20
|
Ma J, Chen X, Xin G, Li X. Chronic exposure to the ionic liquid [C 8mim]Br induces inflammation in silver carp spleen: Involvement of oxidative stress-mediated p38MAPK/NF-κB signalling and microRNAs. FISH & SHELLFISH IMMUNOLOGY 2019; 84:627-638. [PMID: 30343007 DOI: 10.1016/j.fsi.2018.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to determine the chronic toxicity of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) on the silver carp to further reveal the toxicological mechanisms of ionic liquids. Chronic exposure of silver carp to [C8mim]Br at concentrations of 1.095 and 4.380 mg/L for 60 d was conducted under laboratory conditions. The results revealed that chronic exposure to [C8mim]Br inhibited the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduced glutathione (GSH) levels while markedly increasing malondialdehyde (MDA) and protein carbonyl (PC) levels in fish spleen, indicating that [C8mim]Br treatment induced oxidative stress. Additionally, long-term exposure to [C8mim]Br markedly upregulated the expressions of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), IL-6, tumour necrosis factor-α (TNF-α), and interferon-γ (IFN-γ); altered the levels of transforming growth factor-β (TGF-β); and increased the mRNA levels of p38MAPK, c-fos, c-jun, and c-myc, suggesting that long-term exposure to [C8mim]Br might promote the inflammatory response in fish spleen and that p38MAPK/NF-κB signalling may potentially be involved in this process. Moreover, [C8mim]Br-exposure altered lysozyme activity and complement 3 (C3) and immunoglobulin M (IgM) content, indicating that chronic [C8mim]Br exposure also has immunotoxic effects on silver carp. Furthermore, we also found that [C8mim]Br exposure reduced miR-125b levels, altered miR-143 levels, and upregulated miR-155 and miR-21 levels, suggesting that these miRNAs may be involved in the [C8mim]Br-induced inflammatory response in fish spleen. In summary, the present study indicates that chronic exposure to [C8mim]Br induces inflammation in fish spleen and that oxidative stress-mediated p38MAPK/NF-κB signalling and miRNAs may play a key role in this process.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xi Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guangyuan Xin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
21
|
Huang HL, Tang GD, Liang ZH, Qin MB, Wang XM, Chang RJ, Qin HP. Role of Wnt/β-catenin pathway agonist SKL2001 in Caerulein-induced acute pancreatitis. Can J Physiol Pharmacol 2018; 97:15-22. [PMID: 30326193 DOI: 10.1139/cjpp-2018-0226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The goal of this study was to clarify the protective role of the Wnt/β-catenin pathway agonist SKL2001 in a rat model of Caerulein-induced acute pancreatitis. AR42J cells and rats were divided into 4 groups: control, Caerulein, SKL2001 + Caerulein, and SKL2001 + control. Cell apoptosis was examined using flow cytometry. Hematoxylin-eosin staining was performed to observe pathological changes in pancreatic and small intestinal tissues. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA), while genes related to the Wnt/β-catenin pathway were quantified using quantitative real-time PCR. In vitro results showed that Caerulein promoted cell necrosis, inhibited the Wnt/β-catenin pathway, and increased the level of inflammatory cytokines. However, SKL2001 reduced cell necrosis and inflammatory cytokines and activated the Wnt/β-catenin pathway. Additionally, in vivo results demonstrated the accumulation of fluid (i.e., edema), hemorrhage, inflammation and necrosis of the pancreatic acini occurred 6 h after the final Caerulein induction, with the damage reaching a maximal level 12 h after the final Caerulein induction; meanwhile, the Wnt/β-catenin pathway was evidently inhibited with an enhanced level of inflammatory cytokines. The aforementioned damage was further aggravated 12 h later. Nevertheless, the pancreatic and small intestinal tissue damages were alleviated in Caerulein-induced rats treated with SKL2001. In conclusion, activation of the Wnt/β-catenin pathway could inhibit Caerulein-induced cell apoptosis and inflammatory cytokine release, thus improving pancreatic and intestinal damage in rats with acute pancreatitis.
Collapse
Affiliation(s)
- Hua-Li Huang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Guo-Du Tang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Hai Liang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Meng-Bin Qin
- b Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Xian-Mo Wang
- c Department of Clinical Laboratory, The First People's Hospital of Jingzhou City, Jingzhou, Jingzhou 434000, Hubei, China
| | - Ren-Jie Chang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - He-Ping Qin
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Koh EM, Lee EK, Song CH, Song J, Chung HY, Chae CH, Jung KJ. Ferulate, an Active Component of Wheat Germ, Ameliorates Oxidative Stress-Induced PTK/PTP Imbalance and PP2A Inactivation. Toxicol Res 2018; 34:333-341. [PMID: 30370008 PMCID: PMC6195880 DOI: 10.5487/tr.2018.34.4.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 12/23/2022] Open
Abstract
Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B (NF-κB) activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote NF-κB activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and NF-κB activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with NF-κB activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.
Collapse
Affiliation(s)
- Eun Mi Koh
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Eun Kyeong Lee
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Chi Hun Song
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Jeongah Song
- Animal Model Research Center, Korea Institute of Toxicology, Jeonbuk, Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
| | | | - Kyung Jin Jung
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea.,Department of Human and Environmental Toxicology, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
23
|
Rumbus Z, Toth E, Poto L, Vincze A, Veres G, Czako L, Olah E, Marta K, Miko A, Rakonczay Z, Balla Z, Kaszaki J, Foldesi I, Maleth J, Hegyi P, Garami A. Bidirectional Relationship Between Reduced Blood pH and Acute Pancreatitis: A Translational Study of Their Noxious Combination. Front Physiol 2018; 9:1360. [PMID: 30327613 PMCID: PMC6174522 DOI: 10.3389/fphys.2018.01360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is often accompanied by alterations in the acid-base balance, but how blood pH influences the outcome of AP is largely unknown. We studied the association between blood pH and the outcome of AP with meta-analysis of clinical trials, and aimed to discover the causative relationship between blood pH and AP in animal models. PubMed, EMBASE, and Cochrane Controlled Trials Registry databases were searched from inception to January 2017. Human studies reporting systemic pH status and outcomes (mortality rate, severity scores, and length of hospital stay) of patient groups with AP were included in the analyses. We developed a new mouse model of chronic metabolic acidosis (MA) and induced mild or severe AP in the mice. Besides laboratory blood testing, the extent of pancreatic edema, necrosis, and leukocyte infiltration were assessed in tissue sections of the mice. Thirteen studies reported sufficient data in patient groups with AP (n = 2,311). Meta-analysis revealed markedly higher mortality, elevated severity scores, and longer hospital stay in AP patients with lower blood pH or base excess (P < 0.001 for all studied outcomes). Meta-regression analysis showed significant negative correlation between blood pH and mortality in severe AP. In our mouse model, pre-existing MA deteriorated the pancreatic damage in mild and severe AP and, vice versa, severe AP further decreased the blood pH of mice with MA. In conclusion, MA worsens the outcome of AP, while severe AP augments the decrease of blood pH. The discovery of this vicious metabolic cycle opens up new therapeutic possibilities in AP.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emese Toth
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Laszlo Poto
- Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - Aron Vincze
- Department of Gastroenterology, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Gabor Veres
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Laszlo Czako
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Marta
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Jozsef Kaszaki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Imre Foldesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithel Cell Signaling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
24
|
Calycosin alleviates cerulein-induced acute pancreatitis by inhibiting the inflammatory response and oxidative stress via the p38 MAPK and NF-κB signal pathways in mice. Biomed Pharmacother 2018; 105:599-605. [PMID: 29890468 DOI: 10.1016/j.biopha.2018.05.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/30/2023] Open
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease accompanied by systemic inflammatory response syndrome, and could even be complicated by multiple-organ damage. This study aimed to examine whether calycosin, an isoflavone isolated from Radix astragali with antioxidant and anti-inflammatory activity, could protect against AP induced by cerulein. To this end, Balb/C mice were injected with cerulein (50 μg/kg) to establish the animal model of AP. Calycosin (25 and 50 mg/kg, p.o.) was administered 1 h prior to the first cerulein injection. After the last injection of cerulein, the mice were sacrificed and blood was obtained for cytokine analysis. The pancreas was removed for morphological examination, myeloperoxidase (MPO) and malondialdehyde (MDA) analyses, immunohistochemistry, and western blot analysis. Calycosin treatment reversed the increased serum levels of amylase and lipase, alleviated the pathological damage in the pancreas, and decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in mice with AP. Additionally, calycosin significantly reduced cerulein-induced pancreatic edema, inhibited MPO activity and increased superoxide dismutase (SOD) activity, and inhibited the expression of NF-κB/p65 and phosphorylation of the inhibitor of NF-κB (IκBα) and p38 MAPK. These results suggested that calycosin protects against AP by exerting anti-inflammatory and anti-oxidative stress effects via the p38 MAPK and NF-κB signal pathways. Calycosin's benefits for AP patients need to be explored further.
Collapse
|
25
|
Kannegieter NM, Hesselink DA, Dieterich M, de Graav GN, Kraaijeveld R, Rowshani AT, Leenen PJM, Baan CC. Pharmacodynamic Monitoring of Tacrolimus-Based Immunosuppression in CD14+ Monocytes After Kidney Transplantation. Ther Drug Monit 2018. [PMID: 28640063 DOI: 10.1097/ftd.0000000000000426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Monocytes significantly contribute to ischemia-reperfusion injury and allograft rejection after kidney transplantation. However, the knowledge about the effects of immunosuppressive drugs on monocyte activation is limited. Conventional pharmacokinetic methods for immunosuppressive drug monitoring are not cell type-specific. In this study, phosphorylation of 3 signaling proteins was measured to determine the pharmacodynamic effects of immunosuppression on monocyte activation in kidney transplant patients. METHODS Blood samples from 20 kidney transplant recipients were monitored before and during the first year after transplantation. All patients received induction therapy with basiliximab, followed by tacrolimus (TAC), mycophenolate mofetil, and prednisolone maintenance therapy. TAC whole-blood predose concentrations were determined using an antibody-conjugated magnetic immunoassay. Samples were stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin, and phosphorylation of p38MAPK, ERK, and Akt in CD14 monocytes was quantified by phospho-specific flow cytometry. RESULTS Phosphorylation of p38MAPK and Akt in monocytes of immunosuppressed recipients was lower after 360 days compared with before transplantation in the unstimulated samples [mean reduction in median fluorescence intensity 36%; range -28% to 77% for p-p38MAPK and 20%; range -22% to 53% for p-Akt; P < 0.05]. P-ERK was only decreased at day 4 after transplantation (mean inhibition 23%; range -52% to 73%; P < 0.05). At day 4, when the highest whole-blood predose TAC concentrations were measured, p-p38MAPK and p-Akt, but not p-ERK, correlated inversely with TAC (rs = -0.65; P = 0.01 and rs = -0.58; P = 0.03, respectively). CONCLUSIONS Immunosuppressive drug combination therapy partially inhibits monocyte activation pathways after kidney transplantation. This inhibition can be determined by phospho-specific flow cytometry, which enables the assessment of the pharmacodynamic effects of immunosuppressive drugs in a cell type-specific manner.
Collapse
Affiliation(s)
- Nynke M Kannegieter
- Departments of *Internal Medicine and †Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen Y, Zhao Q, Chen Q, Zhang Y, Shao B, Jin Y, Wu J. Melatonin attenuated inflammatory reaction by inhibiting the activation of p38 and NF‑κB in taurocholate‑induced acute pancreatitis. Mol Med Rep 2018; 17:5934-5939. [PMID: 29484391 DOI: 10.3892/mmr.2018.8614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the protective mechanism underlying of melatonin in severe acute pancreatitis (SAP). A total of 64 male Sprague‑Dawley rats were randomly divided into four groups: The sham operation (SO) group, SAP group, melatonin treatment (MLT) group and p38 inhibitor (SB203580) treatment (SB) group. Acute pancreatitis was induced by 5% taurocholate through retrograde infusion into the biliopancreatic ducts. The melatonin and SB203580 treatment groups were administered with MLT and SB 30 min before operation the induction of SAP. Rats in each group were euthanized at 6 and 12 h following SAP induction. Blood and pancreatic tissues were removed for inflammatory examination. Peripheral blood mononuclear cells (PBMCs) were isolated following sacrifice to measure the phosphorylation of p38 and nuclear factor‑κB (NF‑κB was measured as p65 and phosphorylation of p65). The pretreatment of melatonin significantly attenuated the severity of pancreatitis. In addition, melatonin also reduced serum amylase and proinflammatory cytokine levels, including tumor necrosis factor‑α, interleukin (IL)‑1 and IL‑6. The mean pathological scores for pancreatic tissues in the MLT group were higher than those for samples in the SO group, but were lower than those for samples in the SAP group at each time-point. Phosphorylation of p38 and p65 levels in the melatonin treatment group were lower than that in the SAP group, and higher in the SAP group than in the SO group, and the SB203580 treatment group. Furthermore, melatonin significantly inhibited the activation of p38 and NF‑κB in PBMCs. The authors revealed that melatonin may attenuate inflammatory reactions by inhibiting the activation of p38 MAPK and NF‑κB in both acute pancreatitis rats and PBMCs. SAP is a severe disease with a high risk of morbidity and mortality. It is important to attenuated inflammatory reaction in acute pancreatitis. Thus, the authors studied melatonin, which is synthesized by the pineal gland and released into the blood. Previous studies have shown that melatonin serves a protective role in the early course of human acute pancreatitis, and melatonin concentration variations are closely related to the severity of acute pancreatitis. It may be concluded that melatonin may attenuates inflammatory reactions by inhibiting the activation of p38 MAPK and NF‑κB in both acute pancreatitis rats and PBMCs.
Collapse
Affiliation(s)
- Yina Chen
- Department of Gastroenterology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang 315400, P.R. China
| | - Qian Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qinfen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuxue Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bule Shao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yin Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiansheng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
27
|
Osato N. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes. BMC Genomics 2018; 19:957. [PMID: 29363429 PMCID: PMC5780744 DOI: 10.1186/s12864-017-4339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. RESULTS Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. CONCLUSIONS Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.
Collapse
Affiliation(s)
- Naoki Osato
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Tian L, Zhou XQ, Jiang WD, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Xie F, Feng L. Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:548-563. [PMID: 28546021 DOI: 10.1016/j.fsi.2017.05.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluated the effect of dietary sodium butyrate (SB) supplementation on the growth and immune function in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). The fish were fed one powdery sodium butyrate (PSB) diet (1000.0 mg kg-1 diet) and five graded levels of microencapsulated sodium butyrate (MSB) diets: 0.0 (control), 500.0, 1000.0, 1500.0 and 2000.0 mg kg-1 diet for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results indicated that optimal SB supplementation improved the fish growth performance (percent weight gain, specific growth rate, feed intake and feed efficiency) and intestinal growth and function (intestine weight, intestine length, intestinal somatic index, folds height, trypsin, chymotrypsin, lipase and amylase activities), increased beneficial bacteria lactobacillus amount and butyrate concentration, decreased baneful bacteria Aeromonas and Escherichia coli amounts, reduced acetate and propionate concentrations, elevated lysozyme and acid phosphatase activities, increased complement (C3 and C4) and immunoglobulin M contents, and up-regulated β-defensin-1 (rather than DI), hepcidin, liver expressed antimicrobial peptide 2B (LEAP-2B) (except LEAP-2A), Mucin2, interleukin 10 (IL-10), IL-11 (rather than PI), transforming growth factor β1 (rather than PI), transforming growth factor β2 (rather than PI), IL-4/13A, IL-4/13B and inhibitor of κBα (IκBα) mRNA levels, whereas it down-regulated tumor necrosis factor α, interferon γ2, IL-1β (rather than PI), IL-6, IL-8, IL-15 (rather than PI), IL-17D (rather than PI), IL-12p35, IL-12p40 (rather than PI or MI), nuclear factor kappa B p65 (NF-κB p65) (except NF-κB p52), c-Rel (rather than PI or MI), IκB kinase β (IKKβ) (rather than PI), IKKγ (except IKKα), p38 mitogen-activated protein kinase (p38MAPK) and MAPK kinase 6 mRNA levels in three intestinal segments of young grass carp (P < 0.05), suggesting that SB supplementation improves growth and intestinal immune function of fish. Furthermore, according to the positive effect, MSB was superior to PSB on improving growth and enhancing intestinal immune function of fish, and based on feed efficiency of young grass carp, the efficacy of MSB was 3.5-fold higher than that of PSB. Finally, based on percent weight gain, protecting fish against enteritis morbidity and lysozyme activity, the optimal SB supplementation (MSB as SB source) of young grass carp were estimated to be 160.8, 339.9 and 316.2 mg kg-1 diet, respectively.
Collapse
Affiliation(s)
- Li Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Xie
- Shanghai Menon Animal Nutrition Technology Co., Ltd, Shanghai 201807, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
29
|
Qian D, Wei G, Xu C, He Z, Hua J, Li J, Hu Q, Lin S, Gong J, Meng H, Zhou B, Teng H, Song Z. Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Sci Rep 2017; 7:581. [PMID: 28373667 PMCID: PMC5428835 DOI: 10.1038/s41598-017-00629-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease, 10-20% of which can evolve into severe AP (SAP) causing significant morbidity and mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential of repairing SAP, but the detailed mechanism remains unknown. We demonstrate here that microRNA-9 (miR-9) modified BMSCs (pri-miR-9-BMSCs) can significantly reduce the pancreatic edema, infiltration, hemorrhage, necrosis, the release of amylase and lipase. Meanwhile, decreased local/systemic inflammatory response (TNF-α↓, IL-1β↓, IL-6↓, HMGB1↓, MPO↓, CD68↓, IL-4↑, IL-10↑, and TGF-β↑) and enhanced regeneration of damaged pancreas (Reg4↑, PTF1↑, and PDX1↑) are also promoted. But these effects diminish or disappear after antagonizing miR-9 (TuD). Besides, we find that miR-9 is negatively correlated with AP and miR-9 agomir which can mimic the effects of pri-miR-9-BMSCs and protect injured pancreas. Furthermore, we investigate that BMSCs deliver miR-9 to the injured pancreas or peripheral blood mononuclear cell (PBMC), which can target the NF-κB1/p50 gene and inhibit the NF-κB signaling pathway (p-P65↓, NF-κB1/p50↓, IκBα↑, IκBβ↑). Taken together, these results show that miR-9 is a key paracrine factor of BMSCs attenuating SAP targeting the NF-κB1/p50 gene and suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Daohai Qian
- Department of General Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.,Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California, 90089, USA
| | - Ge Wei
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Chenglei Xu
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhigang He
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Hua
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Qili Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Shengping Lin
- Intensive Care Unit, Sir Run Run Shaw Hospital, Affiliated to Zhejiang University of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongfei Teng
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
30
|
Vitamin A deficiency suppresses fish immune function with differences in different intestinal segments: the role of transcriptional factorNF-κBandp38 mitogen-activated protein kinasesignalling pathways. Br J Nutr 2017; 117:67-82. [DOI: 10.1017/s0007114516003342] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe present study investigated the effects of dietary vitamin A on immune function in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary vitamin A for 10 weeks, and then a challenge test using an injection ofAeromonas hydrophilawas conducted for 14 d. The results showed that, compared with the optimum vitamin A level, vitamin A deficiency significantly decreased fish growth performance, increased enteritis morbidity, decreased intestinal innate humoral immune response and aggravated intestinal inflammation. However, liver-expressed antimicrobial peptide 2A/B mRNA in the DI andIL-6,IL-17D,IL-10, transforming growth factor (TGF)-β1andTGF-β2mRNA in the PI were not affected by vitamin A levels. Meanwhile, vitamin A deficiency disturbed inflammatory cytokines in the PI, MI and DI, which might be partly linked to p38 mitogen-activated protein kinase (p38MAPK) signalling andNF-κBcanonical signalling pathway (IκB kinaseβ(IKKβ),IKKγ, inhibitor ofκBα,NF-κB p65andc-Rel) rather thanNF-κBnon-canonical signalling pathway (NF-κB p52andIKKα). However, the signalling moleculesNF-κB p65andp38MAPKdid not participate in regulating cytokines in the PI. These results suggested that vitamin A deficiency decreased fish growth and impaired intestinal immune function, and that different immune responses in the PI, MI and DI were mediated partly byNF-κBcanonical signalling andp38MAPKsignalling pathways. On the basis of percentage of weight gain, to protect fish against enteritis morbidity and acid phosphatase activity, the optimum dietary vitamin A levels were estimated to be 0·664, 0·707 and 0·722 mg /kg, respectively.
Collapse
|
31
|
Pan JH, Feng L, Jiang WD, Wu P, Kuang SY, Tang L, Zhang YA, Zhou XQ, Liu Y. Vitamin E deficiency depressed fish growth, disease resistance, and the immunity and structural integrity of immune organs in grass carp (Ctenopharyngodon idella): Referring to NF-κB, TOR and Nrf2 signaling. FISH & SHELLFISH IMMUNOLOGY 2017; 60:219-236. [PMID: 27888132 DOI: 10.1016/j.fsi.2016.11.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the effects of dietary vitamin E on growth, disease resistance and the immunity and structural integrity of head kidney, spleen and skin in grass carp (Ctenopharyngodon idella). The fish were fed six diets containing graded levels of vitamin E (0, 45, 90, 135, 180 and 225 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results showed that compared with optimal vitamin E supplementation, vitamin E deficiency caused depressed growth, poor survival rates and increased skin lesion morbidity in grass carp. Meanwhile, vitamin E deficiency decreased lysozyme and acid phosphatase activities, complement component 3 and complement component 4 contents in the head kidney, spleen and skin of grass carp (P < 0.05). Moreover, vitamin E deficiency down-regulated antimicrobial peptides (Hepcidin, liver-expressed antimicrobial peptide-2A, -2B, β-defensin), IL-10, TGFβ1, IκBα, TOR and S6K1 mRNA levels (P < 0.05) and up-regulated IL-1β, IL-6, IL-8, IFN-γ2 and TNFα, NF-κB p65, IKKα, IKKβ and 4EBP1 (not in the head kidney) mRNA levels (P < 0.05). In addition, vitamin E deficiency caused oxidative damage, decreased superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) activities, and down-regulated the mRNA levels of antioxidant enzymes and signaling molecules Nrf2 (P < 0.05). Vitamin E deficiency also induced apoptosis by up-regulating capase-2, -3, -7, and -8 mRNA levels in the head kidney, spleen and skin of grass carp. In conclusion, this study indicated that dietary vitamin E deficiency depressed fish growth, impaired the immune function and disturbed the structural integrity of the head kidney, spleen and skin in grass carp, but optimal vitamin E supplementation can reverse those negative effects in fish. The optimal vitamin E requirements for young grass carp (266.39-1026.63 g) to achieve optimal growth performance and disease resistance based on the percent weight gain (PWG) and skin lesion morbidity were estimated to be 116.2 and 130.9 mg/kg diet, respectively. Meanwhile, based on immune indicator (LA activity in the head kidney) and antioxidant indicator (protection of spleen against MDA), the optimal vitamin E requirements for young grass carp were estimated to be 123.8 and 136.4 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Jia-Hong Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
32
|
Xiong J, Wang K, Yuan C, Xing R, Ni J, Hu G, Chen F, Wang X. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int J Mol Med 2016; 39:113-125. [PMID: 27878246 PMCID: PMC5179180 DOI: 10.3892/ijmm.2016.2809] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Reseda odorata L. has long been used in traditional Asian medicine for the treatment of diseases associated with oxidative injury and acute inflammation, such as endotoxemia, acute lung injury, acute myocardial infarction and hepatitis. Luteolin, the main component of Reseda odorata L., which is also widely found in many natural herbs and vege-tables, has been shown to induce heme oxygenase-1 (HO-1) expression to exert anti-inflammatory and antioxidant effects. In this study, we aimed to examine the effects of luteolin on mice with severe acute pancreatitis (SAP), and to explore the underlying mechanisms. Cerulein and lipopolysaccharide were used to induce SAP in male Institute of Cancer Research (ICR) mice in the SAP group. The SAP group was divided into 4 subgroups, as follows: the vehicle, luteolin, zinc protoporphyrin (ZnPP) only, and luteolin (Lut) + ZnPP (luteolin plus zinc protoporphyrin treatment) groups. The wet/dry weight ratios, hematoxylin and eosin staining and pathological scores of pancreatic tissues were assessed and compared to those of the control mice. Amylase, lipase, nuclear factor-κB (NF-κB) and myeloperoxidase activities, and malondialdehyde, tumor necrosis factor α (TNFα), interleukin (IL)-6, IL-10 and HO-1 levels, as well as the expression of HO-1 were determined in serum and/or pancreatic tissue samples. SAP was successfully induced in male mice compared to normal control mice. The wet/dry weight ratios, pathological scores, and amylase and lipase activity, as well as the levels of TNFα and IL-6 were significantly reduced in the pancreatic tissues of the mice in the Lut group compared with those of the mice in the vehicle group. The Lut group exhibited a significant increase in HO-1 expression in the pancreas and enhanced serum HO-1 and IL-10 levels compared with the vehicle group. The suppression of HO-1 activity in the ZnPP group significantly abolished the protective effects of luteolin. NF-κB expression in the pancreatic tissues from the mice in the Lut + ZnPP group was significantly increased following the suppression of HO-1 activity. On the whole, our findings demonstrate that luteolin protects mice from SAP by inducing HO-1-mediated anti-inflammatory and antioxidant activities, in association with the suppression of the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Kezhou Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Chunxiao Yuan
- Department of Pathology and Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Rong Xing
- Department of Nephrology, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Fengling Chen
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
33
|
Up-regulation of Tight-Junction Proteins by p38 Mitogen-Activated Protein Kinase/p53 Inhibition Leads to a Reduction of Injury to the Intestinal Mucosal Barrier in Severe Acute Pancreatitis. Pancreas 2016; 45:1136-44. [PMID: 27171513 DOI: 10.1097/mpa.0000000000000656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The aim of this study was to explore the role of the p38 mitogen-activated protein kinase (p38MAPK)/p53 signaling pathway in injury to the intestinal mucosal barrier during severe acute pancreatitis (SAP). METHODS Both sham operation and SAP groups had 3 subgroups analyzed 3, 6, or 12 hours after the SAP induction. The concentrations of amylase, endotoxin, diamine oxidase, tumor necrosis factor α, and phospho-p38MAPK, p53, and caspase-3 and the messenger RNA levels of zonula occludens protein-1 and occludin in the intestine were measured. Immunohistochemical staining was used to determine the expression of zonula occludens protein-1 and occludin. Pathological changes of the pancreas and intestine were also assessed. Then, rats were randomly assigned to 5 groups-sham operation group, SAP group, 3 groups treated with different concentrations of p38MAPK-inhibitor SB203580-and the abovementioned experiment was repeated and analyzed 6 hours after the SAP induction. RESULTS The phospho-p38MAPK reached a peak value at 6 hours after the SAP induction with obvious pathological injury to the pancreas and intestine. Treatment with SB203580 led to a less damage to the pancreatic and intestinal tissues. CONCLUSIONS These results suggest that SAP activates the p38MAPK/p53 signaling pathway and induces injury to the intestinal mucosal barrier, which can be alleviated by inhibiting the p38MAPK/p53 pathway.
Collapse
|
34
|
Xu M, Wang KN, Wu K, Wang XP. Pyrrolidine Dithiocarbamate Inhibits Nuclear Factor κB and Toll-Like Receptor 4 Expression in Rats with Acute Necrotizing Pancreatitis. Gut Liver 2016; 9:411-6. [PMID: 25287011 PMCID: PMC4413976 DOI: 10.5009/gnl14050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background/Aims To investigate the expression of Toll-like receptor 4 (TLR4) in the pancreases of rats with acute necrotizing pancreatitis (ANP) and any changes upon treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor κB (NF-κB), as well as to determine the relationship between TLR4 and NF-κB in ANP pathogenesis. Methods A total of 72 SD rats were randomly divided into three groups, namely, the control (sham-operation), ANP, and ANP with PDTC pretreatment groups. The PDTC-pretreated group was intraperitoneally injected with PDTC at a dose of 100 mg/kg 1 hour before the induction of ANP. The expressions of TLR4 and NF-κB in pancreatic tissue were evaluated by immunohistochemistry and Western blot analysis. The mRNA levels of cytokines tumor necrosis factor α, interleukin (IL)-1β, and IL-6 were measured by reverse transcription polymerase chain reaction. Results The expressions of TLR4, NF-κB, and cytokine (NF-κB target) genes in the pancreatic tissue increased more significantly in the ANP groups than in the sham-operation group at 3, 6, and 12 hours. Pretreatment with PDTC alleviated the inflammatory activation in the pancreas with ANP, causing a significant decrease in the expressions of TLR4, NF-κB, and cytokine genes in the pancreatic tissue. Conclusions The expressions of TLR4 and NF-κB were increased in the pancreases of rats with ANP. PDTC not only inhibits NF-κB but also suppresses the expression of TLR4 and downregulates the expression of the related cytokine genes.
Collapse
Affiliation(s)
- Min Xu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Kun-Ning Wang
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Kai Wu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Xing-Peng Wang
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
35
|
Zhang Y, Wang Y, Lu M, Qiao X, Sun B, Zhang W, Xue D. Modular analysis of bioinformatics demonstrates a critical role for NF-κB in macrophage activation. Inflammation 2015; 37:1240-53. [PMID: 24577727 DOI: 10.1007/s10753-014-9851-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To achieve the goal of identifying the gene groups that regulated macrophage activation, a total of 925 differentially expressed genes of activated macrophages were found at the intersection of the three series (GSE5099-1, GSE5099-2, and GSE18686) from the Gene Expression Omnibus (GEO) database, and a sub-network was constructed based on the protein-protein interaction (PPI) network. Four communities (K = 3) were identified from the sub-network using the CFinder software. Community 1 was considered as the gene group of interest base on the heat map. GO-BP and KEGG enrichment analysis with the DAVID software showed that the functions of the 14 genes in community 1 were mainly related to the NF-κB pathway. A network was constructed using the Cytoscape software. The diagram showed that STAT1, NFKBIA, NFKAIB, JUN, and RELA were the key genes in the regulation of macrophage activation. Among these genes, RELA (NF-κB P65) was an important member of the NF-κB family, while NFKBIA (IκBα) and NFKAIB (IκBβ) were the inhibitory factors of NF-κB. Small molecules capable of regulating these five genes were identified via the CMap software, and a network diagram was generated using the Cytoscape software to provide a reference for the development of new drugs that regulate macrophage activation.
Collapse
Affiliation(s)
- Yingmei Zhang
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Tang Y, Han Y, Liu L, Shen W, Zhang H, Wang Y, Cui X, Wang Y, Liu G, Qi R. Protective effects and mechanisms of G5 PAMAM dendrimers against acute pancreatitis induced by caerulein in mice. Biomacromolecules 2014; 16:174-82. [PMID: 25479110 DOI: 10.1021/bm501390d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, generation 5 (G5) polyamidoamine (PAMAM) dendrimers with two different surface groups, G4.5-COOH and G5-OH, were investigated for their protective effects on pancreas injury in a caerulein-induced acute pancreatitis (AP) mouse model. Both dendrimers significantly decreased pathological changes in the pancreas and reduced the inflammatory infiltration of macrophages in pancreatic tissues. In addition, the expression of pro-inflammatory cytokines was significantly inhibited by the two dendrimers, not only in pancreatic tissues from AP mice but also in vitro in mouse peritoneal macrophages with LPS-induced inflammation. G4.5-COOH, which had better in vivo protective effects for AP than G5-OH, led to a significant reduction in the total number of plasma white blood cells (WBCs) and monocytes in AP mice, and its anti-inflammatory mechanism was related to inhibition of the nuclear translocation of NF-κB in macrophages.
Collapse
Affiliation(s)
- Yin Tang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center , Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, Bansal P, Billiar TR, Tsung A, Wang Q, Bartlett DL, Whitcomb DC, Chang EB, Zhu X, Wang H, Lu B, Tracey KJ, Cao L, Fan XG, Lotze MT, Zeh HJ, Tang D. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 2014; 146:1097-107. [PMID: 24361123 PMCID: PMC3965592 DOI: 10.1053/j.gastro.2013.12.015] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS High mobility group box 1 (HMGB1) is an abundant protein that regulates chromosome architecture and also functions as a damage-associated molecular pattern molecule. Little is known about its intracellular roles in response to tissue injury or during subsequent local and systemic inflammatory responses. We investigated the function of Hmgb1 in mice after induction of acute pancreatitis. METHODS We utilized a Cre/LoxP system to create mice with pancreas-specific disruption in Hmbg1 (Pdx1-Cre; HMGB1(flox/flox) mice). Acute pancreatitis was induced in these mice (HMGB1(flox/flox) mice served as controls) after injection of l-arginine or cerulein. Pancreatic tissues and acinar cells were collected and analyzed by histologic, immunoblot, and immunohistochemical analyses. RESULTS After injection of l-arginine or cerulein, Pdx1-Cre; HMGB1(flox/flox) mice developed acute pancreatitis more rapidly than controls, with increased mortality. Pancreatic tissues of these mice also had higher levels of serum amylase, acinar cell death, leukocyte infiltration, and interstitial edema than controls. Pancreatic tissues and acinar cells collected from the Pdx1-Cre; HMGB1(flox/flox) mice after l-arginine or cerulein injection demonstrated nuclear catastrophe with greater nucleosome release when compared with controls, along with increased phosphorylation/activation of RELA nuclear factor κB, degradation of inhibitor of κB, and phosphorylation of mitogen-activated protein kinase. Inhibitors of reactive oxygen species (N-acetyl-l-cysteine) blocked l-arginine-induced DNA damage, necrosis, apoptosis, release of nucleosomes, and activation of nuclear factor κB in pancreatic tissues and acinar cells from Pdx1-Cre; HMGB1(flox/flox) and control mice. Exogenous genomic DNA and recombinant histone H3 proteins significantly induced release of HMGB1 from mouse macrophages; administration of antibodies against H3 to mice reduced serum levels of HMGB1 and increased survival after l-arginine injection. CONCLUSIONS In 2 mouse models of acute pancreatitis, intracellular HMGB1 appeared to prevent nuclear catastrophe and release of inflammatory nucleosomes to block inflammation. These findings indicate a role for the innate immune response in tissue damage.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Qiuhong Zhang
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Wen Hou
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Zhenwen Yan
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA, Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ruochan Chen
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jillian Bonaroti
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Preeti Bansal
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Timothy R. Billiar
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Allan Tsung
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Qingde Wang
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - David L. Bartlett
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eugene B. Chang
- Department of Medicine, University of Chicago; Chicago, IL 60637, USA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago; Chicago, IL 60637, USA
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York 11030, USA
| | - Ben Lu
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J. Tracey
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Lizhi Cao
- Department of Pediatrics Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Michael T. Lotze
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA,Correspondence should be directed to Dr. Daolin Tang (), Dr. Rui Kang (), Dr. Michael T. Lotze (), or Dr. Herbert J. Zeh ()
| | - Herbert J. Zeh
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA,Correspondence should be directed to Dr. Daolin Tang (), Dr. Rui Kang (), Dr. Michael T. Lotze (), or Dr. Herbert J. Zeh ()
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
38
|
Li X, Zhou X, Li Y, Li J, Privratsky B, Ye Y, Wu E, Gao H, Huang C, Wu M. Lyn regulates inflammatory responses in Klebsiella pneumoniae infection via the p38/NF-κB pathway. Eur J Immunol 2014; 44:763-73. [PMID: 24338528 PMCID: PMC4103995 DOI: 10.1002/eji.201343972] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 11/11/2013] [Indexed: 02/05/2023]
Abstract
Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is becoming increasingly multidrug resistant. However, the underlying molecular pathogenesis of this bacterium remains elusive, limiting the therapeutic options. Understanding the mechanism of its pathogenesis may facilitate the development of anti-bacterial therapeutics. Here, we show that Lyn, a pleiotropic Src tyrosine kinase, is involved in host defense against Kp by regulating phagocytosis process and simultaneously downregulating inflammatory responses. Using acute infection mouse models, we observed that lyn(-/-) mice were more susceptible to Kp with increased mortality and severe lung injury compared with WT mice. Kp infected-lyn(-/-) mice exhibited elevated inflammatory cytokines (IL-6 and TNF-α), and increased superoxide in the lung and other organs. In addition, the phosphorylation of p38 and NF-κB p65 subunit increased markedly in response to Kp infection in lyn(-/-) mice. We also demonstrated that the translocation of p65 from cytoplasm to nuclei increased in cultured murine lung epithelial cells by Lyn siRNA knockdown. Furthermore, lipid rafts clustered with activated Lyn and accumulated in the site of Kp invasion. Taken together, these findings revealed that Lyn may participate in host defense against Kp infection through the negative modulation of inflammatory cytokines.
Collapse
Affiliation(s)
- Xuefeng Li
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Xikun Zhou
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yi Li
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Jiaxin Li
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Breanna Privratsky
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yan Ye
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Hongwei Gao
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Canhua Huang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| |
Collapse
|
39
|
Pancreatitis-associated ascitic fluid induces proinflammatory cytokine expression in THP-1 cells by inhibiting anti-inflammatory signaling. Pancreas 2013; 42:855-60. [PMID: 23774701 DOI: 10.1097/mpa.0b013e318279fe5c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES We investigated whether pancreatitis-associated ascitic fluid (PAAF) could induce the expression of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) in THP-1 cells and the mechanism(s) involved. METHODS THP-1 cells were divided into control and PAAF groups. The PAAF group was incubated with different final concentrations of PAAF, whereas the control group was incubated with culture medium. Effects and mechanisms were determined by measuring the levels of TNF-α and IL-6 mRNA expression; phospho-p38-MAPK, nuclear factor κB, peroxisome proliferator-activated receptor γ activation; and the effect on the inhibitory activity of SB203580 and BAY-117082. RESULTS In response to PAAF, overexpression of TNF-α and IL-6 mRNA was found in THP-1 cells compared with those of the corresponding control (P < 0.05), and in a dose-dependent manner. The levels of phospho-p38 and nuclear factor κB p65 were also increased in different PAAF groups, whereas low expression of peroxisome proliferator-activated receptor γ was found compared with the control group (P < 0.05). Furthermore, we presented that the inflammatory response could be partly alleviated by inhibitors SB203580 or BAY-117082, whereas it was markedly inhibited by the simultaneous treatment of 2 inhibitors. CONCLUSIONS Pancreatitis-associated ascitic fluid up-regulated proinflammatory cytokines by interfering with proinflammatory and anti-inflammatory signaling pathways, thus exacerbating activation in acute pancreatitis.
Collapse
|
40
|
Sung NY, Yang MS, Song DS, Byun EB, Kim JK, Park JH, Song BS, Lee JW, Park SH, Park HJ, Byun MW, Byun EH, Kim JH. The procyanidin trimer C1 induces macrophage activation via NF-κB and MAPK pathways, leading to Th1 polarization in murine splenocytes. Eur J Pharmacol 2013; 714:218-28. [PMID: 23770004 DOI: 10.1016/j.ejphar.2013.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/28/2013] [Accepted: 02/07/2013] [Indexed: 01/24/2023]
Abstract
Numerous studies have shown various relationships between foods with a high nutritional value and a robust immune response, particularly studies that have focused on host protection and cytokine networks. This study aimed to clarify the role played by the procyanidin trimer C1 in innate and adaptive immunity. Procyanidin C1 did not exert cytotoxicity at concentrations ranging from 7.8 to 62.5 μg/ml in macrophage cells; therefore, concentration of 62.5 μg/ml was used as the maximum dose of procyanidin C1 throughout subsequent experiments. Procyanidin C1 enhanced inducible nitric oxide synthase-mediated nitric oxide production in a concentration-dependent manner. In addition, procyanidin C1 functionally induced macrophage activation by augmenting the expression of cell surface molecules (CD80, CD86, and MHC II) and proinflammatory cytokine production (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) via activation of mitogen-activated protein kinase (MAPK), e.g., p38, ERK, and JNK and nuclear factor (NF)-κB signaling pathways. Interestingly, procyanidin C1 effectively polarized T helper type 1 (Th1) by secreting Th1-mediated cytokines (interferon-γ, IL-12p70, and IL-2) and inducing splenocyte proliferation, indicating that procyanidin C1 contributes to Th1 polarization of the immune response. Accordingly, these findings confirms that the procyanidin C1 induces macrophage activation via NF-κB and MAPK pathways, leading to Th1 polarization in murine splenocytes, which suggests that procyanidin C1 regulates innate and adaptive immunity by macrophage activation and Th1 polarization.
Collapse
Affiliation(s)
- Nak-Yun Sung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ma B, Wu L, Lu M, Gao B, Qiao X, Sun B, Xue D, Zhang W. Differentially expressed kinase genes associated with trypsinogen activation in rat pancreatic acinar cells treated with taurolithocholic acid 3-sulfate. Mol Med Rep 2013; 7:1591-6. [PMID: 23467886 DOI: 10.3892/mmr.2013.1355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/27/2013] [Indexed: 11/05/2022] Open
Abstract
Trypsinogen activation is the initial factor involved in the development of all types of acute pancreatitis (AP) and has been suggested to be regulated by protein kinases. In the present study, AR42J rat pancreatic acinar cells were treated with taurolithocholic acid 3-sulfate (TLC-S), and trypsinogen activation was detected with bis-(CBZ-L-isoleucyl-L-prolyl-L-arginine amide) dihydrochloride (BZiPAR) staining and flow cytometry. Differentially expressed protein kinase genes were screened by Gene Chip analysis, and the functions of these kinases were analyzed. A significantly increased activation of trypsinogen in AR42J cells following treatment with TLC-S was observed. A total of 22 differentially expressed protein kinase genes were found in the TLC-S group, among which 19 genes were upregulated and 3 were downregulated. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, kinase genes of the same KEGG pathways were connected to create a network through signaling pathways, and 10 nodes of kinases were identified, which were mitogen-activated protein kinase (Mapk)8, Mapk14, Map2k4, interleukin-1 receptor-associated kinase 3 (Irak3), ribosomal protein S6 kinase, 90 kDa, polypeptide 2 (Rps6ka2), protein kinase C, alpha (Prkca), v-yes-1 Yamaguchi sarcoma viral related oncogene homolog (Lyn), protein tyrosine kinase 2 beta (Ptk2b), p21 protein (Cdc42/Rac)-activated kinase 4 (Pak4) and FYN oncogene related to SRC, FGR, YES (Fyn). The interactions between signaling pathways were further analyzed and a network was created. MAPK and calcium signaling pathways were found to be located at the center of the network. Thus, protein kinases constitute potential drug targets for AP treatment.
Collapse
Affiliation(s)
- Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Akbarshahi H, Rosendahl AH, Westergren-Thorsson G, Andersson R. Acute lung injury in acute pancreatitis – Awaiting the big leap. Respir Med 2012; 106:1199-210. [PMID: 22749752 DOI: 10.1016/j.rmed.2012.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/12/2022]
|
43
|
Wei S, Huang Q, Li J, Liu Z, You H, Chen Y, Gong J. Taurine attenuates liver injury by downregulating phosphorylated p38 MAPK of Kupffer cells in rats with severe acute pancreatitis. Inflammation 2012; 35:690-701. [PMID: 21833764 DOI: 10.1007/s10753-011-9362-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was undertaken to clarify the effects of taurine on liver injury in rats with severe acute pancreatitis (SAP). Rats were randomly assigned to three groups: a sham operation (SO), a SAP (established by infusion of 5% taurocholate), and a SAP given taurine (Taur). At 12 and 24 h post-operation, taurine pretreatment significantly attenuated hepatic tissue injury induced by SAP, and concurrently, serum alanine aminotransferase, aspartate transaminase, and amylase levels were significantly reduced by taurine pretreatment. Compared with the SO group, the total and phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) expression and nuclear factor-κB (NF-κB) activity of Kupffer cells (KCs) were significantly higher in the SAP group, but taurine pretreatment inhibited the total and phosphorylated p38 MAPK expression and NF-κB activity of KCs in the SAP group. The increase of tumor necrosis factor-α and interleukin-lβ in cultured supernate of the SAP rat-derived KCs was also significantly inhibited by taurine pretreatment. These results suggest that taurine pretreatment ameliorated liver injury in rats with SAP mainly by inhibiting phosphorylated p38 MAPK and NF-κB activity in KCs, which may play an important role in liver injury.
Collapse
Affiliation(s)
- Sidong Wei
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Superiority of a fish oil-enriched emulsion to medium-chain triacylglycerols/long-chain triacylglycerols in gastrointestinal surgery patients: a randomized clinical trial. Nutrition 2011; 28:623-9. [PMID: 22113064 DOI: 10.1016/j.nut.2011.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/15/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Compared with soybean oil, a fish oil-enriched emulsion can improve the clinical outcomes of patients requiring parenteral nutrition. However, the superiority of fish oil emulsion to medium-chain triacylglycerols/long-chain triacylglycerols for short-term administration has seldom been discussed. METHODS Sixty-four adult patients with gastrointestinal diseases were randomly assigned to receive isocaloric and isonitrogenous total parenteral nutrition with an ω-3 fatty acid-enriched emulsion (Lipoplus; study group, n = 32) or medium-chain triacylglycerols/long-chain triacylglycerols (Lipofundin; control group, n = 32) for 5 d after surgery. Safety and efficacy parameters were assessed on postoperative days 1, 3, and 6. RESULTS Clinical outcomes including infectious complications and systemic inflammatory response syndrome were comparable between the two groups. Total bilirubin decreased over time in the study group versus an increase in the control group (P = 0.017). Activated partial thromboplastin time in the study group was prolonged significantly compared with the control group from days 1 to 3 (P = 0.002), although the prolongation stopped at the study termination. There were no differences in changes of C-reactive protein, interleukin (IL)-1, IL-8, IL-10, vascular endothelial growth factor (VEGF), and the distribution of the T-cell subpopulation between the two groups. However, fish oil consumption led to an increase in leukotriene B5/ leukotriene B4 and significant decreases in IL-6, tumor necrosis factor-α, and nuclear factor-κB. Furthermore, the overall changes in tumor necrosis factor-α and nuclear factor-κB were positively associated (R(2) = 0.295, P < 0.001). CONCLUSIONS Gastrointestinal surgery patients benefited from a fish oil-enriched emulsion rather than medium-chain triacylglycerols/long-chain triacylglycerols in the amelioration of liver function and immune status. The positive association of tumor necrosis factor-α and nuclear factor-κB might be involved in the potential anti-inflammation mechanism of fish oil.
Collapse
|
45
|
Gea-Sorlí S, Closa D. Role of macrophages in the progression of acute pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1:107-11. [PMID: 21577304 PMCID: PMC3091151 DOI: 10.4292/wjgpt.v1.i5.107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/30/2010] [Accepted: 08/06/2010] [Indexed: 02/06/2023] Open
Abstract
In addition to pancreatic cells, other inflammatory cell populations contribute to the generation of inflammatory mediators during acute pancreatitis. In particular, macrophages could be activated by mediators released during pancreatitis by a damaged pancreas. It has been reported that peritoneal macrophages, alveolar macrophages and Kupffer cells become activated in different stages of severe acute pancreatitis. However, macrophages display remarkable plasticity and can change their physiology in response to environmental cues. Depending on their microenvironmental stimulation, macrophages could follow different activation pathways resulting in marked phenotypic heterogeneity. This ability has made these cells interesting therapeutical targets and several approaches have been assayed to modulate the progression of inflammatory response secondary to acute pancreatitis. However, despite the recent advances in the modulation of macrophage function in vivo, the therapeutical applications of these strategies require a better understanding of the regulation of gene expression in these cells.
Collapse
Affiliation(s)
- Sabrina Gea-Sorlí
- Sabrina Gea-Sorlí, Daniel Closa, Department of Experimental Pathology, IIBB-CSIC-IDIBAPS-CIBEREHD, Barcelona 08036, Spain
| | | |
Collapse
|
46
|
Shrivastava P, Bhatia M. Essential role of monocytes and macrophages in the progression of acute pancreatitis. World J Gastroenterol 2010; 16:3995-4002. [PMID: 20731012 PMCID: PMC2928452 DOI: 10.3748/wjg.v16.i32.3995] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory condition of the pancreas caused by an imbalance in factors involved in maintaining cellular homeostasis. Earliest events in AP occur within acinar cells accompanied by other principal contributors to the inflammatory response i.e. the endothelial cells, immunocytes (granulocytes, monocytes/macrophages, lymphocytes) and neutrophils. Monocytes/macrophages are important inflammatory mediators, involved in the pathophysiology of AP, known to reside in the peritoneal cavity (in the vicinity of the pancreas) and in peripancreatic tissue. Recent studies suggested that impaired clearance of injured acini by macrophages is associated with an altered cytokine reaction which may constitute a basis for progression of AP. This review focuses on the role of monocytes/macrophages in progression of AP and discusses findings on the inflammatory process involved.
Collapse
|
47
|
Patients with acute pancreatitis complicated by organ failure show highly aberrant monocyte signaling profiles assessed by phospho-specific flow cytometry. Crit Care Med 2010; 38:1702-8. [PMID: 20512034 DOI: 10.1097/ccm.0b013e3181e7161c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To outline signaling profiles and transmigration capacity of monocytes of patients with severe acute pancreatitis. DESIGN Prospective study. SETTING University hospital intensive care unit. PATIENTS Thirteen patients with severe acute pancreatitis. All patients had organ dysfunction (acute respiratory distress syndrome in 12, renal dysfunction in eight). Healthy volunteers served as reference subjects. INTERVENTIONS Blood samples were collected after admission to the intensive care unit. MEASUREMENTS AND MAIN RESULTS Phosphorylation of nuclear factor-kappaB and p38, signal transducers and activators of transcription (STATs) 1, 3, 5, and extracellular signal-regulated kinases 1/2 in appropriately stimulated and nonstimulated samples were studied using phospho-specific whole-blood flow cytometry. Monocyte chemotactic protein-1-induced transmigration of monocytes among mononuclear cells obtained by density gradient centrifugation was studied using Transwell cell culture inserts covered with confluent layer of endothelial EA-HY cells. Phosphorylation levels of nuclear factor-kappaB induced by tumor necrosis factor, bacterial lipopolysaccharide, muramyl dipeptide, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis were significantly lower in patients' monocytes than monocytes of healthy reference subjects, whereas mitogen-activated protein kinase p38 phosphorylation levels were normal. Phosphorylation levels induced by interleukin-6 in STAT1 and STAT3 and by combination of phorbol 12-myristate 13-acetate and calcium ionophore A23187 in extracellular signal-regulated kinases 1/2, members of a mitogen-activated protein kinase family, were depressed in patients' monocytes, whereas phosphorylation levels induced by granulocyte-macrophage colony-stimulating factor in STAT5 was normal. In nonstimulated samples, phosphorylation levels were normal. The transmigration percentage of patients' monocytes was significantly lower than that of reference monocytes. CONCLUSIONS In severe acute pancreatitis, monocytes show impaired nuclear factor kappaB and STAT1 activation, which may increase susceptibility to secondary infections. p38 activation is normal and STAT3 activation is depressed, which may contribute to maintenance of systemic inflammation. Extracellular signal-regulated kinases 1/2 activation is impaired, which may depress monocytes' transmigration and may consequently increase risk of infection. Monitoring of monocyte signaling profiles may aid in finding new therapeutic approaches and predictors of outcome of severe acute pancreatitis.
Collapse
|
48
|
Abstract
Thiazolidinediones are ligands that bind to and activate the nuclear peroxisome proliferator-activated receptor gamma. They are widely used as insulin sensitizers for the treatment of type 2 diabetes. Several studies have implicated the peroxisome proliferator-activated receptor gamma agonists rosiglitazone and pioglitazone in inflammatory events. To assess the anti-inflammatory properties of rosiglitazone, we investigated its effects on the molecular and cellular inflammatory response induced by a carotid injury in the rat. Male Wistar rats were randomized into a rosiglitazone-treated group (10 mg kg(-1) day(-1)) and a control group (0.9% w/v NaCl). The drug or vehicle was administered by gavage for 7 days before carotid injury and for up to 21 days after injury. The inflammatory markers p38 mitogen-activated protein kinase, cyclooxygenase 2, nuclear factor-kappaB, and heat shock protein 47 and the influx and activity of cells in response to injury were measured. Rosiglitazone treatment significantly reduced the expression of the inflammatory markers compared with control group. p38 mitogen-activated protein kinase and nuclear factor-kappaB started to decrease a few hours after injury, whereas cyclooxygenase 2 and heat shock protein 47 expression decreased 7 and 14 days, respectively, after injury. Rosiglitazone also reduced neointima formation and inflammatory cell infiltration. In conclusion, rosiglitazone negatively regulated the inflammatory events involved in tissue repair at molecular and cellular levels. These results suggest that rosiglitazone plays a protective role in inflammatory vascular diseases.
Collapse
|
49
|
Shi C, Wang X, Zhao X, Andersson R. Cellular and molecular events in acute pancreatitis. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060600776858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Li L, Wang XP, Wu K. The therapeutic effect of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine in rodents with acute necrotizing pancreatitis and its mechanism. Pancreas 2007; 35:e27-36. [PMID: 17895833 DOI: 10.1097/mpa.0b013e3181525855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aims to investigate the therapeutic effect of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OXPAPC) in rodents with acute necrotizing pancreatitis (ANP) and its mechanism. METHODS The ANP model was induced by cerulein challenged by lipopolysaccharide in mice and taurocholic acid in Sprague-Dawley rats. Both ANP models were treated with OXPAPC. Twenty animals of each group were separated to investigate mortality. Detection included serum levels of amylase and lactate dehydrogenase, histological changes of pancreas, activity of myeloperoxidase in pancreas, mRNA expression of inflammatory factors, expression of signal transduction factor proteins, and binding activity of transcriptional factors. RESULTS After treatment with OXPAPC, survival rate was improved in the rat model. In both models, OXPAPC significantly decreased serum amylase and lactate dehydrogenase levels. Histologically, OXPAPC reduced the severity of pancreatic injury. There was a significant decline of myeloperoxidase activity. The mRNA levels of intrapancreatic inflammatory factors were depressed. Activated p38, C-jun N-terminal kinase 1, and inhibitor of kappa-B kinase beta proteins were down-regulated. Electrophoretic mobility shift assay showed that the binding activity of nuclear factor-kappaB and activator protein 1 to DNA was inhibited. CONCLUSIONS The OXPAPC decreased the severity of experimental ANP in rodents. The protective effect of OXPAPC was mediated, at least in part, through blocking the lipopolysaccharide signal pathway.
Collapse
Affiliation(s)
- Lei Li
- Department of Gastroenterology, Shanghai First People's Hospital, Institute of Pancreas Diseases, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|