1
|
Joseph TT, Schuch V, Hossack DJ, Chakraborty R, Johnson EL. Melatonin: the placental antioxidant and anti-inflammatory. Front Immunol 2024; 15:1339304. [PMID: 38361952 PMCID: PMC10867115 DOI: 10.3389/fimmu.2024.1339304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone with many physiological and biological roles. Melatonin is an antioxidant, anti-inflammatory, free radical scavenger, circadian rhythm regulator, and sleep hormone. However, its most popular role is the ability to regulate sleep through the circadian rhythm. Interestingly, recent studies have shown that melatonin is an important and essential hormone during pregnancy, specifically in the placenta. This is primarily due to the placenta's ability to synthesize its own melatonin rather than depending on the pineal gland. During pregnancy, melatonin acts as an antioxidant and anti-inflammatory, which is necessary to ensure a stable environment for both the mother and the fetus. It is an essential antioxidant in the placenta because it reduces oxidative stress by constantly scavenging for free radicals, i.e., maintain the placenta's integrity. In a healthy pregnancy, the maternal immune system is constantly altered to accommodate the needs of the growing fetus, and melatonin acts as a key anti-inflammatory by regulating immune homeostasis during early and late gestation. This literature review aims to identify and summarize melatonin's role as a powerful antioxidant and anti-inflammatory that reduces oxidative stress and inflammation to maintain a favorable homeostatic environment in the placenta throughout gestation.
Collapse
Affiliation(s)
- Tyana T. Joseph
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Viviane Schuch
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Daniel J. Hossack
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Erica L. Johnson
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Liu X, Wang G, Huang H, Lv X, Si Y, Bai L, Wang G, Li Q, Yang W. Exploring maternal-fetal interface with in vitro placental and trophoblastic models. Front Cell Dev Biol 2023; 11:1279227. [PMID: 38033854 PMCID: PMC10682727 DOI: 10.3389/fcell.2023.1279227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The placenta, being a temporary organ, plays a crucial role in facilitating the exchange of nutrients and gases between the mother and the fetus during pregnancy. Any abnormalities in the development of this vital organ not only lead to various pregnancy-related disorders that can result in fetal injury or death, but also have long-term effects on maternal health. In vitro models have been employed to study the physiological features and molecular regulatory mechanisms of placental development, aiming to gain a detailed understanding of the pathogenesis of pregnancy-related diseases. Among these models, trophoblast stem cell culture and organoids show great promise. In this review, we provide a comprehensive overview of the current mature trophoblast stem cell models and emerging organoid models, while also discussing other models in a systematic manner. We believe that this knowledge will be valuable in guiding further exploration of the complex maternal-fetal interface.
Collapse
Affiliation(s)
- Xinlu Liu
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Gang Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Haiqin Huang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Xin Lv
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Yanru Si
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Lixia Bai
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Guohui Wang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Weiwei Yang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Li Y, Sun XL, Ma CL, Li C, Zhan Y, Li WT, Li C, Wang YH. STX2 Promotes Trophoblast Growth, Migration, and Invasion Through Activation of the PI3K-AKT Pathway in Preeclampsia. Front Cell Dev Biol 2021; 9:615973. [PMID: 34295885 PMCID: PMC8292021 DOI: 10.3389/fcell.2021.615973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Abnormal trophoblast behaviors during pregnancy contribute to the development of preeclampsia (PE). Syntaxin2 (STX2) has been shown to be a crucial epithelial mediator in numerous diseases. However, the functions of STX2 and the mechanisms underlying its role in PE remain largely unknown. The aim of this study was to explore the role of STX2 on trophoblast biology and unravel the molecular mechanisms that contribute to the development and progression of PE. Materials and Methods We first compared the expression of STX2 in placental tissues from women with PE and women with normal pregnancies. Then, we investigated the role of STX2 on trophoblast proliferation, migration and invasion in HTR-8/SVneo and primary human trophoblast cells by loss or gain of function experiments. In addition, co-immunoprecipitation, pulldown and immunofluorescence assays were performed to investigate the co-localization of STX2 with other proteins, and to help clarify the mechanisms underlying STX2-mediated functions on trophoblasts. Results We demonstrated that STX2 expression was downregulated in placental tissues of women with PE compared with those from normal pregnancies. Loss and gain of function experiments further confirmed a role for STX2 in cell proliferation, migration and invasion in trophoblasts. By co-immunoprecipitation, pulldown and immunofluorescence co-localization assays, we revealed that STX2 selectively interacted with p85, a subunit of PI3K, and directly recruited p85 to the cytomembrane, thereby activating the AKT signaling pathway. We further demonstrated that the AKT activation was abolished by the use of a PI3K inhibitor (LY294002), which negatively affected STX2-mediated functions on trophoblasts. Conclusion All together, our findings point to a crucial role for STX2 in PE progression. Our new insights also suggest that STX2 may be a potential diagnostic tool and a novel therapeutic target for treating PE.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xian-Li Sun
- Department of Obstetrics and Gynecology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Chun-Ling Ma
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ying Zhan
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wen-Ting Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Can Li
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yi-Hao Wang
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Hu XQ, Zhang L. Hypoxia and Mitochondrial Dysfunction in Pregnancy Complications. Antioxidants (Basel) 2021; 10:antiox10030405. [PMID: 33800426 PMCID: PMC7999178 DOI: 10.3390/antiox10030405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common and severe stress to an organism's homeostatic mechanisms, and hypoxia during gestation is associated with significantly increased incidence of maternal complications of preeclampsia, adversely impacting on the fetal development and subsequent risk for cardiovascular and metabolic disease. Human and animal studies have revealed a causative role of increased uterine vascular resistance and placental hypoxia in preeclampsia and fetal/intrauterine growth restriction (FGR/IUGR) associated with gestational hypoxia. Gestational hypoxia has a major effect on mitochondria of uteroplacental cells to overproduce reactive oxygen species (ROS), leading to oxidative stress. Excess mitochondrial ROS in turn cause uteroplacental dysfunction by damaging cellular macromolecules, which underlies the pathogenesis of preeclampsia and FGR. In this article, we review the current understanding of hypoxia-induced mitochondrial ROS and their role in placental dysfunction and the pathogenesis of pregnancy complications. In addition, therapeutic approaches selectively targeting mitochondrial ROS in the placental cells are discussed.
Collapse
|
5
|
Dzhussoeva EV, Gorkun AA, Zurina IM, Kosheleva NV, Kolokol'tsova TD, Saburina IN. Influence of Fucoxanthin on Proliferative Activity of Human Melanocyte Culture. Bull Exp Biol Med 2020; 169:596-599. [PMID: 32910394 DOI: 10.1007/s10517-020-04935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 10/23/2022]
Abstract
We studied the effect of algae pigment fucoxanthin on proliferative activity of melanocyte culture from human skin. Fucoxanthin in high concentrations can be cytotoxic, which was confirmed by changes in melanocyte morphology and a decrease in their proliferative activity.
Collapse
Affiliation(s)
- E V Dzhussoeva
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A A Gorkun
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I M Zurina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Kosheleva
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - T D Kolokol'tsova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia. .,Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - I N Saburina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
Duan FM, Fu LJ, Wang YH, Adu-Gyamfi EA, Ruan LL, Xu ZW, Xiao SQ, Chen XM, Wang YX, Liu TH, Ding YB. THBS1 regulates trophoblast fusion through a CD36-dependent inhibition of cAMP, and its upregulation participates in preeclampsia. Genes Dis 2020; 8:353-363. [PMID: 33997182 PMCID: PMC8093648 DOI: 10.1016/j.gendis.2020.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy complication which threatens the survival of mothers and fetuses. It originates from abnormal placentation, especially insufficient fusion of the cytotrophoblast cells to form the syncytiotrophoblast. In this study, we found that THBS1, a matricellular protein that mediates cell-to-cell and cell-to-matrix interactions, is downregulated during the fusion of primary cytotrophoblast and BeWo cells, but upregulated in the placenta of pregnancies complicated by preeclampsia. Also, THBS1 was observed to interact with CD36, a membrane signal receptor and activator of the cAMP signaling pathway, to regulate the fusion of cytotrophoblast cells. Overexpression of THBS1 inhibited the cAMP signaling pathway and reduced the BeWo cells fusion ratio, while the effects of THBS1 were abolished by a CD36-blocking antibody. Our results suggest that THBS1 signals through a CD36-mediated cAMP pathway to regulate syncytialization of the cytotrophoblast cells, and that its upregulation impairs placental formation to cause preeclampsia. Thus, THBS1 can serve as a therapeutic target regarding the mitigation of abnormal syncytialization and preeclampsia.
Collapse
Affiliation(s)
- Fu-Mei Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong-Heng Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ling-Ling Ruan
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zeng-Wei Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shi-Quan Xiao
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China.,Department of Reproductive Medicine, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, PR China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- Department of Bioinformatics, The School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Yu-Bin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| |
Collapse
|
7
|
Ma Z, Sagrillo-Fagundes L, Mok S, Vaillancourt C, Moraes C. Mechanobiological regulation of placental trophoblast fusion and function through extracellular matrix rigidity. Sci Rep 2020; 10:5837. [PMID: 32246004 PMCID: PMC7125233 DOI: 10.1038/s41598-020-62659-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
The syncytiotrophoblast is a multinucleated layer that plays a critical role in regulating functions of the human placenta during pregnancy. Maintaining the syncytiotrophoblast layer relies on ongoing fusion of mononuclear cytotrophoblasts throughout pregnancy, and errors in this fusion process are associated with complications such as preeclampsia. While biochemical factors are known to drive fusion, the role of disease-specific extracellular biophysical cues remains undefined. Since substrate mechanics play a crucial role in several diseases, and preeclampsia is associated with placental stiffening, we hypothesize that trophoblast fusion is mechanically regulated by substrate stiffness. We developed stiffness-tunable polyacrylamide substrate formulations that match the linear elasticity of placental tissue in normal and disease conditions, and evaluated trophoblast morphology, fusion, and function on these surfaces. Our results demonstrate that morphology, fusion, and hormone release is mechanically-regulated via myosin-II; optimal on substrates that match healthy placental tissue stiffness; and dysregulated on disease-like and supraphysiologically-stiff substrates. We further demonstrate that stiff regions in heterogeneous substrates provide dominant physical cues that inhibit fusion, suggesting that even focal tissue stiffening limits widespread trophoblast fusion and tissue function. These results confirm that mechanical microenvironmental cues influence fusion in the placenta, provide critical information needed to engineer better in vitro models for placental disease, and may ultimately be used to develop novel mechanically-mediated therapeutic strategies to resolve fusion-related disorders during pregnancy.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Lucas Sagrillo-Fagundes
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
- INRS-Centre Armand Frappier Santé Biotechnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand Frappier Santé Biotechnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada.
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada.
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Ma Z, Sagrillo-Fagundes L, Tran R, Parameshwar PK, Kalashnikov N, Vaillancourt C, Moraes C. Biomimetic Micropatterned Adhesive Surfaces To Mechanobiologically Regulate Placental Trophoblast Fusion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47810-47821. [PMID: 31773938 DOI: 10.1021/acsami.9b19906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The placental syncytiotrophoblast is a giant multinucleated cell that forms a tree-like structure and regulates transport between mother and baby during development. It is maintained throughout pregnancy by continuous fusion of trophoblast cells, and disruptions in fusion are associated with considerable adverse health effects including diseases such as preeclampsia. Developing predictive control over cell fusion in culture models is hence of critical importance in placental drug discovery and transport studies, but this can currently be only partially achieved with biochemical factors. Here, we investigate whether biophysical signals associated with budding morphogenesis during development of the placental villous tree can synergistically direct and enhance trophoblast fusion. We use micropatterning techniques to manipulate physical stresses in engineered microtissues and demonstrate that biomimetic geometries simulating budding robustly enhance fusion and alter spatial patterns of synthesis of pregnancy-related hormones. These findings indicate that biophysical signals play a previously unrecognized and significant role in regulating placental fusion and function, in synergy with established soluble signals. More broadly, our studies demonstrate that biomimetic strategies focusing on tissue mechanics can be important approaches to design, build, and test placental tissue cultures for future studies of pregnancy-related drug safety, efficacy, and discovery.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Lucas Sagrillo-Fagundes
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
- INRS-Centre Armand Frappier Santé Biotehnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec , Laval , QC H7V 1B7 , Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment , Université du Québec à Montréal , Montréal , QC H3C 3P8 , Canada
| | - Raymond Tran
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Prabu Karthick Parameshwar
- Department of Biological and Biomedical Engineering , McGill University , Montréal , QC H3A 2B4 , Canada
| | - Nikita Kalashnikov
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand Frappier Santé Biotehnologie and Réseau Intersectoriel de Recherche en Santé de l'Université du Québec , Laval , QC H7V 1B7 , Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment , Université du Québec à Montréal , Montréal , QC H3C 3P8 , Canada
| | - Christopher Moraes
- Department of Chemical Engineering , McGill University , Montréal , QC H3A 0C5 , Canada
- Department of Biological and Biomedical Engineering , McGill University , Montréal , QC H3A 2B4 , Canada
- Rosalind and Morris Goodman Cancer Research Centre , McGill University , Montréal , QC H3A 1A3 , Canada
| |
Collapse
|
9
|
Hudon Thibeault AA, López de Los Santos Y, Doucet N, Sanderson JT, Vaillancourt C. Serotonin and serotonin reuptake inhibitors alter placental aromatase. J Steroid Biochem Mol Biol 2019; 195:105470. [PMID: 31509772 PMCID: PMC7939054 DOI: 10.1016/j.jsbmb.2019.105470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
Abstract
Serotonin reuptake inhibitors (SRIs) are currently the main molecules prescribed to pregnant women that suffer from depression. Placental cells are exposed to SRIs via maternal blood, and we have previously shown that SRIs alter feto-placental steroidogenesis in an in vitro co-culture model. More specifically, serotonin (5-HT) regulates the estrogen biosynthetic enzyme aromatase (cytochrome P450 19; CYP19), which is disrupted by fluoxetine and its active metabolite norfluoxetine in BeWo choriocarcinoma cells. Based on molecular simulations, the present study illustrates that the SRIs fluoxetine, norfluoxetine, paroxetine, sertraline, citalopram and venlafaxine exhibit binding affinity for the active-site pocket of CYP19, suggesting potential competitive inhibition. Using BeWo cells and primary villous trophoblast cells isolated from normal term placentas, we compared the effects of the SRIs on CYP19 activity. We observed that paroxetine and sertraline induce aromatase activity in BeWo cells, while venlafaxine, fluoxetine, paroxetine and sertraline decrease aromatase activity in primary villous trophoblast. The effects of paroxetine and sertraline in primary villous trophoblasts were observed at the lower doses tested. We also showed that 5-HT and the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) induced CYP19 activity. An increase in phosphorylation of serine and tyrosine and a decrease in threonine phosphorylation of CYP19 was also associated with DOI treatment. Our results contribute to better understanding how 5-HT and SRIs interact with CYP19 and may affect estrogen production. Moreover, this study suggests that alteration of placental 5-HT levels due to depression and/or SRI treatment during pregnancy may be associated with disruption of placental estrogen production.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - Yossef López de Los Santos
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Nicolas Doucet
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - J Thomas Sanderson
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
10
|
Fecher-Trost C, Lux F, Busch KM, Raza A, Winter M, Hielscher F, Belkacemi T, van der Eerden B, Boehm U, Freichel M, Weissgerber P. Maternal Transient Receptor Potential Vanilloid 6 (Trpv6) Is Involved In Offspring Bone Development. J Bone Miner Res 2019; 34:699-710. [PMID: 30786075 DOI: 10.1002/jbmr.3646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 12/29/2022]
Abstract
Embryonic growth and bone development depend on placental Ca2+ transport across the feto-maternal barrier to supply minerals to the fetus. The individual factors and cellular mechanisms that regulate placental Ca2+ transfer, however, are only beginning to emerge. We find that the Ca2+ -selective transient receptor potential vanilloid 6 (TRPV6) channel is expressed in trophoblasts of the fetal labyrinth, in the yolk sac, and in the maternal part of the placenta. Lack of functional TRPV6 channels in the mother leads to a reduced Ca2+ content in both placenta and embryo. Ca2+ uptake in trophoblasts is impaired in the absence of Trpv6. Trpv6-deficient embryos are smaller, have a lower body weight, and shorter and less calcified femurs. The altered cortical bone microarchitecture persists in adulthood. We show that TRPV6's Ca2+ -conducting property causes this embryonic and bone phenotype. Our results show that TRPV6 is necessary for the Ca2+ uptake in trophoblasts and that TRPV6 deficiency in the placenta leads to reduced embryo growth, minor bone calcification, and impaired bone development. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Femke Lux
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Kai-Markus Busch
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Ahsan Raza
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Manuel Winter
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Franziska Hielscher
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Thabet Belkacemi
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Bram van der Eerden
- Department of Internal Medicine, Laboratory for Calcium and Bone Metabolism, Erasmus MC, Rotterdam, Netherlands
| | - Ulrich Boehm
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Petra Weissgerber
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.,Transgenic Technologies, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
11
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Vaillancourt C. Melatonin: The smart molecule that differentially modulates autophagy in tumor and normal placental cells. PLoS One 2019; 14:e0202458. [PMID: 30629581 PMCID: PMC6328125 DOI: 10.1371/journal.pone.0202458] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin has protective roles in normal cells and cytotoxic actions in cancer cells, with effects involving autophagy and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor pathways. Hypoxia/reoxygenation (H/R) induces oxidative damage and apoptosis. These consequences activate autophagy, which degrades damaged cellular content, as well as activates Nrf2 the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor, and thereby the expression of protective genes. Melatonin has protective roles in normal cells and cytotoxic actions in cancer cells, with effects involving autophagy and Nrf2 pathways. The current study shows melatonin to differentially modulate autophagy and Nrf2 pathways in tumor and normal placental cells exposed to H/R. BeWo, a human placental choriocarcinoma cell line, and primary villous cytotrophoblasts isolated from normal term placenta, were maintained in normoxia (8% O2) for 24 h or exposed to hypoxia (0.5% of O2 for 4 h) followed by 20 h of normoxia, creating a situation of H/R, in the presence or absence of 1 mM melatonin. Melatonin induced a 7-fold increase in the activation of 5' adenosine monophosphate-activated protein kinase (AMPK)α, an upstream modulator of autophagy, rising to a 16-fold increase in BeWo cells co-exposed to H/R and melatonin, compared to controls. H/R induced autophagosome formation via the increased expression of Beclin-1 (by 94%) and ATG7 (by 97%) in BeWo cells. Moreover, H/R also induced autophagic activity, indicated by the by the 630% increase in P62, and increased Nrf2 by 314% in BeWo cells. In H/R conditions, melatonin reduced autophagic activity by 74% and Nrf2 expression activation by 300%, leading to BeWo cell apoptosis. In contrast, In human primary villous cytotrophoblasts, H/R induced autophagy and Nrf2, which melatonin further potentiated, thereby affording protection against H/R. This study demonstrates that melatonin differentially modulates autophagy and the Nrf2 pathway in normal vs. tumor trophoblast cells, being cytoprotective in normal cells whilst increasing apoptosis in tumoral trophoblast cells.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- INRS-Institut Armand-Frappier and BioMed Research Centre, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Josianne Bienvenue-Pariseault
- INRS-Institut Armand-Frappier and BioMed Research Centre, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier and BioMed Research Centre, Laval, QC, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
12
|
Clabault H, Laurent L, Sanderson JT, Vaillancourt C. Isolation and Purification of Villous Cytotrophoblast Cells from Term Human Placenta. Methods Mol Biol 2018; 1710:219-231. [PMID: 29197006 DOI: 10.1007/978-1-4939-7498-6_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The placenta is a key element during pregnancy for the health of the fetus and the mother, which justifies why placental studies are so important. One of the best models for placental studies is the primary cell culture of cytotrophoblast cells from human term placentas. In this chapter, we will detail firstly the isolation of cytotrophoblast cells, with tissue preparation, digestion, Percoll gradient, and cell freezing, and secondly the cell immunopurification and seeding.
Collapse
Affiliation(s)
- Hélène Clabault
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada.,BioMed Research Centre, Laval, QC, Canada.,Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - Laetitia Laurent
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada.,BioMed Research Centre, Laval, QC, Canada.,Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada. .,BioMed Research Centre, Laval, QC, Canada. .,Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
13
|
Simon B, Bucher M, Maloyan A. A Primary Human Trophoblast Model to Study the Effect of Inflammation Associated with Maternal Obesity on Regulation of Autophagy in the Placenta. J Vis Exp 2017. [PMID: 28994813 DOI: 10.3791/56484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal obesity is associated with an increased risk of adverse perinatal outcomes that are likely mediated by compromised placental function that can be attributed to, in part, the dysregulation of autophagy. Aberrant changes in the expression of autophagy regulators in the placentas from obese pregnancies may be regulated by inflammatory processes associated with both obesity and pregnancy. Described here is a protocol for sampling of villous tissue and isolation of villous cytotrophoblasts from the term human placenta for primary cell culture. This is followed by a method for simulating the inflammatory milieu in the obese intrauterine environment by treating primary trophoblasts from lean pregnancies with tumor necrosis factor alpha (TNFα), a proinflammatory cytokine that is elevated in obesity and in pregnancy. Through the implementation of the protocol described here, it is found that exposure to exogenous TNFα regulates the expression of Rubicon, a negative regulator of autophagy, in trophoblasts from lean pregnancies with female fetuses. While a variety of biological factors in the obese intrauterine environment maintain the potential to modulate critical pathways in trophoblasts, this ex vivo system is especially useful for determining if expression patterns observed in vivo in human placentas with maternal obesity are a direct result of TNFα signaling. Ultimately, this approach affords the opportunity to parse out the regulatory and molecular implications of inflammation associated with maternal obesity on autophagy and other critical cellular pathways in trophoblasts that have the potential to impact placental function.
Collapse
Affiliation(s)
- Bailey Simon
- Knight Cardiovascular Institute, Oregon Health and Science University
| | - Matthew Bucher
- Department of Obstetrics and Gynecology, Oregon Health and Science University
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University;
| |
Collapse
|