1
|
McCabe SM, Zhao N. Expression of Manganese Transporters ZIP8, ZIP14, and ZnT10 in Brain Barrier Tissues. Int J Mol Sci 2024; 25:10342. [PMID: 39408669 PMCID: PMC11476488 DOI: 10.3390/ijms251910342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Manganese (Mn) is an essential trace mineral for brain function, but excessive accumulation can cause irreversible nervous system damage, highlighting the need for proper Mn balance. ZIP14, ZnT10, and ZIP8 are key transporters involved in maintaining Mn homeostasis, particularly in the absorption and excretion of Mn in the intestine and liver. However, their roles in the brain are less understood. The blood-cerebrospinal fluid barrier and the blood-brain barrier, formed by the choroid plexus and brain blood vessels, respectively, are critical for brain protection and brain metal homeostasis. This study identified ZIP14 on the choroid plexus epithelium, and ZIP8 and ZnT10 in brain microvascular tissue. We show that despite significant Mn accumulation in the CSF of Znt10 knockout mice, ZIP14 expression levels in the blood-cerebrospinal fluid barrier remain unchanged, indicating that ZIP14 does not have a compensatory mechanism for regulating Mn uptake in the brain in vivo. Additionally, Mn still enters the CSF without ZIP14 when systemic levels rise. This indicates that alternative transport mechanisms or compensatory pathways ensure Mn balance in the CSF, shedding light on potential strategies for managing Mn-related disorders.
Collapse
Affiliation(s)
| | - Ningning Zhao
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
2
|
Stavrou M, Georgiou E, Kleopa KA. Lumbar Intrathecal Injection in Adult and Neonatal Mice. Curr Protoc 2024; 4:e1091. [PMID: 38923413 DOI: 10.1002/cpz1.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This article describes a step-by-step process of lumbar intrathecal injection of Evans blue dye and AAV9-EGFP in adult (2-month-old) and neonatal (postnatal day 10) mice. Intrathecal injection is a clinically translatable technique that has already been extensively applied in humans. In mice, intrathecal injection is considered a challenging procedure that requires a trained and experienced researcher. For both adult and neonatal mice, lumbar intrathecal injection is directed into the L5-L6 intervertebral space. Intrathecally injected material enters the cerebrospinal fluid (CSF) within the intrathecal space from where it can directly access the central nervous system (CNS) parenchyma. Simultaneously, intrathecally injected material exits the CSF with pressure gradient and enters the endoneurial fluid and ultimately the peripheral nerves. While in the CSF, the injectable material also enters the bloodstream and systemic circulation through the arachnoid villi. A successful lumbar intrathecal injection results in adequate biodistribution of the injectable material in the CNS, PNS, and peripheral organs. When correctly applied, this technique is considered as minimally invasive and non-disruptive and can be used for the lumbar delivery of any solute. © 2024 Wiley Periodicals LLC. Basic Protocol 1: C57BL/6 adult and P10 mice lumbar intrathecal injection Basic Protocol 2: Tissue collection and preparation for evaluating Evans blue dye diffusion Basic Protocol 3: Tissue collection and preparation for immunohistochemistry staining Basic Protocol 4: Tissue collection and vector genome copy number analysis.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
3
|
O'Shaughnessy KL, Sasser AL, Bell KS, Riutta C, Ford JL, Grindstaff RD, Gilbert ME. Bypassing the brain barriers: upregulation of serum miR-495 and miR-543-3p reflects thyroid-mediated developmental neurotoxicity in the rat. Toxicol Sci 2024; 198:128-140. [PMID: 38070162 DOI: 10.1093/toxsci/kfad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Aubrey L Sasser
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Kiersten S Bell
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Cal Riutta
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Rachel D Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Mary E Gilbert
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
4
|
Radoszkiewicz K, Bzinkowska A, Chodkowska M, Rybkowska P, Sypecka M, Zembrzuska-Kaska I, Sarnowska A. Deciphering the impact of cerebrospinal fluid on stem cell fate as a new mechanism to enhance clinical therapy development. Front Neurosci 2024; 17:1332751. [PMID: 38282622 PMCID: PMC10811009 DOI: 10.3389/fnins.2023.1332751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neural stem cells (NSCs) hold a very significant promise as candidates for cell therapy due to their robust neuroprotective and regenerative properties. Preclinical studies using NSCs have shown enough encouraging results to perform deeper investigations into more potential clinical applications. Nevertheless, our knowledge regarding neurogenesis and its underlying mechanisms remains incomplete. To understand them better, it seems necessary to characterize all components of neural stem cell niche and discover their role in physiology and pathology. Using NSCs in vivo brings challenges including limited cell survival and still inadequate integration within host tissue. Identifying overlooked factors that might influence these outcomes becomes pivotal. In this review, we take a deeper examination of the influence of a fundamental element that is present in the brain, the cerebrospinal fluid (CSF), which still remains relatively unexplored. Its role in neurogenesis could be instrumental to help find novel therapeutic solutions for neurological disorders, eventually advancing our knowledge on central nervous system (CNS) regeneration and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Huang Q, Chan KY, Lou S, Keyes C, Wu J, Botticello-Romero NR, Zheng Q, Johnston J, Mills A, Brauer PP, Clouse G, Pacouret S, Harvey JW, Beddow T, Hurley JK, Tobey IG, Powell M, Chen AT, Barry AJ, Eid FE, Chan YA, Deverman BE. An AAV capsid reprogrammed to bind human Transferrin Receptor mediates brain-wide gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572615. [PMID: 38187643 PMCID: PMC10769326 DOI: 10.1101/2023.12.20.572615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.
Collapse
Affiliation(s)
- Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Shan Lou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Casey Keyes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jason Wu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | | | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jencilin Johnston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Allan Mills
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Pamela P. Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Gabrielle Clouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Simon Pacouret
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - John W. Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jenna K. Hurley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Isabelle G. Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Megan Powell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Albert T. Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Andrew J. Barry
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Fatma-Elzahraa Eid
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
- Department of Systems and Computer Engineering, Faculty of Engineering, Al-Azhar University; Cairo, Egypt
| | - Yujia A. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| |
Collapse
|
6
|
Pesämaa I, Müller SA, Robinson S, Darcher A, Paquet D, Zetterberg H, Lichtenthaler SF, Haass C. A microglial activity state biomarker panel differentiates FTD-granulin and Alzheimer's disease patients from controls. Mol Neurodegener 2023; 18:70. [PMID: 37775827 PMCID: PMC10543321 DOI: 10.1186/s13024-023-00657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND With the emergence of microglia-modulating therapies there is an urgent need for reliable biomarkers to evaluate microglial activation states. METHODS Using mouse models and human induced pluripotent stem cell-derived microglia (hiMGL), genetically modified to yield the most opposite homeostatic (TREM2-knockout) and disease-associated (GRN-knockout) states, we identified microglia activity-dependent markers. Non-targeted mass spectrometry was used to identify proteomic changes in microglia and cerebrospinal fluid (CSF) of Grn- and Trem2-knockout mice. Additionally, we analyzed the proteome of GRN- and TREM2-knockout hiMGL and their conditioned media. Candidate marker proteins were tested in two independent patient cohorts, the ALLFTD cohort (GRN mutation carriers versus non-carriers), as well as the proteomic data set available from the EMIF-AD MBD study. RESULTS We identified proteomic changes between the opposite activation states in mouse microglia and CSF, as well as in hiMGL cell lysates and conditioned media. For further verification, we analyzed the CSF proteome of heterozygous GRN mutation carriers suffering from frontotemporal dementia (FTD). We identified a panel of six proteins (FABP3, MDH1, GDI1, CAPG, CD44, GPNMB) as potential indicators for microglial activation. Moreover, we confirmed three of these proteins (FABP3, GDI1, MDH1) to be significantly elevated in the CSF of Alzheimer's (AD) patients. Remarkably, each of these markers differentiated amyloid-positive cases with mild cognitive impairment (MCI) from amyloid-negative individuals. CONCLUSIONS The identified candidate proteins reflect microglia activity and may be relevant for monitoring the microglial response in clinical practice and clinical trials modulating microglial activity and amyloid deposition. Moreover, the finding that three of these markers differentiate amyloid-positive from amyloid-negative MCI cases in the AD cohort suggests that these proteins associate with a very early immune response to seeded amyloid. This is consistent with our previous findings in the Dominantly Inherited Alzheimer's Disease Network (DIAN) cohort, where soluble TREM2 increases as early as 21 years before symptom onset. Moreover, in mouse models for amyloidogenesis, seeding of amyloid is limited by physiologically active microglia further supporting their early protective role. The biological functions of some of our main candidates (FABP3, CD44, GPNMB) also further emphasize that lipid dysmetabolism may be a common feature of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ida Pesämaa
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sophie Robinson
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University Munich, Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital Munich, Ludwig-Maximilians- University Munich, Munich, Germany
| | - Alana Darcher
- Epileptology, University Hospital Bonn, Bonn, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research, University Hospital Munich, Ludwig-Maximilians- University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany.
- Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
7
|
Wu Y, Li P, Bhat N, Fan H, Liu M. Effects of repeated sleep deprivation on brain pericytes in mice. Sci Rep 2023; 13:12760. [PMID: 37550395 PMCID: PMC10406921 DOI: 10.1038/s41598-023-40138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
The damaging effects of sleep deprivation (SD) on brain parenchyma have been extensively studied. However, the specific influence of SD on brain pericytes, a primary component of the blood-brain barrier (BBB) and the neurovascular unit (NVU), is still unclear. The present study examined how acute or repeated SD impairs brain pericytes by measuring the cerebrospinal fluid (CSF) levels of soluble platelet-derived growth factor receptor beta (sPDGFRβ) and quantifying pericyte density in the cortex, hippocampus, and subcortical area of the PDGFRβ-P2A-CreERT2/tdTomato mice, which predominantly express the reporter tdTomato in vascular pericytes. Our results showed that a one-time 4 h SD did not significantly change the CSF sPDGFRβ level. In contrast, repeated SD (4 h/day for 10 consecutive days) significantly elevated the CSF sPDGFRβ level, implying explicit pericyte damages due to repeated SD. Furthermore, repeated SD significantly decreased the pericyte densities in the cortex and hippocampus, though the pericyte apoptosis status remained unchanged as measured with Annexin V-affinity assay and active Caspase-3 staining. These results suggest that repeated SD causes brain pericyte damage and loss via non-apoptosis pathways. These changes to pericytes may contribute to SD-induced BBB and NVU dysfunctions. The reversibility of this process implies that sleep improvement may have a protective effect on brain pericytes.
Collapse
Affiliation(s)
- Yan Wu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Pengfei Li
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Narayan Bhat
- Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hongkuan Fan
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
8
|
Gómez-Oliva R, Martínez-Ortega S, Atienza-Navarro I, Domínguez-García S, Bernal-Utrera C, Geribaldi-Doldán N, Verástegui C, Ezzanad A, Hernández-Galán R, Nunez-Abades P, Garcia-Alloza M, Castro C. Rescue of neurogenesis and age-associated cognitive decline in SAMP8 mouse: Role of transforming growth factor-alpha. Aging Cell 2023:e13829. [PMID: 37177826 DOI: 10.1111/acel.13829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 03/19/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathological aging is associated with memory impairment and cognitive decline, affecting several brain areas including the neurogenic niche of the dentate gyrus of the hippocampus (DG). In the healthy brain, homeostatic mechanisms regulate neurogenesis within the DG to facilitate the continuous generation of neurons from neural stem cells (NSC). Nevertheless, aging reduces the number of activated neural stem cells and diminishes the number of newly generated neurons. Strategies that promote neurogenesis in the DG may improve cognitive performance in the elderly resulting in the development of treatments to prevent the progression of neurological disorders in the aged population. Our work is aimed at discovering targeting molecules to be used in the design of pharmacological agents that prevent the neurological effects of brain aging. We study the effect of age on hippocampal neurogenesis using the SAMP8 mouse as a model of neuropathological aging. We show that in 6-month-old SAMP8 mice, episodic and spatial memory are impaired; concomitantly, the generation of neuroblasts and neurons is reduced and the generation of astrocytes is increased in this model. The novelty of our work resides in the fact that treatment of SAMP8 mice with a transforming growth factor-alpha (TGFα) targeting molecule prevents the observed defects, positively regulating neurogenesis and improving cognitive performance. This compound facilitates the release of TGFα in vitro and in vivo and activates signaling pathways initiated by this growth factor. We conclude that compounds of this kind that stimulate neurogenesis may be useful to counteract the neurological effects of pathological aging.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Sergio Martínez-Ortega
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Isabel Atienza-Navarro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
- Departamento de Fisioterapia, Universidad de Sevilla, Seville, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Abdellah Ezzanad
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
- Departamento de Química Orgánica, Universidad de Cádiz, Puerto Real, Spain
| | - Rosario Hernández-Galán
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
- Departamento de Química Orgánica, Universidad de Cádiz, Puerto Real, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
- Departamento de Fisiología, Universidad de Sevilla, Sevilla, Spain
| | - Monica Garcia-Alloza
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
9
|
Wu GF. The cerebrospinal fluid immune cell landscape in animal models of multiple sclerosis. Front Mol Neurosci 2023; 16:1143498. [PMID: 37122618 PMCID: PMC10130411 DOI: 10.3389/fnmol.2023.1143498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023] Open
Abstract
The fluid compartment surrounding the central nervous system (CNS) is a unique source of immune cells capable of reflecting the pathophysiology of neurologic diseases. While human clinical and experimental studies often employ cerebrospinal fluid (CSF) analysis, assessment of CSF in animal models of disease are wholly uncommon, particularly in examining the cellular component. Barriers to routine assessment of CSF in animal models of multiple sclerosis (MS) include limited sample volume, blood contamination, and lack of feasible longitudinal approaches. The few studies characterizing CSF immune cells in animal models of MS are largely outdated, but recent work employing transcriptomics have been used to explore new concepts in CNS inflammation and MS. Absence of extensive CSF data from rodent and other systems has curbed the overall impact of experimental models of MS. Future approaches, including examination of CSF myeloid subsets, single cell transcriptomics incorporating antigen receptor sequencing, and use of diverse animal models, may serve to overcome current limitations and provide critical insights into the pathogenesis of, and therapeutic developments for, MS.
Collapse
Affiliation(s)
- Gregory F. Wu
- Departments of Neurology and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Neurology Service, VA St. Louis Health Care System, St. Louis, MO, United States
| |
Collapse
|
10
|
Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat Commun 2022; 13:4918. [PMID: 35995799 PMCID: PMC9395532 DOI: 10.1038/s41467-022-32625-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Considerable evidence supports the release of pathogenic aggregates of the neuronal protein α-Synuclein (αSyn) into the extracellular space. While this release is proposed to instigate the neuron-to-neuron transmission and spread of αSyn pathology in synucleinopathies including Parkinson’s disease, the molecular-cellular mechanism(s) remain unclear. To study this, we generated a new mouse model to specifically immunoisolate neuronal lysosomes, and established a long-term culture model where αSyn aggregates are produced within neurons without the addition of exogenous fibrils. We show that neuronally generated pathogenic species of αSyn accumulate within neuronal lysosomes in mouse brains and primary neurons. We then find that neurons release these pathogenic αSyn species via SNARE-dependent lysosomal exocytosis. The released aggregates are non-membrane enveloped and seeding-competent. Additionally, we find that this release is dependent on neuronal activity and cytosolic Ca2+. These results propose lysosomal exocytosis as a central mechanism for the release of aggregated and degradation-resistant proteins from neurons. Release of α-synuclein aggregates by neurons instigates spread of pathology in synucleinopathies, but the mechanism remains unclear. Here the authors show that neuronally generated α-synuclein aggregates accumulate within neuronal lysosomes and are released via SNARE-dependent lysosomal exocytosis.
Collapse
|
11
|
Heming M, Börsch AL, Wiendl H, Meyer Zu Hörste G. High-dimensional investigation of the cerebrospinal fluid to explore and monitor CNS immune responses. Genome Med 2022; 14:94. [PMID: 35978442 PMCID: PMC9385102 DOI: 10.1186/s13073-022-01097-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/28/2022] [Indexed: 01/15/2023] Open
Abstract
The cerebrospinal fluid (CSF) features a unique immune cell composition and is in constant contact with the brain borders, thus permitting insights into the brain to diagnose and monitor diseases. Recently, the meninges, which are filled with CSF, were identified as a neuroimmunological interface, highlighting the potential of exploring central nervous system (CNS) immunity by studying CNS border compartments. Here, we summarize how single-cell transcriptomics of such border compartments advance our understanding of neurological diseases, the challenges that remain, and what opportunities novel multi-omic methods offer. Single-cell transcriptomics studies have detected cytotoxic CD4+ T cells and clonally expanded T and B cells in the CSF in the autoimmune disease multiple sclerosis; clonally expanded pathogenic CD8+ T cells were found in the CSF and in the brain adjacent to β-amyloid plaques of dementia patients; in patients with brain metastases, CD8+ T cell clonotypes were shared between the brain parenchyma and the CSF and persisted after therapy. We also outline how novel multi-omic approaches permit the simultaneous measurements of gene expression, chromatin accessibility, and protein in the same cells, which remain to be explored in the CSF. This calls for multicenter initiatives to create single-cell atlases, posing challenges in integrating patients and modalities across centers. While high-dimensional analyses of CSF cells are challenging, they hold potential for personalized medicine by better resolving heterogeneous diseases and stratifying patients.
Collapse
Affiliation(s)
- Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Anna-Lena Börsch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
12
|
Lai R, Hsu C, Yu B, Lo Y, Hsu Y, Chen M, Juang J. Vitamin D supplementation worsens Alzheimer's progression: Animal model and human cohort studies. Aging Cell 2022; 21:e13670. [PMID: 35822270 PMCID: PMC9381901 DOI: 10.1111/acel.13670] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/30/2023] Open
Abstract
Vitamin D deficiency has been epidemiologically linked to Alzheimer's disease (AD) and other dementias, but no interventional studies have proved causality. Our previous work revealed that the genomic vitamin D receptor (VDR) is already converted into a non-genomic signaling pathway by forming a complex with p53 in the AD brain. Here, we extend our previous work to assess whether it is beneficial to supplement AD mice and humans with vitamin D. Intriguingly, we first observed that APP/PS1 mice fed a vitamin D-sufficient diet showed significantly lower levels of serum vitamin D, suggesting its deficiency may be a consequence not a cause of AD. Moreover, supplementation of vitamin D led to increased Aβ deposition and exacerbated AD. Mechanistically, vitamin D supplementation did not rescue the genomic VDR/RXR complex but instead enhanced the non-genomic VDR/p53 complex in AD brains. Consistently, our population-based longitudinal study also showed that dementia-free older adults (n = 14,648) taking vitamin D3 supplements for over 146 days/year were 1.8 times more likely to develop dementia than those not taking the supplements. Among those with pre-existing dementia (n = 980), those taking vitamin D3 supplements for over 146 days/year had 2.17 times the risk of mortality than those not taking the supplements. Collectively, these animal model and human cohort studies caution against prolonged use of vitamin D by AD patients.
Collapse
Affiliation(s)
- Rai‐Hua Lai
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Chih‐Cheng Hsu
- National Center for Geriatrics and Welfare ResearchNational Health Research InstitutesMiaoliTaiwan
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
- Department of Health Services AdministrationChina Medical UniversityTaichungTaiwan
- Department of Family MedicineMin‐Sheng General HospitalTaoyuanTaiwan
| | - Ben‐Hui Yu
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Yu‐Ru Lo
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Yueh‐Ying Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Mei‐Hsin Chen
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
- Ph.D. Program for AgingChina Medical UniversityTaichungTaiwan
| |
Collapse
|
13
|
NADPH oxidase-induced activation of transforming growth factor-beta-1 causes neuropathy by suppressing antioxidant signaling pathways in alcohol use disorder. Neuropharmacology 2022; 213:109136. [DOI: 10.1016/j.neuropharm.2022.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
14
|
Reifschneider A, Robinson S, van Lengerich B, Gnörich J, Logan T, Heindl S, Vogt MA, Weidinger E, Riedl L, Wind K, Zatcepin A, Pesämaa I, Haberl S, Nuscher B, Kleinberger G, Klimmt J, Götzl JK, Liesz A, Bürger K, Brendel M, Levin J, Diehl‐Schmid J, Suh J, Di Paolo G, Lewcock JW, Monroe KM, Paquet D, Capell A, Haass C. Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. EMBO J 2022; 41:e109108. [PMID: 35019161 PMCID: PMC8844989 DOI: 10.15252/embj.2021109108] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody-mediated pharmacological modulation of TREM2-dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN-FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody-treated PGRN-deficient microglia derived from human-induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light-chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2-dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.
Collapse
Affiliation(s)
- Anika Reifschneider
- Division of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Sophie Robinson
- Institute for Stroke and Dementia ResearchUniversity Hospital MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
| | | | - Johannes Gnörich
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Department of Nuclear MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Todd Logan
- Denali Therapeutics Inc.South San FranciscoCAUSA
| | - Steffanie Heindl
- Institute for Stroke and Dementia ResearchUniversity Hospital MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | | | - Endy Weidinger
- Department of NeurologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Lina Riedl
- Department of Psychiatry and PsychotherapySchool of MedicineTechnical University of MunichMunichGermany
| | - Karin Wind
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Department of Nuclear MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Artem Zatcepin
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Department of Nuclear MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Ida Pesämaa
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
| | | | - Brigitte Nuscher
- Division of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | | | - Julien Klimmt
- Institute for Stroke and Dementia ResearchUniversity Hospital MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Julia K Götzl
- Division of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Arthur Liesz
- Institute for Stroke and Dementia ResearchUniversity Hospital MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Katharina Bürger
- Institute for Stroke and Dementia ResearchUniversity Hospital MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Department of Nuclear MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Department of Nuclear MedicineUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of NeurologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Janine Diehl‐Schmid
- Department of NeurologyUniversity HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Psychiatry and PsychotherapySchool of MedicineTechnical University of MunichMunichGermany
| | - Jung Suh
- Denali Therapeutics Inc.South San FranciscoCAUSA
| | | | | | | | - Dominik Paquet
- Institute for Stroke and Dementia ResearchUniversity Hospital MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Anja Capell
- Division of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Christian Haass
- Division of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
15
|
Tsuji T, Furuhara K, Gerasimenko M, Shabalova A, Cherepanov SM, Minami K, Higashida H, Tsuji C. Oral Supplementation with L-Carnosine Attenuates Social Recognition Deficits in CD157KO Mice via Oxytocin Release. Nutrients 2022; 14:nu14040803. [PMID: 35215455 PMCID: PMC8879915 DOI: 10.3390/nu14040803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
The outcomes of supplementation with L-carnosine have been investigated in clinical trials in children with autism spectrum disorder (ASD). However, reports on the effects of L-carnosine in humans have been inconsistent, and the efficacy of L-carnosine supplementation for improving ASD symptoms has yet to be investigated in animal studies. Here, we examined the effects of oral supplementation with L-carnosine on social deficits in CD157KO mice, a murine model of ASD. Social deficits in CD157KO mice were assessed using a three-chamber social approach test. Oral supplementation with L-carnosine attenuated social behavioral deficits. The number of c-Fos-positive oxytocin neurons in the supraoptic nucleus and paraventricular nucleus was increased with L-carnosine supplementation in CD157KO mice after the three-chamber social approach test. We observed an increase in the number of c-Fos-positive neurons in the basolateral amygdala, a brain region involved in social behavior. Although the expression of oxytocin and oxytocin receptors in the hypothalamus was not altered by L-carnosine supplementation, the concentration of oxytocin in cerebrospinal fluid was increased in CD157KO mice by L-carnosine supplementation. These results suggest that L-carnosine supplementation restores social recognition impairments by augmenting the level of released oxytocin. Thus, we could imply the possibility of a safe nutritional intervention for at least some types of ASD in the human population.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Correspondence: (T.T.); (C.T.)
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Maria Gerasimenko
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Anna Shabalova
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Stanislav M Cherepanov
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Kana Minami
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Health Development Nursing, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0934, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita 565-0871, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Correspondence: (T.T.); (C.T.)
| |
Collapse
|
16
|
Gao X, Li W, Syed F, Yuan F, Li P, Yu Q. PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. J Neuroinflammation 2022; 19:43. [PMID: 35135580 PMCID: PMC8822654 DOI: 10.1186/s12974-022-02398-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tissue damage and cellular destruction are the major events in traumatic brain injury (TBI), which trigger sterile neuroimmune and neuroinflammatory responses in the brain. While appropriate acute and transient neuroimmune and neuroinflammatory responses facilitate the repair and adaptation of injured brain tissues, prolonged and excessive neuroimmune and neuroinflammatory responses exacerbate brain damage. The mechanisms that control the intensity and duration of neuroimmune and neuroinflammatory responses in TBI largely remain elusive. METHODS We used the controlled cortical impact (CCI) model of TBI to study the role of immune checkpoints (ICPs), key regulators of immune homeostasis, in the regulation of neuroimmune and neuroinflammatory responses in the brain in vivo. RESULTS We found that de novo expression of PD-L1, a potent inhibitory ICP, was robustly and transiently induced in reactive astrocytes, but not in microglia, neurons, or oligodendrocyte progenitor cells (OPCs). These PD-L1+ reactive astrocytes were highly enriched to form a dense zone around the TBI lesion. Blockade of PD-L1 signaling enlarged brain tissue cavity size, increased infiltration of inflammatory Ly-6CHigh monocytes/macrophages (M/Mɸ) but not tissue-repairing Ly-6CLowF4/80+ M/Mɸ, and worsened TBI outcomes in mice. PD-L1 gene knockout enhanced production of CCL2 that is best known for its ability to interact with its cognate receptor CCR2 on Ly-6CHigh M/Mϕ to chemotactically recruit these cells into inflammatory sites. Mechanically, PD-L1 signaling in astrocytes likely exhibits dual inhibitory activities for the prevention of excessive neuroimmune and neuroinflammatory responses to TBI through (1) the PD-1/PD-L1 axis to suppress the activity of brain-infiltrating PD-1+ immune cells, such as PD-1+ T cells, and (2) PD-L1 intrinsic signaling to regulate the timing and intensity of astrocyte reactions to TBI. CONCLUSIONS PD-L1+ astrocytes act as a gatekeeper to the brain to control TBI-related neuroimmune and neuroinflammatory responses, thereby opening a novel avenue to study the role of ICP-neuroimmune axes in the pathophysiology of TBI and other neurological disorders.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Group, Department of Neurological Surgery, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202, USA.
| | - Wei Li
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Fahim Syed
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Fang Yuan
- Spinal Cord and Brain Injury Research Group, Department of Neurological Surgery, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202, USA
| | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qigui Yu
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Ruiz-Bedoya CA, Mota F, Tucker EW, Mahmud FJ, Reyes-Mantilla MI, Erice C, Bahr M, Flavahan K, De Jesus P, Kim J, Foss CA, Peloquin CA, Hammoud DA, Ordonez AA, Pardo CA, Jain SK. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Invest 2022; 132:155851. [PMID: 35085105 PMCID: PMC8920328 DOI: 10.1172/jci155851] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation. We conducted cross-species studies in mice and rabbits, demonstrating that an intensified high-dose rifampin-containing regimen has significantly improved bactericidal activity for TB meningitis over the first-line, standard-dose rifampin regimen, without an increase in intracerebral inflammation. Positron emission tomography in live animals demonstrated spatially compartmentalized, lesion-specific pathology, with postmortem analyses showing discordant brain tissue and cerebrospinal fluid rifampin levels and inflammatory markers. Longitudinal multimodal imaging in the same cohort of animals during TB treatment as well as imaging studies in two cohorts of TB patients demonstrated that spatiotemporal changes in localized blood-brain barrier disruption in TB meningitis are an important driver of rifampin brain exposure. These data provide unique insights into the mechanisms underlying high-dose rifampin in TB meningitis with important implications for developing new antibiotic treatments for infections.
Collapse
Affiliation(s)
- Camilo A Ruiz-Bedoya
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Filipa Mota
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Elizabeth W Tucker
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Farina J Mahmud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Maria I Reyes-Mantilla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Clara Erice
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Melissa Bahr
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kelly Flavahan
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia De Jesus
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - John Kim
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Catherine A Foss
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, University of Florida College of Pharmacy, Gainesville, United States of America
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH, Bethesda, United States of America
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
18
|
Yu H, Niu Y, Jia G, Liang Y, Chen B, Sun R, Wang M, Huang S, Zeng J, Lu J, Li L, Guo X, Yao P. Maternal diabetes-mediated RORA suppression in mice contributes to autism-like offspring through inhibition of aromatase. Commun Biol 2022; 5:51. [PMID: 35027651 PMCID: PMC8758718 DOI: 10.1038/s42003-022-03005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-related orphan receptor alpha (RORA) suppression is associated with autism spectrum disorder (ASD) development, although the mechanism remains unclear. In this study, we aim to investigate the potential effect and mechanisms of RORA suppression on autism-like behavior (ALB) through maternal diabetes-mediated mouse model. Our in vitro study in human neural progenitor cells shows that transient hyperglycemia induces persistent RORA suppression through oxidative stress-mediated epigenetic modifications and subsequent dissociation of octamer-binding transcription factor 3/4 from the RORA promoter, subsequently suppressing the expression of aromatase and superoxide dismutase 2. The in vivo mouse study shows that prenatal RORA deficiency in neuron-specific RORA null mice mimics maternal diabetes-mediated ALB; postnatal RORA expression in the amygdala ameliorates, while postnatal RORA knockdown mimics, maternal diabetes-mediated ALB in offspring. In addition, RORA mRNA levels in peripheral blood mononuclear cells decrease to 34.2% in ASD patients (n = 121) compared to the typically developing group (n = 118), and the related Receiver Operating Characteristic curve shows good sensitivity and specificity with a calculated 84.1% of Area Under the Curve for ASD diagnosis. We conclude that maternal diabetes contributes to ALB in offspring through suppression of RORA and aromatase, RORA expression in PBMC could be a potential marker for ASD screening. Hong Yu, Yanbin Niu, Guohua Jia et al. integrate in vitro, in vivo, and human experiments to examine a link between RORA expression on autism-like behavior. Their results suggest that maternal diabetes may contribute to autism-like behavior via RORA suppression.
Collapse
Affiliation(s)
- Hong Yu
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Yanbin Niu
- Teachers College, Columbia University, New York, NY, 10027, USA
| | - Guohua Jia
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Baolin Chen
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Ruoyu Sun
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Saijun Huang
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jiaying Zeng
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jianpin Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| | - Xiaoling Guo
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China.
| | - Paul Yao
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China. .,Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| |
Collapse
|
19
|
Shimizu K, Gupta A, Brastianos PK, Wakimoto H. Anatomy-oriented stereotactic approach to cerebrospinal fluid collection in mice. Brain Res 2022; 1774:147706. [PMID: 34732332 DOI: 10.1016/j.brainres.2021.147706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022]
Abstract
Extraction of cerebrospinal fluid (CSF) in small animal models is an indispensable technique used in neuroscience and neuro-oncology research but can be technically challenging due to the small size of the brain. Here we describe a simple, reliable, and highly reproducible method for collecting CSF from anesthetized laboratory mice based on anatomical foundation, with no requirement of introducing any custom-made types of equipment. The mouse's head is fixed to a stereotaxic frame in the position that allows the maximum opening of the cisterna magna. A Hamilton syringe attached with a 26 gauge needle is inserted stereotactically in parallel to the brain axis to reach the cistern. The clear CSF (approximately 10 µl) can then be drawn slowly in approximately 5 min. Our modified approach minimizes technical variations that can result from customized equipment, and is applicable in broad research settings.
Collapse
Affiliation(s)
- Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| | - Aaditya Gupta
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Priscilla K Brastianos
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
20
|
Chu G, Peng H, Yu N, Zhang Y, Lin X, Lu Y. Involvement of POMC neurons in LEAP2 regulation of food intake and body weight. Front Endocrinol (Lausanne) 2022; 13:932761. [PMID: 36387867 PMCID: PMC9650057 DOI: 10.3389/fendo.2022.932761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a newly discovered antagonist of the growth hormone secretagogue receptor (GHSR) and is considered the first endogenous peptide that can antagonize the metabolic actions of ghrelin. The effects of ghrelin administration on feeding behavior, body weight, and energy metabolism involve the activation of orexigenic neurons in the arcuate nucleus (ARC) of the hypothalamus. It is unclear, however, if LEAP2 applied directly to the ARC of the hypothalamus affects these metabolic processes. Here, we show that overexpression of LEAP2 in the ARC through adeno-associated virus (AAV) reduced food intake and body weight in wild-type (WT) mice fed chow and a high-fat diet (HFD) and improved metabolic disorders. LEAP2 overexpression in the ARC overrides both central and peripheral ghrelin action on a chow diet. Interestingly, this AAV-LEAP2 treatment increased proopiomelanocortin (POMC) expression while agouti-related peptide (AGRP)/neuropeptide Y (NPY) and GHSR levels remained unchanged in the hypothalamus. Additionally, intracerebroventricular (i.c.v.) administration of LEAP2 decreased food intake, increased POMC neuronal activity, and repeated LEAP2 administration to mice induced body weight loss. Using chemogenetic manipulations, we found that inhibition of POMC neurons abolished the anorexigenic effect of LEAP2. These results demonstrate that central delivery of LEAP2 leads to appetite-suppressing and body weight reduction, which might require activation of POMC neurons in the ARC.
Collapse
Affiliation(s)
- Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualing Peng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Yu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yisheng Lu,
| |
Collapse
|
21
|
Huang S, Zeng J, Sun R, Yu H, Zhang H, Su X, Yao P. Prenatal Progestin Exposure-Mediated Oxytocin Suppression Contributes to Social Deficits in Mouse Offspring. Front Endocrinol (Lausanne) 2022; 13:840398. [PMID: 35370982 PMCID: PMC8964973 DOI: 10.3389/fendo.2022.840398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have shown that maternal hormone exposure is associated with autism spectrum disorders (ASD). The hormone oxytocin (OXT) is a central nervous neuropeptide that plays an important role in social behaviors as well as ASD etiology, although the detailed mechanism remains largely unknown. In this study, we aim to investigate the potential role and contribution of OXT to prenatal progestin exposure-mediated mouse offspring. Our in vitro study in the hypothalamic neurons that isolated from paraventricular nuclei area of mice showed that transient progestin exposure causes persistent epigenetic changes on the OXT promoter, resulting in dissociation of estrogen receptor β (ERβ) and retinoic acid-related orphan receptor α (RORA) from the OXT promoter with subsequent persistent OXT suppression. Our in vivo study showed that prenatal exposure of medroxyprogesterone acetate (MPA) triggers social deficits in mouse offspring; prenatal OXT deficiency in OXT knockdown mouse partly mimics, while postnatal ERβ expression or postnatal OXT peptide injection partly ameliorates, prenatal MPA exposure-mediated social deficits, which include impaired social interaction and social abilities. On the other hand, OXT had no effect on prenatal MPA exposure-mediated anxiety-like behaviors. We conclude that prenatal MPA exposure-mediated oxytocin suppression contributes to social deficits in mouse offspring.
Collapse
Affiliation(s)
- Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jiaying Zeng
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Ruoyu Sun
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Hong Yu
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Su
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| | - Paul Yao
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| |
Collapse
|
22
|
Sato F, Nakamura Y, Ma S, Kochi T, Hisaoka-Nakashima K, Wang D, Liu K, Wake H, Nishibori M, Morioka N. Central high mobility group box-1 induces mechanical hypersensitivity with spinal microglial activation in a mouse model of hemi-Parkinson's disease. Biomed Pharmacother 2021; 145:112479. [PMID: 34915668 DOI: 10.1016/j.biopha.2021.112479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often complain of pain, but this problem has been neglected and is poorly understood. High mobility group box-1 (HMGB1), an alarmin/damage-associated molecular patterns protein, is increased in the cerebrospinal fluid in PD patients. However, little is known of the relationship between HMGB1 and pain associated with PD. Here, we investigated the role of central HMGB1 in the regulation of nociceptive hypersensitivity in a mouse model of PD. Male ddY mice were microinjected unilaterally with 6-hydroxydopamine (6OHDA) into the striatum. These hemi-PD mice were treated with anti-HMGB1 neutralizing antibody (nAb; 10 µg in 10 µL) by intranasal (i.n.) administration. The mechanical hypersensitivity of the hind paws was evaluated with the von Frey test. Spinal microglial activity was analyzed by immunostaining for ionized calcium-binding adapter molecule 1. The 6OHDA-administered mice displayed unilateral loss of dopamine neurons in the substantia nigra and mechanical hypersensitivity in both hind paws. Moreover, spinal microglia were activated in these hemi-PD mice. Twenty-eight days after the 6OHDA injections, repeated i.n., but not systemic, treatment with anti-HMGB1 nAb inhibited the bilateral mechanical hypersensitivity and spinal microglial activation. However, the anti-HMGB1 nAb did not ameliorate the dopamine neuron loss. Moreover, intracerebroventricular injection with recombinant HMGB1 induced mechanical hypersensitivity. These findings indicate that HMGB1 is involved in the maintenance of nociceptive symptoms in hemi-PD mice via spinal microglial activation. Therefore, central HMGB1 may have potential as a therapeutic target for pain associated with PD.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Simeng Ma
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
23
|
An Intercellular Flow of Glutathione Regulated by Interleukin 6 Links Astrocytes and the Liver in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2021; 10:antiox10122007. [PMID: 34943110 PMCID: PMC8698416 DOI: 10.3390/antiox10122007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been proposed as a major mechanism of damage to motor neurons associated with the progression of amyotrophic lateral sclerosis (ALS). Astrocytes are the most numerous glial cells in the central nervous system and, under physiological conditions, protect neurons from oxidative damage. However, it is uncertain how their reactive phenotype may affect motor neurons during ALS progression. In two different ALS mouse models (SOD1G93A and FUS-R521C), we found that increased levels of proinflammatory interleukin 6 facilitate glutathione (GSH) release from the liver to blood circulation, which can reach the astrocytes and be channeled towards motor neurons as a mechanism of antioxidant protection. Nevertheless, although ALS progression is associated with an increase in GSH efflux from astrocytes, generation of reactive oxygen species also increases, suggesting that as the disease progresses, astrocyte-derived oxidative stress could be key to motor-neuron damage.
Collapse
|
24
|
Carloni S, Bertocchi A, Mancinelli S, Bellini M, Erreni M, Borreca A, Braga D, Giugliano S, Mozzarelli AM, Manganaro D, Fernandez Perez D, Colombo F, Di Sabatino A, Pasini D, Penna G, Matteoli M, Lodato S, Rescigno M. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 2021; 374:439-448. [PMID: 34672740 DOI: 10.1126/science.abc6108] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sara Carloni
- Humanitas University, Department of Biomedical Sciences, 20072 Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Alice Bertocchi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Sara Mancinelli
- Humanitas University, Department of Biomedical Sciences, 20072 Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Martina Bellini
- Humanitas University, Department of Biomedical Sciences, 20072 Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Marco Erreni
- Humanitas University, Department of Biomedical Sciences, 20072 Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Antonella Borreca
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy.,Institute of Neuroscience, National Research Council, c/o Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | | | - Alessandro M Mozzarelli
- Humanitas University, Department of Biomedical Sciences, 20072 Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Daria Manganaro
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy
| | - Daniel Fernandez Perez
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy
| | | | - Antonio Di Sabatino
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy.,Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy.,Institute of Neuroscience, National Research Council, c/o Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Simona Lodato
- Humanitas University, Department of Biomedical Sciences, 20072 Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Maria Rescigno
- Humanitas University, Department of Biomedical Sciences, 20072 Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| |
Collapse
|
25
|
Tüshaus J, Müller SA, Shrouder J, Arends M, Simons M, Plesnila N, Blobel CP, Lichtenthaler SF. The pseudoprotease iRhom1 controls ectodomain shedding of membrane proteins in the nervous system. FASEB J 2021; 35:e21962. [PMID: 34613632 DOI: 10.1096/fj.202100936r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Proteolytic ectodomain shedding of membrane proteins is a fundamental mechanism to control the communication between cells and their environment. A key protease for membrane protein shedding is ADAM17, which requires a non-proteolytic subunit, either inactive Rhomboid 1 (iRhom1) or iRhom2 for its activity. While iRhom1 and iRhom2 are co-expressed in most tissues and appear to have largely redundant functions, the brain is an organ with predominant expression of iRhom1. Yet, little is known about the spatio-temporal expression of iRhom1 in mammalian brain and about its function in controlling membrane protein shedding in the nervous system. Here, we demonstrate that iRhom1 is expressed in mouse brain from the prenatal stage to adulthood with a peak in early postnatal development. In the adult mouse brain iRhom1 was widely expressed, including in cortex, hippocampus, olfactory bulb, and cerebellum. Proteomic analysis of the secretome of primary neurons using the hiSPECS method and of cerebrospinal fluid, obtained from iRhom1-deficient and control mice, identified several membrane proteins that require iRhom1 for their shedding in vitro or in vivo. One of these proteins was 'multiple-EGF-like-domains protein 10' (MEGF10), a phagocytic receptor in the brain that is linked to the removal of amyloid β and apoptotic neurons. MEGF10 was further validated as an ADAM17 substrate using ADAM17-deficient mouse embryonic fibroblasts. Taken together, this study discovers a role for iRhom1 in controlling membrane protein shedding in the mouse brain, establishes MEGF10 as an iRhom1-dependent ADAM17 substrate and demonstrates that iRhom1 is widely expressed in murine brain.
Collapse
Affiliation(s)
- Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joshua Shrouder
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Arends
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carl P Blobel
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
26
|
Wang D, Zhao Y, Yang Y, Xie H. Safety assessment of multiple repeated percutaneous punctures for the collection of cerebrospinal fluid in rats. ACTA ACUST UNITED AC 2021; 54:e10032. [PMID: 33909853 PMCID: PMC8075127 DOI: 10.1590/1414-431x202010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022]
Abstract
The objective of this study was to examine the safety of multiple repeated percutaneous punctures of cisterna magna for collecting cerebrospinal fluid (CSF) and preliminarily determine the optimal time interval and volume at each collection. Sixty Wistar rats were randomly assigned to six groups: 10 d-0 μL, 10 d-100 μL (100 μL CSF collected at an interval of 10 days), 10 d-150 μL, 15 d-0 μL, 15 d-100 μL, and 15 d-150 μL. CSF was collected by percutaneous puncture of the cisterna magna at four time-points. Simultaneously, locomotor activity, cisterna magna pressure, and acetylcholine levels in the CSF were monitored. Compared with the 10 d-0 μL group, the escape latency by Morris water maze was significantly prolonged in the 10 d-100 μL and 10 d-150 μL groups (P<0.05). Compared with the 15 d-0 μL group, the indices of 15 d-100 μL and 15 d-150 μL groups had no significant differences. When compared with that at the first training, the exception of the 10 d-150 μL and 15 d-150 μL groups, significant differences in escape latency were found at the 6th attempt (P<0.05). Compared with baseline readings for each group, the cisterna magna pressure in the 10 d-150 μL group began to decrease significantly from the third measurement (P<0.05). The optimal time interval during four CSF collections (100 μL per collection) via cisterna magna percutaneous puncture was determined to be 15 days. The procedure did not significantly affect learning processes, performance, or other related indices.
Collapse
Affiliation(s)
- Dongxue Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.,College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Ying Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Yang Yang
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Hailong Xie
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Caballero B, Bourdenx M, Luengo E, Diaz A, Sohn PD, Chen X, Wang C, Juste YR, Wegmann S, Patel B, Young ZT, Kuo SY, Rodriguez-Navarro JA, Shao H, Lopez MG, Karch CM, Goate AM, Gestwicki JE, Hyman BT, Gan L, Cuervo AM. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun 2021; 12:2238. [PMID: 33854069 PMCID: PMC8047017 DOI: 10.1038/s41467-021-22501-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Disrupted homeostasis of the microtubule binding protein tau is a shared feature of a set of neurodegenerative disorders known as tauopathies. Acetylation of soluble tau is an early pathological event in neurodegeneration. In this work, we find that a large fraction of neuronal tau is degraded by chaperone-mediated autophagy (CMA) whereas, upon acetylation, tau is preferentially degraded by macroautophagy and endosomal microautophagy. Rerouting of acetylated tau to these other autophagic pathways originates, in part, from the inhibitory effect that acetylated tau exerts on CMA and results in its extracellular release. In fact, experimental blockage of CMA enhances cell-to-cell propagation of pathogenic tau in a mouse model of tauopathy. Furthermore, analysis of lysosomes isolated from brains of patients with tauopathies demonstrates similar molecular mechanisms leading to CMA dysfunction. This study reveals that CMA failure in tauopathy brains alters tau homeostasis and could contribute to aggravate disease progression. The tau protein has been implicated in neurodegenerative disorders and can propagate from cell to cell. Here, the authors show that tau acetylation reduces its degradation by chaperone-mediated autophagy, causing re-routing to other autophagic pathways and increasing extracellular tau release.
Collapse
Affiliation(s)
- Benjamin Caballero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.,Roche Chile Pharmaceuticals, Las Condes, Region Metropolitana, Chile
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.,Institut des Maladies Neurodégénératives, CNRS, Université de Bordeaux, Bordeaux, France
| | - Enrique Luengo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute Teofilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.,Instituto de Investigación Biosanitaria Hospital de la Princesa, Madrid, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Dongmin Sohn
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Xu Chen
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chao Wang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susanne Wegmann
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Bindi Patel
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zapporah T Young
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA, USA
| | - Szu Yu Kuo
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA, USA
| | - Jose Antonio Rodriguez-Navarro
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.,Instituto Ramón y Cajal de Investigaciones Sanitarias Hospital Ramón y Cajal, Madrid, Spain
| | - Hao Shao
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA, USA
| | - Manuela G Lopez
- Institute Teofilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.,Instituto de Investigación Biosanitaria Hospital de la Princesa, Madrid, Spain
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
Obrador E, Salvador R, Marchio P, López-Blanch R, Jihad-Jebbar A, Rivera P, Vallés SL, Banacloche S, Alcácer J, Colomer N, Coronado JA, Alandes S, Drehmer E, Benlloch M, Estrela JM. Nicotinamide Riboside and Pterostilbene Cooperatively Delay Motor Neuron Failure in ALS SOD1 G93A Mice. Mol Neurobiol 2021; 58:1345-1371. [PMID: 33174130 DOI: 10.1007/s12035-020-02188-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress-induced damage is a major mechanism in the pathophysiology of amyotrophic lateral sclerosis (ALS). A recent human clinical trial showed that the combination of nicotinamide riboside (NR) and pterostilbene (PT), molecules with potential to interfere in that mechanism, was efficacious in ALS patients. We examined the effect of these molecules in SOD1G93A transgenic mice, a well-stablished model of ALS. Assessment of neuromotor activity and coordination was correlated with histopathology, and measurement of proinflammatory cytokines in the cerebrospinal fluid. Cell death, Nrf2- and redox-dependent enzymes and metabolites, and sirtuin activities were studied in isolated motor neurons. NR and PT increased survival and ameliorated ALS-associated loss of neuromotor functions in SOD1G93A transgenic mice. NR and PT also decreased the microgliosis and astrogliosis associated with ALS progression. Increased levels of proinflammatory cytokines were observed in the cerebrospinal fluid of mice and humans with ALS. NR and PT ameliorated TNFα-induced oxidative stress and motor neuron death in vitro. Our results support the involvement of oxidative stress, specific Nrf2-dependent antioxidant defenses, and sirtuins in the pathophysiology of ALS. NR and PT interfere with the mechanisms leading to the release of proapoptotic molecular signals by mitochondria, and also promote mitophagy.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Ali Jihad-Jebbar
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Pilar Rivera
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Soraya L Vallés
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Salvador Banacloche
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - Nuria Colomer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | | | - Sandra Alandes
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - Eraci Drehmer
- Department of Health and Functional Valorization, Catholic University of San Vicente Martir, 46001, Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, Catholic University of San Vicente Martir, 46001, Valencia, Spain
| | - José M Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain.
| |
Collapse
|
29
|
Ferraro GB, Ali A, Luengo A, Kodack DP, Deik A, Abbott KL, Bezwada D, Blanc L, Prideaux B, Jin X, Posada JM, Chen J, Chin CR, Amoozgar Z, Ferreira R, Chen IX, Naxerova K, Ng C, Westermark AM, Duquette M, Roberge S, Lindeman NI, Lyssiotis CA, Nielsen J, Housman DE, Duda DG, Brachtel E, Golub TR, Cantley LC, Asara JM, Davidson SM, Fukumura D, Dartois VA, Clish CB, Jain RK, Vander Heiden MG. FATTY ACID SYNTHESIS IS REQUIRED FOR BREAST CANCER BRAIN METASTASIS. NATURE CANCER 2021; 2:414-428. [PMID: 34179825 PMCID: PMC8223728 DOI: 10.1038/s43018-021-00183-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brain metastases are refractory to therapies that control systemic disease in patients with human epidermal growth factor receptor 2 (HER2+) breast cancer, and the brain microenvironment contributes to this therapy resistance. Nutrient availability can vary across tissues, therefore metabolic adaptations required for brain metastatic breast cancer growth may introduce liabilities that can be exploited for therapy. Here, we assessed how metabolism differs between breast tumors in brain versus extracranial sites and found that fatty acid synthesis is elevated in breast tumors growing in brain. We determine that this phenotype is an adaptation to decreased lipid availability in brain relative to other tissues, resulting in a site-specific dependency on fatty acid synthesis for breast tumors growing at this site. Genetic or pharmacological inhibition of fatty acid synthase (FASN) reduces HER2+ breast tumor growth in the brain, demonstrating that differences in nutrient availability across metastatic sites can result in targetable metabolic dependencies.
Collapse
Affiliation(s)
- Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Alba Luengo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David P Kodack
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Divya Bezwada
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Landry Blanc
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CNRS UMR 5248, Bordeaux, France
| | - Brendan Prideaux
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xin Jin
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jessica M Posada
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jiang Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher R Chin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raphael Ferreira
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivy X Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M Westermark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Duquette
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Costas A Lyssiotis
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - David E Housman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Brachtel
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Todd R Golub
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Lewis C Cantley
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Lewis Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Véronique A Dartois
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Bitschi ML, Bagó Z, Rosati M, Reese S, Goehring LS, Matiasek K. A Systematic Approach to Dissection of the Equine Brain-Evaluation of a Species-Adapted Protocol for Beginners and Experts. Front Neuroanat 2020; 14:614929. [PMID: 33390909 PMCID: PMC7775367 DOI: 10.3389/fnana.2020.614929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction of new imaging modalities for the equine brain have refocused attention on the horse as a natural model for ethological, neuroanatomical, and neuroscientific investigations. As opposed to imaging studies, strategies for equine neurodissection still lack a structured approach, standardization and reproducibility. In contrast to other species, where adapted protocols for sampling have been published, no comparable guideline is currently available for equids. Hence, we developed a species-specific slice protocol for whole brain vs. hemispheric dissection and tested its applicability and practicability in the field, as well as its neuroanatomical accuracy and reproducibility. Dissection steps are concisely described and depicted by schematic illustrations, photographs and instructional videos. Care was taken to show the brain in relation to the raters' hands, cutting devices and bench surface. Guidance is based on a minimum of external anatomical landmarks followed by geometric instructions that led to procurement of 14 targeted slabs. The protocol was performed on 55 formalin-fixed brains by three groups of investigators with different neuroanatomical skills. Validation of brain dissection outcomes addressed the aptitude of slabs for neuroanatomical studies as opposed to simplified routine diagnostic purposes. Across all raters, as much as 95.2% of slabs were appropriate for neuroanatomical studies, and 100% of slabs qualified for a routine diagnostic setting. Neither autolysis nor subfixation significantly affected neuroanatomical accuracy score, while a significant negative effect was observed with brain extraction artifacts. Procedure times ranged from 14 to 66 min and reached a mean duration of 23.25 ± 7.93 min in the last of five trials in inexperienced raters vs. 16 ± 2.83 min in experts, while acceleration of the dissection did not negatively impact neuroanatomical accuracy. This protocol, derived analogously to the consensus report of the International Veterinary Epilepsy Task Force in dogs and cats, allows for systematic, quick and easy dissection of the equine brain, even for inexperienced investigators. Obtained slabs feature virtually all functional subcompartments at suitable planes for both diagnostic and neuroscientific investigations and complement the data obtained from imaging studies. The instructive protocol and brain dissection videos are available in Supplementary Material.
Collapse
Affiliation(s)
- Maya-Lena Bitschi
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University, Munich, Germany
| | - Zoltán Bagó
- Austrian Agency for Health and Food Safety Ltd. (AGES), Institute for Veterinary Disease Control, Mödling, Austria
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University, Munich, Germany
| | - Sven Reese
- Department of Veterinary Sciences, Institute of Anatomy, Histology & Embryology, Ludwig Maximilians University, Munich, Germany
| | - Lutz S Goehring
- Division of Medicine and Reproduction, Centre for Clinical Veterinary Medicine, Equine Hospital, Ludwig Maximilians University, Munich, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
31
|
Kim J, Alejandro B, Hetman M, Hattab EM, Joiner J, Schroten H, Ishikawa H, Chung DH. Zika virus infects pericytes in the choroid plexus and enters the central nervous system through the blood-cerebrospinal fluid barrier. PLoS Pathog 2020; 16:e1008204. [PMID: 32357162 PMCID: PMC7194358 DOI: 10.1371/journal.ppat.1008204] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) can infect and cause microcephaly and Zika-associated neurological complications in the developing fetal and adult brains. In terms of pathogenesis, a critical question is how ZIKV overcomes the barriers separating the brain from the circulation and gains access to the central nervous system (CNS). Despite the importance of ZIKV pathogenesis, the route ZIKV utilizes to cross CNS barriers remains unclear. Here we show that in mouse models, ZIKV-infected cells initially appeared in the periventricular regions of the brain, including the choroid plexus and the meninges, prior to infection of the cortex. The appearance of ZIKV in cerebrospinal fluid (CSF) preceded infection of the brain parenchyma. Further the brain infection was significantly attenuated by neutralization of the virus in the CSF, indicating that ZIKV in the CSF at the early stage of infection might be responsible for establishing a lethal infection of the brain. We show that cells infected by ZIKV in the choroid plexus were pericytes. Using in vitro systems, we highlight the possibility that ZIKV crosses the blood-CSF barrier by disrupting the choroid plexus epithelial layer. Taken together, our results suggest that ZIKV might exploit the blood-CSF barrier rather than the blood-brain barrier to invade the CNS.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Kentucky, United States of America
| | - Brian Alejandro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Kentucky, United States of America
| | - Michal Hetman
- Department of Neurological Surgery, School of Medicine, University of Louisville, Kentucky, United States of America
| | - Eyas M. Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Joshua Joiner
- Centre College, Danville, Kentucky, United States of America
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Dong-Hoon Chung
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Kentucky, United States of America
- Center for Predictive Medicine, School of Medicine, University of Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
32
|
Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 2020; 11:1559. [PMID: 32214088 PMCID: PMC7096448 DOI: 10.1038/s41467-020-15267-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia are highly motile cells that continuously monitor the brain environment and respond to damage-associated cues. While glucose is the main energy substrate used by neurons in the brain, the nutrients metabolized by microglia to support surveillance of the parenchyma remain unexplored. Here, we use fluorescence lifetime imaging of intracellular NAD(P)H and time-lapse two-photon imaging of microglial dynamics in vivo and in situ, to show unique aspects of the microglial metabolic signature in the brain. Microglia are metabolically flexible and can rapidly adapt to consume glutamine as an alternative metabolic fuel in the absence of glucose. During insulin-induced hypoglycemia in vivo or in aglycemia in acute brain slices, glutaminolysis supports the maintenance of microglial process motility and damage-sensing functions. This metabolic shift sustains mitochondrial metabolism and requires mTOR-dependent signaling. This remarkable plasticity allows microglia to maintain their critical surveillance and phagocytic roles, even after brain neuroenergetic homeostasis is compromised. Glucose is the main source of fuel in the brain. Here, the authors show that in the absence of glucose, glutamine is required for microglia to maintain their immune surveillance function.
Collapse
|
33
|
Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, Wang J, Feng Y, Zhu D, Xia C. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation 2020; 17:15. [PMID: 31924219 PMCID: PMC6953162 DOI: 10.1186/s12974-019-1673-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Background Microglial mediated neuroinflammation in the rostral ventrolateral medulla (RVLM) plays roles in the etiology of stress-induced hypertension (SIH). It was reported that autophagy influenced inflammation via immunophenotypic switching of microglia. High-mobility group box 1 (HMGB1) acts as a regulator of autophagy and initiates the production of proinflammatory cytokines (PICs), but the underlying mechanisms remain unclear. Methods The stressed mice were subjected to intermittent electric foot shocks plus noises administered for 2 h twice daily for 15 consecutive days. In mice, blood pressure (BP) and renal sympathetic nerve activity (RSNA) were monitored by noninvasive tail-cuff method and platinum-iridium electrodes placed respectively. Microinjection of siRNA-HMGB1 (siHMGB1) into the RVLM of mice to study the effect of HMGB1 on microglia M1 activation was done. mRFP-GFP-tandem fluorescent LC3 (tf-LC3) vectors were transfected into the RVLM to evaluate the process of autolysosome formation/autophagy flux. The expression of RAB7, lysosomal-associated membrane protein 1 (LAMP1), and lysosomal pH change were used to evaluate lysosomal function in microglia. Mitophagy was identified by transmission electron microscopic observation or by checking LC3 and MitoTracker colocalization under a confocal microscope. Results We showed chronic stress increased cytoplasmic translocations of HMGB1 and upregulation of its receptor RAGE expression in microglia. The mitochondria injury, oxidative stress, and M1 polarization were attenuated in the RVLM of stressed Cre-CX3CR1/RAGEfl/fl mice. The HMGB1/RAGE axis increased at the early stage of stress-induced mitophagy flux while impairing the late stages of mitophagy flux in microglia, as revealed by decreased GFP fluorescence quenching of GFP-RFP-LC3-II puncta and decreased colocalization of lysosomes with mitochondria. The expressions of RAB7 and LAMP1 were decreased in the stressed microglia, while knockout of RAGE reversed these effects and caused an increase in acidity of lysosomes. siHMGB1 in the RVLM resulted in BP lowering and RSNA decreasing in SIH mice. When the autophagy inducer, rapamycin, is used to facilitate the mitophagy flux, this treatment results in attenuated NF-κB activation and reduced PIC release in exogenous disulfide HMGB1 (ds-HMGB1)-stimulated microglia. Conclusions Collectively, we demonstrated that inhibition of the HMGB1/RAGE axis activation led to increased stress-induced mitophagy flux, hence reducing the activity of microglia-mediated neuroinflammation and consequently reduced the sympathetic vasoconstriction drive in the RVLM. Electronic supplementary material The online version of this article (10.1186/s12974-019-1673-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China.,Clinical Medicine (Eight-year Program), Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jialun Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China
| | - Hongji Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China
| | - Qin Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China
| | - Kokwin Ooi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130, Dongan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
34
|
Wang K, Xu F, Campbell SP, Hart KD, Durham T, Maylie J, Xu J. Rapid actions of anti-Müllerian hormone in regulating synaptic transmission and long-term synaptic plasticity in the hippocampus. FASEB J 2019; 34:706-719. [PMID: 31914642 DOI: 10.1096/fj.201902217r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Anti-Müllerian hormone (Amh) is a peptide factor that is known to regulate sexual differentiation and gonadal function in mammals. Although Amh is also suggested to be associated with cognitive development and function in the postnatal brain, little is known about its expression or direct effects on neuronal activities in the hippocampus. Therefore, we assessed Amh and its receptor expression in the hippocampus of male and female mice using PCR, Western blot, and immunofluorescence staining. While Amh-specific receptor expression was comparable between males and females, mRNA and protein levels of Amh were higher in females than those of males. Electrophysiological recordings on acute hippocampal slices showed that exogenous Amh protein addition increased synaptic transmission and long-term synaptic plasticity at the Cornu Ammonis (CA) 3-CA1 synapses. Amh exposure also increased the excitatory postsynaptic potential at CA1 synapses. Our findings support direct and rapid actions of Amh as a paracrine and/or autocrine factor in regulating hippocampal neuronal activities. Data provide functional evidence of Amh-mediated postsynaptic modulation of synaptic transmission and Amh-regulated long-term synaptic plasticity in the hippocampus. These results suggest a potential role of Amh in learning and memory, and a possible cause of the sex differences in cognitive development and function.
Collapse
Affiliation(s)
- Kang Wang
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Fuhua Xu
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Shawn P Campbell
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kyle D Hart
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tyler Durham
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - James Maylie
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jing Xu
- School of Medicine, Oregon Health & Science University, Portland, OR, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
35
|
Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P. Analysis of Brain and Cerebrospinal Fluid from Mouse Models of the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Changes in the Lysosomal Proteome. Mol Cell Proteomics 2019; 18:2244-2261. [PMID: 31501224 PMCID: PMC6823856 DOI: 10.1074/mcp.ra119.001587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Treatments are emerging for the neuronal ceroid lipofuscinoses (NCLs), a group of similar but genetically distinct lysosomal storage diseases. Clinical ratings scales measure long-term disease progression and response to treatment but clinically useful biomarkers have yet to be identified in these diseases. We have conducted proteomic analyses of brain and cerebrospinal fluid (CSF) from mouse models of the most frequently diagnosed NCL diseases: CLN1 (infantile NCL), CLN2 (classical late infantile NCL) and CLN3 (juvenile NCL). Samples were obtained at different stages of disease progression and proteins quantified using isobaric labeling. In total, 8303 and 4905 proteins were identified from brain and CSF, respectively. We also conduced label-free analyses of brain proteins that contained the mannose 6-phosphate lysosomal targeting modification. In general, we detect few changes at presymptomatic timepoints but later in disease, we detect multiple proteins whose expression is significantly altered in both brain and CSF of CLN1 and CLN2 animals. Many of these proteins are lysosomal in origin or are markers of neuroinflammation, potentially providing clues to underlying pathogenesis and providing promising candidates for further validation.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| | | | - Mukarram El-Banna
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Amenah Soherwardy
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey, Piscataway, NJ 08854
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| |
Collapse
|
36
|
Liu L, Qu Y, Liu Y, Zhao H, Ma HC, Noor AF, Ji CJ, Nie L, Si M, Cheng L. Atsttrin reduces lipopolysaccharide-induced neuroinflammation by inhibiting the nuclear factor kappa B signaling pathway. Neural Regen Res 2019; 14:1994-2002. [PMID: 31290458 PMCID: PMC6676886 DOI: 10.4103/1673-5374.259623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Progranulin is closely related to neuronal survival in a neuroinflammatory mouse model and attenuates inflammatory reactions. Atsttrin is an engineered protein composed of three progranulin fragments and has been shown to have an effect similar to that of progranulin. Atsttrin has anti-inflammatory actions in multiple arthritis mouse models, and it protects against further arthritis development. However, whether Atsttrin has a role in neuroinflammation remains to be elucidated. In this study, we produced a neuroinflammatory mouse model by intracerebroventricular injection of 1 μL lipopolysaccharide (10 μg/μL). Atsttrin (2.5 mg/kg) was administered via intraperitoneal injection every 3 days over a period of 7 days before intracerebroventricular injection of 1 μL lipopolysaccharide (10 μg/μL). In addition, astrocyte cultures were treated with 0, 100 or 300 ng/mL lipopolysaccharide, with 200 ng/mL Atsttrin simultaneously. Immunohistochemistry, enzyme-linked immunosorbent assay and real-time reverse transcription-polymerase chain reaction were performed to examine the protein and mRNA levels of inflammatory mediators and to assess activation of the nuclear factor kappa B signaling pathway. Progranulin expression in the brain of wild-type mice and in astrocyte cultures was increased after lipopolysaccharide administration. The protein and mRNA expression levels of tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were increased in the brain of progranulin knockout mice after lipopolysaccharide administration. Atsttrin treatment reduced the lipopolysaccharide-induced increase in the protein and mRNA levels of tumor necrosis factor-α, interleukin-1β, matrix metalloproteinase-3 and inducible nitric oxide synthase in the brain of progranulin knockout mice. Atsttrin also reduced the expression of cyclooxygenase-2, inducible nitric oxide synthase and matrix metalloproteinase 3 mRNA in lipopolysaccharide-treated astrocytes in vitro, and decreased the concentration of tumor necrosis factor a and interleukin-1β in the supernatant. Furthermore, Atsttrin significantly reduced the levels of phospho-nuclear factor kappa B inhibitor a in the brain of lipopolysaccharide-treated progranulin knockout mice and astrocytes, and it decreased the expression of nuclear factor kappa B2 in astrocytes. Collectively, our findings show that the anti-neuroinflammatory effect of Atsttrin involves inhibiton of the nuclear factor kappa B signaling pathway, and they suggest that Atsttrin may have clinical potential in neuroinflammatory therapy. The study was approved by the Animal Ethics Committee of Qilu Hospital of Shandong University, China (approval No. KYLL-2015(KS)-088) on February 10, 2015.
Collapse
Affiliation(s)
- Lian Liu
- Department of Orthopedics, Qilu Hospital of Shandong University; Department of Orthopedics, Qilu Children's Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yuan Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hua Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - He-Cheng Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ahmed Fayyaz Noor
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Chang-Jiao Ji
- Department of Orthopedics, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Lin Nie
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Meng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|