1
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JL, Civelek M. Systems genetics analysis of human body fat distribution genes identifies adipocyte processes. Life Sci Alliance 2024; 7:e202402603. [PMID: 38702075 PMCID: PMC11068934 DOI: 10.26508/lsa.202402603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.
Collapse
Affiliation(s)
- Jordan N Reed
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- https://ror.org/0153tk833 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jiansheng Huang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Yong Li
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Lijiang Ma
- https://ror.org/04a9tmd77 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dhanush Banka
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Tianfang Wang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Wen Ding
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Johan Lm Björkegren
- https://ror.org/04a9tmd77 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Mete Civelek
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- https://ror.org/0153tk833 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Kim GD, Shin SI, Jung SW, An H, Choi SY, Eun M, Jun CD, Lee S, Park J. Cell Type- and Age-Specific Expression of lncRNAs across Kidney Cell Types. J Am Soc Nephrol 2024; 35:870-885. [PMID: 38621182 PMCID: PMC11230714 DOI: 10.1681/asn.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Key Points
We constructed a single-cell long noncoding RNA atlas of various tissues, including normal and aged kidneys.We identified age- and cell type–specific expression changes of long noncoding RNAs in kidney cells.
Background
Accumulated evidence demonstrates that long noncoding RNAs (lncRNAs) regulate cell differentiation and homeostasis, influencing kidney aging and disease. Despite their versatility, the function of lncRNA remains poorly understood because of the lack of a reference map of lncRNA transcriptome in various cell types.
Methods
In this study, we used a targeted single-cell RNA sequencing method to enrich and characterize lncRNAs in individual cells. We applied this method to various mouse tissues, including normal and aged kidneys.
Results
Through tissue-specific clustering analysis, we identified cell type–specific lncRNAs that showed a high correlation with known cell-type marker genes. Furthermore, we constructed gene regulatory networks to explore the functional roles of differentially expressed lncRNAs in each cell type. In the kidney, we observed dynamic expression changes of lncRNAs during aging, with specific changes in glomerular cells. These cell type– and age-specific expression patterns of lncRNAs suggest that lncRNAs may have a potential role in regulating cellular processes, such as immune response and energy metabolism, during kidney aging.
Conclusions
Our study sheds light on the comprehensive landscape of lncRNA expression and function and provides a valuable resource for future analysis of lncRNAs (https://gist-fgl.github.io/sc-lncrna-atlas/).
Collapse
Affiliation(s)
- Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minho Eun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sangho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
3
|
Darshi M, Kugathasan L, Maity S, Sridhar VS, Fernandez R, Limonte CP, Grajeda BI, Saliba A, Zhang G, Drel VR, Kim JJ, Montellano R, Tumova J, Montemayor D, Wang Z, Liu JJ, Wang J, Perkins BA, Lytvyn Y, Natarajan L, Lim SC, Feldman H, Toto R, Sedor JR, Patel J, Waikar SS, Brown J, Osman Y, He J, Chen J, Reeves WB, de Boer IH, Roy S, Vallon V, Hallan S, Gelfond JA, Cherney DZ, Sharma K. Glycolytic lactate in diabetic kidney disease. JCI Insight 2024; 9:e168825. [PMID: 38855868 PMCID: PMC11382878 DOI: 10.1172/jci.insight.168825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis.
Collapse
Affiliation(s)
- Manjula Darshi
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Luxcia Kugathasan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Soumya Maity
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Roman Fernandez
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christine P Limonte
- Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Brian I Grajeda
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Afaf Saliba
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Viktor R Drel
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jiwan J Kim
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Richard Montellano
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jana Tumova
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel Montemayor
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Zhu Wang
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Bruce A Perkins
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Loki Natarajan
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California USA
| | - Su Chi Lim
- Clinical Research Unit & Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Heath, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Harold Feldman
- Center for Clinical Epidemiology and Biostatistics and
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Toto
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - John R Sedor
- Glickman Urology and Kidney and Lerner Research Institutes, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jiten Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Julia Brown
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yahya Osman
- Division of Nephrology, Department of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jiang He
- School of Public Health, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Jing Chen
- Division of Nephrology, Department of Medicine, New Orleans, Louisiana, USA
| | - W Brian Reeves
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ian H de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Sourav Roy
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Volker Vallon
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare Center, San Diego, California, USA
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav Hospital, Trondheim, Norway
| | - Jonathan Al Gelfond
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - David Zi Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Kumar Sharma
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Abdollahzadeh F, Khoshdel‐Rad N, Bahrehbar K, Erfanian S, Ezzatizadeh V, Totonchi M, Moghadasali R. Enhancing maturity in 3D kidney micro-tissues through clonogenic cell combinations and endothelial integration. J Cell Mol Med 2024; 28:e18453. [PMID: 38818569 PMCID: PMC11140233 DOI: 10.1111/jcmm.18453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024] Open
Abstract
As an advance laboratory model, three-dimensional (3D) organoid culture has recently been recruited to study development, physiology and abnormality of kidney tissue. Micro-tissues derived from primary renal cells are composed of 3D epithelial structures representing the main characteristics of original tissue. In this research, we presented a simple method to isolate mouse renal clonogenic mesenchymal (MLCs) and epithelial-like cells (ELCs). Then we have done a full characterization of MLCs using flow cytometry for surface markers which showed that more than 93% of cells expressed these markers (Cd44, Cd73 and Cd105). Epithelial and stem/progenitor cell markers characterization also performed for ELC cells and upregulating of these markers observed while mesenchymal markers expression levels were not significantly increased in ELCs. Each of these cells were cultured either alone (ME) or in combination with human umbilical vein endothelial cells (HUVECs) (MEH; with an approximate ratio of 10:5:2) to generate more mature kidney structures. Analysis of 3D MEH renal micro-tissues (MEHRMs) indicated a significant increase in renal-specific gene expression including Aqp1 (proximal tubule), Cdh1 (distal tubule), Umod (loop of Henle), Wt1, Podxl and Nphs1 (podocyte markers), compared to those groups without endothelial cells, suggesting greater maturity of the former tissue. Furthermore, ex ovo transplantation showed greater maturation in the constructed 3D kidney.
Collapse
Affiliation(s)
- Fatemeh Abdollahzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| | - Niloofar Khoshdel‐Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Khadijeh Bahrehbar
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Saiedeh Erfanian
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Vahid Ezzatizadeh
- Medical Genetics DepartmentAyandeh Clinical and Genetic LaboratoryVaraminIran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| |
Collapse
|
5
|
Sadasivam M, Jie C, Hamad ARA. Renal tubular epithelial cells are constitutive non-cognate stimulators of resident T cells. Cell Rep 2023; 42:113210. [PMID: 37796661 PMCID: PMC11259314 DOI: 10.1016/j.celrep.2023.113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Understanding the roles of different cell types in regulating T cell homeostasis in various tissues is critical for understanding adaptive immunity. Here, we show that RTECs (renal tubular epithelial cells) are intrinsically programmed to polyclonally stimulate proliferation of kidney αβ T cells by a cell-cell contact mechanism that is major histocompatibility complex (MHC) independent and regulated by CD155, αVβ3-integrin, and vitronectin. Peripheral CD4 and CD8 are resistant to RTEC-mediated stimulation, while the minor subset of double-negative (DN) T cells are responsive. This functional property of RTEC is discovered by using a coculture system that recapitulates spontaneous in vivo polyclonal proliferation of kidney T cells, which are mainly comprised of central memory T (TCM) and effector memory T (TEM) cells. This robust cell-intrinsic stimulatory role of RTECs could be underlying the steady-state spontaneous proliferation of kidney T cells. The results have conceptual implications for understanding roles of different cell types in regulating systemic and organ-specific T cell homeostasis.
Collapse
Affiliation(s)
- Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 664G, Baltimore, MD 21205, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Ryan Hall 230, Des Moines, IA 50266, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 664G, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 664G, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JLM, Civelek M. Systems genetics analysis of human body fat distribution genes identifies Wnt signaling and mitochondrial activity in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556534. [PMID: 37732278 PMCID: PMC10508754 DOI: 10.1101/2023.09.06.556534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing β-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.
Collapse
|
7
|
Hong LYQ, Yeung ESH, Tran DT, Yerra VG, Kaur H, Kabir MDG, Advani SL, Liu Y, Batchu SN, Advani A. Altered expression, but small contribution, of the histone demethylase KDM6A in obstructive uropathy in mice. Dis Model Mech 2023; 16:dmm049991. [PMID: 37655466 PMCID: PMC10482012 DOI: 10.1242/dmm.049991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Epigenetic processes have emerged as important modulators of kidney health and disease. Here, we studied the role of KDM6A (a histone demethylase that escapes X-chromosome inactivation) in kidney tubule epithelial cells. We initially observed an increase in tubule cell Kdm6a mRNA in male mice with unilateral ureteral obstruction (UUO). However, tubule cell knockout of KDM6A had relatively minor consequences, characterized by a small reduction in apoptosis, increase in inflammation and downregulation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In proximal tubule lineage HK-2 cells, KDM6A knockdown decreased PPARγ coactivator-1α (PGC-1α) protein levels and mRNA levels of the encoding gene, PPARGC1A. Tubule cell Kdm6a mRNA levels were approximately 2-fold higher in female mice than in male mice, both under sham and UUO conditions. However, kidney fibrosis after UUO was similar in both sexes. The findings demonstrate Kdm6a to be a dynamically regulated gene in the kidney tubule, varying in expression levels by sex and in response to injury. Despite the context-dependent variation in Kdm6a expression, knockout of tubule cell KDM6A has subtle (albeit non-negligible) effects in the adult kidney, at least in males.
Collapse
Affiliation(s)
- Lisa Y. Q. Hong
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Emily S. H. Yeung
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Duc Tin Tran
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - M. D. Golam Kabir
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Suzanne L. Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
8
|
Hu Z, Zhang F, Brenner M, Jacob A, Wang P. The protective effect of H151, a novel STING inhibitor, in renal ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F558-F567. [PMID: 37102684 PMCID: PMC10228668 DOI: 10.1152/ajprenal.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with high morbidity and mortality. Stimulator of interferon (IFN) genes (STING) is the cytosolic DNA-activated signaling pathway that mediates inflammation and injury. Our recent study showed that extracellular cold-inducible RNA-binding protein (eCIRP), a newly identified damage-associated molecular pattern, activates STING and exacerbates hemorrhagic shock. H151 is a small molecule that selectively binds to STING and inhibits STING-mediated activity. We hypothesized that H151 attenuates eCIRP-induced STING activation in vitro and inhibits RIR-induced AKI in vivo. In vitro, renal tubular epithelial cells incubated with eCIRP showed increased levels of IFN-β, STING pathway downstream cytokine, IL-6, tumor necrosis factor-α, and neutrophil gelatinase-associated lipocalin, whereas coincubation with eCIRP and H151 diminished those increases in a dose-dependent manner. In vivo, 24 h after bilateral renal ischemia-reperfusion, glomerular filtration rate was decreased in RIR-vehicle-treated mice, whereas glomerular filtration rate was unchanged in RIR-H151-treated mice. In contrast to sham, serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin were increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. In contrast to sham, kidney IFN-β mRNA, histological injury score, and TUNEL staining were also increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. Importantly, in contrast to sham, in a 10-day survival study, survival decreased to 25% in RIR-vehicle, but RIR-H151 had a survival of 63%. In conclusion, H151 inhibits eCIRP-induced STING activation in renal tubular epithelial cells. Therefore, STING inhibition by H151 can be a promising therapeutic intervention for RIR-induced AKI.NEW & NOTEWORTHY Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with a high morbidity and mortality rate. Stimulator of interferon genes (STING) is the cytosolic DNA-activated signaling pathway responsible for mediating inflammation and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) activates STING and exacerbates hemorrhagic shock. H151, a novel STING inhibitor, attenuated eCIRP-induced STING activation in vitro and inhibited RIR-induced AKI. H151 shows promise as a therapeutic intervention for RIR-induced AKI.
Collapse
Affiliation(s)
- Zhijian Hu
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Fangming Zhang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| |
Collapse
|
9
|
Workman AM, Heaton MP, Vander Ley BL, Webster DA, Sherry L, Bostrom JR, Larson S, Kalbfleisch TS, Harhay GP, Jobman EE, Carlson DF, Sonstegard TS. First gene-edited calf with reduced susceptibility to a major viral pathogen. PNAS NEXUS 2023; 2:pgad125. [PMID: 37181049 PMCID: PMC10167990 DOI: 10.1093/pnasnexus/pgad125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important viruses affecting the health and well-being of bovine species throughout the world. Here, we used CRISPR-mediated homology-directed repair and somatic cell nuclear transfer to produce a live calf with a six amino acid substitution in the BVDV binding domain of bovine CD46. The result was a gene-edited calf with dramatically reduced susceptibility to infection as measured by reduced clinical signs and the lack of viral infection in white blood cells. The edited calf has no off-target edits and appears normal and healthy at 20 months of age without obvious adverse effects from the on-target edit. This precision bred, proof-of-concept animal provides the first evidence that intentional genome alterations in the CD46 gene may reduce the burden of BVDV-associated diseases in cattle and is consistent with our stepwise, in vitro and ex vivo experiments with cell lines and matched fetal clones.
Collapse
Affiliation(s)
- Aspen M Workman
- US Meat Animal Research Center, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), 844 Road 313 Clay Center, NE 68933, USA
| | - Michael P Heaton
- US Meat Animal Research Center, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), 844 Road 313 Clay Center, NE 68933, USA
| | - Brian L Vander Ley
- Great Plains Veterinary Educational Center, University of Nebraska–Lincoln, 820 Road 313 Clay Center, NE 68933, USA
| | - Dennis A Webster
- Recombinetics Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | - Luke Sherry
- Recombinetics Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | | | - Sabreena Larson
- Acceligen Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | - Theodore S Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Rd Lexington, KY 40546, USA
| | - Gregory P Harhay
- US Meat Animal Research Center, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), 844 Road 313 Clay Center, NE 68933, USA
| | - Erin E Jobman
- Great Plains Veterinary Educational Center, University of Nebraska–Lincoln, 820 Road 313 Clay Center, NE 68933, USA
| | - Daniel F Carlson
- Recombinetics Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | | |
Collapse
|
10
|
Li HB, Mo YS, Zhang XZ, Zhou Q, Liang XD, Song JN, Hou LN, Wu JN, Guo Y, Feng DD, Sun Y, Yu JB. Heme oxygenase‑1 inhibits renal tubular epithelial cell pyroptosis by regulating mitochondrial function through PINK1. Exp Ther Med 2023; 25:213. [PMID: 37123216 PMCID: PMC10133796 DOI: 10.3892/etm.2023.11912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Endotoxin-induced acute kidney injury (AKI) is commonly observed in clinical practice. Renal tubular epithelial cell (RTEC) pyroptosis is one of the main factors leading to the development of endotoxin-induced AKI. Mitochondrial dysfunction can lead to pyroptosis. However, the biological pathways involved in the potential lipopolysaccharide (LPS)-induced pyroptosis of RTECs, notably those associated with mitochondrial dysfunction, are poorly understood. Previous studies have demonstrated that heme oxygenase (HO)-1 confers cell protection via the induction of PTEN-induced putative kinase 1 (PINK1) expression through PTEN to regulate mitochondrial fusion/fission during endotoxin-induced AKI in vivo. Therefore, the present study investigated the role of HO-1/PINK1 in maintaining mitochondrial function and inhibiting the pyroptosis of RTECs exposed to LPS. Primary cultures of RTECs were obtained from wild-type (WT) and PINK1-knockout (PINK1KO) rats. An in vitro model of endotoxin-associated RTEC injury was established following treatment of the cells with LPS. The WT RTECs were divided into the control, LPS, Znpp + LPS and Hemin + LPS groups, and the PINK1KO RTECs were divided into the control, LPS and Hemin + LPS groups. RTECs were exposed to LPS for 6 h to assess cell viability, inflammation, pyroptosis and mitochondrial function. In the LPS-treated RTECs, the mRNA and protein expression levels of HO-1 and PINK1 were upregulated. Cell viability, adenosine triphosphate (ATP) levels and the mitochondrial oxygen consumption rate were decreased, whereas the inflammatory response, pyroptosis and mitochondrial reactive oxygen species (ROS) levels were increased. The cell inflammatory response and the induction of pyroptosis were inhibited, whereas the levels of mitochondrial ROS were decreased. In addition, the cell viability and ATP levels were increased in the WT RTECs following the upregulation of HO-1 expression. These effects were reversed by the downregulation of HO-1 expression. However, no statistically significant differences were noted between the LPS and the Hemin + LPS groups in the PINK1KO RTECs. Collectively, the findings of the present study indicate that HO-1 inhibits inflammation and regulates mitochondrial function by inhibiting the pyroptosis of LPS-exposed RTECs via PINK1.
Collapse
Affiliation(s)
- Hai-Bo Li
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Yan-Shuai Mo
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, P.R. China
| | - Xi-Zhe Zhang
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Qi Zhou
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Xiao-Dong Liang
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Jian-Nan Song
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Li-Na Hou
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Jian-Nan Wu
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Ying Guo
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Dan-Dan Feng
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Yi Sun
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Jian-Bo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, P.R. China
- Correspondence to: Professor Jian-Bo Yu, Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, 102 Sanwei Road, Nankai, Tianjin 300102, P.R. China
| |
Collapse
|
11
|
Hu Q, Zhu B, Yang G, Jia J, Wang H, Tan R, Zhang Q, Wang L, Kantawong F. Calycosin pretreatment enhanced the therapeutic efficacy of mesenchymal stem cells to alleviate unilateral ureteral obstruction-induced renal fibrosis by inhibiting necroptosis. J Pharmacol Sci 2023; 151:72-83. [PMID: 36707181 DOI: 10.1016/j.jphs.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) show antifibrotic activity in various chronic kidney diseases. Here, we aimed to investigate whether Calycosin (CA), a phytoestrogen, could enhance the antifibrotic activity of MSCs in primary tubular epithelial cells (PTECs) induced by TGF-β1 and in a mouse model of unilateral ureteral obstruction (UUO). We found that MSCs treatment significantly inhibited fibrosis, and CA pretreatment enhanced the effects of MSCs on fibrosis in vitro. Consistent with the in vitro studies, MSCs alleviated tubular injury and renal fibrosis in mice after UUO, and CA-pretreated MSCs resulted in more significant improvements in tubular injury and renal fibrosis than MSCs after UUO. Moreover, MSCs treatment significantly inhibited necroptosis by repressing the elevation of MLKL, RIPK1, and RIPK3 in PTECs treated by TGF-β1and in mice after UUO, and CA-pretreated MSCs were superior to MSCs in alleviating necroptosis. MSCs significantly reduced TNF-α and TNFR1 expression induced by TGF-β1 in PTECs and inhibited TGF-β1, TNF-α, and TNFR1 expression induced by UUO in mice. These effects of MSCs were significantly enhanced after CA pretreatment. Therefore, our results suggest that CA pretreatment enhances the antifibrotic activity of MSCs by inhibiting TGF-β1/TNF-α/TNFR1 signaling-induced necroptosis.
Collapse
Affiliation(s)
- Qiongdan Hu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China
| | - Bingwen Zhu
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Guoqiang Yang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Honglian Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Ruizhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Qiong Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
de Souza Cordeiro LM, Bainbridge L, Devisetty N, McDougal DH, Peters DJM, Chhabra KH. Loss of function of renal Glut2 reverses hyperglycaemia and normalises body weight in mouse models of diabetes and obesity. Diabetologia 2022; 65:1032-1047. [PMID: 35290476 PMCID: PMC9081162 DOI: 10.1007/s00125-022-05676-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Renal GLUT2 is increased in diabetes, thereby enhancing glucose reabsorption and worsening hyperglycaemia. Here, we determined whether loss of Glut2 (also known as Slc2a2) specifically in the kidneys would reverse hyperglycaemia and normalise body weight in mouse models of diabetes and obesity. METHODS We used the tamoxifen-inducible CreERT2-Lox system in mice to knockout Glut2 specifically in the kidneys (Ks-Glut2 KO) to establish the contribution of renal GLUT2 to systemic glucose homeostasis in health and in insulin-dependent as well as non-insulin-dependent diabetes. We measured circulating glucose and insulin levels in response to OGTT or IVGTT under different experimental conditions in the Ks-Glut2 KO and their control mice. Moreover, we quantified urine glucose levels to explain the phenotype of the mice independently of insulin actions. We also used a transcription factor array to identify mechanisms underlying the crosstalk between renal GLUT2 and sodium-glucose cotransporter 2 (SGLT2). RESULTS The Ks-Glut2 KO mice exhibited improved glucose tolerance and massive glucosuria. Interestingly, this improvement in blood glucose control was eliminated when we knocked out Glut2 in the liver in addition to the kidneys, suggesting that the improvement is attributable to the lack of renal GLUT2. Remarkably, induction of renal Glut2 deficiency reversed hyperglycaemia and normalised body weight in mouse models of diabetes and obesity. Longitudinal monitoring of renal glucose transporters revealed that Sglt2 (also known as Slc5a2) expression was almost abolished 3 weeks after inducing renal Glut2 deficiency. To identify a molecular basis for this crosstalk, we screened for renal transcription factors that were downregulated in the Ks-Glut2 KO mice. Hnf1α (also known as Hnf1a) was among the genes most downregulated and its recovery restored Sglt2 expression in primary renal proximal tubular cells isolated from the Ks-Glut2 KO mice. CONCLUSIONS/INTERPRETATION Altogether, these results demonstrate a novel crosstalk between renal GLUT2 and SGLT2 in regulating systemic glucose homeostasis via glucose reabsorption. Our findings also indicate that inhibiting renal GLUT2 is a potential therapy for diabetes and obesity.
Collapse
Affiliation(s)
- Leticia Maria de Souza Cordeiro
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lauren Bainbridge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nagavardhini Devisetty
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
13
|
Xie H, Dai Y, Zhu Q. A New Method of Isolation of Mouse Renal Primary Tubular Epithelial Cells. Bull Exp Biol Med 2021; 171:676-680. [PMID: 34618265 DOI: 10.1007/s10517-021-05292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 11/29/2022]
Abstract
Kidney diseases are becoming an emerging public health problem. In order to further explore the etiology of various kidney diseases, we improved the methods of isolation of primary cultures of mouse renal tubular epithelial cells. At the first stage, the kidneys were perfused with collagenase solution. To this end, the superior mesenteric artery, celiac artery and thoracic aorta were ligated and perfusion was performed through the abdominal aorta. Then, the cells were isolated ex vivo and their integrity, purity, viability, and concentration were evaluated. The proposed cost-effective and simple method provides high purity and high concentration of primary renal epithelial cells for molecular biology studies of the kidneys.
Collapse
Affiliation(s)
- H Xie
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Y Dai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Q Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China. .,Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
14
|
Aufhauser DD, Hernandez P, Concors SJ, O'Brien C, Wang Z, Murken DR, Samanta A, Beier UH, Krumeich L, Bhatti TR, Wang Y, Ge G, Wang L, Cheraghlou S, Wagner FF, Holson EB, Kalin JH, Cole PA, Hancock WW, Levine MH. HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Sci Rep 2021; 11:9018. [PMID: 33907245 PMCID: PMC8079686 DOI: 10.1038/s41598-021-88242-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Histone/protein deacetylases (HDAC) 1 and 2 are typically viewed as structurally and functionally similar enzymes present within various co-regulatory complexes. We tested differential effects of these isoforms in renal ischemia reperfusion injury (IRI) using inducible knockout mice and found no significant change in ischemic tolerance with HDAC1 deletion, but mitigation of ischemic injury with HDAC2 deletion. Restriction of HDAC2 deletion to the kidney via transplantation or PAX8-controlled proximal renal tubule-specific Cre resulted in renal IRI protection. Pharmacologic inhibition of HDAC2 increased histone acetylation in the kidney but did not extend renal protection. Protein analysis demonstrated increased HDAC1-associated CoREST protein in HDAC2-/- versus WT cells, suggesting that in the absence of HDAC2, increased CoREST complex occupancy of HDAC1 can stabilize this complex. In vivo administration of a CoREST inhibitor exacerbated renal injury in WT mice and eliminated the benefit of HDAC2 deletion. Gene expression analysis of endothelin showed decreased endothelin levels in HDAC2 deletion. These data demonstrate that contrasting effects of HDAC1 and 2 on CoREST complex stability within renal tubules can affect outcomes of renal IRI and implicate endothelin as a potential downstream mediator.
Collapse
Affiliation(s)
| | - Paul Hernandez
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Seth J Concors
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ciaran O'Brien
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhonglin Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Murken
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Arabinda Samanta
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Krumeich
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Tricia R Bhatti
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yanfeng Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Guanghui Ge
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jay H Kalin
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew H Levine
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Divergent Regulation of OCT and MATE Drug Transporters by Cadmium Exposure. Pharmaceutics 2021; 13:pharmaceutics13040537. [PMID: 33924306 PMCID: PMC8069296 DOI: 10.3390/pharmaceutics13040537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Coordinated transcellular transport by the uptake via organic cation transporters (OCTs) in concert with the efflux via multidrug and toxin extrusion proteins (MATEs) is an essential system for hepatic and renal drug disposition. Despite their clinical importance, the regulation of OCTs and MATEs remains poorly characterized. It has been reported that cadmium (Cd2+) increase the activities of OCTs while being a substrate of MATEs. Here, we found that human (h) OCT2 protein, as compared with hMATE1, was more active in trafficking between the plasma membrane and cytoplasmic storage pool. Cd2+ exposure could significantly enhance the translocation of hOCT2 and hOCT1, but not hMATE1, to the plasma membrane. We further identified that candesartan, a widely prescribed angiotensin II receptor blocker, behaved similarly toward OCT2 and MATE1 as Cd2+ did. Importantly, Cd2+ and candesartan treatments could lead to an enhanced accumulation of metformin, which is a well-characterized substrate of OCTs/MATEs, in mouse kidney and liver, respectively. Altogether, our studies have uncovered possible divergent regulation of OCTs and MATEs by certain xenobiotics, such as Cd2+ and candesartan due to the different cellular trafficking of these two families of transporter proteins, which might significantly affect drug disposition in the liver and kidney.
Collapse
|
16
|
Najmi A, Wang S, Huang Y, Seefeldt T, Alqahtani Y, Guan X. 2-(2-Cholesteroxyethoxyl)ethyl 3'-S-glutathionylpropionate and its self-assembled micelles for brain delivery: Design, synthesis and evaluation. Int J Pharm 2021; 600:120520. [PMID: 33775725 DOI: 10.1016/j.ijpharm.2021.120520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is a barrier that prevents almost all large and most small exogenous molecules from reaching the brain. The barrier is the major cause of treatment failure for most brain diseases. Extensive efforts have been made to facilitate drug molecules to cross the BBB. One of the approaches is to employ an endogenous ligand or ligand analogue that can enter the brain through its transporter or receptor at the BBB as a brain-targeting agent. Glutathione (GSH) transporters are richly expressed at the BBB with limited presence in other tissues except kidneys. 2-(2-Cholesteroxyethoxyl)ethyl 3'-S-glutathionylpropionate (COXP), formed by connecting GSH with cholesterol through a linker, was designed as a GSH transporter-mediated brain targeting molecule. The amphiphilic nature of COXP enables the molecule to self-assemble to form micelles with a CMC value of 3.9 μM. By using DiR as a fluorescence tracking agent and the whole-body fluorescence imaging technique, the brain distribution of DiR delivered by COXP micelles in mice was 20 folds higher when compared with free DiR. Interestingly, the brain targeting effect was further enhanced by co-administration of GSH. The low CMC value and effective brain targeting make COXP micelles a promising drug delivery system to the brain.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Box 2202C, South Dakota State University, Brookings, SD 57007, United States
| | - Shenggang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Box 2202C, South Dakota State University, Brookings, SD 57007, United States
| | - Yue Huang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Box 2202C, South Dakota State University, Brookings, SD 57007, United States
| | - Teresa Seefeldt
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Box 2202C, South Dakota State University, Brookings, SD 57007, United States
| | - Yahya Alqahtani
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Box 2202C, South Dakota State University, Brookings, SD 57007, United States
| | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Box 2202C, South Dakota State University, Brookings, SD 57007, United States.
| |
Collapse
|
17
|
Liu D, Liu F, Li Z, Pan S, Xie J, Zhao Z, Liu Z, Zhang J, Liu Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis 2021; 12:255. [PMID: 33692334 PMCID: PMC7946926 DOI: 10.1038/s41419-021-03460-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is a serious complication in type 1 and type 2 diabetes, and renal interstitial fibrosis plays a key role in DN progression. Here, we aimed to probe into the role and potential mechanism of miR-483-5p in DN-induced renal interstitial fibrosis. In this study, we corroborated that miR-483-5p expression was lessened in type 1 and type 2 diabetic mice kidney tissues and high glucose (HG)-stimulated tubular epithelial cells (TECs), and raised in the exosomes derived from renal tissues in type 1 and type 2 diabetic mice. miR-483-5p restrained the expressions of fibrosis-related genes in vitro and renal interstitial fibrosis in vivo. Mechanistically, miR-483-5p bound both TIMP2 and MAPK1, and TIMP2 and MAPK1 were bound up with the regulation of miR-483-5p on renal TECs under HG conditions. Importantly, HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine. Our results expounded that HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine, thus lessening the restraint of cellular miR-483-5p on MAPK1 and TIMP2 mRNAs, and ultimately boosting extracellular matrix deposition and the progression of DN-induced renal interstitial fibrosis.
Collapse
Affiliation(s)
- DongWei Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - FengXun Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhengYong Li
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ShaoKang Pan
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JunWei Xie
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZiHao Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhenJie Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JiaHui Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhangSuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China.
| |
Collapse
|
18
|
de Souza Cordeiro LM, Elsheikh A, Devisetty N, Morgan DA, Ebert SN, Rahmouni K, Chhabra KH. Hypothalamic MC4R regulates glucose homeostasis through adrenaline-mediated control of glucose reabsorption via renal GLUT2 in mice. Diabetologia 2021; 64:181-194. [PMID: 33052459 PMCID: PMC7718429 DOI: 10.1007/s00125-020-05289-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Melanocortin 4 receptor (MC4R) mutation is the most common cause of known monogenic obesity in humans. Unexpectedly, humans and rodents with MC4R deficiency do not develop hyperglycaemia despite chronic obesity and insulin resistance. To explain the underlying mechanisms for this phenotype, we determined the role of MC4R in glucose homeostasis in the presence and absence of obesity in mice. METHODS We used global and hypothalamus-specific MC4R-deficient mice to investigate the brain regions that contribute to glucose homeostasis via MC4R. We performed oral, intraperitoneal and intravenous glucose tolerance tests in MC4R-deficient mice that were either obese or weight-matched to their littermate controls to define the role of MC4R in glucose regulation independently of changes in body weight. To identify the integrative pathways through which MC4R regulates glucose homeostasis, we measured renal and adrenal sympathetic nerve activity. We also evaluated glucose homeostasis in adrenaline (epinephrine)-deficient mice to investigate the role of adrenaline in mediating the effects of MC4R in glucose homeostasis. We employed a graded [13C6]glucose infusion procedure to quantify renal glucose reabsorption in MC4R-deficient mice. Finally, we measured the levels of renal glucose transporters in hypothalamus-specific MC4R-deficient mice and adrenaline-deficient mice using western blotting to ascertain the molecular mechanisms underlying MC4R control of glucose homeostasis. RESULTS We found that obese and weight-matched MC4R-deficient mice exhibited improved glucose tolerance due to elevated glucosuria, not enhanced beta cell function. Moreover, MC4R deficiency selectively in the paraventricular nucleus of the hypothalamus (PVH) is responsible for reducing the renal threshold for glucose as measured by graded [13C6]glucose infusion technique. The MC4R deficiency suppressed renal sympathetic nerve activity by 50% in addition to decreasing circulating adrenaline and renal GLUT2 levels in mice, which contributed to the elevated glucosuria. We further report that adrenaline-deficient mice recapitulated the increased excretion of glucose in urine observed in the MC4R-deficient mice. Restoration of circulating adrenaline in both the MC4R- and adrenaline-deficient mice reversed their phenotype of improved glucose tolerance and elevated glucosuria, demonstrating the role of adrenaline in mediating the effects of MC4R on glucose reabsorption. CONCLUSIONS/INTERPRETATION These findings define a previously unrecognised function of hypothalamic MC4R in glucose reabsorption mediated by adrenaline and renal GLUT2. Taken together, our findings indicate that elevated glucosuria due to low sympathetic tone explains why MC4R deficiency does not cause hyperglycaemia despite inducing obesity and insulin resistance. Graphical abstract.
Collapse
Affiliation(s)
- Leticia Maria de Souza Cordeiro
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Arwa Elsheikh
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nagavardhini Devisetty
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
19
|
Qiu L, Lai X, Wang JJ, Yeap XY, Han S, Zheng F, Lin C, Zhang Z, Procissi D, Fang D, Li L, Thorp EB, Abecassis MM, Kanwar YS, Zhang ZJ. Kidney-intrinsic factors determine the severity of ischemia/reperfusion injury in a mouse model of delayed graft function. Kidney Int 2020; 98:1489-1501. [PMID: 32822703 PMCID: PMC7814505 DOI: 10.1016/j.kint.2020.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Delayed graft function due to transplant ischemia/reperfusion injury adversely affects up to 50% of deceased-donor kidney transplant recipients. However, key factors contributing to the severity of ischemia/reperfusion injury remain unclear. Here, using a clinically relevant mouse model of delayed graft function, we demonstrated that donor genetic background and kidney-intrinsic MyD88/Trif-dependent innate immunity were key determinants of delayed graft function. Functional deterioration of kidney grafts directly corresponded with the duration of cold ischemia time. The graft dysfunction became irreversible after cold ischemia time exceeded six hours. When cold ischemia time reached four hours, kidney grafts displayed histological features reflective of delayed graft function seen in clinical kidney transplantation. Notably, kidneys of B6 mice exhibited significantly more severe histological and functional impairment than kidneys of C3H or BALB/c mice, regardless of recipient strains or alloreactivities. Furthermore, allografts of B6 mice also showed an upregulation of IL-6, neutrophil gelatinase-associated lipocalin, and endoplasmic reticulum stress genes, as well as an increased influx of host neutrophils and memory CD8 T-cells. In contrast, donor MyD88/Trif deficiency inhibited neutrophil influx and decreased the expression of IL-6 and endoplasmic reticulum stress genes, along with improved graft function and prolonged allograft survival. Thus, kidney-intrinsic factors involving genetic characteristics and innate immunity serve as critical determinants of the severity of delayed graft function. This preclinical murine model allows for further investigations of the mechanisms underlying delayed graft function.
Collapse
Affiliation(s)
- Longhui Qiu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xin Yi Yeap
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shulin Han
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Feibo Zheng
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Charlie Lin
- Weinberg Art and Science College, Northwestern University, Evanston, Illinois, USA
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, West Hollywood, California, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael M Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Medicine (Nephrology and Hypertension), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
20
|
Shirakawa K, Sano M. Sodium-Glucose Co-Transporter 2 Inhibitors Correct Metabolic Maladaptation of Proximal Tubular Epithelial Cells in High-Glucose Conditions. Int J Mol Sci 2020; 21:ijms21207676. [PMID: 33081406 PMCID: PMC7589591 DOI: 10.3390/ijms21207676] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Glucose filtered in the glomerulus is actively reabsorbed by sodium-glucose co-transporter 2 (SGLT2) in proximal tubular epithelial cells (PTEC) and passively returned to the blood via glucose transporter 2 (GLUT2). Healthy PTEC rely primarily on fatty acid beta-oxidation (FAO) for energy. In phase III trials, SGLT2 inhibitors improved outcomes in diabetic kidney disease (DKD). Tubulointerstitial renal fibrosis due to altered metabolic reprogramming of PTEC might be at the root of the pathogenesis of DKD. Here, we investigated the molecular mechanism of SGLT2 inhibitors’ renoprotective effect by examining transcriptional activity of Spp1, which encodes osteopontin, a key mediator of tubulointerstitial renal fibrosis. With primary cultured PTEC from Spp1-enhanced green fluorescent protein knock-in mice, we proved that in high-glucose conditions, increased SGLT2- and GLUT-mediated glucose uptake is causatively involved in aberrant activation of the glycolytic pathway in PTEC, thereby increasing mitochondrial reactive oxygen species (ROS) formation and transcriptional activation of Spp1. FAO activation did not play a direct role in these processes, but elevated expression of a tubular-specific enzyme, myo-inositol oxygenase, was at least partly involved. Notably, canagliflozin blocked overexpression of myo-inositol oxygenase. In conclusion, SGLT2 inhibitors exerted renoprotective effects by inhibiting aberrant glycolytic metabolism and mitochondrial ROS formation in PTEC in high-glucose conditions.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
21
|
Zhi D, Zhang M, Lin J, Liu P, Duan M. GPR120 Ameliorates Apoptosis and Inhibits the Production of Inflammatory Cytokines in Renal Tubular Epithelial Cells. Inflammation 2020; 44:493-505. [PMID: 33009637 DOI: 10.1007/s10753-020-01346-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is the most common complication of sepsis with a high mortality rate. In this study, we focus on the renal injury caused by the immune response of renal tubular epithelial cells and inflammation-induced renal tubular epithelial cell apoptosis. We studied the role of GRP120 in the inflammation and apoptosis of human renal cell line HK-2 and mouse primary renal tubular epithelial cells. GPR120 agonist GW9508 activated the GPR120 pathway. Inflammatory factors were detected using quantitative real-time PCR and enzyme-linked immunosorbent assay. Cell apoptosis experiments included the annexin V and PI double-staining method combined with flow cytometry, TUNEL method, and Western blot. The level of cytokines including TNF-α, IL-6, IL-1β, and iNOS was significantly decreased (P < 0.05) in HK-2 and TECs after the activation of the GPR120 pathway. Besides, the cell apoptosis of both cells increased. Overexpressed GPR120 and shGPR120 were established. Treatment with lipopolysaccharide (LPS) increased the level of cytokines including TNF-α, IL-6, IL-1β, and iNOS in HK-2 cell and TECs. Compared with control-LPS and negative control (NC)-LPS, the overexpression of GPR120 and shGPR120 could decrease and increase the level of secreted cytokines significantly (P < 0.05), respectively, after LPS-induced apoptosis. After H2O2- and LPS-induced apoptosis, respectively, compared with the control and NC groups, overexpressed GPR120 and shGPR120 could reduce and increase the expression of caspase-3, respectively. GPR120 could suppress the cellular immune response and apoptosis in renal tubular epithelial cells, thereby possibly protecting the kidney and relieving sepsis-induced AKI.
Collapse
Affiliation(s)
- Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
22
|
Wetzel MD, Stanley K, Wang WW, Maity S, Madesh M, Reeves WB, Awad AS. Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis. JCI Insight 2020; 5:142187. [PMID: 32956070 PMCID: PMC7566719 DOI: 10.1172/jci.insight.142187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Fibrosis is the final common pathway in the pathophysiology of most forms of chronic kidney disease (CKD). As treatment of renal fibrosis still remains largely supportive, a refined understanding of the cellular and molecular mechanisms of kidney fibrosis and the development of novel compounds are urgently needed. Whether arginases play a role in the development of fibrosis in CKD is unclear. We hypothesized that endothelial arginase-2 (Arg2) promotes the development of kidney fibrosis induced by unilateral ureteral obstruction (UUO). Arg2 expression and arginase activity significantly increased following renal fibrosis. Pharmacologic blockade or genetic deficiency of Arg2 conferred kidney protection following renal fibrosis, as reflected by a reduction in kidney interstitial fibrosis and fibrotic markers. Selective deletion of Arg2 in endothelial cells (Tie2Cre/Arg2fl/fl) reduced the level of fibrosis after UUO. In contrast, selective deletion of Arg2 specifically in proximal tubular cells (Ggt1Cre/Arg2fl/fl) failed to reduce renal fibrosis after UUO. Furthermore, arginase inhibition restored kidney nitric oxide (NO) levels, oxidative stress, and mitochondrial function following UUO. These findings indicate that endothelial Arg2 plays a major role in renal fibrosis via its action on NO and mitochondrial function. Blocking Arg2 activity or expression could be a novel therapeutic approach for prevention of CKD.
Collapse
|
23
|
Feng Y, Zhong X, Tang TT, Wang C, Wang LT, Li ZL, Ni HF, Wang B, Wu M, Liu D, Liu H, Tang RN, Liu BC, Lv LL. Rab27a dependent exosome releasing participated in albumin handling as a coordinated approach to lysosome in kidney disease. Cell Death Dis 2020; 11:513. [PMID: 32641688 PMCID: PMC7343869 DOI: 10.1038/s41419-020-2709-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Exosomes are increasingly recognized as vehicles of intercellular communication. However, the role of exosome in maintaining cellular homeostasis under stress conditions remained unclear. Here we show that Rab27a expression was upregulated exclusively in tubular epithelial cells (TECs) during proteinuria nephropathy established by adriamycin (ADR) injection and 5/6 nephrectomy as well as in chronic kidney disease patients, leading to the increased secretion of exosomes carrying albumin. The active exosome production promoted tubule injury and inflammation in neighboring and the producing cells. Interferon regulatory factor 1 (IRF-1) was found as the transcription factor contributed to the upregulation of Rab27a. Albumin could be detected in exosome fraction and co-localized with exosome marker CD63 indicating the secretion of albumin into extracellular space by exosomes. Interestingly, inhibition of exosome release accelerated albumin degradation which reversed tubule injury with albumin overload, while lysosome suppression augmented exosome secretion and tubule inflammation. Our findings revealed that IRF-1/Rab27a mediated exosome secretion constituted a coordinated approach to lysosome degradation for albumin handling, which lead to the augment of albumin toxicity as a maladaptive response to maintain cell homeostasis. The findings may suggest a novel therapeutic strategy for proteinuric kidney disease by targeting exosome secretion.
Collapse
Affiliation(s)
- Ye Feng
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Xin Zhong
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Cui Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Li-Ting Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Hai-Feng Ni
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Min Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Dan Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China.
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China.
| |
Collapse
|
24
|
Price NL, Miguel V, Ding W, Singh AK, Malik S, Rotllan N, Moshnikova A, Toczek J, Zeiss C, Sadeghi MM, Arias N, Baldán Á, Andreev OA, Rodríguez-Puyol D, Bahal R, Reshetnyak YK, Suárez Y, Fernández-Hernando C, Lamas S. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight 2019; 4:131102. [PMID: 31613798 DOI: 10.1172/jci.insight.131102] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Previous work has reported the important links between cellular bioenergetics and the development of chronic kidney disease, highlighting the potential for targeting metabolic functions to regulate disease progression. More recently, it has been shown that alterations in fatty acid oxidation (FAO) can have an important impact on the progression of kidney disease. In this work, we demonstrate that loss of miR-33, an important regulator of lipid metabolism, can partially prevent the repression of FAO in fibrotic kidneys and reduce lipid accumulation. These changes were associated with a dramatic reduction in the extent of fibrosis induced in 2 mouse models of kidney disease. These effects were not related to changes in circulating leukocytes because bone marrow transplants from miR-33-deficient animals did not have a similar impact on disease progression. Most important, targeted delivery of miR-33 peptide nucleic acid inhibitors to the kidney and other acidic microenvironments was accomplished using pH low insertion peptides as a carrier. This was effective at both increasing the expression of factors involved in FAO and reducing the development of fibrosis. Together, these findings suggest that miR-33 may be an attractive therapeutic target for the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Madrid, Spain
| | - Wen Ding
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abhishek K Singh
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Moshnikova
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jakub Toczek
- Vascular Biology and Therapeutics Program and.,Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Caroline Zeiss
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mehran M Sadeghi
- Vascular Biology and Therapeutics Program and.,Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Noemi Arias
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oleg A Andreev
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Diego Rodríguez-Puyol
- Department of Medicine and Medical Specialties, Research Foundation of the University Hospital "Príncipe de Asturias," IRYCIS, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Madrid, Spain
| |
Collapse
|