1
|
Wang Z, Zhang M, Jia D. Assessment of fracture risk in diabetic patients. J Diabetes Metab Disord 2024; 23:1653-1663. [PMID: 39610523 PMCID: PMC11599524 DOI: 10.1007/s40200-024-01474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 11/30/2024]
Abstract
Patients with diabetes often experience reduced bone strength, resulting in a higher fracture risk. This decline and increased susceptibility stem from intricate interactions within the bone microstructure. However, current gold standard methods for assessing bone strength, such as bone mineral density, and widely-used fracture risk assessment tools do not accurately predict fracture risk in diabetic patients. Therefore, it is crucial to incorporate additional indicators that evaluate bone quality and specific markers relevant to diabetes to enhance the accuracy of predictive models. Moreover, the selection of appropriate algorithms for model construction is essential. This review aims to introduce indicators from both imaging examinations and laboratory indicators that hold significant value for inclusion in fracture risk prediction models for diabetic patients. Additionally, this study provides an overview of the research progress in fracture risk prediction models for diabetic patients, serving as a valuable reference for clinical practice.
Collapse
Affiliation(s)
- Zhenpeng Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Jia
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wu Z, Hou Q, Chi H, Liu J, Mei Y, Chen T, Yang K, Zheng J, Xu J, Wei F, Wang L. Single-cell RNA sequencing reveals a distinct profile of bone immune microenvironment and decreased osteoclast differentiation in type 2 diabetic mice. Genes Dis 2024; 11:101145. [PMID: 39281831 PMCID: PMC11399629 DOI: 10.1016/j.gendis.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 09/16/2023] [Indexed: 09/18/2024] Open
Abstract
The pathogenic effects of type 2 diabetes on bone tissue are gaining attention, but the cellular and molecular mechanisms underlying osteoimmunology are still unclear in diabetes-related bone diseases. We delineated the single-cell transcriptome of bone marrow cells from both wide type and type 2 diabetes mice, which provided the first detailed global profile of bone marrow cells and revealed a distinct bone immune microenvironment at the genetic level under type 2 diabetic condition. It was observed that osteoclast activity was inhibited due to a dysregulated cytokine network, which ultimately led to decreased osteoclast formation and differentiation. In type 2 diabetes mice, a specific C d 36 + cluster (cluster 18, monocytes/macrophages 2) was identified as the precursor of osteoclasts with diminished differentiation potential. AP-1 was demonstrated to be the key transcription factor in the underlying mechanism.
Collapse
Affiliation(s)
- Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Heng Chi
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jihong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yixin Mei
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kunkun Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingna Zheng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jing Xu
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Al-Daghri NM, Wani K, Khattak MNK, Alnaami AM, Al-Saleh Y, Sabico S. The single point insulin sensitivity estimator (SPISE) is associated with bone health in Arab adults. Aging Clin Exp Res 2024; 36:136. [PMID: 38904881 PMCID: PMC11192813 DOI: 10.1007/s40520-024-02789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The Single Point Insulin Sensitivity Estimator (SPISE) index is a surrogate marker for insulin sensitivity. Given the emerging role of bone as an active endocrine organ, its associations with non-invasive measures of extra-skeletal functions such as insulin sensitivity warrant investigation. AIMS This study aimed to explore the relationship between the SPISE index and Bone Mineral Density (BMD) in an adult population. METHODS Data from a total of 1270 Arab adults (84% females, mean age 56.7 ± 8.1 years) from the Osteoporosis Registry Database of the Chair for Biomarkers of Chronic Diseases in King Saud University, Riyadh, Saudi Arabia was used in this study. T-scores and SPISE were calculated. Regression models were used to determine associations between SPISE and bone health indices. RESULTS The low BMD group (N = 853; T-score <-1.0) had significantly higher SPISE values than those with normal BMD (N = 417; T-score - 1.0 and above) (4.6 ± 1.3 vs. 4.3 ± 1.2, p < 0.001). Multivariate linear regression, adjusted for covariates, confirmed a significant inverse association between SPISE and BMD for all participants (β=-0.22, p < 0.001), as well as both groups [normal BMD (β = -0.10, p = 0.02) and low BMD groups (β = -0.15, p < 0.001)]. SPISE, family history of T2DM, and history of fractures collectively account for 17% of the variances perceived in T-score for all participants (p < 0.001). CONCLUSIONS A significant inverse association between the SPISE index and BMD was observed in adults, suggesting a link between BMD and extra-skeletal health. Underlying mechanisms need to be investigated prospectively using BMD as secondary outcomes in lifestyle modification programs.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Kaiser Wani
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Malak N K Khattak
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah M Alnaami
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yousef Al-Saleh
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Medicine, Health Oasis Hospital, Riyadh, Saudi Arabia
| | - Shaun Sabico
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Skov-Jeppesen K, Christiansen CB, Hansen LS, Windeløv JA, Hedbäck N, Gasbjerg LS, Hindsø M, Svane MS, Madsbad S, Holst JJ, Rosenkilde MM, Hartmann B. Effects of Exogenous GIP and GLP-2 on Bone Turnover in Individuals With Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:1773-1780. [PMID: 38217866 PMCID: PMC11180509 DOI: 10.1210/clinem/dgae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
CONTEXT Individuals with type 2 diabetes (T2D) have an increased risk of bone fractures despite normal or increased bone mineral density. The underlying causes are not well understood but may include disturbances in the gut-bone axis, in which both glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are regulators of bone turnover. Thus, in healthy fasting participants, both exogenous GIP and GLP-2 acutely reduce bone resorption. OBJECTIVE The objective of this study was to investigate the acute effects of subcutaneously administered GIP and GLP-2 on bone turnover in individuals with T2D. METHODS We included 10 men with T2D. Participants met fasting in the morning on 3 separate test days and were injected subcutaneously with GIP, GLP-2, or placebo in a randomized crossover design. Blood samples were drawn at baseline and regularly after injections. Bone turnover was estimated by circulating levels of collagen type 1 C-terminal telopeptide (CTX), procollagen type 1 N-terminal propeptide (P1NP), sclerostin, and PTH. RESULTS GIP and GLP-2 significantly reduced CTX to (mean ± SEM) 66 ± 7.8% and 74 ± 5.9% of baseline, respectively, compared with after placebo (P = .001). In addition, P1NP and sclerostin increased acutely after GIP whereas a decrease in P1NP was seen after GLP-2. PTH levels decreased to 67 ± 2.5% of baseline after GLP-2 and to only 86 ± 3.4% after GIP. CONCLUSION Subcutaneous GIP and GLP-2 affect CTX and P1NP in individuals with T2D to the same extent as previously demonstrated in healthy individuals.
Collapse
Affiliation(s)
- Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Charlotte B Christiansen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Hindsø
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Wang B, Shi C, Zhu Z. The association between type 2 diabetes mellitus/prediabetes status and femoral neck bone mineral density in old adults. J Orthop Surg (Hong Kong) 2024; 32:10225536241233472. [PMID: 38366620 DOI: 10.1177/10225536241233472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The prevalence of both type 2 diabetes mellitus (T2DM) and osteoporosis has been increasing among older individuals, with these two health conditions often coexisting. Our aim in this study was to evaluate the association between T2DM status and bone mineral density (BMD) of the femoral neck among older adults in the United States. METHODS This was a retrospective analysis of the data from 5695 adults, 60-80 years of age. The data were obtained from the National Health and Nutrition Examination Survey, for the following years: 2005-2006, 2007-2008, 2009-2010, 2013-2014, and 2017-2018. Weighted multivariable regression analyses, with subgroup analyses as appropriate, were performed to identify an association between T2DM/prediabetes status and femoral BMD and mediating factors. RESULTS There was a significant positive association between T2DM/prediabetes status and femoral neck BMD among older women, but not men, after adjusting for body mass index (BMI). On subgroup analysis, stratified by BMI, the significant positive association was retained for T2DM women with a BMI of 25-29.9 kg/m2 (β, 0.030; 95% CI, 0.007-0.052) or ≥30 kg/m2 (β, 0.029; 95% CI, 0.007-0.05), and for prediabetes women with a BMI of 25-29.9 kg/m2 (β, 0.016; 95% CI, 0.001-0.030). CONCLUSIONS The association between a positive T2DM/prediabetes status and femoral neck BMD differed by sex among older individuals, with the association being further modulated by BMI. For women with a BMI of 25-29.9 kg/m2 or ≥30 kg/m2, T2DM was associated with a significantly higher femoral neck BMD, compared to the non-diabetes group.
Collapse
Affiliation(s)
- Bo Wang
- Department of Osteoporosis Care and Control, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Chenhao Shi
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongxin Zhu
- Department of Osteoporosis Care and Control, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| |
Collapse
|
6
|
Rasmussen NH, Kvist AV, Dal J, Jensen MH, van den Bergh JP, Vestergaard P. Bone parameters in T1D and T2D assessed by DXA and HR-pQCT - A cross-sectional study: The DIAFALL study. Bone 2023; 172:116753. [PMID: 37001628 DOI: 10.1016/j.bone.2023.116753] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION/AIM People with type 1 diabetes(T1D) and type 2 diabetes(T2D) have an increased risk of fractures due to skeletal fragility. We aimed to compare areal bone mineral density(aBMD), volumetric BMD(vBMD), cortical and trabecular measures, and bone strength parameters in participants with diabetes vs. controls. METHODS In a cross-sectional study, we included participants with T1D(n = 111), T2D(n = 106) and controls(n = 328). The study comprised of whole-body DXA and HR-pQCT scans, biochemistry, handgrip strength(HGS), Timed Up and GO(TUG), vibration perception threshold (VPT), questionnaires, medical histories, alcohol use, and previous fractures. Group comparisons were performed after adjustment for sex, age, BMI, diabetes duration, HbA1c, alcohol, smoking, previous fractures, postmenopausal, HGS, TUG, and VPT. RESULTS We found decreased aBMD in participants with T1D at the femoral neck(p = 0.028), whereas T2D had significantly higher aBMD at peripheral sites(legs, arms, p < 0.01) vs. controls. In T1D we found higher vBMD(p < 0.001), cortical vBMD (p < 0.001), cortical area(p = 0.002) and thickness(p < 0.001), lower cortical porosity(p = 0.008), higher stiffness(p = 0.002) and failure load(p = 0.003) at radius and higher vBMD(p = 0.003), cortical vBMD(p < 0.001), bone stiffness(p = 0.023) and failure load(p = 0.044) at the tibia than controls. In T2D we found higher vBMD(p < 0.001), cortical vBMD(p < 0.001), trabecular vBMD(p < 0.001), cortical area (p < 0.001) and thickness (p < 0.001), trabecular number (p = 0.024), lower separation(p = 0.010), higher stiffness (p < 0.001) and failure load (p < 0.001) at the radius and higher total vBMD(p < 0.001), cortical vBMD(p < 0.011), trabecular vBMD(p = 0.001), cortical area(p = 0.002) and thickness(p = 0.021), lower trabecular separation(p = 0.039), higher stiffness(p < 0.001) and failure load(p = 0.034) at tibia compared with controls. CONCLUSION aBMD measures were as expected but favorable bone microarchitecture and strength parameters were seen at the tibia and radius for T1D and T2D.
Collapse
Affiliation(s)
| | - Annika Vestergaard Kvist
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University Hospital, Odense, Denmark,; University of Southern Denmark, Odense, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark; Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH-Zurich, Zurich, Switzerland
| | - Jakob Dal
- Department of Endocrinology, Aalborg University Hospital, Denmark
| | - Morten H Jensen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark; Department of Health Science and Technology, Aalborg University, Denmark
| | - Joop P van den Bergh
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark
| |
Collapse
|
7
|
Rasmussen NH, Vestergaard P. Diabetes and osteoporosis - Treating two entities: A challenge or cause for concern? Best Pract Res Clin Rheumatol 2022; 36:101779. [PMID: 36154803 DOI: 10.1016/j.berh.2022.101779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
People with T1D and T2D have an increased risk of fractures than the general population, posing several significant pathophysiologic, diagnostic, and therapeutic challenges. The pathophysiology is still not fully elucidated, but it is considered a combination of increased skeletal fragility and falls. Diagnostics issues exist, as regular and even newer scan methods underestimate the true incidence of osteoporosis and thus the fracture risk. Therefore, co-managing diabetes and osteoporosis by using top-line strategies is essential to preserve bone health and minimize the risk of falls. The therapeutic focus should start with lifestyle implementation and physical exercise interventions to reduce diabetic complications, strengthen bones, and improve postural control strategies. In addition, osteoporosis should be treated according to current guidelines by including bisphosphonates and antidiabetic drugs that support bone health. Finally, potentially modifiable risk factors for falls should be managed.
Collapse
Affiliation(s)
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark
| |
Collapse
|
8
|
Abildgaard J, Johansen MY, Skov-Jeppesen K, Andersen LB, Karstoft K, Hansen KB, Hartmann B, Holst JJ, Pedersen BK, Ried-Larsen M. Effects of a Lifestyle Intervention on Bone Turnover in Persons with Type 2 Diabetes: A Post Hoc Analysis of the U-TURN Trial. Med Sci Sports Exerc 2022; 54:38-46. [PMID: 34431828 DOI: 10.1249/mss.0000000000002776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/PURPOSE The increased risk of fractures with type 2 diabetes (T2D) is suggested to be caused by decreased bone turnover. Current international guidelines recommend lifestyle modifications, including exercise, as first-line treatment for T2D. The aim of this study was to investigate the effects of an exercise-based lifestyle intervention on bone turnover and bone mineral density (BMD) in persons with T2D. METHODS Persons with T2D were randomized to either a 12-month lifestyle intervention (n = 64) or standard care (n = 34). The lifestyle intervention included five to six weekly aerobic training sessions, half of them combined with resistance training. Serum markers of bone turnover (osteocalcin, N-terminal propeptide of type-I procollagen, reflecting bone formation, and carboxyterminal collagen I crosslinks, reflecting bone resorption) and BMD (by DXA) were measured before the intervention and at follow-up. RESULTS From baseline to follow-up, s-propeptide of type-I procollagen increased by 34% (95% confidence interval [CI], 17%-50%), serum-carboxyterminal collagen I crosslink by 36% (95% CI, 1%-71%), and s-osteocalcin by 31% (95% CI, 11-51%) more in the lifestyle intervention group compared with standard care. Loss of weight and fat mass were the strongest mediators of the increased bone turnover. Bone mineral density was unaffected by the intervention (ΔBMD, 0.1%; 95% CI, -1.1% to 1.2%). CONCLUSIONS A 12-month intensive exercise-based lifestyle intervention led to a substantial but balanced increase in bone turnover in persons with T2D. The increased bone turnover combined with a preserved BMD, despite a considerable weight loss, is likely to reflect improved bone health and warrants further studies addressing the impact of exercise on risk of fractures in persons with T2D.
Collapse
Affiliation(s)
| | - Mette Yun Johansen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| | | | - Lars Bo Andersen
- Department of Sport, Food and Natural Sciences, Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Campus Sogndal, Sogndal, NORWAY
| | | | | | | | | | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| | - Mathias Ried-Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
9
|
Fuglsang-Nielsen R, Rakvaag E, Vestergaard P, Hermansen K, Gregersen S, Starup-Linde J. The Effects of 12-Weeks Whey Protein Supplements on Markers of Bone Turnover in Adults With Abdominal Obesity - A Post Hoc Analysis. Front Endocrinol (Lausanne) 2022; 13:832897. [PMID: 35422766 PMCID: PMC9001834 DOI: 10.3389/fendo.2022.832897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND While osteoporosis is characterized by skeletal fragility due to increased bone turnover and low bone mineral density (BMD), subjects with abdominal obesity and type-2 diabetes have increased risk of bone fractures despite low bone turnover and increased BMD. Diets with increased protein content are reported to increase bone turnover in healthy adults and may be a point of interest in preserving bone strength in subjects with abdominal obesity and/or type-2 diabetes. METHODS We examined the effect of 12-weeks dietary intervention on bone turnover in 64 adults with abdominal obesity using data from the MERITS trial. The trial was a randomized, controlled, double blinded study in which participants were allocated to receive either 60 g/d of whey protein hydrolysate or maltodextrin in combination with either high (30 g/d) or low dietary fiber intake (10 g/d). Primarily, we assessed changes in plasma markers of bone turnover Procollagen type 1 N-terminal propeptide (p1NP), C-terminal telopeptide type-1 collagen (CTX), and parathyroid hormone (PTH) within the four intervention groups. In addition, we measured u-calcium and u-carbamide excretion, 25(OH)D, and BMD by whole body DXA scans. Finally, we compared changes in insulin resistance (Homeostasis-model assessment of insulin resistance, HOMA-IR) with changes in bone turnover markers.The trial was registered at www.clinicaltrials.gov as NCT02931630. RESULTS Sixty-four subjects were included in the study. We did not find any effect of twelve weeks of high protein or high fiber intake on plasma levels of P1NP or CTX. There was a nonsignificant positive association between protein intake and PTH levels (p=0.06). U-calcium and u-carbamide increased in both protein groups. There was a positive association between change in HOMA-IR and PTH (p=0.042), while changes in P1NP and CTX did not associate to changes in HOMA-IR. CONCLUSION Twelve weeks of increased whey protein intake in subjects with abdominal obesity did not affect markers of bone turnover significantly, although tended to increase PTH levels. Dietary fiber intake did not affect bone turnover. We report a positive association between change in HOMA-IR and PTH supporting a hypothesis of insulin resistance as a potential key factor in the expanding field of bone fragility in T2D subjects.
Collapse
Affiliation(s)
- Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Rasmus Fuglsang-Nielsen,
| | - Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Giudici KV, de França NAG, Peters BSE, Fisberg RM, Martini LA. Associations between markers of glucose metabolism and bone measures among diabetic and non-diabetic adults. J Diabetes Metab Disord 2021; 20:1247-1255. [PMID: 34900776 DOI: 10.1007/s40200-021-00849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
Purpose To investigate the relationships between bone measures, vitamin D status and markers of glucose metabolism among diabetic and non-diabetic adults. Methods Cross sectional study with 298 adults (mean age 57.5 years, SD = 14.8; 44.3% male, 16.9% diabetic) participants of the Health Survey-São Paulo (ISA-Capital) 2014-2015. Blood samples were collected to assess serum glucose, insulin and 25 hydroxyvitamin D [25(OH)D] concentrations. Dual-energy x-ray absorptiometry (DXA) was performed to determine total body fat; total lean mass; full body bone mineral density (BMD); lumbar spine BMD and bone mineral content (BMC); and femur BMD and BMC. Fat mass index (FMI), lean mass index (LMI), quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment of insulin resistance (HOMA-IR) and of β-pancreatic cell function (HOMA-β) were calculated. Linear regression analysis were performed. Results Multiple bone measures were associated with markers of glucose metabolism in analyses adjusted by age and sex. However, after additional adjustments by LMI, FMI and serum 25(OH)D, only associations of lumbar spine BMC with HOMA-IR (β = 0.167; p = 0.035) and QUICKI (β = -1.879; p = 0.027) persisted, in the subgroup of diabetic participants. Analysis restricted to diabetic subjects revealed stronger correlations between bone parameters and markers of glucose metabolism. Conclusions Our study observed positive associations between BMD and markers of insulin resistance among a sample of adults. Correlations were stronger among diabetic subjects, and some associations between bone and glucose metabolism were independent of adiposity. Findings reinforce the need of further research for better understanding the bidirectional and multifactorial crosstalk between glucose homeostasis and bone metabolism.
Collapse
Affiliation(s)
- Kelly Virecoulon Giudici
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Doutor Arnaldo, 715, Cerqueira César, São Paulo, SP Zip Code 01246-904 Brazil.,Present Address: Institute of Aging (Gerontopole), Toulouse University Hospital (CHU), Université Toulouse III Paul Sabatier, Toulouse, France
| | - Natasha Aparecida Grande de França
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Doutor Arnaldo, 715, Cerqueira César, São Paulo, SP Zip Code 01246-904 Brazil
| | - Bárbara Santarosa Emo Peters
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Doutor Arnaldo, 715, Cerqueira César, São Paulo, SP Zip Code 01246-904 Brazil
| | - Regina Mara Fisberg
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Doutor Arnaldo, 715, Cerqueira César, São Paulo, SP Zip Code 01246-904 Brazil
| | - Lígia Araújo Martini
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Doutor Arnaldo, 715, Cerqueira César, São Paulo, SP Zip Code 01246-904 Brazil
| |
Collapse
|
11
|
Hauge SC, Abrahamsen B, Gislason G, Olesen JB, Hommel K, Hansen D. Diabetes increases the risk of bone fractures in patients on kidney replacement therapy: A Danish national cohort study. Bone 2021; 153:116158. [PMID: 34461286 DOI: 10.1016/j.bone.2021.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients treated with dialysis or living with a kidney transplant (kidney replacement therapy, KRT) have an increased risk of bone fracture. Patients with diabetes also have an increased risk of fracture. The aim of this study was to investigate whether the presence of diabetes in patients on KRT aggravates the risk of fracture. METHODS Nationwide Danish registries were used in this retrospective cohort study. All prevalent adult patients on hemodialysis (HD) or peritoneal dialysis (PD) on 1st of January 2000 and all incident patients starting KRT (HD, PD, kidney transplanted (KTX)) until 31st of December 2011 were included in the KRT group. Adult persons not on KRT and without diabetes on 1st of January 2000 were used as a reference group. Patients were separated in groups with and without (+/-) diabetes. They were followed until first fracture, emigration, death, or end-of-study on 31st of December 2016. RESULTS A total of 4,074,085 not on KRT +/- diabetes and 9053 patients on KRT +/- diabetes were included. Comparing the different groups with diabetes to the corresponding group without diabetes, the unadjusted HR (95% CI) for any first fracture were 1.2 (1.0-1.3) in the HD population, 1.4 (1.1-1.7) in the PD population, and 1.7 (1.4-2.2) in the KTX population. Further adjustments for age, sex, prior fractures, comorbidity and medication did not change these results significantly. CONCLUSIONS Diabetes increases the risk of fracture in patients on KRT.
Collapse
Affiliation(s)
- Sabina Chaudhary Hauge
- Department of Nephrology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark.
| | - Bo Abrahamsen
- Department of Medicine, Holbæk Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark.; Institute of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3. Floor, 5000 Odense C, Copenhagen, Denmark; NDORMS, Botnar Centre, Oxford University, Windmill Road, Oxford, OX3 7LD, United Kingdom
| | - Gunnar Gislason
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark; The Danish Heart Foundation, Vognmagergade 7, 3. Floor, 1120 Copenhagen K, Denmark
| | - Jonas Bjerring Olesen
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark
| | - Kristine Hommel
- Department of Medicine, Holbæk Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark.; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ditte Hansen
- Department of Nephrology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Can fingernail quality predict bone damage in Type 2 diabetes mellitus? a pilot study. PLoS One 2021; 16:e0257955. [PMID: 34591909 PMCID: PMC8483292 DOI: 10.1371/journal.pone.0257955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) adversely affects the normal functioning, intrinsic material properties, and structural integrity of many tissues, including bone. It is well known that the clinical utility of areal bone mineral density (aBMD) is limited to assess bone strength in individuals with T2DM. Therefore, there is a need to explore new diagnostic techniques that can better assist and improve the accuracy of assessment of bone tissue quality. The present study investigated the link between bone and fingernail material/compositional properties in type 2 diabetes mellitus (T2DM). For that, femoral head and fingernail samples were obtained from twenty-five adult female patients (with/without T2DM) with fragility femoral neck fractures undergoing hemi/total hip arthroplasty. Cylindrical cores of trabecular bone were subjected to micro-CT, and lower bone volume fraction was observed in the diabetic group than the non-diabetic group due to fewer and thinner trabeculae in individuals with T2DM. The material and compositional properties of bone/fingernail were estimated using nanoindentation and Fourier Transform Infrared Spectroscopy, respectively. Both bone/fingernails in T2DM had lower reduced modulus (Er), hardness (H), lower Amide I and Amide II area ratio (protein content), higher sugar-to-matrix ratio, and relatively high carboxymethyl-lysine (CML) content compared with non-diabetic patients. Sugar-to-matrix ratio and relative CML content were strongly and positively correlated with HbA1c for both bone/fingernail. There was a positive correlation between bone and fingernail glycation content. Our findings provide evidence that the degradation pattern of bone and fingernail properties go hand-in-hand in individuals with T2DM. Hence, the fingernail compositional/material properties might serve as a non-invasive surrogate marker of bone quality in T2DM; however, further large-scale studies need to be undertaken.
Collapse
|
13
|
Li H, Wen Y, Liu P, Zhang L, Zhang X, Liu Y, Ma B, Kuang H, Wang J, Song L. Characteristics of bone metabolism in postmenopausal women with newly diagnosed type 2 diabetes mellitus. Clin Endocrinol (Oxf) 2021; 95:430-438. [PMID: 34008210 DOI: 10.1111/cen.14501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The characteristics of bone metabolism in T2DM are still controversial. This study aims to recognize bone turnover features in patients with newly diagnosed T2DM who have never been treated with anti-diabetic drugs and further explore the possible factors contributing to their impaired bone turnover. MATERIALS AND METHODS An analytic sample of 88 patients with newly diagnosed T2DM and 152 non-diabetic control individuals were studied. All the participants were postmenopausal women. Demographics variables and clinical history were recorded. We measured lipid profile, glucose metabolism, bone turnover markers indices as well as their related hormones, serum calcium and phosphorus. Bone mineral density was detected by dual-energy X-ray absorptiometry. We compared the differences in bone turnover markers and their regulating hormones between two groups and further analysed the factors related to bone turnover in T2DM. RESULTS Compared with the control group, patients with T2DM had a higher level of bone alkaline phosphatase (BALP), lower levels of procollagen type I intact N-terminal (P1NP), osteocalcin (OC) and parathyroid hormone (PTH). Multiple linear regression analysis showed that in patients with T2DM, HbA1c was negatively correlated with P1NP and OC. For patients without diabetes, HbA1c was negatively related to BALP and OC. CONCLUSIONS Patients with newly diagnosed T2DM may have impaired osteoblastic maturation and bone formation, which may be mainly attributed to hyperglycaemia.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhua Wen
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peipei Liu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liya Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoya Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, Tongji University School of Medicine, Shanghai, China
| | - Yichen Liu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haidong Kuang
- Yichuan Community Health Service Center, Shanghai, China
| | - Jianxin Wang
- Yichuan Community Health Service Center, Shanghai, China
| | - Lige Song
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Paul J, Devarapalli V, Johnson JT, Cherian KE, Jebasingh FK, Asha HS, Kapoor N, Thomas N, Paul TV. Do proximal hip geometry, trabecular microarchitecture, and prevalent vertebral fractures differ in postmenopausal women with type 2 diabetes mellitus? A cross-sectional study from a teaching hospital in southern India. Osteoporos Int 2021; 32:1585-1593. [PMID: 33502560 DOI: 10.1007/s00198-021-05855-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
UNLABELLED This study from southern India showed that the trabecular microarchitecture and proximal hip geometry were significantly impaired in postmenopausal women with diabetes as compared to age and BMI matched non-diabetic controls. This is despite there being no significant difference in bone mineral density at the femoral neck and hip not between both groups. One-third of the study subjects with type 2 diabetes had prevalent vertebral fractures. Bone mineral density assessment as a standalone tool may not adequately reflect bone health in subjects with diabetes. INTRODUCTION There is limited information with regard to bone health in Indian postmenopausal women with type 2 diabetes. We studied the bone mineral density (BMD), trabecular bone score (TBS), prevalent vertebral fractures (VF), proximal hip geometry, and bone mineral biochemistry in ambulatory postmenopausal women with and without type 2 diabetes mellitus (T2DM). METHODS This was a cross-sectional study conducted at a tertiary care center. BMD, TBS, prevalent vertebral fractures, and hip structural analysis (HSA) were assessed using a dual-energy X-ray absorptiometry (DXA) scanner. Bone mineral biochemical profiles were also studied. RESULTS A total of 202 ambulatory postmenopausal women known to have type 2 diabetes mellitus with mean (SD) age of 65.6 (5.2) years and 200 age and BMI matched non-diabetic controls with mean (SD) age of 64.9 (4.7) years were recruited from the local community. Although the prevalence of lumbar spine osteoporosis was significantly lower among cases (30.7%) as compared to controls (42.9%), the prevalence of degraded bone microarchitecture (TBS < 1.200) was significantly higher among cases (51%) than in controls (23.5%); P < 0.001. Prevalent vertebral fractures were not significantly different in cases and controls. The various geometric indices of the proximal hip were significantly impaired in subjects with diabetes as compared to controls. CONCLUSION This study may highlight the utility of the trabecular bone score and hip structural analysis in subjects with diabetes, where the bone mineral density tends to be paradoxically high, and may not adequately predict fracture risk.
Collapse
Affiliation(s)
- J Paul
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - V Devarapalli
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - J T Johnson
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - K E Cherian
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - F K Jebasingh
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - H S Asha
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - N Kapoor
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - N Thomas
- Department of Endocrinology, Christian Medical College, Vellore, India
| | - T V Paul
- Department of Endocrinology, Christian Medical College, Vellore, India.
| |
Collapse
|
15
|
van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32:1465-1485. [PMID: 34023944 PMCID: PMC8376700 DOI: 10.1007/s00198-021-05999-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophysiology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity; (2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteoporosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportunities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural deterioration, which would have important implications for the decision on therapeutical interventions.
Collapse
Affiliation(s)
- J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Medicine, Hasselt University, Hasselt, Belgium.
| | - P Szulc
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| | - A M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network; and Department of Medicine and Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada
| | - M Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| |
Collapse
|
16
|
Ha J, Lim Y, Kim MK, Kwon HS, Song KH, Ko SH, Kang MI, Moon SD, Baek KH. Comparison of the Effects of Various Antidiabetic Medication on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus. Endocrinol Metab (Seoul) 2021; 36:895-903. [PMID: 34365776 PMCID: PMC8419604 DOI: 10.3803/enm.2021.1026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Prospective comparative studies on the effects of various antidiabetic agents on bone metabolism are limited. This study aimed to assess changes in bone mass and biochemical bone markers in postmenopausal patients with type 2 diabetes mellitus (T2DM). METHODS This prospective, multicenter, open-label, comparative trial included 264 patients with T2DM. Patients who had received a metformin, or sulfonylurea/metformin combination (Group 1); a thiazolidinedione combination (Group 2); a dipeptidyl peptidase-4 inhibitor (gemigliptin) combination (Group 3); or an sodium-glucose cotransporter 2 inhibitor (empagliflozin) combination (Group 4) were prospectively treated for 12 months; bone mineral density (BMD) and bone turnover marker (BTM) changes were evaluated. RESULTS The femoral neck BMD percentage changes were -0.79%±2.86% (Group 1), -2.50%±3.08% (Group 2), -1.05%±2.74% (Group 3), and -1.24%±2.91% (Group 4) (P<0.05). The total hip BMD percentage changes were -0.57%±1.79% (Group 1), -1.74%±1.48% (Group 2), -0.75%±1.87% (Group 3), and -1.27%±1.72% (Group 4) (P<0.05). Mean serum BTM (C-terminal type 1 collagen telopeptide and procollagen type 1 amino-terminal propeptide) levels measured during the study period did not change over time or differ between groups. CONCLUSION Significant bone loss in the femoral neck and total hip was associated with thiazolidinedione combination regimens. However, bone loss was not significantly associated with combination regimens including gemigliptin or empagliflozin. Caution should be exercised during treatment with antidiabetic medications that adversely affect the bone in patients with diabetes at a high risk of bone loss.
Collapse
Affiliation(s)
- Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Yejee Lim
- Division of General Internal Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Seoul,
Korea
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| | - Seung Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Seoul,
Korea
| | - Moo Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sung Dae Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon,
Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| |
Collapse
|
17
|
Sihota P, Yadav RN, Dhaliwal R, Bose JC, Dhiman V, Neradi D, Karn S, Sharma S, Aggarwal S, Goni VG, Mehandia V, Vashishth D, Bhadada SK, Kumar N. Investigation of Mechanical, Material, and Compositional Determinants of Human Trabecular Bone Quality in Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e2271-e2289. [PMID: 33475711 DOI: 10.1210/clinem/dgab027] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Increased bone fragility and reduced energy absorption to fracture associated with type 2 diabetes (T2D) cannot be explained by bone mineral density alone. This study, for the first time, reports on alterations in bone tissue's material properties obtained from individuals with diabetes and known fragility fracture status. OBJECTIVE To investigate the role of T2D in altering biomechanical, microstructural, and compositional properties of bone in individuals with fragility fracture. METHODS Femoral head bone tissue specimens were collected from patients who underwent replacement surgery for fragility hip fracture. Trabecular bone quality parameters were compared in samples of 2 groups, nondiabetic (n = 40) and diabetic (n = 30), with a mean duration of disease 7.5 ± 2.8 years. RESULTS No significant difference was observed in aBMD between the groups. Bone volume fraction (BV/TV) was lower in the diabetic group due to fewer and thinner trabeculae. The apparent-level toughness and postyield energy were lower in those with diabetes. Tissue-level (nanoindentation) modulus and hardness were lower in this group. Compositional differences in the diabetic group included lower mineral:matrix, wider mineral crystals, and bone collagen modifications-higher total fluorescent advanced glycation end-products (fAGEs), higher nonenzymatic cross-link ratio (NE-xLR), and altered secondary structure (amide bands). There was a strong inverse correlation between NE-xLR and postyield strain, fAGEs and postyield energy, and fAGEs and toughness. CONCLUSION The current study is novel in examining bone tissue in T2D following first hip fragility fracture. Our findings provide evidence of hyperglycemia's detrimental effects on trabecular bone quality at multiple scales leading to lower energy absorption and toughness indicative of increased propensity to bone fragility.
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ruban Dhaliwal
- Metabolic Bone Disease Center, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Jagadeesh Chandra Bose
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Neradi
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shailesh Karn
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sidhartha Sharma
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vijay G Goni
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishwajeet Mehandia
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
18
|
Hauge SC, Frost M, Hansen D. Understanding Bone Disease in Patients with Diabetic Kidney Disease: a Narrative Review. Curr Osteoporos Rep 2020; 18:727-736. [PMID: 33048275 DOI: 10.1007/s11914-020-00630-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Both diabetes and kidney disease associate with the development of bone disease and an increased risk of fragility fractures. The etiologies of bone disease in patients with diabetic kidney disease (DKD) are multiple and complex. This review explores the association between DKD and bone disease and discusses how the presence of both diabetes and kidney disease may impair bone quality and increase fracture risk. Diagnostic tools as well as future research areas are also discussed. RECENT FINDINGS Patients with DKD have an increased risk of fragility fracture, most pronounced in patients with type 1 diabetes, and in DKD a high prevalence of adynamic bone disease is found. Recent studies have demonstrated disturbances in the interplay between bone regulating factors in DKD, such as relative hypoparathyroidism and alterations of bone-derived hormones including fibroblast growth factor-23 (FGF-23), sclerostin and klotho, which lead to bone disease. This review examines the current knowledge on bone disease in patients with DKD, clinical considerations for patient care, as well as subjects for future research.
Collapse
Affiliation(s)
- Sabina Chaudhary Hauge
- Department of Nephrology, Herlev Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000, Odense C, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
19
|
Depczynski B, Liew PY, White C. Association of glycaemic variables with trabecular bone score in post-menopausal women with type 2 diabetes mellitus. Diabet Med 2020; 37:1545-1552. [PMID: 32276299 DOI: 10.1111/dme.14303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 01/16/2023]
Abstract
AIM To determine the relationship between bone microarchitecture, as measured by trabecular bone score, and advanced glycation end-product accumulation, as assessed by skin autofluorescence. METHODS This was a cross-sectional study. Participants were 64 post-menopausal women with type 2 diabetes and 175 post-menopausal women without diabetes. Trabecular bone score and skin autofluorescence data were obtained at time of bone density measurement. RESULTS Trabecular bone score and skin autofluorescence were inversely correlated in women with type 2 diabetes (r = -0.34, P = 0.006); no correlation was seen in post-menopausal women without diabetes (r = -0.029, P = 0.707). After adjustment, neither skin autofluorescence nor a diagnosis of diabetes were associated with trabecular bone score, but HbA1c and waist circumference were independently associated with trabecular bone score. CONCLUSION Skin autofluorescence did not predict trabecular bone score. In contrast, glycaemia, as reflected by HbA1c , and visceral adiposity, as reflected by waist circumference, were independently associated with trabecular bone score.
Collapse
Affiliation(s)
- B Depczynski
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - P Y Liew
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - C White
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Ofir O, Buch A, Rouach V, Goldsmith R, Stern N, Monsonego-Ornan E. Association between abdominal obesity and fragility fractures among elderly Israeli women. Aging Clin Exp Res 2020; 32:1459-1467. [PMID: 31522392 DOI: 10.1007/s40520-019-01347-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity has been traditionally viewed as a protective factor for fractures. Recent studies have challenged this concept, particularly regarding abdominal obesity. We aimed to investigate the association between abdominal obesity, body mass index (BMI) and fragility fractures prevalence in a sample of community-dwelling elderly Israeli women. METHODS The data in this cross-sectional study were based on 'Mabat Zahav'-a survey of a nationally representative sample of elderly Israelis. The study population included 669 women. Data on fragility fractures site and circumstances were self-reported, and height, weight, waist and calf circumferences were measured. Waist circumference (WC) variable was divided into tertiles: < 88 cm, 88-99 cm and > 99 cm. RESULTS Sixty-five women reported fragility fractures (14 hip fractures, 18 vertebral fractures and 39 wrist fractures). Mean age was 73.9 ± 5.9 years, mean BMI was 29.9 ± 5 kg/m2 and mean WC was 93.9 ± 12 cm. While BMI was not associated with osteoporotic fractures, abdominal obesity (WC > 88 cm) was positively associated with fragility fractures, independently of age, smoking, physical activity [middle and high WC tertiles {3.15 (95% CI 1.41-7.02), 2.78 (95% CI 1.05-7.31), respectively}]. CONCLUSIONS Among this sample of elderly women, abdominal obesity was positively associated with fragility fractures, independently of age, smoking, physical activity and BMI. Waist circumference, an easily measured anthropometric indicator, may be useful for assessing the risk of fragility fractures in elderly women, particularly among those with normal or high BMI-a vast population which has been traditionally considered as having lower fracture risk.
Collapse
Affiliation(s)
- Orit Ofir
- Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B 12, 76100, Rehovot, Israel.
| | - Assaf Buch
- Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B 12, 76100, Rehovot, Israel
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239, Tel-Aviv, Israel
- The Sackler Faculty of Medicine, Tel-Aviv University, Dr Ya'ackov Klachkin 35 St, 6997801, Tel-Aviv, Israel
| | - Vanessa Rouach
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239, Tel-Aviv, Israel
| | - Rebecca Goldsmith
- Nutrition Division, Ministry of Health Israel, Yirmiyahu 39 St, Jerusalem, Israel
| | - Naftali Stern
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239, Tel-Aviv, Israel
- The Sackler Faculty of Medicine, Tel-Aviv University, Dr Ya'ackov Klachkin 35 St, 6997801, Tel-Aviv, Israel
| | - Efrat Monsonego-Ornan
- Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B 12, 76100, Rehovot, Israel
| |
Collapse
|
21
|
Ding Z, Zeng W, Rong X, Liang Z, Zhou Z. Do patients with diabetes have an increased risk of impaired fracture healing? A systematic review and meta‐analysis. ANZ J Surg 2020; 90:1259-1264. [PMID: 32255244 DOI: 10.1111/ans.15878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Zi‐chuan Ding
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| | - Wei‐nan Zeng
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| | - Xiao Rong
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| | - Zhi‐min Liang
- Clinic Research Management Department, West China HospitalSichuan University Chengdu China
| | - Zong‐ke Zhou
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| |
Collapse
|
22
|
Rasmussen NH, Dal J, de Vries F, van den Bergh JP, Jensen MH, Vestergaard P. Diabetes and fractures: new evidence of atypical femoral fractures? Osteoporos Int 2020; 31:447-455. [PMID: 31838553 DOI: 10.1007/s00198-019-05224-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
UNLABELLED Patients with diabetes have an increased risk of fractures. In this study, subtrochanteric and femoral shaft fractures were increased in patients with type 1 diabetes compared with the general population. In the light of this, more evidence points towards an association between diabetes and atypical femoral fractures. INTRODUCTION Patients with diabetes have an increased risk of femoral fractures, but little is known about the risk of atypical femoral fractures (AFFs). The aim of this study was to identify the risk of subtrochanteric and femoral shaft (ST/FS) fractures and estimate the risk of AFFs in patients with type 1 (T1D) and type 2 diabetes (T2D). METHODS From the nationwide Danish National Patient Register, we identified patients with T1D (n = 19,896), T2D (n = 312,188), and sex- and aged-matched controls without diabetes (n = 996,252) from the general population and all ST/FS fractures (n = 7509). Data were analyzed using a Cox proportional-hazards model and the incidence rate and rate ratio of ST/FS fractures were estimated. RESULTS The incidence rate of ST/FS fractures in T1D was 52.14 events per 100,000 person years and 73.21 per 100,000 person years in T2D. T1D was associated with an increased risk of ST/FS (HR 2.07 (95% CI 1.68-2.56)), whereas T2D was not (HR 0.99 (95% CI 0.94-1.10)). Previous ST/FS fractures were associated with an increased risk of subsequent ST/FS fractures (HR 6.95 (95% CI 6.00-8.05)) and the use of bisphosphonates with an increased risk of ST/FS fractures (HR 1.72 (95% CI 1.54-1.91)). CONCLUSION Patients with T1D have a higher risk of ST/FS fractures compared with sex- and age-matched controls. Since a proportion of ST/FS fractures are classified as AFFs, this could point towards the fact that AFFs also are increased in patients with T1D, but not T2D.
Collapse
Affiliation(s)
- N H Rasmussen
- Steno Diabetes Center North, Aalborg University Hospital, Aalborg, Denmark.
| | - J Dal
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - F de Vries
- Department of Clinical Pharmacy & Toxicology, Maastricht UMC+, Maastricht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- Department of Internal Medicine, Maastricht UMC+, Maastricht, The Netherlands
- Faculty of Medicine and Life Sciences, University Hasselt, Hasselt, Belgium
| | - M H Jensen
- Steno Diabetes Center North, Aalborg University Hospital, Aalborg, Denmark
| | - P Vestergaard
- Steno Diabetes Center North, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
23
|
Jiating L, Buyun J, Yinchang Z. Role of Metformin on Osteoblast Differentiation in Type 2 Diabetes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9203934. [PMID: 31886264 PMCID: PMC6899291 DOI: 10.1155/2019/9203934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Metformin, an effective hypoglycemic, can modulate different points of malignant mass, polycystic ovary syndrome (PCOS), cardiovascular diseases, tuberculosis, and nerve regeneration. Recently, the effect of metformin on bone metabolism has been analyzed. Metformin relies on organic cation transporters (OCT1), a polyspecific cell membrane of the solute carrier 22A (SLC22A) gene family, to facilitate its intracellular uptake and action on complex I of the respiratory chain of mitochondria. These changes activate the cellular energy sensor AMP-activated protein kinase (AMPK). Thus, the increased cellular AMP/ATP ratio causes a dramatic and progressive activation of insulin and lysosomes, resulting in a decrease in intracellular glucose level, which promotes osteoblast proliferation and differentiation. AMPK also phosphorylates runt-related transcription factor 2 (Runx2) at S118, the lineage-specific transcriptional regulators, to promote osteogenesis. Metformin phosphorylates extracellular signal-regulated kinase (ERK), stimulates endothelial and inducible nitric oxide synthases (e/iNOS), inhibits the GSK3β/Wnt/β-catenin pathway, and promotes osteogenic differentiation of osteoblasts. The effect of metformin on hyperglycemia decreases intracellular reactive oxygen species (ROS) and advanced glycation end-products (AGEs) in collagen, and reduced serum levels of insulin-like growth factors (IGF-1) were beneficial for bone formation. Metformin has a certain effect on microangiopathy and anti-inflammation, which can induce osteoporosis, activate the activity of osteoclasts, and inhibit osteoblast activity, and has demonstrated extensive alteration in bone and mineral metabolism. The aim of this review was to elucidate the mechanisms of metformin on osteoblasts in insulin-deficient diabetes.
Collapse
Affiliation(s)
- Lin Jiating
- Department of Stomatology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province 241000, China
| | - Ji Buyun
- Department of Stomatology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province 241000, China
| | - Zhang Yinchang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province 241000, China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Based on a systematic literature search, we performed a comprehensive review of risk factors for falls and fractures in patients with diabetes. RECENT FINDINGS Patients with diabetes have an increased risk of fractures partly explained by increased bone fragility. Several risk factors as altered body composition including sarcopenia and obesity, impaired postural control, gait deficits, neuropathy, cardiovascular disease, and other co-morbidities are considered to increase the risk of falling. Diabetes and bone fragility is well studied, but new thresholds for fracture assessment should be considered. In general, the risk factors for falls in patients with diabetes are well documented in several studies. However, the fall mechanisms among diabetic patients have only been assessed in few studies. Thus, a gab of knowledge exits and may influence the current understanding and treatment, in order to reduce the risk of falling and thereby prevent fractures.
Collapse
Affiliation(s)
| | - Jakob Dal
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
25
|
Mohsin S, Baniyas MM, AlDarmaki RS, Tekes K, Kalász H, Adeghate EA. An update on therapies for the treatment of diabetes-induced osteoporosis. Expert Opin Biol Ther 2019; 19:937-948. [PMID: 31079501 DOI: 10.1080/14712598.2019.1618266] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Currently, 424 million people aged between 20 and 79 years worldwide are diabetic. More than 25% of adults aged over 65 years in North America have Type 2 diabetes mellitus (DM). Diabetes-induced osteoporosis (DM-OS) is caused by chronic hyperglycemia, advanced glycated end products and oxidative stress. The increase in the prevalence of DM-OS has prompted researchers to develop new biological therapies for the management of DM-OS. Areas covered: This review covered the current and novel biological agents used in the management of DM-OS. Data were retrieved from PubMed, Scopus, American Diabetes Association and International Osteoporosis Foundation websites, and ClinicalTrials.gov. The keywords for the search included: DM, osteoporosis, and management. Expert opinion: Several biological molecules have been examined in order to find efficient drugs for the treatment of DM-OS. These biological agents include anti-osteoporosis drugs: net anabolics (parathyroid hormone/analogs, androgens, calcilytics, anti-sclerostin antibody), net anti-resorptive osteoporosis drugs (calcitonin, estrogen, selective estrogen receptor modulators, bisphosphonates, RANKL antibody) and anti-diabetic drugs (alpha glucosidase inhibitors, sulfonylureas, biguanides, meglitinides, thiazolidinediones, GLP-1 receptor agonists, dipeptidylpeptidase-4 inhibitors, sodium glucose co-transporter-2 inhibitors, insulin). Biological medications that effectively decrease hyperglycemia and, at the same time, maintain bone health would be an ideal drug/drug combination for the treatment of DM-OS.
Collapse
Affiliation(s)
- Sahar Mohsin
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - May Myh Baniyas
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Reem Smh AlDarmaki
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Kornélia Tekes
- b Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University , Budapest , Hungary
| | - Huba Kalász
- c Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University , Budapest , Hungary
| | - Ernest A Adeghate
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| |
Collapse
|