1
|
Budreika A, Phoenix JT, Kostlan RJ, Deegan CD, Ferrari MG, Young KS, Fanning SW, Kregel S. The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells. Cancers (Basel) 2025; 17:306. [PMID: 39858088 PMCID: PMC11763476 DOI: 10.3390/cancers17020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR. Current standard-of-care therapies directly target AR and its aberrant signaling axis but resistance to these therapies commonly arises, and the mechanisms behind the onset of therapy-resistance are still elusive. Research has shown that even with resistant disease, AR remains the main driver of growth and survival of PCa, and AR target genes and cofactors may help mediate resistance to therapy. Here, we focused on a homeobox transcription factor that exhibits a close relationship with AR-NKX3.1. Though NKX3.1 is traditionally thought of as a tumor suppressor, it has been previously reported to promote cancer cell survival by cooperating with AR. The role of NKX3.1 as a tumor suppressor perhaps in early-stage disease also contradicts its profile as a diagnostic biomarker for advanced prostate cancer. METHODS We investigated the physical interaction between NKX3.1 and AR, a modulated NKX3.1 expression in prostate cancer cells via overexpression and knockdown and assayed subsequent viability and downstream target gene expression. RESULTS We find that the expression of NKX3.1 is maintained in advanced PCa, and it is often elevated because of aberrant AR activity. Transient knockdown experiments across various PCa cell line models reveal NKX3.1 expression is necessary for survival. Similarly, stable overexpression of NKX3.1 in PCa cell lines reveals an androgen insensitive phenotype, suggesting NKX3.1 is sufficient to promote growth in the absence of an AR ligand. CONCLUSIONS Our work provides new insight into NKX3.1's oncogenic influence on PCa and the molecular interplay of these transcription factors in models of late-stage prostate cancer.
Collapse
Affiliation(s)
- Audris Budreika
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - John T. Phoenix
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Raymond J. Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carleen D. Deegan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Kristen S. Young
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sean W. Fanning
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Steven Kregel
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| |
Collapse
|
2
|
Yang M, Xiang H, Luo G. Targeting Protein Kinase, Membrane-Associated Tyrosine/Threonine 1 (PKMYT1) for Precision Cancer Therapy: From Discovery to Clinical Trial. J Med Chem 2024; 67:17997-18016. [PMID: 39383322 DOI: 10.1021/acs.jmedchem.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
\Protein kinase membrane-associated tyrosine/threonine 1 (PKMYT1), an overlooked member of the WEE family responsible for regulating cell cycle transition, has recently emerged as a compelling therapeutic target for precision cancer therapy due to its established synthetic lethal relationship with CCNE1 (cyclin E1) amplification. Since the first-in-class selective PKMYT1 inhibitor, RP-6306, entered clinical trials in 2021, the field has experienced renewed interest underscored by the growing number of inhibitor patents and the exploration of additional gene alterations, such as KRAS/p53 mutations, FBXW7 mutation, and PPP2R1A mutation, as novel synthetic lethal partners. This perspective summarizes, for the first time, the PKMYT1 structure, function, and inhibitors in both the literature and patent applications reported to date. Compounds are described focusing on their design and optimization process, structural features, and biological activity with the aim to promoting further drug discovery efforts targeting PKMYT1 as a potential precision therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A, Ozhan G. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells. Front Cell Dev Biol 2023; 11:1297910. [PMID: 38020918 PMCID: PMC10679360 DOI: 10.3389/fcell.2023.1297910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer and develops from the melanocytes that are responsible for the pigmentation of the skin. The skin is also a highly regenerative organ, harboring a pool of undifferentiated melanocyte stem cells that proliferate and differentiate into mature melanocytes during regenerative processes in the adult. Melanoma and melanocyte regeneration share remarkable cellular features, including activation of cell proliferation and migration. Yet, melanoma considerably differs from the regenerating melanocytes with respect to abnormal proliferation, invasive growth, and metastasis. Thus, it is likely that at the cellular level, melanoma resembles early stages of melanocyte regeneration with increased proliferation but separates from the later melanocyte regeneration stages due to reduced proliferation and enhanced differentiation. Here, by exploiting the zebrafish melanocytes that can efficiently regenerate and be induced to undergo malignant melanoma, we unravel the transcriptome profiles of the regenerating melanocytes during early and late regeneration and the melanocytic nevi and malignant melanoma. Our global comparison of the gene expression profiles of melanocyte regeneration and nevi/melanoma uncovers the opposite regulation of a substantial number of genes related to Wnt signaling and transforming growth factor beta (TGF-β)/(bone morphogenetic protein) BMP signaling pathways between regeneration and cancer. Functional activation of canonical Wnt or TGF-β/BMP pathways during melanocyte regeneration promoted melanocyte regeneration but potently suppressed the invasiveness, migration, and proliferation of human melanoma cells in vitro and in vivo. Therefore, the opposite regulation of signaling mechanisms between melanocyte regeneration and melanoma can be exploited to stop tumor growth and develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | | | - Doga Karagulle
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Irene Papatheodorou
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| |
Collapse
|
4
|
Sohn HA, Kang M, Ha H, Yeom YI, Park KC, Lee DC. R-PTP-κ Inhibits Contact-Dependent Cell Growth by Suppressing E2F Activity. Biomedicines 2022; 10:biomedicines10123199. [PMID: 36551956 PMCID: PMC9775357 DOI: 10.3390/biomedicines10123199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Density-dependent regulation of cell growth is presumed to be caused by cell-cell contact, but the underlying molecular mechanism is not yet clearly defined. Here, we report that receptor-type protein tyrosine phosphatase-kappa (R-PTP-κ) is an important regulator of cell contact-dependent growth inhibition. R-PTP-κ expression increased in proportion to cell density. siRNA-mediated R-PTP-κ downregulation led to the loss of cell contact-mediated growth inhibition, whereas its upregulation reduced anchorage-independent cell growth in soft agar as well as tumor growth in nude mice. Expression profiling and luciferase reporter system-mediated signaling pathway analysis revealed that R-PTP-κ induced under cell contact conditions distinctly suppressed E2F activity. Among the structural domains of R-PTP-κ, the cytoplasmic domain containing the tandemly repeated PTP motif acts as a potent downregulator of the E2F pathway. Specifically, R-PTP-κ suppressed CDK2 activity through the induction of p21Cip1/WAF-1 and p27Kip1, resulting in cell cycle arrest at the G1 phase. In transcriptome-based public datasets generated from four different tumor types, R-PTP-κ expression was negatively correlated with the expression pattern and prognostic value of two known E2F1 target genes (CCNE1 and CDC25A). Therefore, our results indicate that the R-PTP-κ-E2F axis plays a crucial role in cell growth-inhibitory signaling arising from cell-cell contact conditions.
Collapse
Affiliation(s)
- Hyun Ahm Sohn
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Correspondence: (K.C.P.); (D.C.L.); Tel.: +82-42-879-8115 (K.C.P.); +82-42-879-8153 (D.C.L.)
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (K.C.P.); (D.C.L.); Tel.: +82-42-879-8115 (K.C.P.); +82-42-879-8153 (D.C.L.)
| |
Collapse
|
5
|
Dutta T, Das S, Gupta I, Koner AL. Construing the metaxin-2 mediated simultaneous localization between mitochondria and nucleolus using molecular viscometry. Chem Sci 2022; 13:12987-12995. [PMID: 36425508 PMCID: PMC9668072 DOI: 10.1039/d2sc03587a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2023] Open
Abstract
Fluorescent probes for specific inter-organelle communication are of massive significance as such communication is essential for a diverse range of cellular events. Here, we present the microviscosity-sensitive fluorescence marker, Quinaldine Red (QR), and its dual organelle targeting light-up response in live cells. This biocompatible probe was able to localize in mitochondria and nucleolus simultaneously. While QR was able to sense the viscosity change inside these compartments under the induced effect of an ionophore and ROS-rich microenvironment, the probe's ability to stain mitochondria remained unperturbed even after protonophore-induced depolarization. Consequently, a systematic quantification was performed to understand the alteration of microviscosity. Similar behavior in two distinct organelles implied that QR binds to metaxin-2 protein, common to mitochondrial and nucleolar proteomes. We believe this is the first of its kind investigation that identifies the inter-organelle communications marker and opens up a new dimension in this field.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| | - Sreeparna Das
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| |
Collapse
|
6
|
Huang M, Hua X, Xu J, Tian Z, Wang J, Chen H, Wang X, Shu P, Ye H, Shu J, Huang C. Induction of p27 contributes to inhibitory effect of isorhapontigenin (ISO) on malignant transformation of human urothelial cells. Cell Cycle 2022:1-14. [PMID: 35532178 DOI: 10.1080/15384101.2022.2074623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022] Open
Abstract
Bladder cancer (BC) is the most expensive cancer to manage on a per-patient basis, costing about $4 billion in total healthcare expenditure per annum in America alone. Therefore, identifying a natural compound for prevention of BC is of tremendous importance for managing this disease. Previous studies have identified isorhapontigenin (ISO) as having an 85% preventive effect against invasive BC formation induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). The results showed here that ISO treatment inhibited EGF-induced cell transformation of human urothelial cells through induction of tumor suppressor p27 transcription secondary to activation of an E2F1-dependentpathway.ISOtreatmentrenderedcellsresistanttoEGF-induced anchorage-independent growth concurrent with p27 protein induction in both UROtsa and SV-HUC-1 cells. ISO inhibition of EGF-induced cell transformation could be completely reversed by knockdown of p27, indicating that this protein was essential for the noted ISO inhibitory action. Mechanistic studies revealed that ISO treatment resulted in increased expression of E2F1, which in turn bound to its binding site in p27 promoter and initiated p27 transcription. The E2F1 induction was due to the elevation of its translation caused by ISO-induced miR-205 downregulation. Consistently, miR-205 was found to be overexpressed in human BCs, and ectopic expression of miR-205 mitigated ISO inhibitory effects against EGF-induced outcomes. Collectively, the results here demonstrate that ISO exhibits its preventive effect on EGF-induced human urothelial cell transformation by induction of p27 through a miR-205/E2F1 axis. This is distinct from what has been described for the therapeutic effects of ISO on human BC cells.
Collapse
Affiliation(s)
- Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hengchao Chen
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xuyao Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Peng Shu
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hongyan Ye
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Jianfeng Shu
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Lan T, Yu M, Chen W, Yin J, Chang HT, Tang S, Zhao Y, Svoronos S, Wong SWK, Tseng Y. Decomposition of cell activities revealing the role of the cell cycle in driving biofunctional heterogeneity. Sci Rep 2021; 11:23431. [PMID: 34873244 PMCID: PMC8648726 DOI: 10.1038/s41598-021-02926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Heterogeneity of cell phenotypes remains a barrier in progressing cell research and a challenge in conquering cancer-related drug resistance. Cell morphology, the most direct property of cell phenotype, evolves along the progression of the cell cycle; meanwhile, cell motility, the dynamic property of cell phenotype, also alters over the cell cycle. However, a quantifiable research understanding the relationship between the cell cycle and cell migration is missing. Herein, we coordinate the migratory behaviours of NIH 3T3 fibroblasts to their corresponding phases of the cell cycle, the G1, the S, and the G2 phases, and explain the relationship through the spatiotemporal arrangements between the Rho GTPases’ signals and cyclin-dependent kinase inhibitors, p21Cip1, and p27Kip1. Taken together, we demonstrate that both cell morphology and the dynamic subcellular behaviour are homogenous within each stage of the cell cycle phases but heterogenous between phases through quantitative cell analyses and an interactive molecular mechanism between the cell cycle and cell migration, posing potential implications in countering drug resistance.
Collapse
Affiliation(s)
- Tian Lan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.,Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Meng Yu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Weisheng Chen
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jun Yin
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Hsiang-Tsun Chang
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Shan Tang
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Ye Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Spyros Svoronos
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Samuel W K Wong
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Yiider Tseng
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China. .,Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Sadri Nahand J, Rabiei N, Fathazam R, Taghizadieh M, Ebrahimi MS, Mahjoubin-Tehran M, Bannazadeh Baghi H, Khatami A, Abbasi-Kolli M, Mirzaei HR, Rahimian N, Darvish M, Mirzaei H. Oncogenic viruses and chemoresistance: What do we know? Pharmacol Res 2021; 170:105730. [PMID: 34119621 DOI: 10.1016/j.phrs.2021.105730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Liu L, Wang Y, Geng C, Wang A, Han S, You X, Sun Y, Zhang J, Lu W, Zhang Y. CD155 Promotes the Progression of Cervical Cancer Cells Through AKT/mTOR and NF-κB Pathways. Front Oncol 2021; 11:655302. [PMID: 34164340 PMCID: PMC8216081 DOI: 10.3389/fonc.2021.655302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Expression of the immunoglobulin superfamily member CD155 was increased in a variety of human malignancies, but the role of CD155 in tumorigenesis and tumor development in cervical cancer has not been elucidated. In this study, immunohistochemistry and enzyme-linked immunosorbent assay analyses showed that CD155 expression gradually increases with the degree of cervical lesions. In vitro and in vivo, reducing the expression of CD155 inhibited cell proliferation, cell viability and tumor formation and arrested the cell cycle in G0/G1 phase. Antibody array-based profiling of protein phosphorylation revealed that CD155 knockdown can inhibited the AKT/mTOR/NF-κB pathway and activated autophagy and apoptosis; the opposite effects were observed upon CD155 has overexpression. We proved that there is an interaction between CD155 and AKT by immunoprecipitation. We further confirmed the mechanism between CD155 and AKT/mTOR/NF-κB through rescue experiments. AKT knockdown reversed the anti-apoptotic effects and activation of the AKT/mTOR/NF-κB pathway induced by CD155 overexpression. Our research demonstrated that CD155 can interact with AKT to form a complex, activates the AKT/mTOR/NF-κB pathway and inhibit autophagy and apoptosis. Thus, CD155 is a potential screening and therapeutic biomarker for cervical cancer.
Collapse
Affiliation(s)
- Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, China
| | - Chen Geng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Aihong Wang
- Department of Obstetrics and Gynaecology, Feicheng Hospital Affiliated to Shandong First Medical University, Tai'an, China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuewu You
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Da Silva MLR, De Albuquerque BHDR, Allyrio TADMF, De Almeida VD, Cobucci RNDO, Bezerra FL, Andrade VS, Lanza DCF, De Azevedo JCV, De Araújo JMG, Fernandes JV. The role of HPV-induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 2021; 15:60. [PMID: 34094536 PMCID: PMC8165754 DOI: 10.3892/br.2021.1436] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is associated with infection by certain types of human papillomaviruses (HPVs), and this affects women worldwide. Despite the improvements in prevention and cure of HPV-induced cervical cancer, it remains the second most common type of cancer in women in the least developed regions of the world. Epigenetic modifications are stable long-term changes that occur in the DNA, and are part of a natural evolutionary process of necessary adaptations to the environment. They do not result in changes in the DNA sequence, but do affect gene expression and genomic stability. Epigenetic changes are important in several biological processes. The effects of the environment on gene expression can contribute to the development of numerous diseases. Epigenetic modifications may serve a critical role in cancer cells, by silencing tumor suppressor genes, activating oncogenes, and exacerbating defects in DNA repair mechanisms. Although cervical cancer is directly related to a persistent high-risk HPV infection, several epigenetic changes have been identified in both the viral DNA and the genome of the infected cells: DNA methylation, histone modification and gene silencing by non-coding RNAs, which initiate and sustain epigenetic changes. In the present review, recent advances in the role of epigenetic changes in cervical cancer are summarized.
Collapse
Affiliation(s)
- Martha Laysla Ramos Da Silva
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | | | - Valéria Duarte De Almeida
- Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoro 59607-360, Brazil
| | | | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
11
|
The Role of Immunohistochemical Markers for the Diagnosis and Prognosis of Adrenocortical Neoplasms. J Pers Med 2021; 11:jpm11030208. [PMID: 33804047 PMCID: PMC8001501 DOI: 10.3390/jpm11030208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
Adrenal cortical carcinoma (ACC) is a rare cancer with poor prognosis that needs to be distinguished from adrenocortical adenomas (ACAs). Although, the recently developed transcriptome analysis seems to be a reliable tool for the differential diagnosis of adrenocortical neoplasms, it is not widely available in clinical practice. We aim to evaluate histological and immunohistochemical markers for the distinction of ACCs from ACAs along with assessing their prognostic role. Clinical data were retrospectively analyzed from 37 patients; 24 archived, formalin-fixed, and paraffin-embedded ACC samples underwent histochemical analysis of reticulin and immunohistochemical analysis of p27, p53, Ki-67 markers and were compared with 13 ACA samples. Weiss and Helsinki scores were also considered. Kaplan-Meier and univariate Cox regression methods were implemented to identify prognostic effects. Altered reticulin pattern, Ki-67% labelling index and overexpression of p53 protein were found to be useful histopathological markers for distinguishing ACAs from ACCs. Among the studied markers, only pathological p53 nuclear protein expression was found to reach statistically significant association with poor survival and development of metastases, although in a small series of patients. In conclusion, altered reticulin pattern and p53/Ki-67 expression are useful markers for distinguishing ACCs from ACAs. Immunohistopathology alone cannot discriminate ACCs with different prognosis and it should be combined with morphological criteria and transcriptome analysis.
Collapse
|
12
|
Zhang W, Guan X, Tang J. The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif 2021; 54:e12966. [PMID: 33314471 PMCID: PMC7848969 DOI: 10.1111/cpr.12966] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non-coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs-based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA-based strategies for clinical TNBC patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaoxiang Guan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
13
|
Nian H, Ma B. Calpain-calpastatin system and cancer progression. Biol Rev Camb Philos Soc 2021; 96:961-975. [PMID: 33470511 DOI: 10.1111/brv.12686] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The calpain system is required by many important physiological processes, including the cell cycle, cytoskeleton remodelling, cellular proliferation, migration, cancer cell invasion, metastasis, survival, autophagy, apoptosis and signalling, as well as the pathogenesis of a wide range of disorders, in which it may function to promote tumorigenesis. Calpains are intracellular conserved calcium-activated neutral cysteine proteinases that are involved in mediating cancer progression via catalysing and regulating the proteolysis of their specific substrates, which are important signalling molecules during cancer progression. μ-calpain, m-calpain, and their specific inhibitor calpastatin are the three molecules originally identified as comprising the calpain system and they contain several crucial domains, specific motifs, and functional sites. A large amount of data supports the roles of the calpain-calpastatin system in cancer progression via regulation of cellular adhesion, proliferation, invasion, metastasis, and cellular survival and death, as well as inflammation and angiogenesis during tumorigenesis, implying that the inhibition of calpain activity may be a potential anti-cancer intervention strategy targeting cancer cell survival, invasion and chemotherapy resistance.
Collapse
Affiliation(s)
- Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
14
|
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). There are approximately 250 million people in the world that are chronically infected by this virus, resulting in nearly 1 million deaths every year. Many of these patients die from severe liver diseases, including HCC. HBV may induce HCC through the induction of chronic liver inflammation, which can cause oxidative stress and DNA damage. However, many studies also indicated that HBV could induce HCC via the alteration of hepatocellular physiology that may involve genetic and epigenetic changes of the host DNA, the alteration of cellular signaling pathways, and the inhibition of DNA repair mechanisms. This alteration of cellular physiology can lead to the accumulation of DNA damages and the promotion of cell cycles and predispose hepatocytes to oncogenic transformation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
15
|
Kometani T, Arai T, Chibazakura T. Increased Expression of NPM1 Suppresses p27 Kip1 Function in Cancer Cells. Cancers (Basel) 2020; 12:cancers12102886. [PMID: 33050036 PMCID: PMC7600800 DOI: 10.3390/cancers12102886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
p27Kip1, a major cyclin-dependent kinase inhibitor, is frequently expressed at low levels in cancers, which correlates with their malignancy. However, in this study, we found a qualitative suppression of p27 overexpressed in some cancer cells. By proteomic screening for factors interacting with p27, we identified nucleophosmin isoform 1 (NPM1) as a novel p27-interacting factor and observed that NPM1 protein was expressed at high levels in some cancer cells. NPM1 overexpression in normal cells suppressed p27 function, and conversely, NPM1 knockdown in cancer cells restored the function in vitro. Furthermore, the tumors derived from cancer cells carrying the combination of p27 overexpression and NPM1 knockdown constructs showed significant suppression of growth as compared with those carrying other combinations in mouse xenograft models. These results strongly suggest that increased expression of NPM1 qualitatively suppresses p27 function in cancer cells.
Collapse
|
16
|
Modulatory Effect of Indoles on the Expression of miRNAs Regulating G1/S Cell Cycle Phase in Breast Cancer Cells. Appl Biochem Biotechnol 2020; 192:1208-1223. [PMID: 32710170 DOI: 10.1007/s12010-020-03378-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Indole-3-carbinol (I3C) is a naturally occurring glucosinolate found in Brassica vegetables that is usually converted in gastric acidic environment to the efficient metabolite 3,3'-diindolylmethane (DIM). Both indoles (I3C and DIM) are known chemopreventive agents for various cancers including breast cancer. This study aimed to investigate the influence of both indoles on the tumor suppressor miRNAs (let-7a-e, miR-15a, miR-16, miR-17-5p, miR-19a, and miR-20a) and oncomiRs (miR-181a, miR-181b, miR-210, miR-221, and miR-106a), which are controlling the cell cycle key regulators: cyclin-dependent kinases (CDKs), CDK inhibitor p27Kip1, and cyclin D1. Our results indicated that both indoles generally elevated the expression of the tumor suppressor miRNAs let-7a-e, miR-19a, miR-17-5p, and miR-20a and decreased the expression of the oncomiR list. Both indoles were able to significantly suppress the expression of CDK4 and CDK6 as well as the apoptotic markers Bcl-2 and survivin. Both indoles decreased cyclin-D1 protein, where I3C decreased cytoplasmic and nuclear cyclin-D1 significantly. Cytoplasmic and nuclear P27Kip1 showed overexpression following treatment with I3C higher than that detected following DIM treatment. This study provides a mechanistic elucidation of the previously reported cell cycle arrest by I3C and DIM in breast cancer cells suggesting that this effect could be through modulation of miRNAs expression that, in turn, regulates the genetic network controlling the G1/S phase in cell cycle progression.
Collapse
|
17
|
Kohlmeyer JL, Kaemmer CA, Pulliam C, Maharjan CK, Samayoa AM, Major HJ, Cornick KE, Knepper-Adrian V, Khanna R, Sieren JC, Leidinger MR, Meyerholz DK, Zamba KD, Weimer JM, Dodd RD, Darbro BW, Tanas MR, Quelle DE. RABL6A Is an Essential Driver of MPNSTs that Negatively Regulates the RB1 Pathway and Sensitizes Tumor Cells to CDK4/6 Inhibitors. Clin Cancer Res 2020; 26:2997-3011. [PMID: 32086342 PMCID: PMC7299809 DOI: 10.1158/1078-0432.ccr-19-2706] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are deadly sarcomas that lack effective therapies. In most MPNSTs, the retinoblastoma (RB1) tumor suppressor is disabled by hyperactivation of cyclin-dependent kinases (CDK), commonly through loss of CDK-inhibitory proteins such as p27(Kip1). RABL6A is an inhibitor of RB1 whose role in MPNSTs is unknown. To gain insight into MPNST development and establish new treatment options, we investigated RABL6A-RB1 signaling and CDK inhibitor-based therapy in MPNSTs. EXPERIMENTAL DESIGN We examined patient-matched MPNSTs and precursor lesions by RNA sequencing (RNA-Seq) and IHC. Molecular and biological effects of silencing RABL6A and/or p27 in MPNST lines and normal human Schwann cells were determined. Tumor-suppressive effects of CDK inhibitors were measured in MPNST cells and orthotopic tumors. RESULTS RABL6A was dramatically upregulated in human MPNSTs compared with precursor lesions, which correlated inversely with p27 levels. Silencing RABL6A caused MPNST cell death and G1 arrest that coincided with p27 upregulation, CDK downregulation, and RB1 activation. The growth-suppressive effects of RABL6A loss, and its regulation of RB1, were largely rescued by p27 depletion. Importantly, reactivation of RB1 using a CDK4/6 inhibitor (palbociclib) killed MPNST cells in vitro in an RABL6A-dependent manner and suppressed MPNST growth in vivo. Low-dose combination of drugs targeting multiple RB1 kinases (CDK4/6, CDK2) had enhanced antitumorigenic activity associated with potential MPNST cell redifferentiation. CONCLUSIONS RABL6A is a new driver of MPNST pathogenesis that acts in part through p27-RB1 inactivation. Our results suggest RB1 targeted therapy with multiple pathway drugs may effectively treat MPNSTs.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Courtney A Kaemmer
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Casey Pulliam
- Human Toxicology Graduate Program, University of Iowa, Iowa City, Iowa
| | - Chandra K Maharjan
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | | | - Heather J Major
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | | | | | | - K D Zamba
- Department of Biostatistics, University of Iowa, Iowa City, Iowa
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota
| | - Rebecca D Dodd
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | | | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa.
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
- Department of Pathology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Common Functions of Disordered Proteins across Evolutionary Distant Organisms. Int J Mol Sci 2020; 21:ijms21062105. [PMID: 32204351 PMCID: PMC7139818 DOI: 10.3390/ijms21062105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.
Collapse
|
19
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
20
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
21
|
Amini MA, Talebi SS, Karimi J. Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment. Chonnam Med J 2019; 55:136-143. [PMID: 31598470 PMCID: PMC6769249 DOI: 10.4068/cmj.2019.55.3.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/01/2023] Open
Abstract
Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Proteomics identifies neddylation as a potential therapy target in small intestinal neuroendocrine tumors. Oncogene 2019; 38:6881-6897. [PMID: 31406256 DOI: 10.1038/s41388-019-0938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Patients with small intestinal neuroendocrine tumors (SI-NETs) frequently develop spread disease; however, the underlying molecular mechanisms of disease progression are not known and effective preventive treatment strategies are lacking. Here, protein expression profiling was performed by HiRIEF-LC-MS in 14 primary SI-NETs from patients with and without liver metastases detected at the time of surgery and initial treatment. Among differentially expressed proteins, overexpression of the ubiquitin-like protein NEDD8 was identified in samples from patients with liver metastasis. Further, NEDD8 correlation analysis indicated co-expression with RBX1, a key component in cullin-RING ubiquitin ligases (CRLs). In vitro inhibition of neddylation with the therapeutic agent pevonedistat (MLN4924) resulted in a dramatic decrease of proliferation in SI-NET cell lines. Subsequent mass spectrometry-based proteomics analysis of pevonedistat effects and effects of the proteasome inhibitor bortezomib revealed stabilization of multiple targets of CRLs including p27, an established tumor suppressor in SI-NET. Silencing of NEDD8 and RBX1 using siRNA resulted in a stabilization of p27, suggesting that the cellular levels of NEDD8 and RBX1 affect CRL activity. Inhibition of CRL activity, by either NEDD8/RBX1 silencing or pevonedistat treatment of cells resulted in induction of apoptosis that could be partially rescued by siRNA-based silencing of p27. Differential expression of both p27 and NEDD8 was confirmed in a second cohort of SI-NET using immunohistochemistry. Collectively, these findings suggest a role for CRLs and the ubiquitin proteasome system in suppression of p27 in SI-NET, and inhibition of neddylation as a putative therapeutic strategy in SI-NET.
Collapse
|
23
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
24
|
Multipronged activity of combinatorial miR-143 and miR-506 inhibits Lung Cancer cell cycle progression and angiogenesis in vitro. Sci Rep 2018; 8:10495. [PMID: 30002440 PMCID: PMC6043488 DOI: 10.1038/s41598-018-28872-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths. Downregulation of CDK1, 4 and 6, key regulators of cell cycle progression, correlates with decreased LC cell proliferation. Enforced expression of miRNAs (miRs) is a promising approach to regulate genes. Here, we study the combinatorial treatment of miR-143 and miR-506 to target the CDK1, 4/6 genes, respectively. We analyzed the differential expression of CDK genes by qPCR, and western blot, and evaluated changes in the cell cycle distribution upon combinatorial treatment. We used an antibody microarray analysis to evaluate protein expression, focusing on the cell cycle pathway, and performed RNA-sequencing for pathway analysis. The combinatorial miR treatment significantly downregulated CDK1, 4 and 6 expression, and induced a shift of the cell cycle populations, indicating a G1 and G2 cell cycle block. The two miRs induces strong cytotoxic activity, with potential synergism, and a significant Caspase 3/7 activation. We identified a strong inhibition of tube formation in the presence or absence VEGF in an in vitro angiogenesis model. Together with the pathways analysis of the RNA-sequencing data, our findings establish the combinatorial miR transfection as a viable strategy for lung cancer treatment that merits further investigation.
Collapse
|
25
|
Factors That Predict the Growth of Residual Nonfunctional Pituitary Adenomas: Correlations between Relapse and Cell Cycle Markers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1876290. [PMID: 30112364 PMCID: PMC6077672 DOI: 10.1155/2018/1876290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/04/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
Introduction Nonfunctional pituitary adenomas are treated surgically, and even partial resection can improve or eliminate clinical symptoms. Notably, progression requires further intervention, which presents an increased risk, especially in older patients. This study investigated whether the histopathological characteristics of nonfunctional adenomas could predict recurrence. Materials and Methods Data were obtained retrospectively from 30 patients who underwent surgery for the partial resection of pituitary adenomas. Remnant tumor growth was observed in 17 patients, while the residual tumor was unchanged more than 7 years after surgery in 13 patients. Statistical analysis was performed to investigate correlations between remnant tumor progression and tumor histopathological findings, including protein expression of p21, p27, p53, and Ki-67. Results and Discussion Remnant tumors that demonstrated regrowth showed significantly higher protein expression of p21 and Ki-67. Expression of the p53 tumor suppressor was also higher in this group, but the difference was at the limit of statistical significance. Conclusion Tumors with high expression of p21 and p53 and with a high Ki-67 index were more likely to show residual pituitary adenoma progression. Such cases should undergo frequent radiological examination and timely reoperation, and radiosurgery should be considered.
Collapse
|
26
|
Joshi V, Upadhyay A, Chhangani D, Amanullah A, Sharan RN, Mishra A. Gp78 involvement in cellular proliferation: Can act as a promising modulator for cell cycle regulatory proteins? J Cell Physiol 2018; 233:6352-6368. [PMID: 29741771 DOI: 10.1002/jcp.26618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/28/2018] [Indexed: 11/07/2022]
Abstract
In cells, protein synthesis and degradation are normal processes, which are tightly regulated by various cellular metabolic pathways. Cellular protein quality control (PQC) mechanisms always present a continuous and rigorous check over all intracellular proteins before they can participate in various cellular physiological processes with the help of PQC pathways like autophagy and ubiquitin proteasome system (UPS). The UPS employs few selective E3 ubiquitin ligases for the intracellular degradation of cyclin-dependent kinase inhibitor 1B (p27Kip1 ) that tightly controls cell cycle progression. But, the complex mechanistic interactions and the interplay between E3 ubiquitin ligases involved in the functional regulation as well as expression of p27 are not well known. Here, we demonstrate that cell surface glycoprotein Gp78, a putative E3 ubiquitin ligase, is involved in the stabilization of intracellular steady-state levels of p27. Transient overexpression of Gp78 increases the accumulation of p27 in cells in the form of massive inclusions like structures, which could be due to its cumulative increased stability in cells. We have also monitored how under stress condition, E3 ubiquitin ligase Gp78 regulates endogenous levels of p27 in cells. ER stress treatment generates a marginal increase in Gp78 endogenous levels, and this elevation effect was prominent for intracellular accumulation of p27 in cells. Taken together, our current findings suggest a valuable multifactorial regulatory mechanism and linkage of p27 with UPS pathway.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Deepak Chhangani
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Rajesh N Sharan
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| |
Collapse
|
27
|
Jiang G, Huang C, Li J, Huang H, Wang J, Li Y, Xie F, Jin H, Zhu J, Huang C. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells. Carcinogenesis 2018; 39:482-492. [PMID: 29409027 PMCID: PMC5862297 DOI: 10.1093/carcin/bgy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.
Collapse
Affiliation(s)
- Guosong Jiang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Haishan Huang
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yawei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Jin
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
28
|
Park SY, Piao Y, Thomas C, Fuller GN, de Groot JF. Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma. Oncotarget 2018; 7:26793-805. [PMID: 27050366 PMCID: PMC5042015 DOI: 10.18632/oncotarget.8471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 01/09/2023] Open
Abstract
Cdc2-like kinase 2 (CLK2) is known as a regulator of RNA splicing that ultimately controls multiple physiological processes. However, the function of CLK2 in glioblastoma progression has not been described. Reverse-phase protein array (RPPA) was performed to identify proteins differentially expressed in CLK2 knockdown cells compared to controls. The RPPA results indicated that CLK2 knockdown influenced the expression of survival-, proliferation-, and cell cycle-related proteins in GSCs. Thus, knockdown of CLK2 expression arrested the cell cycle at the G1 and S checkpoints in multiple GSC lines. Depletion of CLK2 regulated the dephosphorylation of AKT and decreased phosphorylation of Forkhead box O3a (FOXO3a), which not only translocated to the nucleus but also increased p27 expression. In two glioblastoma xenograft models, the survival duration of mice with CLK2-knockdown GSCs was significantly longer than mice with control tumors. Additionally, tumor volumes were significantly smaller in CLK2-knockdown mice than in controls. Knockdown of CLK2 expression reduced the phosphorylation of FOXO3a and decreased Ki-67 in vivo. Finally, high expression of CLK2 protien was significantly associated with worse patient survival. These findings suggest that CLK2 plays a critical role in controlling the cell cycle and survival of glioblastoma via FOXO3a/p27.
Collapse
Affiliation(s)
- Soon Young Park
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuji Piao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Craig Thomas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Díaz AG, de Lima AP, Garibaldi P, Rubio MDLM, García F, Kral M, Bruno OD. Akt/p27 kip1 Pathway Is Not Involved in Human Insulinoma Tumorigenesis. Int J Endocrinol 2018; 2018:7865072. [PMID: 29853883 PMCID: PMC5944236 DOI: 10.1155/2018/7865072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022] Open
Abstract
Insulinomas are pancreatic neuroendocrine tumors (pNET), usually benign. Akt/p27kip1 is an intracellular pathway overexpressed in many pNET. There are no data regarding its expression in human insulinomas. We aimed to investigate the expression of Akt and p27kip1 in 24 human insulinomas and to compare them to their expression in normal surrounding islets. Staining was performed on embedded paraffin tissue using polyclonal antibodies against total Akt, p-Akt, p27kip1, and pp27kip1. p-Akt was the predominant form in insulinomas; they presented lower Akt and p-Akt expression than normal islets in 83.3% and 87.5% of tumors, respectively. p27kip1 and pp27kip1 were mainly cytoplasmic in both insulinomas and normal tissue. Cytoplasmic pp27kip1 staining was higher in insulinomas and surprisingly nearly half of the insulinomas also presented nuclear p27kip1 (p = 0.029). No differences were observed in the subcellular localization of p27kip1 and activation of Akt between benign and malignant insulinomas. The low expression of Akt seen in insulinomas might explain the usual benign behavior of this type of pNET. Cytoplasmic p27kip1 in both insulinomas and normal islet cells could reflect the low rate of replication of beta cells, while nuclear p27kip1 would seem to indicate stabilization and nuclear anchoring of the cyclin D-Cdk4 complex. Our data seem to suggest that the Akt pathway is not involved in human insulinoma tumorigenesis.
Collapse
Affiliation(s)
- Adriana Graciela Díaz
- Division of Endocrinology, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Paes de Lima
- Department of Pathology, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Garibaldi
- Division of Endocrinology, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Florencia García
- Department of Pathology, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Kral
- Division of Endocrinology, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Oscar D. Bruno
- Division of Endocrinology, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Foundation of Endocrinology (FUNDAENDO), Buenos Aires, Argentina
| |
Collapse
|
30
|
Li H, Xiao CS, Bian YF, Bai R, Gao F. Intermedin attenuates high-glucose exacerbated simulated hypoxia/reoxygenation injury in H9c2 cardiomyocytes via ERK1/2 signaling. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17744096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: This study investigated whether and how intermedin (IMD) exerted a protective effect against simulated hypoxia/reoxygenation (H/R) injury in high-glucose-treated H9c2 cells. Methods: Cellular viability was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Oxidative stress was determined by malondialdehyde and superoxide dismutase content in the culture medium supernatant. Flow cytometry with Annexin V/propidium iodide staining was used to detect the cardiomyocyte apoptosis rate. The protein expression of Bax, Bcl-2, caspase-3, and ERK1/2 was determined by western blot. Results: IMD administration to H9c2 cells during H/R injury decreased oxidative stress product generation and inhibited apoptosis ( P < 0.05 or P < 0.01) while these effects were blocked by the ERK1/2 inhibitor ( P < 0.05 or P < 0.01). Through the application of a specific ERK1/2 inhibitor, it was demonstrated that IMD mitigates high-glucose-induced oxidative stress and apoptosis via ERK1/2 signaling. Conclusion: Intermedin may be a novel therapeutic agent for mitigating diabetic cardiovascular injury in the clinical setting.
Collapse
Affiliation(s)
- Hong Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan-Shi Xiao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yun-Fei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Bai
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fen Gao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Nguyen HH, Tilton SC, Kemp CJ, Song M. Nonmonotonic Pathway Gene Expression Analysis Reveals Oncogenic Role of p27/Kip1 at Intermediate Dose. Cancer Inform 2017; 16:1176935117740132. [PMID: 29162974 PMCID: PMC5692148 DOI: 10.1177/1176935117740132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/16/2017] [Indexed: 11/15/2022] Open
Abstract
The mechanistic basis by which the level of p27Kip1 expression influences tumor aggressiveness and patient mortality remains unclear. To elucidate the competing tumor-suppressing and oncogenic effects of p27Kip1 on gene expression in tumors, we analyzed the transcriptomes of squamous cell papilloma derived from Cdkn1b nullizygous, heterozygous, and wild-type mice. We developed a novel functional pathway analysis method capable of testing directional and nonmonotonic dose response. This analysis can reveal potential causal relationships that might have been missed by other nondirectional pathway analysis methods. Applying this method to capture dose-response curves in papilloma gene expression data, we show that several known cancer pathways are dominated by low-high-low gene expression responses to increasing p27 gene doses. The oncogene cyclin D1, whose expression is elevated at an intermediate p27 dose, is the most responsive gene shared by these cancer pathways. Therefore, intermediate levels of p27 may promote cellular processes favoring tumorigenesis-strikingly consistent with the dominance of heterozygous mutations in CDKN1B seen in human cancers. Our findings shed new light on regulatory mechanisms for both pro- and anti-tumorigenic roles of p27Kip1. Functional pathway dose-response analysis provides a unique opportunity to uncover nonmonotonic patterns in biological systems.
Collapse
Affiliation(s)
- Hien H Nguyen
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| | - Susan C Tilton
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Christopher J Kemp
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
- Mingzhou Song, Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
32
|
Cheng CW, Leong KW, Ng YM, Kwong YL, Tse E. The peptidyl-prolyl isomerase PIN1 relieves cyclin-dependent kinase 2 (CDK2) inhibition by the CDK inhibitor p27. J Biol Chem 2017; 292:21431-21441. [PMID: 29118189 DOI: 10.1074/jbc.m117.801373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Indexed: 01/22/2023] Open
Abstract
PIN1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans isomerization of peptide bonds between proline and phosphorylated serine/threonine residues. By changing the conformation of its protein substrates, PIN1 increases the activities of key proteins that promote cell cycle progression and oncogenesis. Moreover, it has been shown that PIN1 stabilizes and increases the level of the cyclin-dependent kinase (CDK) inhibitor p27, which inhibits cell cycle progression by binding cyclin A- and cyclin E-CDK2. Notwithstanding the associated increase in the p27 level, PIN1 expression promotes rather than retards cell proliferation. To explain the paradoxical effects of PIN1 on p27 levels and cell cycle progression, we hypothesized that PIN1 relieves CDK2 inhibition by suppressing the CDK inhibitory activity of p27. Here, we confirmed that PIN1-expressing cells exhibit higher p27 levels but have increased CDK2 activities and higher proliferation rates in the S-phase compared with Pin1-null fibroblasts or PIN1-depleted hepatoma cells. Using co-immunoprecipitation and CDK kinase activity assays, we found that PIN1 binds the phosphorylated Thr187-Pro motif in p27 and reduces p27's interaction with cyclin A- or cyclin E-CDK2, leading to increased CDK2 kinase activity. In conclusion, our results indicate that although PIN1 increases p27 levels, it also attenuates p27's inhibitory activity on CDK2 and thereby contributes to increased G1-S phase transitions and cell proliferation.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Ka-Wai Leong
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yiu-Ming Ng
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yok-Lam Kwong
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| | - Eric Tse
- From the Department of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
33
|
Asai S, Miura N, Sawada Y, Noda T, Kikugawa T, Tanji N, Saika T. Silencing of ECHDC1 inhibits growth of gemcitabine-resistant bladder cancer cells. Oncol Lett 2017; 15:522-527. [PMID: 29391886 DOI: 10.3892/ol.2017.7269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Combined gemcitabine and cisplatin (GC) treatment is a first line chemotherapy for bladder cancer. However, acquired resistance to GC has been a major problem. To address the mechanism of gemcitabine resistance, and to identify potential biomarkers or target proteins for its therapy, we aimed to identify candidate proteins associated with gemcitabine resistance using proteomic analysis. We established gemcitabine-resistant human bladder cancer cell lines (UMUC3GR and HT1376GR) from gemcitabine-sensitive human bladder cancer cell lines (UMUC3 and HT1376). We compared the protein expression of parental and gemcitabine-resistant cell lines using isobaric tags for relative and absolute quantification (iTRAQ) and liquid chromatography tandem mass spectrometry. Among the identified proteins, ethylmalonyl-CoA decarboxylase (ECHDC1) expression was significantly increased in both of the gemcitabine-resistant cell lines compared to the respective parental cell lines. Silencing of ECHDC1 reduced ECHDC1 expression and significantly inhibited the proliferation of UMUC3GR cells. Furthermore, silencing of ECHDC1 induced upregulation of p27, which is critical for cell cycle arrest in the G1 phase, and induced G1 arrest. In conclusion, ECHDC1 expression is increased in gemcitabine-resistant bladder cancer cells, and is involved in their cell growth. ECHDC1, which is a metabolite proofreading enzyme, may be a novel potential target for gemcitabine-resistant bladder cancer therapy.
Collapse
Affiliation(s)
- Seiji Asai
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Noriyoshi Miura
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yuichiro Sawada
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Terutaka Noda
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Nozomu Tanji
- Department of Urology, Houshasen-Daiichi Hospital, Imabari, Ehime 794-0054, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
34
|
Borsari S, Pardi E, Pellegata NS, Lee M, Saponaro F, Torregrossa L, Basolo F, Paltrinieri E, Zatelli MC, Materazzi G, Miccoli P, Marcocci C, Cetani F. Loss of p27 expression is associated with MEN1 gene mutations in sporadic parathyroid adenomas. Endocrine 2017; 55:386-397. [PMID: 27038812 DOI: 10.1007/s12020-016-0941-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/24/2016] [Indexed: 01/08/2023]
Abstract
MEN1 is the main gene responsible for tumorigenesis of syndromic and sporadic primary hyperparathyroidism (PHPT). Germline mutations of the CDKN1B/p27Kip gene have been associated with multiple endocrine tumors in rats and humans. To evaluate the involvement of the CDKN1B gene and its relationship with MEN1 in sporadic PHPT, we carried out sequencing and loss of heterozygosity analyses of the CDKN1B gene in 147 sporadic parathyroid adenomas. p27 immunohistochemistry and genetic screening of the MEN1 gene were performed in 50 cases. Three germline CDKN1B variants (c.-80C>T, c.-29_-26delAGAG, c.397C>A) were identified in 3/147 patients. Reduction of CDKN1B gene transcription rate was demonstrated in vitro for the novel c.-80C>T and the c.-29_-26delAGAG variants. Loss of p27 expression was detected in the tumor carrying the c.-29_-26delAGAG variant. Two tumors carrying the CDKN1B variants also harbored a MEN1 mutation. Fifty-four percent of 50 CDKN1B mutation-negative tumors had a reduction of p27 nuclear staining. Somatic MEN1 mutations, identified in 15/50 samples, significantly segregated in tumors negative for nuclear and cytoplasmic p27 staining. The germline nature of the CDKN1B mutations suggests that they might predispose to PHPT. The lack of somatic CDKN1B mutations in our samples points to a rare involvement in parathyroid adenomas, despite the frequent loss of nuclear p27 expression. MEN1 biallelic inactivation seems to be directly related to down-regulation of p27 expression through the inhibition of CDKN1B gene transcription.
Collapse
Affiliation(s)
- Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, Germany
| | - Misu Lee
- Institute of Pathology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, Germany
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Elena Paltrinieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Clinical Sciences and Community Health, University of Milan IRCCS Foundation Ca' Granda Policlinico Hospital, Milan, Italy
| | - Maria Chiara Zatelli
- Department of Medical Sciences, Section of Endocrinology, University of Ferrara, Ferrara, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filomena Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa, 2, 56124, Pisa, Italy.
| |
Collapse
|
35
|
Hu B, Hua L, Ni W, Wu M, Yan D, Chen Y, Lu C, Chen B, Wan C. Nucleostemin/GNL3 promotes nucleolar polyubiquitylation of p27 kip1 to drive hepatocellular carcinoma progression. Cancer Lett 2016; 388:220-229. [PMID: 27998760 DOI: 10.1016/j.canlet.2016.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/09/2016] [Accepted: 12/09/2016] [Indexed: 01/31/2023]
Abstract
p27kip, as a cyclin dependent kinase inhibitor (CDKI), plays a pivotal role in the regulation of cell cycle progression and hepatocarcinogenesis. Herein, we revealed that p27 exhibited apparent nucleolar distribution and interacted with nucleolar protein nucleostemin (NS) in Hepatocellular carcinoma (HCC) cells. Furthermore, subcellular fractionation experiments demonstrated that nucleolar p27 had significantly higher level of polyubiquitylation, compared with nucleoplasmic fraction. Depletion of NS inhibited nucleolar polyubiquitylation of p27, indicating an involvement of NS in triggering p27 ubiquitylation and inactivation during HCC development. Moreover, we found that knockdown of NS promoted p27 to bind to CDK2-Cyclin E complex and inhibited the activity of CDK2, resulting in consequent cell cycle arrest in HCC cells. Furthermore, silencing NS expression reduced in vitro colony formation and in vivo tumor growth of HCC cells. Finally, we found that NS was upregulated in HCC tissues, compared with adjacent non-tumorous tissues. Kaplan-Meier analysis indicated patients with high expression of NS and low expression of p27 had significantly worsened prognosis. Our results suggested NS mediated p27-dependent cell cycle control via inducing nucleolar sequestration and polyubiquitylation of p27 in HCC. These findings help gain an insightful view into the mechanism underlying aberrant cell cycle progression during hepatocarcinogenesis, and thus benefit the development of molecular-targeted therapies in HCC.
Collapse
Affiliation(s)
- Baoying Hu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China; Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lu Hua
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenkai Ni
- Department of Gastroenterlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Miaomiao Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Daliang Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuyan Chen
- Class 2 Grade 13, Clinical Medicine, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Cuihua Lu
- Department of Gastroenterlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Buyou Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Chunhua Wan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
36
|
Wang SY, Gao K, Deng DL, Cai JJ, Xiao ZY, He LQ, Jiao HL, Ye YP, Yang RW, Li TT, Liang L, Liao WT, Ding YQ. TLE4 promotes colorectal cancer progression through activation of JNK/c-Jun signaling pathway. Oncotarget 2016; 7:2878-88. [PMID: 26701208 PMCID: PMC4823078 DOI: 10.18632/oncotarget.6694] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/21/2015] [Indexed: 12/24/2022] Open
Abstract
The Groucho transcriptional co-repressor TLE4 protein has been shown to be a tumor suppressor in a subset of acute myeloid leukemia. However, little is known about its role in development and progression of solid tumor. In this study, we found that the expression of TLE4 in colorectal cancer (CRC) tissues was significantly higher than that in their matched adjacent intestine epithelial tissues. In addition, high expression of TLE4 was significantly correlated with advanced Dukes stage, lymph node metastasis and poor prognosis of CRC. Moreover, enforced expression of TLE4 in CRC cell lines significantly enhanced proliferation, invasion and tumor growth. On the contrary, knock down of TLE4 repressed cell proliferation, invasion and tumor growth. Furthermore, our study exhibited that the TLE4 promoted cell proliferation and invasion partially via activation of JNK-c-Jun pathway and subsequently increased cyclinD1 and decreased P27Kip1 expression. In conclusion, these results suggested that TLE4, a potential prognostic biomarker for CRC, plays an important role in the development and progression of human CRC.
Collapse
Affiliation(s)
- Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Ke Gao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.,Department of Pathology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Dan-Ling Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Juan-Juan Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Zhi-Yuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Liu-Qing He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Run-Wei Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Ting-Ting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Gu JJ, Zhang JH, Chen HJ, Wang SS. TPX2 promotes glioma cell proliferation and invasion via activation of the AKT signaling pathway. Oncol Lett 2016; 12:5015-5022. [PMID: 28105208 PMCID: PMC5228448 DOI: 10.3892/ol.2016.5371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/14/2016] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most malignant type of primary adult brain cancer. The most common phenotype associated with GBM is cellular invasion; however, the molecular mechanisms governing this process are poorly understood. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a nuclear protein with roles in cellular proliferation and mitotic spindle assembly. TPX2 is overexpressed in various malignancies, including human malignant astrocytoma. Despite this finding, the exact role of TPX2 in human glioma is not well defined. The present study reports the elevated expression of TPX2 in a number of glioma cell lines. TPX2 overexpression promoted cellular proliferation, decreased the percentage of cells in G0/G1 phase, and increased invasion of both U251 and U87 cells. Overexpression of TPX2 also significantly enhanced the phosphorylation of AKT, decreased the expression of p21, and increased the expression of cyclin D1 and matrix metallopeptidase (MMP)-9. In both U251 and U87 cells, knockdown of TPX2 resulted in phenotypes that are in direct contrast to those observed following TPX2 overexpression. Specifically, TPX2 knockdown inhibited cell proliferation, increased the percentage of cells in G0/G1 phase, inhibited invasion, decreased AKT phosphorylation, decreased the expression of MMP-9 and cyclin D1, and increased p21 expression. The AKT inhibitor IV in large part phenocopied the effect of TPX2 knockdown. The present data suggest that TPX2 promotes glioma cell proliferation and invasion via AKT signaling.
Collapse
Affiliation(s)
- Jian-Jun Gu
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China; Department of Neurosurgery, Taizhou People's Hospital Affiliated to Medical College of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jian-He Zhang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Hong-Jie Chen
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
38
|
Wang Z, Zhang H, Zhou J, Zhang X, Chen L, Chen K, Huang Z. Eriocitrin from lemon suppresses the proliferation of human hepatocellular carcinoma cells through inducing apoptosis and arresting cell cycle. Cancer Chemother Pharmacol 2016; 78:1143-1150. [PMID: 27766389 DOI: 10.1007/s00280-016-3171-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/12/2016] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma is a lethal cancer with high recurrence ratio and lacks effective therapeutics. In the past few years, it has been reported that increased intake of vegetables and fruits could reduce the cancer incidence, which suggests dietary agents might possess anticancer effects. Eriocitrin is a flavonoid isolated from lemon, which is known as a strong antioxidant agent. We here for the first time demonstrated that eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Furthermore, we found that eriocitrin could trigger apoptosis by activating mitochondria-involved intrinsic signaling pathway. Thus, eriocitrin might be regarded as a potential chemopreventive natural product to inhibit the early malignant transformation of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ziyou Wang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808, China
- China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China
| | - Hua Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808, China
- China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahui Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808, China
- China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China
| | - Xiangning Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808, China
- China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China
| | - Liyong Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808, China
- China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China
| | - Kangxing Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808, China
- China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808, China.
- China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
39
|
Yang SW, Kang SH, Kim KR, Choi IH, Chang HS, Oh YL, Hong SW. Do Helper T Cell Subtypes in Lymphocytic Thyroiditis Play a Role in the Antitumor Effect? J Pathol Transl Med 2016; 50:377-84. [PMID: 27681413 PMCID: PMC5042902 DOI: 10.4132/jptm.2016.07.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is frequently accompanied by lymphocytic thyroiditis (LT). Some reports claim that Hashimoto's thyroiditis (the clinical form of LT) enhances the likelihood of PTC; however, others suggest that LT has antitumor activity. This study was aimed to find out the relationship between the patterns of helper T cell (Th) cytokines in thyroid tissue of PTC with or without LT and the clinicopathological manifestation of PTC. METHODS Fresh surgical samples of PTC with (13 cases) or without (10 cases) LT were used. The prognostic parameters (tumor size, extra-thyroidal extension of PTC, and lymph node metastasis) were analyzed. The mRNA levels of two subtypes of Th cytokines, Th1 (tumor necrosis factor α [TNF-α], interferon γ [IFN-γ ], and interleukin [IL] 2) and Th2 (IL-4 and IL-10), were analyzed. Because most PTC cases were microcarcinomas and recent cases without clinical follow-up, negative or faint p27 immunoreactivity was used as a surrogate marker for lymph node metastasis. RESULTS PTC with LT cases showed significantly higher expression of TNF-α (p = .043), IFN-γ (p < .010), IL-4 (p = .015) than those without LT cases. Although the data were not statistically significant, all analyzed cytokines (except for IL-4) were highly expressed in the cases with higher expression of p27 surrogate marker. CONCLUSIONS These results indicate that mixed Th1 (TNF-α, IFN-γ , and IL-2) and Th2 (IL-10) immunity might play a role in the antitumor effect in terms of lymph node metastasis.
Collapse
Affiliation(s)
- Seok Woo Yang
- Department of Medicine, Yonsei University Graduate School, Seoul, Korea
| | - Seong-Ho Kang
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Korea
| | - Kyung Rae Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - In Hong Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
| | - Hang Seok Chang
- Department of General Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Young Lyun Oh
- Department of Pathology, Sungkyunkwan University College of Medicine, Seoul, Korea
| | - Soon Won Hong
- Department of Pathology, Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Rao CV, Asch AS, Yamada HY. Emerging links among Chromosome Instability (CIN), cancer, and aging. Mol Carcinog 2016; 56:791-803. [PMID: 27533343 DOI: 10.1002/mc.22539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/14/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022]
Abstract
Aneuploidy was predicted to cause cancer. To test the prediction, various Chromosome Instability (CIN) mice models that carry transgenic mutations in mitotic regulators have been created. The availability of these mice has aided researchers in discovering connections between CIN, cancer, and aging. This review will focus on recent interdisciplinary findings regarding how CIN and aneuploidy affect carcinogenesis, immune dysfunction, and aging. High CIN can be generated in vivo by various intrinsic alterations (e.g., gene mutation, epigenetic modification) and extrinsic/environmental challenges (e.g., biological, chemical, biophysical), while immune surveillance, cell death, and natural turnover can remove cells with CIN. CIN itself is mutagenic and may cause further cellular mutations, which can be carcinogenic. Mitotically damaged cells can activate senescence-related tumor suppressors (e.g., p21WAF1 , p27KIP1 , p16INK4A ), which may lead to tissue-level senescence/aging through inflammatory paracrine mechanisms called Senescence-Associated Secretory Phenotype (SASP) and Senescence Inflammatory Response (SIR). Organs with high CIN show altered gene expressions in both organ-specific and non-specific manners. Organ-specific gene expression signatures include activation of oncogenic pathways. Non-organ-specific gene expression signatures include metabolic changes and downregulations in immune functions. Immune surveillance normally targets senescent cells and tetraploid cells, a form of aneuploidy, for elimination. However, with partial immune dysfunction, immune surveillance is weakened with systemic CIN. In this case, more senescent cells and aneuploid cells survive, which further leads to an inflammatory, pro-tumorigenic, and senescent/aging microenvironment. We also discuss how we may intervene in this sequence of events to prevent CIN- or age-related carcinogenesis and/or some aspects of tissue aging. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, Center for Cancer Prevention and Drug Development, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma.,Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Adam S Asch
- Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Hiroshi Y Yamada
- Department of Medicine, Center for Cancer Prevention and Drug Development, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma.,Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
41
|
Abstract
Primary hyperparathyroidism (PHPT) is a common disorder in which parathyroid hormone (PTH) is excessively secreted from one or more of the four parathyroid glands. A single benign parathyroid adenoma is the cause in most people. However, multiglandular disease is not rare and is typically seen in familial PHPT syndromes. The genetics of PHPT is usually monoclonal when a single gland is involved and polyclonal when multiglandular disease is present. The genes that have been implicated in PHPT include proto-oncogenes and tumour-suppressor genes. Hypercalcaemia is the biochemical hallmark of PHPT. Usually, the concentration of PTH is frankly increased but can remain within the normal range, which is abnormal in the setting of hypercalcaemia. Normocalcaemic PHPT, a variant in which the serum calcium level is persistently normal but PTH levels are increased in the absence of an obvious inciting stimulus, is now recognized. The clinical presentation of PHPT varies from asymptomatic disease (seen in countries where biochemical screening is routine) to classic symptomatic disease in which renal and/or skeletal complications are observed. Management guidelines have recently been revised to help the clinician to decide on the merits of a parathyroidectomy or a non-surgical course. This Primer covers these areas with particular attention to the epidemiology, clinical presentations, genetics, evaluation and guidelines for the management of PHPT.
Collapse
|
42
|
The role of the Chaperonin containing t-complex polypeptide 1, subunit 8 (CCT8) in B-cell non-Hodgkin's lymphoma. Leuk Res 2016; 45:59-67. [PMID: 27101149 DOI: 10.1016/j.leukres.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023]
Abstract
The chaperonin containing t-complex polypeptide 1 (CCT) is known to mediate folding of proteins. CCT, subunit 8 (CCT8), is the θ subunit of CCT complex chaperonin. CCT8 has been reported to be dysregulated in several tumor tissues. In this study, we investigated the role of CCT8 in B-cell non-Hodgkin's lymphoma (NHL). Clinically, the expression levels of CCT8 in reactive lymphoid hyperplasia (RLH) and B-cell NHL specimens were investigated using immunohistochemical analysis. We found that CCT8 was highly expressed in proliferating germinal center cells compared with the quiescent cells of the follicular mantle zone. Furthermore, CCT8 was highly expressed in progressive lymphomas than in indolent lymphomas. Kaplan-Meier curve showed that high expression of CCT8 was significantly associated with shorter overall survival in patients with diffuse large B-cell lymphoma. Moreover, we demonstrated that CCT8 could promote the proliferation of B-cell NHL cells. In addition, we found that CCT8 could accelerate the G1/S transition in B-cell NHL. Finally, we demonstrated that overexpression of CCT8 could reverse cell adhesion-mediated drug resistance (CAM-DR) phenotype. Our study may shed new insights into the important role of CCT8 in cancer development.
Collapse
|
43
|
Li X, Zhang Q, Fan K, Li B, Li H, Qi H, Guo J, Cao Y, Sun H. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. Int J Mol Sci 2016; 17:437. [PMID: 27023518 PMCID: PMC4848893 DOI: 10.3390/ijms17040437] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
(1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca(2+)]i). Flow cytometry was used to analyze cell cycle; (3) RESULTS: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca(2+)]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) CONCLUSIONS: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Pathology, Harbin Medical University-Daqing, Daqing 163319, China.
- Department of Scientific Research, Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, China.
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| | - Kai Fan
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing 163319, China.
| | - Baiyan Li
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China.
| | - Huifeng Li
- Department of Pathology, Daqing General Hospital Group Oilfield General Hospital, Daqing 163319, China.
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| | - Jing Guo
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
44
|
Nie W, Huang W, Zhang W, Xu J, Song W, Wang Y, Zhu A, Luo J, Huang G, Wang Y, Guan X. TXNIP interaction with the Her-1/2 pathway contributes to overall survival in breast cancer. Oncotarget 2015; 6:3003-12. [PMID: 25605021 PMCID: PMC4413633 DOI: 10.18632/oncotarget.3096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022] Open
Abstract
Previous studies have indicated that Her-2 induction causes a strong decrease in thioredoxin interaction protein (TXNIP) in breast cancer cells. However, little is known regarding the prognostic value of TXNIP in clinical breast cancer patients with anti-Her-2 treatment. Using a tissue microarray, we detected TXNIP and p27 expression in breast cancer tissue, as well as corresponding noncancerous tissues. We found that TXNIP expression was associated with better overall survival (OS) in these 150 breast cancer patients and that TXNIP and Her-2 expression status were significantly inversely correlated (r=-0.334, P<0.001). These results were validated in another 101 breast cancer tissue samples (r=-0.422, P<0.001). Moreover, TXNIP expression increased significantly following treatment of the human breast cancer cell lines BT474 and SK-BR-3 with a Her-1/2 inhibitor. Furthermore, TXNIP transfection induced p27 expression and G1 cell cycle arrest and apoptosis. Taken together, our findings suggest that TXNIP plays a critical role in anti-Her-1/Her-2 treatment and may be a potential prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Weiwei Nie
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Weisun Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Wei Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Yanru Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Aiyu Zhu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Jiayan Luo
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Yucai Wang
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, P.R. China.,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| |
Collapse
|
45
|
Zhou N, Yuan S, Wang R, Zhang W, Chen JJ. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence. Oncotarget 2015; 6:30745-61. [PMID: 26307683 PMCID: PMC4741565 DOI: 10.18632/oncotarget.5222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022] Open
Abstract
The high-risk human papillomavirus (HPV) is the causative agent for cervical cancer. The HPV E7 oncogene promotes S-phase entry from quiescent state in the presence of elevated cell cycle inhibitor p27Kip1, a function that may contribute to carcinogenesis. However, the mechanism by which HPV E7 induces quiescent cells to entry into S-phase is not fully understood. Interestingly, we found that Dyrk1B, a dual-specificity kinase and negative regulator of cell proliferation in quiescent cells, was upregulated in E7 expressing cells. Surprisingly and in contrast to what was previously reported, Dyrk1B played a positive role in S-phase entry of quiescent HPV E7 expressing cells. Mechanistically, Dyrk1B contributed to p27 phosphorylation (at serine 10 and threonine 198), which was important for the proliferation of HPV E7 expressing cells. Moreover, Dyrk1B up-regulated HPV E7. Taken together, our studies uncovered a novel function of Dyrk1B in high-risk HPV E7-mediated cell proliferation. Dyrk1B may serve as a target for therapy in HPV-associated cancers.
Collapse
Affiliation(s)
- Na Zhou
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shoudao Yuan
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| | - Rongchun Wang
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, China
| | - Weifang Zhang
- Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jason J. Chen
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
46
|
Lima JS, Correa L, Klingbeil MFG, de Sousa SCOM. c-Jun, pc-Jun, and p27 are differently expressed in oral leukoplakias in smokers and never-smokers. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 121:73-80. [PMID: 26679360 DOI: 10.1016/j.oooo.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Oral cancer may be preceded by potentially malignant lesions, and smoking is a risk factor. Oral leukoplakia (OL), which is the most common among these lesions, is defined by the World Health Organization as "a white plaque of questionable risk having excluded known diseases or disorders that carry no increased risk for cancer." Thus, OL is a clinical diagnosis used to designate oral white lesions, which are histologically represented by hyperkeratosis associated or not associated with epithelial dysplasia. It is known that c-Jun and pc-Jun have a role in cell proliferation and that p27 is decreased during carcinogenesis; thus, the aim of this study was to investigate whether these proteins are differently expressed in OL in smokers and never-smokers. STUDY DESIGN Seventy-three cases diagnosed as OL were selected and divided into four groups according to the presence or absence of dysplasia and patients' smoking status (smokers: 39 cases, 24 dysplastic; never-smokers: 34 cases, 20 dysplastic). The immunoexpressions of c-Jun, pc-Jun, and p27 were evaluated. RESULTS A significant correlation between smoking condition and the percentages of c-Jun (P = .0356) and pc-Jun (P = .0216) was found and was more intense in cases that underwent malignant transformation (6/47). CONCLUSIONS Smoking habits may be linked to the expression of proteins directly associated with cell cycle progression.
Collapse
Affiliation(s)
- Joelma Sousa Lima
- Oral Pathology Department, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana Correa
- General Pathology Department, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Suzana C Orsini Machado de Sousa
- Oral Pathology Department, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil; Research fellow of CNPq, Oral Pathology Department, School of Dentistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
47
|
Yang L, Zhang J, Chen J, Jin H, Liu J, Huang S, Cui Z. The Expression of CUGBP1 After Spinal Cord Injury in Rats. Neurochem Res 2015; 40:1966-75. [PMID: 26283512 DOI: 10.1007/s11064-015-1692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 01/30/2023]
Abstract
CUG-binding protein 1, a member of the CELF (CUGBP and embryonic lethal abnormal vision-like factor) family of RNA-binding proteins, is shown to be multifunctional, regulating many posttranscriptional processes including alternative splicing, deadenylation, mRNA decay, and translation. Recently, CUGBP1 is found to represses p27 IRES activity and inhibits expression of endogenous p27 in cultured breast cancer cells. However, the roles of CUGBP1 in central nervous system injury remain unknown. In our study, we performed acute spinal cord injury (SCI) model in adult rats in order to research the expression changes of CUGBP1 in spinal cord. Western blot analysis showed a marked upregulation of CUGBP1 after SCI. Immunohistochemistry analysis revealed a wide distribution of CUGBP1 in the spinal cord. Double immunofluorescence staining indicated that CUGBP1 immunoreactivity was increased predominantly in neurons and astrocytes after SCI. Moreover, colocalization of CUGBP1/proliferating cell nuclear antigen (PCNA) was detected in GFAP positive cells. We also examined the expression profiles of p27, which was up-regulated after SCI. To further understand whether CUGBP1 plays a role in astrocyte proliferation, we applied LPS to induce astrocyte proliferation in vitro. Western blot analysis demonstrated that CUGBP1 expression was positively correlated with PCNA expression, and the p27 expression was negatively correlated with CUGBP1 expression following LPS stimulation. Our results suggest that CUGBP1 might be implicated in the pathophysiology of spinal cord after SCI.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Bian B, Mongrain S, Cagnol S, Langlois MJ, Boulanger J, Bernatchez G, Carrier JC, Boudreau F, Rivard N. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol Carcinog 2015; 55:671-87. [PMID: 25808857 PMCID: PMC4832390 DOI: 10.1002/mc.22312] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 12/14/2022]
Abstract
Cathepsin B is a cysteine proteinase that primarily functions as an endopeptidase within endolysosomal compartments in normal cells. However, during tumoral expansion, the regulation of cathepsin B can be altered at multiple levels, thereby resulting in its overexpression and export outside of the cell. This may suggest a possible role of cathepsin B in alterations leading to cancer progression. The aim of this study was to determine the contribution of intracellular and extracellular cathepsin B in growth, tumorigenesis, and invasion of colorectal cancer (CRC) cells. Results show that mRNA and activated levels of cathepsin B were both increased in human adenomas and in CRCs of all stages. Treatment of CRC cells with the highly selective and non‐permeant cathepsin B inhibitor Ca074 revealed that extracellular cathepsin B actively contributed to the invasiveness of human CRC cells while not essential for their growth in soft agar. Cathepsin B silencing by RNAi in human CRC cells inhibited their growth in soft agar, as well as their invasion capacity, tumoral expansion, and metastatic spread in immunodeficient mice. Higher levels of the cell cycle inhibitor p27Kip1 were observed in cathepsin B‐deficient tumors as well as an increase in cyclin B1. Finally, cathepsin B colocalized with p27Kip1 within the lysosomes and efficiently degraded the inhibitor. In conclusion, the present data demonstrate that cathepsin B is a significant factor in colorectal tumor development, invasion, and metastatic spreading and may, therefore, represent a potential pharmacological target for colorectal tumor therapy. © 2015 The Authors. Molecular Carcinogenesis, published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Bian
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Mongrain
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Cagnol
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jim Boulanger
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gérald Bernatchez
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie C Carrier
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
49
|
Campos T, Ziehe J, Palma M, Escobar D, Tapia JC, Pincheira R, Castro AF. Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy. Mol Carcinog 2015; 55:220-9. [DOI: 10.1002/mc.22272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Tania Campos
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Biológicas; Laboratorio de Transducción de Señales y Cáncer; Universidad de Concepción; Concepción Chile
| | - Javiera Ziehe
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Biológicas; Laboratorio de Transducción de Señales y Cáncer; Universidad de Concepción; Concepción Chile
| | - Mario Palma
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Biológicas; Laboratorio de Transducción de Señales y Cáncer; Universidad de Concepción; Concepción Chile
| | - David Escobar
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Biológicas; Laboratorio de Transducción de Señales y Cáncer; Universidad de Concepción; Concepción Chile
| | - Julio C. Tapia
- Facultad de Medicina; Laboratorio de Transformación Celular; ICBM; Universidad de Chile; Santiago Chile
| | - Roxana Pincheira
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Biológicas; Laboratorio de Transducción de Señales y Cáncer; Universidad de Concepción; Concepción Chile
| | - Ariel F. Castro
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Biológicas; Laboratorio de Transducción de Señales y Cáncer; Universidad de Concepción; Concepción Chile
| |
Collapse
|
50
|
Lupino E, Ramondetti C, Buccinnà B, Piccinini M. Exposure of neuroblastoma cell lines to imatinib results in the upregulation of the CDK inhibitor p27(KIP1) as a consequence of c-Abl inhibition. Biochem Pharmacol 2014; 92:235-50. [PMID: 25264277 DOI: 10.1016/j.bcp.2014.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Imatinib mesylate is a tyrosine kinase inhibitor with selectivity for abelson tyrosine-protein kinase 1 (c-Abl), breakpoint cluster region (Bcr)-Abl fusion protein (Bcr-Abl), mast/stem cell growth factor receptor Kit (c-Kit), and platelet-derived growth factor receptor (PDGFR). Previous studies demonstrated that imatinib in the low micromolar range exerted antiproliferative effects on neuroblastoma cell lines. However, although neuroblastoma cells express c-Kit and PDGFR, the imatinib concentrations required to achieve significant growth inhibitory effects (≥ 10 μM) are substantially higher than those required for inhibition of ligand-induced phosphorylation of wild type c-Kit and PDGFR (≤ 1 μM), suggesting that additional mechanisms are responsible for the antitumor activity of imatinib on these cells. In this study, we show that treatment of neuroblastoma cell lines with 1-15 μM imatinib resulted in a dose dependent inhibition of 5-bromo-2'-deoxyuridine (BrdU) incorporation into newly synthesized DNA. The antiproliferative effect of imatinib was dependent on the upregulation of the cyclin-dependent kinase (CDK) inhibitor p27(KIP1) in the nuclear compartment as a result of increased p27(KIP1) protein stability. We demonstrate that the mechanism of p27(KIP1) stabilization relied on inhibition of p27(KIP1) phosphorylation on tyrosine residues by c-Abl. We provide evidence that in neuroblastoma cell lines a significant fraction of cellular c-Abl is phosphorylated on Tyr-245, consistent with an open and active conformation. Notably, exposure to imatinib did not affect Tyr-245 phosphorylation. Given the low affinity of active c-Abl for imatinib, these data provide a molecular explanation for the relatively high imatinib concentrations required to inhibit neuroblastoma cell proliferation.
Collapse
Affiliation(s)
- Elisa Lupino
- Department of Oncology, School of Medicine, University of Torino, Italy
| | | | - Barbara Buccinnà
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - Marco Piccinini
- Department of Oncology, School of Medicine, University of Torino, Italy.
| |
Collapse
|