1
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2024:S2090-1232(24)00120-6. [PMID: 38555000 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Alruwaili N, Kandhi S, Froogh G, Kelly MR, Sun D, Wolin MS. Superoxide-Mediated Upregulation of MMP9 Participates in BMPR2 Destabilization and Pulmonary Hypertension Development. Antioxidants (Basel) 2023; 12:1961. [PMID: 38001814 PMCID: PMC10669489 DOI: 10.3390/antiox12111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS we previously reported in studies on organoid-cultured bovine pulmonary arteries that pulmonary hypertension (PH) conditions of exposure to hypoxia or endothelin-1 caused a loss of a cartilage oligomeric matrix protein (COMP) stabilization of bone morphogenetic protein receptor-2 (BMPR2) function, a known key process contributing to pulmonary hypertension development. Based on subsequent findings, these conditions were associated with an extracellular superoxide-mediated increase in matrix metalloproteinase 9 (MMP-9) expression. We investigated if this contributed to PH development using mice deficient in MMP9. RESULTS wild-type (WT) mice exposed to Sugen/Hypoxia (SuHx) to induce PH had increased levels of MMP9 in their lungs. Hemodynamic measures from MMP9 knockout mice (MMP9 KO) indicated they had attenuated PH parameters compared to WT mice based on an ECHO assessment of pulmonary artery pressure, right ventricular systolic pressure, and Fulton index hypertrophy measurements. In vitro vascular reactivity studies showed impaired endothelium-dependent and endothelium-independent NO-associated vasodilatory responses in the pulmonary arteries of SuHx mice and decreased lung levels of COMP and BMPR2 expression. These changes were attenuated in MMP9 KO mice potentially through preserving COMP-dependent stabilization of BMPR2. INNOVATION this study supports a new function of superoxide in increasing MMP9 and the associated impairment of BMPR2 in promoting PH development which could be a target for future therapies. CONCLUSION superoxide, through promoting increases in MMP9, mediates BMPR2 depletion and its consequent control of vascular function in response to PH mediators and the SuHx mouse model of PH.
Collapse
Affiliation(s)
- Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Melissa R. Kelly
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Michael S. Wolin
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| |
Collapse
|
3
|
Zhao J, Wang X, Li Q, Lu C, Li S. The relevance of serum macrophage migratory inhibitory factor and cognitive dysfunction in patients with cerebral small vascular disease. Front Aging Neurosci 2023; 15:1083818. [PMID: 36824264 PMCID: PMC9941340 DOI: 10.3389/fnagi.2023.1083818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral small vascular disease (CSVD) is a common type of cerebrovascular disease, and an important cause of vascular cognitive impairment (VCI) and stroke. The disease burden is expected to increase further as a result of population aging, an ongoing high prevalence of risk factors (e.g., hypertension), and inadequate management. Due to the poor understanding of pathophysiology in CSVD, there is no effective preventive or therapeutic approach for CSVD. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that is related to the occurrence and development of vascular dysfunction diseases. Therefore, MIF may contribute to the pathogenesis of CSVD and VCI. Here, reviewed MIF participation in chronic cerebral ischemia-hypoperfusion and neurodegeneration pathology, including new evidence for CSVD, and its potential role in protection against VCI.
Collapse
Affiliation(s)
- Jianhua Zhao
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,*Correspondence: Jianhua Zhao,
| | - Xiaoting Wang
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiong Li
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Gao Y, Li D, Lin J, Thomas AM, Miao J, Chen D, Li S, Chu C. Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets. Front Aging Neurosci 2022; 14:961661. [PMID: 36034144 PMCID: PMC9412755 DOI: 10.3389/fnagi.2022.961661] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a diverse cluster of cerebrovascular diseases primarily affecting small arteries, capillaries, arterioles and venules. The diagnosis of CSVD relies on the identification of small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, and microbleeds using neuroimaging. CSVD is observed in 25% of strokes worldwide and is the most common pathology of cognitive decline and dementia in the elderly. Still, due to the poor understanding of pathophysiology in CSVD, there is not an effective preventative or therapeutic approach for CSVD. The most widely accepted approach to CSVD treatment is to mitigate vascular risk factors and adopt a healthier lifestyle. Thus, a deeper understanding of pathogenesis may foster more specific therapies. Here, we review the underlying mechanisms of pathological characteristics in CSVD development, with a focus on endothelial dysfunction, blood-brain barrier impairment and white matter change. We also describe inflammation in CSVD, whose role in contributing to CSVD pathology is gaining interest. Finally, we update the current treatments and preventative measures of CSVD, as well as discuss potential targets and novel strategies for CSVD treatment.
Collapse
Affiliation(s)
- Yue Gao
- Department of Neurointervention and Neurological Intensive Care, Dalian Municipal Central Hospital, Dalian, China
| | - Di Li
- Department of Neurointervention and Neurological Intensive Care, Dalian Municipal Central Hospital, Dalian, China
| | - Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Aline M. Thomas
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, United States
| | - Jianyu Miao
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Dong Chen
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Chengyan Chu,
| |
Collapse
|
5
|
Evans LE, Taylor JL, Smith CJ, Pritchard HAT, Greenstein AS, Allan SM. Cardiovascular co-morbidities, inflammation and cerebral small vessel disease. Cardiovasc Res 2021; 117:2575-2588. [PMID: 34499123 DOI: 10.1093/cvr/cvab284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebral small vessel disease (cSVD) is the most common cause of vascular cognitive impairment and affects all levels of the brain's vasculature. Features include diverse structural and functional changes affecting small arteries and capillaries that lead to a decline in cerebral perfusion. Due to an aging population, incidence of cerebral small vessel disease (cSVD) is continually rising. Despite its prevalence and its ability to cause multiple debilitating illnesses, such as stroke and dementia, there are currently no therapeutic strategies for the treatment of cSVD. In the healthy brain, interactions between neuronal, vascular and inflammatory cells are required for normal functioning. When these interactions are disturbed, chronic pathological inflammation can ensue. The interplay between cSVD and inflammation has attracted much recent interest and this review discusses chronic cardiovascular diseases, particularly hypertension, and explores how the associated inflammation may impact on the structure and function of the small arteries of the brain in cSVD. Molecular approaches in animal studies are linked to clinical outcomes in patients and novel hypotheses regarding inflammation and cSVD are proposed that will hopefully stimulate further discussion and study in this important area.
Collapse
Affiliation(s)
- Lowri E Evans
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Jade L Taylor
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Craig J Smith
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.,Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal Hospital, Manchester Academic Health Sciences Centre (MAHSC)
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Adam S Greenstein
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Stuart M Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Kim YJ, Ahn HJ, Lee SH, Lee MH, Kang KS. Effects of conditioned media from human umbilical cord blood-derived mesenchymal stem cells in the skin immune response. Biomed Pharmacother 2020; 131:110789. [PMID: 33152947 DOI: 10.1016/j.biopha.2020.110789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease in which type 2 allergic inflammation plays a critical role. In this study, the anti-inflammatory effect of conditioned media from human umbilical cord blood-derived mesenchymal stem cells (USC-CM) was investigated in order to apply it as an effective treatment with a low risk of side effects that can overcome the limitations of AD treatment which is currently in use. We found that USC-CM has various growth factors and cytokines associated with anti-inflammatory effect. RT-PCR and ELISA analysis showed that USC-CM inhibited the levels of type 2 cytokine and chemokine Thymus and activation-regulated chemokine (TARC), TNF-α and IL-6 in TNF-α/IFN-γ-stimulated HaCaT cells. In addition, USC-CM inhibited IL-4 and IL-13 levels in Th2 cells. Therefore, the results of our study demonstrated that USC-CM has anti-inflammatory effect in TNF-α/IFN-γ-stimulated HaCaT cells which associated with the inhibition of the immunoglobulin (IgE) secretion by activating B cell line. Our In vivo results showed that when the USC-CM was applied to lesions of patients with the mild AD for 4 weeks, the skin barrier was strengthened by increasing the level of Corneometer and decreasing the value of transepidermal water loss (TEWL). In conclusion, the results suggest that USC-CM may have therapeutic effect for AD as cosmetics and drug materials.
Collapse
Affiliation(s)
- Yoon-Jin Kim
- Derma Science R&D Center, Primoris International CO., LTD., #1504, A Bldg., 60 Haahn-ro, Gwangmyeong-si, Gyeonggi-do, 14332, Republic of Korea
| | - Hee-Jin Ahn
- Cytotherapy R&D Center, PRIMORIS CO., LTD., #1504, A Bldg., 60 Haahn-ro, Gwangmyeong-si, Gyeonggi-do, 14332, Republic of Korea
| | - Seung-Hee Lee
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd Floor, Biotechnology Center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Mi-Hye Lee
- GMP Center, Kangstem Biotech Co., Ltd., 6nd Floor, A Bldg., 60 Haahn-ro, Gwangmyeong-si, Gyeonggi-do, 14332, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Cytotherapy R&D Center, PRIMORIS CO., LTD., #1504, A Bldg., 60 Haahn-ro, Gwangmyeong-si, Gyeonggi-do, 14332, Republic of Korea.
| |
Collapse
|
7
|
Kölbel H, Roos A, van der Ven PFM, Evangelista T, Nolte K, Johnson K, Töpf A, Wilson M, Kress W, Sickmann A, Straub V, Kollipara L, Weis J, Fürst DO, Schara U. First clinical and myopathological description of a myofibrillar myopathy with congenital onset and homozygous mutation in FLNC. Hum Mutat 2020; 41:1600-1614. [PMID: 32516863 DOI: 10.1002/humu.24062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/17/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Filamin C (encoded by the FLNC gene) is a large actin-cross-linking protein involved in shaping the actin cytoskeleton in response to signaling events both at the sarcolemma and at myofibrillar Z-discs of cross-striated muscle cells. Multiple mutations in FLNC are associated with myofibrillar myopathies of autosomal-dominant inheritance. Here, we describe for the first time a boy with congenital onset of generalized muscular hypotonia and muscular weakness, delayed motor development but no cardiac involvement associated with a homozygous FLNC mutation c.1325C>G (p.Pro442Arg). We performed ultramorphological, proteomic, and functional investigations as well as immunological studies of known marker proteins for dominant filaminopathies. We show that the mutant protein is expressed in similar quantities as the wild-type variant in control skeletal muscle fibers. The proteomic signature of quadriceps muscle is altered and ultrastructural perturbations are evident. Moreover, filaminopathy marker proteins are comparable both in our homozygous and a dominant control case (c.5161delG). Biochemical investigations demonstrate that the recombinant mutant protein is less stable and more prone to degradation by proteolytic enzymes than the wild-type variant. The unusual congenital presentation of the disease clearly demonstrates that homozygosity for mutations in FLNC severely aggravates the phenotype.
Collapse
Affiliation(s)
- Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Teresinha Evangelista
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France
| | - Kay Nolte
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Katherine Johnson
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Wilson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Wolfram Kress
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Albert Sickmann
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinische Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Laxmikanth Kollipara
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| |
Collapse
|
8
|
Jenkins AR, Holden NS, Gibbons LP, Jones AW. Clinical Outcomes and Inflammatory Responses of the Frequent Exacerbator in Pulmonary Rehabilitation: A Prospective Cohort Study. COPD 2020; 17:253-260. [DOI: 10.1080/15412555.2020.1753669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alex R. Jenkins
- Division of Respiratory Medicine, University of Nottingham, UK
- Lincoln International Institute for Rural Health, University of Lincoln, Lincoln, UK
| | - Neil S. Holden
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Luke P. Gibbons
- Countywide Community Respiratory Service, Lincolnshire Community Health Services NHS Trust, Lincoln, UK
| | - Arwel W. Jones
- Lincoln International Institute for Rural Health, University of Lincoln, Lincoln, UK
| |
Collapse
|
9
|
A Large Grade 5 Mobile Aortic Arch Atheromatous Plaque: Cause of Cerebrovascular Accident. Case Rep Med 2018; 2018:5134309. [PMID: 29808095 PMCID: PMC5902081 DOI: 10.1155/2018/5134309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/04/2018] [Indexed: 12/02/2022] Open
Abstract
Aortic atheromas (aortic atheromatous plaques) are defined by an irregular thickening of the intima ≥2 mm, and a complex plaque is defined as a protruding atheroma ≥4 mm with or without an attached mobile component. Stroke incidence is approximately 25% in patients with mobile plaques of the aortic arch and 2% in patients with quiescent nonmobile plaques. Antiplatelet agents, oral anticoagulants, and statins have been suggested in the management of atheromas. We present an 80-year-old male, with non-ST-segment elevation myocardial infarction (NSTEMI) and chronic dysarthria, found to have an acute cerebrovascular accident (CVA) secondary to embolism from a large 12 mm aortic arch plaque, treated medically with oral antiplatelet therapy, anticoagulation, and statin therapy.
Collapse
|
10
|
Yu X, Zhao L, Yu Z, Yu C, Bi J, Sun B, Cong H. Sivelestat sodium hydrate improves post-traumatic knee osteoarthritis through nuclear factor-κB in a rat model. Exp Ther Med 2017; 14:1531-1537. [PMID: 28810618 PMCID: PMC5526152 DOI: 10.3892/etm.2017.4684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
As a specific inhibitor of neutrophil elastase, sivelestat sodium hydrate has primarily been used in the treatment of acute lung injury caused by various factors since its approval in 2002. Sivelestat sodium hydrate also improves post-traumatic knee osteoarthritis (KOA), although its underlying mechanisms of action have yet to be elucidated. The aim of the current study was to determine if sivelestat sodium hydrate improves post-traumatic KOA through nuclear factor (NF)-κB in a rat model. Treatment with sivelestat sodium hydrate significantly inhibited the induction of structural changes and significantly increased the vertical episode count and ipsilateral static weight bearing of the joint in KOA rats (all P<0.01). Sivelestat sodium hydrate significantly inhibited tumor necrosis factor-α and interleukin-6 production, serum nitrite levels, inducible nitric oxide synthase protein expression and high mobility group box 1 (HMGB1) secretion in KOA rats compared with the model group (all P<0.01). Sivelestat sodium hydrate also significantly suppressed p50/p65 DNA binding activity and NF-κB and phosphorylated inhibitor of κB protein expression in the joints of KOA rats compared with the model group (all P<0.01). These results suggest that sivelestat sodium hydrate improves post-traumatic KOA through HMGB1 and NF-κB in rats.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Joint Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Lijun Zhao
- Department of Operating Theatre, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Zhiping Yu
- Department of Joint Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Changzheng Yu
- Department of Joint Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Jianfei Bi
- Department of Joint Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Binglong Sun
- Department of Joint Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Haibo Cong
- Department of Joint Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
11
|
Satoh T, Satoh K, Yaoita N, Kikuchi N, Omura J, Kurosawa R, Numano K, Al-Mamun E, Siddique MAH, Sunamura S, Nogi M, Suzuki K, Miyata S, Morser J, Shimokawa H. Activated TAFI Promotes the Development of Chronic Thromboembolic Pulmonary Hypertension: A Possible Novel Therapeutic Target. Circ Res 2017; 120:1246-1262. [PMID: 28289017 DOI: 10.1161/circresaha.117.310640] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Pulmonary hypertension is a fatal disease; however, its pathogenesis still remains to be elucidated. Thrombin-activatable fibrinolysis inhibitor (TAFI) is synthesized by the liver and inhibits fibrinolysis. Plasma TAFI levels are significantly increased in chronic thromboembolic pulmonary hypertension (CTEPH) patients. OBJECTIVE To determine the role of activated TAFI (TAFIa) in the development of CTEPH. METHODS AND RESULTS Immunostaining showed that TAFI and its binding partner thrombomodulin (TM) were highly expressed in the pulmonary arteries (PAs) and thrombus in patients with CTEPH. Moreover, plasma levels of TAFIa were increased 10-fold in CTEPH patients compared with controls. In mice, chronic hypoxia caused a 25-fold increase in plasma levels of TAFIa with increased plasma levels of thrombin and TM, which led to thrombus formation in PA, vascular remodeling, and pulmonary hypertension. Consistently, plasma clot lysis time was positively correlated with plasma TAFIa levels in mice. Additionally, overexpression of TAFIa caused organized thrombus with multiple obstruction of PA flow and reduced survival rate under hypoxia in mice. Bone marrow transplantation showed that circulating plasma TAFI from the liver, not in the bone marrow, was activated locally in PA endothelial cells through interactions with thrombin and TM. Mechanistic experiments demonstrated that TAFIa increased PA endothelial permeability, smooth muscle cell proliferation, and monocyte/macrophage activation. Importantly, TAFIa inhibitor and peroxisome proliferator-activated receptor-α agonists significantly reduced TAFIa and ameliorated animal models of pulmonary hypertension in mice and rats. CONCLUSIONS These results indicate that TAFIa could be a novel biomarker and realistic therapeutic target of CTEPH.
Collapse
Affiliation(s)
- Taijyu Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Junichi Omura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Kazuhiko Numano
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Elias Al-Mamun
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Mohammad Abdul Hai Siddique
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Masamichi Nogi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Kota Suzuki
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - John Morser
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., K. Satoh, N.Y., N.K., J.O., R.K., K.N., E.A.-M., M.A.H.S., S.S., M.N., K. Suzuki, S.M., H.S.); and Department of Hematology, Stanford School of Medicine, CA (J.M.).
| |
Collapse
|