1
|
Brzezinski M, Martin L, Simpson K, Lu K, Gan N, Huang C, Garcia K, Liu Z, Xu W. Photodegradation enhances the toxic effect of anthracene on skin. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134386. [PMID: 38663297 DOI: 10.1016/j.jhazmat.2024.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
Anthracene, a polycyclic aromatic hydrocarbon (PAH), is a widespread environmental pollutant that poses potential risks to human health. Exposure to anthracene can result in various adverse health effects, including skin-related disorders. Photo exposure sufficiently removes the anthracene from the environment but also generates more degradation products which can be more toxic. The goal of this study was to assess the change in anthracene dermotoxicity caused by photodegradation and understand the mechanism of this change. In the present study, over 99.99% of anthracene was degraded within 24 h of sunlight exposure, while producing many intermediate products including 9,10-anthraquinone and phthalic acid. The anthracene products with different durations of photo exposure were applied to 2D and 3D human keratinocyte cultures. Although the non-degraded anthracene significantly delayed the cell migration, the cell viability and differentiation decreased dramatically in the presence of the photodegraded anthracene. Anthracene photodegradation products also altered the expression patterns of a number of inflammation-related genes in comparison to the control cells. Among these genes, il1a, il1b, il8, cxcl2, s100a9, and mmp1 were upregulated whereas the tlr4 and mmp3 were downregulated by the photodegraded anthracene. Topical deliveries of the photodegraded and non-degraded anthracene to the dorsal skin of hairless mice showed more toxic effects by the photodegraded anthracene. The 4-hour photodegradation products of anthracene thickened the epidermal layer, increased the dermal cellularity, and induced the upregulation of inflammatory markers, il1a, il1b, s100a9, and mmp1. In addition, it also prevented the production of a gap junction protein, Connexin-43. All the evidence suggested that photodegradation enhanced the toxicities of anthracene to the skin. The 4-hour photodegradation products of anthracene led to clinical signs similar to acute inflammatory skin diseases, such as atopic and contact dermatitis, eczema, and psoriasis. Therefore, the potential risk of skin irritation by anthracene should be also considered when an individual is exposed to PAHs, especially in environments with strong sunlight.
Collapse
Affiliation(s)
- Molly Brzezinski
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kayla Simpson
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kaijun Lu
- University of Texas at Austin Marine Science Institute 750 Channel View Drive Port Aransas, TX 78373, USA
| | - Nin Gan
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Chi Huang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kaitlin Garcia
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Zhanfei Liu
- University of Texas at Austin Marine Science Institute 750 Channel View Drive Port Aransas, TX 78373, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA.
| |
Collapse
|
2
|
Yasarbas SS, Inal E, Yildirim MA, Dubrac S, Lamartine J, Mese G. Connexins in epidermal health and diseases: insights into their mutations, implications, and therapeutic solutions. Front Physiol 2024; 15:1346971. [PMID: 38827992 PMCID: PMC11140265 DOI: 10.3389/fphys.2024.1346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.
Collapse
Affiliation(s)
- S. Suheda Yasarbas
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Ece Inal
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - M. Azra Yildirim
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérôme Lamartine
- Skin Functional Integrity Group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Gulistan Mese
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| |
Collapse
|
3
|
Fernandez-Flores A, Varela-Vazquez A, Mayan MD, Fonseca E. Connexin 43 in Dermatofibroma and Dermatofibrosarcoma Protuberans: Diagnostic, Pathogenic, and Therapeutic Implications. Am J Dermatopathol 2023; 45:812-815. [PMID: 37982464 DOI: 10.1097/dad.0000000000002562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
ABSTRACT Connexins play a crucial role in the formation of gap junctions that connect cells to each other, as well as cells to the surrounding environment. In recent years, connexin 43 has been extensively studied in various human tumors. In this study, we conducted an immunohistochemical analysis to evaluate the expression of connexin in 16 dermatofibromas (DFs) and 13 dermatofibrosarcoma protuberans (DFSP). Connexin was diffusely expressed in the cytoplasm of all DFs with moderate or strong intensity, whereas all DFSPs showed negative staining. In addition to its diagnostic implications, the loss of Cx43 may elucidate the invasive capacity of DFSP and offer a potential avenue for future therapeutic interventions.
Collapse
Affiliation(s)
- Angel Fernandez-Flores
- Department of Cellular Pathology, Hospital El Bierzo, Ponferrada, Spain
- Department of Cellular Pathology, Hospital de la Reina, Ponferrada, Spain
| | - Adrian Varela-Vazquez
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC), University of A Coruña (UDC), A Coruña, Spain; and
| | - Maria D Mayan
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC), University of A Coruña (UDC), A Coruña, Spain; and
| | - Eduardo Fonseca
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC), University of A Coruña (UDC), A Coruña, Spain; and
- Department of Dermatology, Universitary Hospital of A Coruña, A Coruña, Spain
| |
Collapse
|
4
|
Sayed LH, Badr G, Omar HEDM, Elghaffar SKA, Sayed A. Bee gomogenat enhances the healing process of diabetic wounds by orchestrating the connexin-pannexin gap junction proteins in streptozotocin-induced diabetic mice. Sci Rep 2023; 13:19961. [PMID: 37968314 PMCID: PMC10651848 DOI: 10.1038/s41598-023-47206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Delay in wound healing remains one of diabetes's worse side effects, which increases mortality. The proposed study sought to scrutinize the implications of bee gomogenat (BG) on diabetic's wound closure in a streptozotocin-(STZ)-enhanced type-1 diabetes model's rodents. We used 3 different mice groups: group 1 non-diabetic rodents "serving as control", group 2 diabetic rodents, and group3 BG-treated diabetic rodents. We noticed that diabetic rodents experience a delayed wound closure, which emerged as a significant (*P < 0.05) decline in the deposition of collagen as compared to control non-diabetic animals. We noticed that diabetic rodents have a delayed wound closure characterized by a significant (*P < 0.05) decrease in the CD31 expression (indicator for wound angiogenesis and neovascularization) and an apparent elevation in the expression of such markers of inflammation as MCP-1 and HSP-70 as compared to control animals. Moreover, diabetic animals displayed a significant (*P < 0.05) increase in the expression of gap junction proteins Cx43 and a significant decrease in the expression of Panx3 in the wounded skin tissues when compared to the controls. Intriguingly, topical application with BG on the diabetic wounded skin tissues contributes to a significant (#P < 0.05) enhancing in the collagen deposition, up-regulating the level of CD31 expression and a significant (#P < 0.05) down-regulation in the MCP-1 and HSP-70 expressions as compared to diabetic non-treated animals. The expression's levels of Cx43 and Panx3 were significantly (#P < 0.05) retrieved in diabetic rodents after BG treatment. Taken together, our findings showed for the first time that BG promotes the recovering process and accelerated the closure of diabetic related wounds.
Collapse
Affiliation(s)
- Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | | | - Sary Khaleel Abd Elghaffar
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
- School of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Aml Sayed
- Mallawi Specialized Hospital, 26Th of July Street, Mallawi, Minia, Egypt
| |
Collapse
|
5
|
Sharma M, Mukherjee S, Shaw AK, Mondal A, Behera A, Das J, Bose A, Sinha B, Sarma JD. Connexin 43 mediated collective cell migration is independent of Golgi orientation. Biol Open 2023; 12:bio060006. [PMID: 37815438 PMCID: PMC10629497 DOI: 10.1242/bio.060006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Cell migration is vital for multiple physiological functions and is involved in the metastatic dissemination of tumour cells in various cancers. For effective directional migration, cells often reorient their Golgi apparatus and, therefore, the secretory traffic towards the leading edge. However, not much is understood about the regulation of Golgi's reorientation. Herein, we address the role of gap junction protein Connexin 43 (Cx43), which connects cells, allowing the direct exchange of molecules. We utilized HeLa WT cells lacking Cx43 and HeLa 43 cells, stably expressing Cx43, and found that functional Cx43 channels affected Golgi morphology and reduced the reorientation of Golgi during cell migration. Although the migration velocity of the front was reduced in HeLa 43, the front displayed enhanced coherence in movement, implying an augmented collective nature of migration. On BFA treatment, Golgi was dispersed and the high heterogeneity in inter-regional front velocity of HeLa WT cells was reduced to resemble the HeLa 43. HeLa 43 had higher vimentin expression and stronger basal F-actin. Furthermore, non-invasive measurement of basal membrane height fluctuations revealed a lower membrane tension. We, therefore, propose that reorientation of Golgi is not the major determinant of migration in the presence of Cx43, which induces collective-like coherent migration in cells.
Collapse
Affiliation(s)
- Madhav Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Suvam Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Archana Kumari Shaw
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Amrutamaya Behera
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
6
|
Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nat Commun 2023; 14:931. [PMID: 36805660 PMCID: PMC9938869 DOI: 10.1038/s41467-023-36593-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 02/20/2023] Open
Abstract
Connexin family proteins assemble into hexameric hemichannels in the cell membrane. The hemichannels dock together between two adjacent membranes to form gap junction intercellular channels (GJIChs). We report the cryo-electron microscopy structures of Cx43 GJICh, revealing the dynamic equilibrium state of various channel conformations in detergents and lipid nanodiscs. We identify three different N-terminal helix conformations of Cx43-gate-covering (GCN), pore-lining (PLN), and flexible intermediate (FIN)-that are randomly distributed in purified GJICh particles. The conformational equilibrium shifts to GCN by cholesteryl hemisuccinates and to PLN by C-terminal truncations and at varying pH. While GJIChs that mainly comprise GCN protomers are occluded by lipids, those containing conformationally heterogeneous protomers show markedly different pore sizes. We observe an α-to-π-helix transition in the first transmembrane helix, which creates a side opening to the membrane in the FIN and PLN conformations. This study provides basic structural information to understand the mechanisms of action and regulation of Cx43 GJICh.
Collapse
|
7
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- grid.417031.00000 0004 1799 2675Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
8
|
Sahoo S, Banik S, Giri SK, Tripathy PR, Kumar KCP. Epidemiological Characteristics and Role of Connexin-43 in Patients of Syndactyly Attending a Tertiary Care Center in Odisha, India. Cureus 2022; 14:e30327. [DOI: 10.7759/cureus.30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
|
9
|
Towards a Better Understanding of Genotype-Phenotype Correlations and Therapeutic Targets for Cardiocutaneous Genes: The Importance of Functional Studies above Prediction. Int J Mol Sci 2022; 23:ijms231810765. [PMID: 36142674 PMCID: PMC9503274 DOI: 10.3390/ijms231810765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into ‘protein reducing’ or ‘altered protein’ variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Collapse
|
10
|
Zhou Z, Chai W, Liu Y, Zhou M, Zhang X. Connexins and angiogenesis: Functional aspects, pathogenesis, and emerging therapies (Review). Int J Mol Med 2022; 50:110. [PMID: 35762312 PMCID: PMC9256078 DOI: 10.3892/ijmm.2022.5166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Connexins (Cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, Cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of Cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between Cxs and angiogenesis have sparked interest in Cx-mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between Cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of Cxs and Cx-mediated angiogenesis, with a focus on therapeutic implications.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Meng Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
11
|
Alibardi L. Cell adhesion and junctional proteins in the developing skin of snakes indicate they coordinate the differentiation of the epidermis. PROTOPLASMA 2022; 259:981-998. [PMID: 34697661 DOI: 10.1007/s00709-021-01711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The development of scales and the sequence of epidermal layers during snake embryogenesis has been studied by immunofluorescence for the localization of cell adhesion, adherens, and communicating cell junctional proteins. At about 2nd/3rd of embryonic development in snakes the epidermis forms symmetric bumps at the beginning of scale formation, and they rapidly become asymmetric and elongate forming outer and inner surfaces of the very overlapped scales seen at hatching. The dermis separates a superficial loose from a deeper dense part; the latter is joined to segmental muscles and nerves, likely acting on scale orientation during snake movements. N-cam is present in the differentiating epidermis and mesenchyme of forming scales while L-cam is only/mainly detected in the periderm and epidermis. Mesenchymal N-cam is associated with the epidermis of the elongating dorsal scale surface and with the beta-differentiation that occurs in the overlapping outer surface of scales. Beta-catenin and Connexin-43 show a similar distribution, and they are mainly present in the periderm and differentiating suprabasal keratinocytes likely forming an intense connectivity during epidermal differentiation. Beta-catenin also shows nuclear localization in differentiating cells of the shedding and beta-layers at late stages of scale morphogenesis, before hatching. The study suggests that intensification of adhesion and gap junctions allows synchronization of the differentiation of suprabasal cells to produce the ordered sequence of epidermal layers of snake scales, starting from the shedding complex and the beta-layer.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab, Padua, Italy.
- Dipartimento Di Biologia, Universita Di Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
12
|
Quist E, Trovato F, Avaliani N, Zetterdahl OG, Gonzalez-Ramos A, Hansen MG, Kokaia M, Canals I, Ahlenius H. Transcription factor-based direct conversion of human fibroblasts to functional astrocytes. Stem Cell Reports 2022; 17:1620-1635. [PMID: 35750047 PMCID: PMC9287681 DOI: 10.1016/j.stemcr.2022.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are emerging key players in neurological disorders. However, their role in disease etiology is poorly understood owing to inaccessibility of primary human astrocytes. Pluripotent stem cell-derived cells fail to mimic age and due to their clonal origin do not mimic genetic heterogeneity of patients. In contrast, direct conversion constitutes an attractive approach to generate human astrocytes that capture age and genetic diversity. We describe efficient direct conversion of human fibroblasts to functional induced astrocytes (iAs). Expression of the minimal combination Sox9 and Nfib generates iAs with molecular, phenotypic, and functional properties resembling primary human astrocytes. iAs could be obtained by conversion of fibroblasts covering the entire human lifespan. Importantly, iAs supported function of induced neurons obtained through direct conversion from the same fibroblast population. Fibroblast-derived iAs will become a useful tool to elucidate the biology of astrocytes and complement current in vitro models for studies of late-onset neurological disorders. Effective direct conversion of human fibroblasts to induced astrocytes (iAs) iAs resemble human primary astrocytes at molecular, phenotypic, and functional levels iAs can be generated from fibroblasts covering the entire human lifespan iAs support function of induced neurons obtained from the same starting population
Collapse
Affiliation(s)
- Ella Quist
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden.
| | - Francesco Trovato
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden; Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | | | - Oskar G Zetterdahl
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden; Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Glial and Neuronal Biology, Lund, Sweden
| | - Ana Gonzalez-Ramos
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Epilepsy Center, Lund, Sweden
| | | | - Merab Kokaia
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Epilepsy Center, Lund, Sweden
| | - Isaac Canals
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Glial and Neuronal Biology, Lund, Sweden
| | - Henrik Ahlenius
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden.
| |
Collapse
|
13
|
Connexin 43 Expression in Cutaneous Biopsies of Lupus Erythematosus. Am J Dermatopathol 2022; 44:664-668. [PMID: 35503887 DOI: 10.1097/dad.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Gap junctions are channels between adjacent cells formed by connexins (Cxs). Cxs also form hemichannels that connect the cell with its extracellular milieu. These channels allow the transport of ions, metabolites, and small molecules; therefore, Cxs, and more specifically, connexin (Cx) 43 has been demonstrated to be in control of several crucial events such as inflammation and cell death. MATERIAL AND METHODS We examined the immunostaining of Cx43 in the endothelia of the cutaneous blood vessels of biopsies from 28 patients with several variants of lupus erythematosus. RESULTS In 19 cases (67.86%), staining of more than half of the dermal vessels including both vessels of the papillary and of the reticular dermis was identified. Only in 4 cases (14.28%), less than 25% of the vessels in the biopsy showed expression of the marker. CONCLUSIONS Our results suggest a role of Cx43 in regulating the endothelial activity in lupus erythematosus, which also opens a door for targeted therapeutic options.
Collapse
|
14
|
Gros-Désormeaux F, Caffin F, Igert A, Guatto N, Piérard C. Is CEES a good analog of sulfur mustard? Macroscopic aspect, histology, and molecular biology comparisons between sulfur mustard and CEES-induced skin lesions. Toxicol Lett 2022; 361:21-28. [PMID: 35341927 DOI: 10.1016/j.toxlet.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Sulfur mustard (SM) is a chemical blistering warfare agent affecting multiple organs. SM is an ongoing chemical threat in addition to the accidental risk associated with World War I buried shells. As no specific treatments are available, only symptomatic therapies can be used. To test new medical countermeasures in standard laboratories, analogs such as 2-chloroethyl ethylsulfide (CEES) are currently used, although only a few studies compare its clinical effects with SM. In the present paper, skin lesions induced by SM and CEES are compared in terms of their macroscopic aspects, histology, and molecular biology to evaluate the pertinence of CEES as a SM analog. For this purpose, an in vivo model of CEES vapor exposure, similar to that of SM, is described in this paper. RESULTS: showed similar skin lesions with CEES and SM but with slight differences in the apparition delay and intensity of the lesions. Indeed, SM induced earlier, deeper, and stronger lesions. However, the same healing status was observed at the end of the study period (14 days). In conclusion, CEES appears a relevant analog of SM, leading to similar skin lesions. The CEES vapor exposure model therefore seems suitable for testing new medical countermeasures.
Collapse
Affiliation(s)
- Fanny Gros-Désormeaux
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France.
| | - Fanny Caffin
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Alexandre Igert
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Nathalie Guatto
- Département des Plateformes et Recherches Technologiques - Unité Imagerie, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Christophe Piérard
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| |
Collapse
|
15
|
Frings VG, Goebeler M, Schilling B, Kneitz H. Aberrant cytoplasmic connexin43 expression as a helpful marker in vascular neoplasms. J Cutan Pathol 2021; 48:1335-1341. [PMID: 34021619 DOI: 10.1111/cup.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Gap junctions consisting of connexins (Cx) are fundamental in controlling cell proliferation, differentiation, and cell death. Cx43 is the most broadly expressed Cx in humans and is attributed an important role in skin tumor development. Its role in cutaneous vascular neoplasms is yet unknown. METHODS Fifteen cases each of cutaneous angiosarcoma (cAS), Kaposi sarcoma (KS), and cherry hemangioma (CH) were assessed by immunohistochemistry for expression of Cx43. Expression pattern, intensity, and percentage of positively stained cells were analyzed. Solid basal cell carcinomas served as positive and healthy skin as negative controls. RESULTS Most cases of cAS presented with a strong Cx43 staining of almost all tumor cells, whereas endothelia of KS showed medium expression and CH showed mostly weak expression. In comparison with KS or cAS, the staining intensity of CH was significantly lower (P ≤ 0.001). All tissue sections of both cAS and KS were characterized by a mostly diffuse, cytoplasmic staining pattern of the vascular endothelia. None of those showed nuclear staining. CONCLUSION The high-to-intermediate expression of Cx43 observed in all cases of cAS and KS suggests that this Cx may play a role in the development of malignant vascular neoplasms and serve as a helpful diagnostic marker.
Collapse
Affiliation(s)
- Verena Gerlinde Frings
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Kneitz
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Zhang P, Ishikawa M, Doyle A, Nakamura T, He B, Yamada Y. Pannexin 3 regulates skin development via Epiprofin. Sci Rep 2021; 11:1779. [PMID: 33469169 PMCID: PMC7815752 DOI: 10.1038/s41598-021-81074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pannexin 3 (Panx3), a member of the gap junction pannexin family is required for the development of hard tissues including bone, cartilage and teeth. However, the role of Panx3 in skin development remains unclear. Here, we demonstrate that Panx3 regulates skin development by modulating the transcription factor, Epiprofin (Epfn). Panx3-/- mice have impaired skin development and delayed hair follicle regeneration. Loss of Panx3 in knockout mice and suppression by shRNA both elicited a reduction of Epfn expression in the epidermis. In cell culture, Panx3 overexpression promoted HaCaT cell differentiation, cell cycle exit and enhanced Epfn expression. Epfn-/- mice and inhibition of Epfn by siRNA showed no obvious differences of Panx3 expression. Furthermore, Panx3 promotes Akt/NFAT signaling pathway in keratinocyte differentiation by both Panx3 ATP releasing channel and ER Ca2+ channel functions. Our results reveal that Panx3 has a key role factor for the skin development by regulating Epfn.
Collapse
Affiliation(s)
- Peipei Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University, Graduate School of Dentistry 4-1, Seiryo chou, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Andrew Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
17
|
Fernandez-Flores A, Varela-Vazquez A, Mayan MD, Fonseca E. Expression of connexin 43 by atypical fibroxanthoma. J Cutan Pathol 2020; 48:247-254. [PMID: 32851695 DOI: 10.1111/cup.13856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Connexins are transmembrane channel proteins that interconnect adjacent cells and allow the exchange of signaling molecules between cells and the extracellular milieu. They have been investigated in many tumors to obtain information about tumor nature, behavior, and prognosis. METHODS Herein, we present a study on the immunohistochemical expression of connexin (Cx) 43 in 16 cases of atypical fibroxanthoma (AFX). For the immunohistochemical staining, a tissue array was obtained from the paraffin-embedded blocks. RESULTS The expression was membranous and cytoplasmic in all cases. Thirteen cases (81.25%) showed strong staining. In the other three cases (18.75%), the staining was medium. None of the cases showed nuclear staining. Fifteen out of 16 cases showed a diffuse pattern, and only one case showed a focal pattern. CONCLUSIONS Our results suggest that Cx43 may play an important role in the natural behavior of AFX.
Collapse
Affiliation(s)
- Angel Fernandez-Flores
- Department of Cellular Pathology, Hospital El Bierzo, Ponferrada, Spain.,Department of Cellular Pathology, Hospital de la Reina, Ponferrada, Spain.,Department of Research, Institute for Biomedical Research of A Coruña (INIBIC). University of A Coruña (UDC), A Coruña, Spain
| | - Adrian Varela-Vazquez
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC). University of A Coruña (UDC), A Coruña, Spain
| | - Maria D Mayan
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC). University of A Coruña (UDC), A Coruña, Spain
| | - Eduardo Fonseca
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC). University of A Coruña (UDC), A Coruña, Spain.,Department of Dermatology, University Hospital of A Coruña, A Coruña, Spain
| |
Collapse
|
18
|
McNair AJ, Wilson KS, Martin PE, Welsh DJ, Dempsie Y. Connexin 43 plays a role in proliferation and migration of pulmonary arterial fibroblasts in response to hypoxia. Pulm Circ 2020; 10:2045894020937134. [PMID: 32670564 PMCID: PMC7338651 DOI: 10.1177/2045894020937134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease associated with vasoconstriction and remodelling of the pulmonary vasculature. Pulmonary artery fibroblasts (PAFs) play an important role in hypoxic-induced remodelling. Connexin 43 (Cx43) is involved in cellular communication and regulation of the pulmonary vasculature. Using both in vitro and in vivo models of PH, the aims of this study were to (i) investigate the role of Cx43 in hypoxic-induced proliferation and migration of rat PAFs (rPAFs) and rat pulmonary artery smooth muscle cells (rPASMCs) and (ii) determine whether Cx43 expression is dysregulated in the rat sugen5416/hypoxic model of PH. The role of Cx43 in hypoxic-induced proliferation and migration was investigated using Gap27 (a pharmacological inhibitor of Cx43) or genetic knockdown of Cx43 using siRNA. Cx43 protein expression was increased by hypoxia in rPAFs but not rPASMCs. Hypoxic exposure, in the presence of serum, resulted in an increase in proliferation of rPAFs but not rPASMCs. Hypoxic exposure caused migration of rPAFs but not rPASMCs. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) and ERK1/2 were increased by hypoxia in rPAFs. The effects of hypoxia on proliferation, migration and MAPK phosphorylation in rPAFs were attenuated in the presence of Gap27 or Cx43 siRNA. Cx43 protein expression was increased in sugen5416/hypoxic rat lung; this increased expression was not observed in sugen5416/hypoxic rats treated with the MAPK pathway inhibitor GS-444217. In conclusion, Cx43 is involved in the proliferation and migration of rPAFs in response to hypoxia via the MAPK signalling pathway.
Collapse
Affiliation(s)
- Andrew J McNair
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Kathryn S Wilson
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Patricia E Martin
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - David J Welsh
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yvonne Dempsie
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
19
|
Palhares LCGF, Barbosa JS, Scortecci KC, Rocha HAO, Brito AS, Chavante SF. In vitro antitumor and anti-angiogenic activities of a shrimp chondroitin sulfate. Int J Biol Macromol 2020; 162:1153-1165. [PMID: 32553958 DOI: 10.1016/j.ijbiomac.2020.06.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Thrombin triggers cellular responses that are crucial for development and progression of cancer, such as proliferation, migration, oncogene expression and angiogenesis. Thus, biomolecules capable of inhibiting this protease have become targets in cancer research. The present work describes the in vitro antitumor properties of a chondroitin sulfate with anti-thrombin activity, isolated from the Litopenaeus vannamei shrimp (sCS). Although the compound was unable to induce cytotoxicity or cell death and/or cell cycle changes after 24 h incubation, it showed a long-term antiproliferative effect, reducing the tumor colony formation of melanoma cells by 75% at 100 μg/mL concentration and inhibiting the anchorage-independent colony formation. sCS reduced 66% of melanoma cell migration in the wound healing assay and 70% in the transwell assay. The compound also decreased melanin and TNF-α content of melanoma cells by 52% and 75% respectively. Anti-angiogenic experiments showed that sCS promoted 100% reduction of tubular structure formation at 100 μg/mL. These results are in accordance with the sCS-mediated in vitro expression of genes related to melanoma development (Cx-43, MAPK, RhoA, PAFR, NFKB1 and VEGFA). These findings bring a new insight to CS molecules in cancer biology that can contribute to ongoing studies for new approaches in designing anti-tumor therapy.
Collapse
Affiliation(s)
- Lais C G F Palhares
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Jefferson S Barbosa
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus São Gonçalo do Amarante, RN, Brazil
| | - Kátia C Scortecci
- Departamento de Biologia celular e genética, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Hugo A O Rocha
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Adriana S Brito
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Suely F Chavante
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
20
|
Cocozzelli AG, White TW. Connexin 43 Mutations Lead to Increased Hemichannel Functionality in Skin Disease. Int J Mol Sci 2019; 20:ijms20246186. [PMID: 31817921 PMCID: PMC6940829 DOI: 10.3390/ijms20246186] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Gap junctional channels are specialized components of the cellular membrane that allow the intercellular passage of small metabolites, ions, and second messengers to maintain homeostasis. They are comprised of members of the connexin gene family that encode a wide array of proteins that are expressed in nearly every tissue type. Cx43 is perceived to be the most broadly expressed connexin in humans, with several genetic skin diseases being linked to Cx43 mutations specifically. These mutations, in large, produce a gain of functional hemichannels that contribute to the phenotypes of Erythrokeratoderma Variabilis et Progressiva (EKVP), Palmoplantar Keratodemra Congenital Alopecia-1 (PPKCA1), and others that produce large conductance and increased permselectivity in otherwise quiescent structures. Gaining functional hemichannels can have adverse effects in the skin, inducing apoptosis via Ca2+ overload or increased ATP permeability. Here, we review the link between Cx43 and skin disease. We aim to provide insight into the mechanisms regulating the normal and pathophysiological gating of these essential proteins, as well as address current therapeutic strategies. We also demonstrate that transient transfection of neuro-2a (N2a) cells with mutant Cx43 cDNA resulted in increased hemichannel activity compared to wild-type Cx43 and untransfected cells, which is consistent with other studies in the current literature.
Collapse
|
21
|
Yang B, Chen H, Cao J, He B, Wang S, Luo Y, Wang J. Transcriptome Analysis Reveals That Alfalfa Promotes Rumen Development Through Enhanced Metabolic Processes and Calcium Transduction in Hu Lambs. Front Genet 2019; 10:929. [PMID: 31632445 PMCID: PMC6785638 DOI: 10.3389/fgene.2019.00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
A healthy gut is very important for young animal development. The rumen of ruminants expands in size with the colonization of microbiota by 2 months of age. This process is promoted by alfalfa intervention. To elucidate the mechanism of this promotion, we performed transcriptomic analyses using a cohort of 23 lambs to evaluate the effects of starter diets plus alfalfa on the development of the rumen wall from the pre- to the postweaning period. The quantitative PCR analyses were used to validate selected genes that were differentially expressed in the transcriptome mapping. We found that several metabolic processes associated with rumen tissue development were affected by solid feed intake, with genes linked to the calcium signaling transduction pathway and the metabolism of pteridine-containing compounds and homocysteine metabolic process being upregulated in the group with alfalfa intervention. The results suggest that the pteridine-containing compounds and calcium signaling are targets for precise regulation of rumen development.
Collapse
Affiliation(s)
- Bin Yang
- MoE Key Laboratory of Molecular Animal Nutrition, Institution of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Chen
- MoE Key Laboratory of Molecular Animal Nutrition, Institution of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiawen Cao
- MoE Key Laboratory of Molecular Animal Nutrition, Institution of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bo He
- MoE Key Laboratory of Molecular Animal Nutrition, Institution of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shanshan Wang
- MoE Key Laboratory of Molecular Animal Nutrition, Institution of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Luo
- MoE Key Laboratory of Molecular Animal Nutrition, Institution of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiakun Wang
- MoE Key Laboratory of Molecular Animal Nutrition, Institution of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Hansson E, Skiöldebrand E. Low-grade inflammation causes gap junction-coupled cell dysfunction throughout the body, which can lead to the spread of systemic inflammation. Scand J Pain 2019; 19:639-649. [PMID: 31251727 DOI: 10.1515/sjpain-2019-0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Gap junction-coupled cells form networks in different organs in the body. These networks can be affected by inflammatory stimuli and become dysregulated. Cell signaling is also changed through connexin-linked gap junctions. This alteration affects the surrounding cells and extracellular matrix in organs. These changes can cause the spread of inflammatory substances, thus affecting other network-linked cells in other organs in the body, which can give rise to systemic inflammation, which in turn can lead to pain that can turn into chronic. METHODS This is a review based on literature search and our own research data of inflammatory stimuli that can affect different organs and particularly gap-junction-coupled cells throughout the body. CONCLUSIONS A remaining question is which cell type or tissue is first affected by inflammatory stimuli. Can endotoxin exposure through the air, water and body start the process and are mast cells the first target cells that have the capacity to alter the physiological status of gap junction-coupled cells, thereby causing breakdown of different barrier systems? IMPLICATIONS Is it possible to address the right cellular and biochemical parameters and restore inflammatory systems to a normal physiological level by therapeutic strategies?
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd Floor, SE 413 45 Gothenburg, Sweden, Phone: +46-31-786 3363
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
23
|
The Role of Connexin-43 in the Inflammatory Process: A New Potential Therapy to Influence Keratitis. J Ophthalmol 2019; 2019:9312827. [PMID: 30805212 PMCID: PMC6360563 DOI: 10.1155/2019/9312827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The studies outlined in this review highlight the relationship between inflammatory signaling molecules and connexin-43 (Cx43). Gap junction (GJ) channels and hemichannels (HCs) participate in the metabolic activity between intra- and extracellular space. Some ions and small molecules are exchanged from cell to cell or cell to extracellular space to affect the process of inflammation via GJ. We analyzed the effects of signaling molecules, such as innate immunity messengers, transcription factors, LPS, cytokine, inflammatory chemokines, and MMPs, on Cx43 expression during the inflammatory process. At the same time, we found that these signaling molecules play a critical role in the pathogenesis of keratitis. Thus, we assessed the function of Cx43 during inflammatory corneal disease. Corneal healing plays an essential role in the late stage of keratitis. We found that Cx43 is involved in wound healing. Studies have shown that the decrease of Cx43 can decrease the time of healing. We also report several Cx43 mimic peptides which can inhibit the activity of Cx43 Hc to mediate the releasing of adenosine triphosphate (ATP), which may in turn influence the inflammatory process.
Collapse
|
24
|
Pannexin-3 Deficiency Delays Skin Wound Healing in Mice due to Defects in Channel Functionality. J Invest Dermatol 2018; 139:909-918. [PMID: 30389492 DOI: 10.1016/j.jid.2018.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/05/2023]
Abstract
Pannexin-3 (Panx3) is a gap junction protein that is required for regulating cell cycle exit and the differentiation of osteoblasts and chondrocytes during skeletal development. However, the role of Panx3 in skin tissue regeneration remains unclear. After dorsal skin punch biopsies, Panx3-knockout mice exhibited a significant delay in wound healing with insufficient re-epithelialization, decreased inflammatory reaction, and reduced collagen remodeling. Panx3 expression coincided with inflammatory reactions both in vivo and in vitro. By applying exogenous tumor necrosis factor-α to mimic inflammation in vitro, Panx3 expression was induced in HaCaT cells. In addition, Panx3 depletion reduced epithelial-mesenchymal transition during skin wound healing. A protein essential for signaling in epithelial-mesenchymal transition, transforming growth factor-β interacted with Panx3 by modulating intracellular adenosine triphosphate levels and thereby enhanced HaCaT cell migration ability with Panx3 overexpression. In conclusion, Panx3 plays a key role in the skin wound healing process by controlling keratinocytes and keratinocyte-mesenchyme cross-talk via hemichannel and endoplasmic reticulum Ca2+ channel functions, which differs from another gap junction, connexin 43 (Cx43), during skin wound healing.
Collapse
|
25
|
Regulation of connexin 43 expression in human gingival fibroblasts. Exp Cell Res 2018; 371:238-249. [PMID: 30118696 DOI: 10.1016/j.yexcr.2018.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
AIMS Abundance of connexin 43 (Cx43), a transmembrane protein that forms hemichannels (HCs) and gap junctions (GJs), is dynamically regulated in human gingival fibroblasts (GFBLs) during wound healing. This may be important for fast and scarless gingival wound healing as Cx43 is involved in key cell functions important during this process. Our aim was to uncover the factors that regulate Cx43 expression and abundance in GFBLs. We hypothesized that cytokines and growth factors released during wound healing coordinately regulate Cx43 abundance in GFBLs. RESULTS TGF-β1, -β2, -β3, PGE2 and IL-1β significantly upregulated, while TNF-α and IFN-γ downregulated Cx43 in cultured GFBLs. TGF-β1, -β2, -β3, IL-1β and IFN-γ modulated Cx43 abundance at both mRNA and protein levels, while TNF-α and PGE2 regulated only Cx43 protein abundance, suggesting involvement of distinct transcriptional/post-transcriptional and translational/post-translational mechanisms, respectively. TGF-β1-induced upregulation of Cx43 was mediated by TGFβRI (ALK5) and SMAD2/3 signaling, and this was potently suppressed by PGE2, IL-1β, TNF-α and IFN-γ that inhibited SMAD2/3 phosphorylation. CONCLUSION Regulation of Cx43 abundance in GFBLs involves transcriptional/post-transcriptional and translational/post-translational mechanisms that are distinctly modulated by an interplay between TGF-β isoforms and PGE2, IL-1β, TNF-α and IFN-γ.
Collapse
|
26
|
Abstract
Purpose of Review Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Recent Findings Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. Summary This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Neha Bhatt
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Antonin Bourdieu
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Karen K Hirschi
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| |
Collapse
|