1
|
Liu S, Zhao R, Zang Y, Huang P, Zhang Q, Fan X, Bai J, Zheng X, Zhao S, Kuai D, Gao C, Wang Y, Xue F. Interleukin-22 promotes endometrial carcinoma cell proliferation and cycle progression via ERK1/2 and p38 activation. Mol Cell Biochem 2024:10.1007/s11010-024-05179-7. [PMID: 39690293 DOI: 10.1007/s11010-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors, but its underlying pathogenic mechanisms are largely obscure. Interleukin-22 (IL-22), one cytokine in the tumor immune microenvironment, was reported to be associated with carcinoma progression. Here, we aimed to investigate the regulation of IL-22 in endometrial carcinoma. Enzyme-linked immunosorbent assay (ELISA) analysis of IL-22 was done in 27 controls and 51 patients with EC. We examined the proliferative potential, cycle progression, and signaling pathways modulated by IL-22 in EC cells. Western blot analysis was performed to investigate the expression of proliferative and cycle-related proteins in EC cells. The effect of IL-22 mediated by interleukin-22 receptor alpha 1 (IL-22RA1) was examined using cell transfection with small interfering RNA (siRNA). In addition, a xenograft tumor model was performed to assess the effect of IL-22 in vivo. We demonstrated significant up-regulation of serum IL-22 concentrations in EC patients (42.59 ± 23.72 pg/mL) compared to the control group (27.47 ± 8.29 pg/mL). High levels of IL-22 concentrations appear to correlate with malignant clinicopathological features of EC. Treatment with IL-22 promoted cell proliferation and G1/S phase progression in Ishikawa and HEC-1B cells. Western blot analysis revealed that c-Myc, cyclin E1, cyclin-dependent kinase (CDK)2, cyclin D1, CDK4, CDK6, p-extracellular signal-regulated kinase1/2 (p-ERK1/2), and p-p38 were highly expressed in EC cells exposed to IL-22. Moreover, in the EC mice model, we found that giving exogenous IL-22 increased tumor volume and weight. Immunohistochemistry showed that intra-tumor Ki-67 expression was up-regulated upon IL-22 treatment. The IL-22-mediated changes in cell proliferation, cycle progression, and protein expression can be effectively inhibited by the ERK1/2 inhibitor U0126 and the p38 inhibitor SB202190. In addition, the role of IL-22 in EC is receptor-dependent. Our findings suggest that IL-22 promotes endometrial carcinoma cell proliferation and G1/S phase progression by activating ERK1/2 and p38 signaling. Therefore, IL-22 may represent a potential therapeutic target for the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, 313002, Zhejiang, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Qingdao Municipal Hospital, Shandong, 266071, China
| | - Pengzhu Huang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junyi Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Qiu X, Ye H, Li X, Li D, Jiang L, Liu R, Zhao Z, He D. IL-6/JAK2-dependent G6PD phosphorylation promotes nucleotide synthesis and supports tumor growth. Mol Metab 2023; 78:101836. [PMID: 37949355 PMCID: PMC10692918 DOI: 10.1016/j.molmet.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Tumor cells hijack inflammatory mechanisms to promote their own growth. IL-6 is one of the major cytokines, and is frequently upregulated in tumors. The pentose phosphate pathway (PPP) generates the indispensable building blocks to produce various nucleotides. Here we aimed to determine whether and how PPP is timely tuned in response to IL-6 to support tumor growth. METHODS Protein expression was examined by immunoblot. Protein interaction was examined by immunoprecipitation. Tumor cell proliferation in in vitro culture was examined by BrdU assay and colony formation assay. Tumor cell proliferation in mouse xenograft model was examined by Ki-67 staining. RESULTS Here we show that the metabolic flux of PPP and enzymatic activity of glucose-6-phosphate dehydrogenase (G6PD) is rapidly induced under IL-6 treatment, without obvious changes in G6PD expression level. Mechanistically, Janus kinase 2 (JAK2) phosphorylates G6PD Y437 under IL-6 treatment, which accentuates G6PD enzymatic activity by promoting G6PD binding with its substrate G6P. Further, JAK2-dependent G6PD Y437 phosphorylation is required for IL-6-induced nucleotide biosynthesis and tumor cell proliferation, and is associated with the progression of oral squamous cell carcinoma. CONCLUSIONS Our findings report a new mechanism implicated in the crosstalk between tumor cells and inflammatory microenvironment, by which JAK2-dependent activation of G6PD governs nucleotide synthesis to support tumor cell proliferation, thereby highlighting its value as a potential anti-tumor target.
Collapse
Affiliation(s)
- Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hongping Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaofei Li
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610057, PR China
| | - Dan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhe Zhao
- Nuclear Stress Medicine Center, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610057, PR China.
| | - Dan He
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610057, PR China.
| |
Collapse
|
4
|
Wang ZN, Xu T, Liu KS. Research progress on Th22 cells and related cytokines in tumors: current status and future perspectives. Am J Cancer Res 2023; 13:3315-3323. [PMID: 37693133 PMCID: PMC10492103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Th22 cells are a newly identified subpopulation of CD4+ T lymphocytes distinct from Th1, Th2, and Th17 cells, which secretes mainly interleukin-22 (IL-22), in addition to a variety of other cytokines. The function of Th22 cells in tumors is mainly realized through IL-22, which can activate JAK/STAT and MAPK cell signaling pathways, thereby regulating the anti-tumor immune response of the body. The main function of Th22 cells is to participate in mucosal defense, tissue repair, and wound healing. However, controversial data have shown that overexpression of IL-22 can lead to pathological changes under inflammatory conditions and tumor progression. In this review, we searched the PubMed and Web of Science databases for articles and reviews published before May 6, 2022, using the keywords "Th22 cells, T helper 22 cells, cancer, tumor", and conducted a comprehensive review of the relevant literature. In addition, this article offers an overview of the relevant findings on the function of Th22 cells in tumors published in recent years, along with a more comprehensive analysis of the functions and mechanisms of Th22 cells in tumors. This article will hopefully inspire new future directions in the research on cancer therapy.
Collapse
Affiliation(s)
- Zhi-Ning Wang
- Department of Oncology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing, Jiangsu Province, China
| | - Tao Xu
- Xi’an Jiaotong University Global Health InstituteXi’an 710049, Shaanxi, China
| | - Kang-Sheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
5
|
Yan X, Tsuji G, Hashimoto-Hachiya A, Furue M. Galactomyces Ferment Filtrate Potentiates an Anti-Inflammaging System in Keratinocytes. J Clin Med 2022; 11:6338. [PMID: 36362566 PMCID: PMC9657190 DOI: 10.3390/jcm11216338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2023] Open
Abstract
Skincare products play a crucial role in preventing the dry skin induced by various causes. Certain ingredients can help to improve the efficacy of skincare products. Galactomyces ferment filtrate (GFF) is such a functional ingredient. Its use originated from the empirical observation that the hands of sake brewers who deal with yeast fermentation retain a beautiful and youthful appearance. Consequently, skincare products based on GFF are widely used throughout the world. Recent studies have demonstrated that GFF activates an aryl hydrocarbon receptor (AHR) and upregulates the expression of filaggrin, a pivotal endogenous source of natural moisturizing factors, in epidermal keratinocytes. It also activates nuclear factor erythroid-2-related factor 2 (NRF2), the antioxidative master transcription factor, and exhibits potent antioxidative activity against oxidative stress induced by ultraviolet irradiation and proinflammatory cytokines, which also accelerate inflammaging. GFF-mediated NRF2 activation downregulates the expression of CDKN2A, which is known to be overexpressed in senescent keratinocytes. Moreover, GFF enhances epidermal terminal differentiation by upregulating the expression of caspase-14, claudin-1, and claudin-4. It also promotes the synthesis of the antiinflammatory cytokine IL-37 and downregulates the expression of proallergic cytokine IL-33 in keratinocytes. In addition, GFF downregulates the expression of the CXCL14 and IL6R genes, which are involved in inflammaging. These beneficial properties might underpin the potent barrier-protecting and anti-inflammaging effects of GFF-containing skin formulae.
Collapse
Affiliation(s)
- Xianghong Yan
- SK-II Science Communications, Kobe Innovation Center, Procter and Gamble Innovation, Kobe 651-0088, Japan
| | - Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Khatoon E, Hegde M, Kumar A, Daimary UD, Sethi G, Bishayee A, Kunnumakkara AB. The multifaceted role of STAT3 pathway and its implication as a potential therapeutic target in oral cancer. Arch Pharm Res 2022; 45:507-534. [PMID: 35987863 DOI: 10.1007/s12272-022-01398-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/20/2022] [Indexed: 12/20/2022]
Abstract
Oral cancer is one of the leading causes of cancer-related deaths, and it has become a matter of serious concern due to the alarming rise in its incidence rate worldwide. Despite recent advancements in oral cancer treatment strategies, there are no significant improvements in patient's survival rate. Among the numerous cell signaling pathways involved in oral cancer development and progression, STAT3 is known to play a multifaceted oncogenic role in shaping the tumor pathophysiology. STAT3 hyperactivation in oral cancer contributes to survival, proliferation, invasion, epithelial to mesenchymal transition, metastasis, immunosuppression, chemoresistance, and poor prognosis. A plethora of pre-clinical and clinical studies have documented the role of STAT3 in the initiation and development of oral cancer and showed that STAT3 inhibition holds significant potential in the prevention and treatment of this cancer. However, to date, targeting STAT3 activation mainly involves inhibiting the upstream signaling molecules such as JAK and IL-6 receptors. The major challenge in targeting STAT3 lies in the complexity of its phosphorylation- and dimerization-independent functions, which are not affected by disrupting the upstream regulators. The present review delineates the significance of the STAT3 pathway in regulating various hallmarks of oral cancer. In addition, it highlights the STAT3 inhibitors identified to date through various preclinical and clinical studies that can be employed for the therapeutic intervention in oral cancer treatment.
Collapse
Affiliation(s)
- Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India. .,DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, 781 039, Assam, India.
| |
Collapse
|
7
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Ji W, Li J, Wang X, Gao D, Zhang T. Increased expression of interleukin-22 and its receptor is relevant to poor prognosis in laryngeal squamous cell carcinoma: A case control trial. Medicine (Baltimore) 2021; 100:e28419. [PMID: 34941188 PMCID: PMC8702255 DOI: 10.1097/md.0000000000028419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT To detect the expression of interlerukin-22 (IL-22) and associated genes and to evaluate their relationship with clinicopathological features and prognosis in laryngeal squamous cell carcinoma (LSCC).The expression of IL-22 and associated genes were evaluated by immunohistochemistry and real time polymerase chain reaction in LSCC tissues from 30 patients and adjacent non-tumor tissues. A statistical analysis was implemented to assess the relationship among levels of expression, clinicopathological factors, and overall survival.The expression of IL-22 and interleukin 22 receptor 1 (IL-22R1) was mainly located in the cytoplasm, and the expression of LSCC was significantly higher than in controls. The expression of aryl hydrocarbon receptor and signal transducer and activator of transcription 3 distributed in the cell nucleus, which was significantly higher in LSCC than in controls. The expression of IL-22 and IL-22R1 was associated with metastasis of lymph node and clinical stage of LSCC. Overall survival of LSCC was significantly poorer with higher expression of IL-22 and IL-22R1 than in those with lower expression.The present research indicated that the increased level of IL-22 and IL-22R1 may be related to the pathogenesis and prognosis of LSCC. IL-22 may be the important biomarker, which need further research.
Collapse
|
9
|
Doulabi H, Masoumi E, Rastin M, Foolady Azarnaminy A, Esmaeili SA, Mahmoudi M. The role of Th22 cells, from tissue repair to cancer progression. Cytokine 2021; 149:155749. [PMID: 34739898 DOI: 10.1016/j.cyto.2021.155749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
CD4+ T helper (Th) cells play a significant role in modulating host defense. In the presence of lineage specific cytokine cocktail, Naive CD4+ T cells can differentiate into several categories with distinct cytokines profile and effector functions. Th22 cells are a recently identified subset of CD4+ T cell, which differentiate from Naive CD4+ T in the presence of IL-6 and TNF-α. Th22 characterized by the production of interleukin-22 (IL-22) and expression of aryl hydrocarbon receptor (AHR). The main function of Th22 cells is to participate in mucosal defense, tissue repair, and wound healing. However, controversial data have shown that overexpression of IL-22 can lead to pathological changes under inflammatory conditions and tumor progression. This review summarizes our knowledge about the role of Th22 and IL-22 cells in tumor progression through induction of inflammation.
Collapse
Affiliation(s)
- Hassan Doulabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Rastin
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med 2021; 10:jcm10153199. [PMID: 34361983 PMCID: PMC8346978 DOI: 10.3390/jcm10153199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease induced by multifactorial causes and is characterized by bothersome, scaly reddish plaques, especially on frequently chafed body parts, such as extensor sites of the extremities. The latest advances in molecular-targeted therapies using biologics or small-molecule inhibitors help to sufficiently treat even the most severe psoriatic symptoms and the extra cutaneous comorbidities of psoriatic arthritis. The excellent clinical effects of these therapies provide a deeper understanding of the impaired quality of life caused by this disease and the detailed molecular mechanism in which the interleukin (IL)-23/IL-17 axis plays an essential role. To establish standardized therapeutic strategies, biomarkers that define deep remission are indispensable. Several molecules, such as cytokines, chemokines, antimicrobial peptides, and proteinase inhibitors, have been recognized as potent biomarker candidates. In particular, blood protein markers that are repeatedly measurable can be extremely useful in daily clinical practice. Herein, we summarize the molecular mechanism of psoriasis, and we describe the functions and induction mechanisms of these biomarker candidates.
Collapse
|
11
|
Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, Cui D. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:688066. [PMID: 34295334 PMCID: PMC8290841 DOI: 10.3389/fimmu.2021.688066] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Upon antigenic stimulation, naïve CD4+T cells differentiate into different subsets and secrete various cytokines to exert biological effects. Th22 cells, a newly identified CD4+T cell subset,are distinct from the Th1, Th2 and Th17 subsets. Th22 cells secrete certain cytokines such as IL-22, IL-13 and TNF-α, but not others, such as IL-17, IL-4, or interferon-γ (IFN-γ), and they express chemokine receptors CCR4, CCR6 and CCR10. Th22 cells were initially found to play a role in skin inflammatory diseases, but recent studies have demonstrated their involvement in the development of various autoimmune diseases. Here, we review research advances in the origin, characteristics and effector mechanisms of Th22 cells, with an emphasis on the role of Th22 cells and their main effector cytokine IL-22 in the pathogenesis of autoimmune diseases. The findings presented here may facilitate the development of new therapeutic strategies for targeting these diseases.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Saul-McBeth J, Dillon J, Lee A, Launder D, Kratch JM, Abutaha E, Williamson AA, Schroering AG, Michalski G, Biswas P, Conti SR, Shetty AC, McCracken C, Bruno VM, Parsai EI, Conti HR. Tissue Damage in Radiation-Induced Oral Mucositis Is Mitigated by IL-17 Receptor Signaling. Front Immunol 2021; 12:687627. [PMID: 34220843 PMCID: PMC8248500 DOI: 10.3389/fimmu.2021.687627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 01/13/2023] Open
Abstract
Oral mucositis (OM) is a treatment-limiting adverse side effect of radiation and chemotherapy. Approximately 80% of patients undergoing radiotherapy (RT) for head and neck cancers (HNC) develop OM, representing a major unmet medical condition. Our understanding of the immunopathogenesis of OM is limited, due in part to the surprising paucity of information regarding healing mechanisms in the oral mucosa. RNAseq of oral tissue in a murine model that closely mimics human OM, showed elevated expression of IL-17 and related immune pathways in response to head and neck irradiation (HNI). Strikingly, mice lacking the IL-17 receptor (IL-17RA) exhibited markedly more severe OM. Restoration of the oral mucosa was compromised in Il17ra-/- mice and components associated with healing, including matrix metalloproteinase 3, 10 and IL-24 were diminished. IL-17 is typically associated with recruitment of neutrophils to mucosal sites following oral infections. Unexpectedly, in OM the absence of IL-17RA resulted in excessive neutrophil recruitment and immunopathology. Instead, neutrophil activation was IL-1R-driven in Il17ra-/- mice. Blockade of IL-1R and depletion of neutrophils lessened the severity of damage in these mice. Overall, we show IL-17 is protective in OM through multiple mechanisms including restoration of the damaged epithelia and control of the neutrophil response. We also present a clinically relevant murine model of human OM to improve mechanistic understanding and develop rational translational therapeutics.
Collapse
Affiliation(s)
- Jessica Saul-McBeth
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - John Dillon
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Aaron Lee
- Department of Radiation Oncology, Division of Medical Physics, The University of Toledo, Toledo, OH, United States
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Jacqueline M. Kratch
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Eanas Abutaha
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | | | | | - Grace Michalski
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Priosmita Biswas
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Samuel R. Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - E. Ishmael Parsai
- Department of Radiation Oncology, Division of Medical Physics, The University of Toledo, Toledo, OH, United States
| | - Heather R. Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
13
|
Sekino Y, Imaizumi A, Komune N, Ono M, Sato K, Masuda S, Fujimura A, Koike K, Hongo T, Uchi R, Onishi H, Nakagawa T. Establishment and characterization of a primary cell culture derived from external auditory canal squamous cell carcinoma. FEBS Open Bio 2021. [PMID: 34115931 PMCID: PMC8329851 DOI: 10.1002/2211-5463.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
There are no human cancer cell lines of external auditory canal origin available for research use. This report describes the establishment of a culture condition for external auditory canal squamous cell carcinoma, derived from human tumor tissue. Successive squamous cell carcinoma colonies were dissociated by trypsin, subcultured, and maintained on a feeder layer (MMC‐TIG‐1‐20), yielding a clonally proliferating cell culture. Two morphological types of colony were observed: (a) densely packed colonies and (b) colonies with indistinct boundaries characterized by cell–cell complexes with fibroblast feeder cells. The SCC‐like characteristics of these cells were evidenced by positivity for p53, SCCA1/2, cytokeratin, and vimentin, and cancer stem cell properties were indicated by positivity for CD44, CD133, Oct3/4, and alkaline phosphatase (ALP). One of the unique properties of cell cultures is their tendency to form steric colonies in vitro on feeder layer cells. In addition, in the presence of fresh macrophages, the cells very slowly transform to break away from colonies as free cells, a process that resembles the epidermal–mesenchymal transition, whereby cell–cell interactions are weakened and migration activity is enhanced. These factors are purported to play a key role in cancer cell metastasis.
Collapse
Affiliation(s)
- Yuki Sekino
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noritaka Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniaki Sato
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Masuda
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Fujimura
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Koike
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Hongo
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryutaro Uchi
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Liu D, Qiao C, Luo H. MicroRNA-1278 ameliorates the inflammation of cardiomyocytes during myocardial ischemia by targeting both IL-22 and CXCL14. Life Sci 2021; 269:118817. [PMID: 33275986 DOI: 10.1016/j.lfs.2020.118817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to elucidate the role of microRNAs (miRNAs) during myocardial infarction (MI) development in vivo and in vitro. MAIN METHODS Differentially expressed miRNAs between heart tissue from the MI mouse model and the control mouse were identified via microarray. Quantitative PCR (qPCR) and western blotting (WB) were performed to examine the expression levels of miRNAs and proteins, respectively. EdU-staining and colony formation assay were performed to assess cell viability and growth. Annexin V- and PI-staining-based flow cytometry was used to assess cell apoptosis. An MI mouse model was also established to study the function of miR-1278 in vivo. KEY FINDINGS The levels of miR-1278 were reduced in the infarct regions of heart tissues of the MI mouse model and in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) compared to those in the heart tissues of healthy mice and non-treated NMVCs. H2O2 treatment suppressed the proliferation of NMVCs, while miR-1278 upregulation improved it. Moreover, we found that miR-1278 inhibited the upregulation of IL-22 and CXCL14 expression in H2O2-treated NMVCs by directly binding with the 3'-UTRs of both IL-22 and CXCL14. Furthermore, restoration of IL-22 and CXCL14 in H2O2-treated NMVCs promoted miR-1278-induced inflammation and apoptosis. Administration of agomiR-1278 to the MI mouse model significantly improved cardiac activity. SIGNIFICANCE Collectively, our findings illustrate that the expression of miR-1278 is low in H2O2-treated NMVCs and post-MI cardiac tissues, and the overexpression of miR-1278 in these protects against cell death by modulating IL-22 and CXCL14 expression.
Collapse
Affiliation(s)
- Donghai Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chenhui Qiao
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Hong Luo
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
15
|
Identification of oral squamous cell carcinoma markers MUC2 and SPRR1B downstream of TANGO. J Cancer Res Clin Oncol 2021; 147:1659-1672. [PMID: 33620575 DOI: 10.1007/s00432-021-03568-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Transport and Golgi organization protein 1 (TANGO) promotes angiogenesis and lymphangiogenesis in oral squamous cell carcinoma (OSCC). To elucidate the underlying mechanisms, this study aims to identify and characterize elements downstream of TANGO that mediate its involvement in OSCC. METHODS In this study, microarray analysis compared gene expression between control and TANGO-repressed HSC3 cells. Protein expression in 213 OSCC tissue samples was analyzed immunohistochemically. RESULTS TANGO repression decreased or increased expression of Mucin 20 (MUC20) and small proline-rich protein 1B (SPRR1B), respectively. MUC20 increased the growth and invasiveness of OSCC cells via altered matrix metalloproteinase (MMP)-2 and E-cadherin expression and c-met phosphorylation. MUC20 induced angiogenesis and lymphangiogenesis by activating vascular endothelial growth factors A and C. In well-differentiated OSCC, SPRR1B expression was high (P = 0.0091) and correlated with keratinization markers and promoted proliferation by inducing mitogen-activated protein kinase p38 phosphorylation. MUC20 expression correlated significantly with clinical stage (P = 0.0024), lymph node metastasis (P = 0.0036), and number of blood and lymph vessels (P < 0.0001). MUC20-expressing cases had a significantly worse prognosis than non-expressing cases (P < 0.0001). CONCLUSION MUC20 and SPRR1B located downstream of TANGO may be useful molecular markers for OSCC.
Collapse
|
16
|
Komine-Aizawa S, Aizawa S, Takano C, Hayakawa S. Interleukin-22 promotes the migration and invasion of oral squamous cell carcinoma cells. Immunol Med 2020; 43:121-129. [PMID: 32546118 DOI: 10.1080/25785826.2020.1775060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022] Open
Abstract
The roles of interleukin-22 (IL-22) in carcinogenesis have been proposed in various neoplasms. Increased expression of IL-22 has been observed in oral squamous cell carcinoma (OSCC) lesions as well as in other cancers. OSCC is still associated with poor prognosis and a high mortality rate because of its invasiveness and frequent lymph node metastasis. In the present study, we investigated the effects of IL-22 on OSCC cells. The human OSCC cell lines Ca9-22 and SAS were stimulated with IL-22 (1-10 ng/mL), and their migration abilities were examined using a cell scratch assay. A Matrigel invasion assay was performed to evaluate the invasion abilities of OSCC cells. Signal transducer and activator of transcription 3 (STAT3) phosphorylation, matrix metalloproteinase (MMP) and epithelial-mesenchymal transition (EMT)-related genes and proteins were also examined. IL-22 treatment promoted the migration and invasion abilities of OSCC cells without increasing their viability. IL-22 stimulation also induced STAT3 phosphorylation, MMP-9 activity and EMT-related genes and proteins. Our findings suggest that IL-22 has possible roles in the development of OSCC.
Collapse
Affiliation(s)
- Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sohichi Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- JCHO Yokohama Chuo Hospital, Kanagawa, Japan
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Huang Z, Gao Y, Hou D. Interleukin-22 enhances chemoresistance of lung adenocarcinoma cells to paclitaxel. Hum Cell 2020; 33:850-858. [PMID: 32452013 DOI: 10.1007/s13577-020-00373-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
The chemoresistance of tumors is the main barrier to cancer treatment. Interleukin-22 (IL-22) plays an important role in the chemoresistance of multi-cancers; however, the roles of IL-22 in the paclitaxel resistance of lung adenocarcinoma cells remain to be investigated. The present study aims to investigate the potential mechanisms of IL-22 enhancing the chemoresistance of lung adenocarcinoma cells to paclitaxel. We cultured A549, H358, and A549/PTX cell lines. qRT-PCR and western blot assays were performed to examine the mRNA and/or protein levels of IL-22 in A549, A549/PTX, H358, and H358/PTX. Moreover, cells were transfected with IL-22 siRNA1, IL-22 siRNA2, and siRNA NC, and treated with paclitaxel, and the proliferation rate of lung adenocarcinoma cells was evaluated by MTT assay. Flow cytometry was conducted to determine the apoptosis rate of lung adenocarcinoma cells. The results showed that the expression of IL-22 in lung adenocarcinoma tissues was higher than that in normal tissues, and the expression of IL-22 was higher in A549/PTX and H358/PTX compared with A549 and H358 cells. Meanwhile, the expression of IL-22 was strongly correlated with smoking history and TMN stage, as well. Furthermore, IL-22 siRNA inhibited the proliferation and promoted the apoptosis of A549/PTX and H358/PTX cells, and IL-22 siRNA also suppressed the expression levels of AKT and Bcl-2 and increased the expression levels of Bax and cleaved caspase 3. To sum up, IL-22 may mediate the chemosensitivity of lung adenocarcinoma cells to paclitaxel through inhibiting the AKT signaling pathways.
Collapse
Affiliation(s)
- Zhiliang Huang
- Thoracic Cardiovascular Surgery, Inner Mongolia Forestry General Hospital, Yakeshi, 022150, China
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168 Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei Province, China
| | - Yu Gao
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168 Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei Province, China
- Geriatrics, Inner Mongolia Forestry General Hospital, Yakeshi, 022150, China
| | - Dianchen Hou
- Thoracic Cardiovascular Surgery, Inner Mongolia Forestry General Hospital, Yakeshi, 022150, China.
| |
Collapse
|
18
|
Che Y, Su Z, Xia L. Effects of IL-22 on cardiovascular diseases. Int Immunopharmacol 2020; 81:106277. [PMID: 32062077 DOI: 10.1016/j.intimp.2020.106277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-22 (IL-22), which belongs to the IL-10 family, is an alpha helix cytokine specifically produced by many lymphocytes, such as Th1, Th17, Th22, ILCs, CD4+ and CD8+ T cells. In recent years, more and more studies have demonstrated that IL-22 has an interesting relationship with various cardiovascular diseases, including myocarditis, myocardial infarction, atherosclerosis, and other cardiovascular diseases, and IL-22 signal may play a dual role in cardiovascular diseases. Here, we summarize the recent progress on the source, function, regulation of IL-22 and the effects of IL-22 signal in cardiovascular diseases. The study of IL-22 will suggest more specific strategies to maneuver these functions for the effective treatment of cardiovascular diseases and future clinical treatment.
Collapse
Affiliation(s)
- Yang Che
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Tunicamycin-induced endoplasmic reticulum stress up-regulates tumour-promoting cytokines in oral squamous cell carcinoma. Cytokine 2019; 120:130-143. [DOI: 10.1016/j.cyto.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
|
20
|
Hu H, Li L, Yu T, Li Y, Tang Y. Interleukin-22 receptor 1 upregulation and activation in hypoxic endothelial cells improves perfusion recovery in experimental peripheral arterial disease. Biochem Biophys Res Commun 2018; 505:60-66. [PMID: 30236983 DOI: 10.1016/j.bbrc.2018.08.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inflammation induced by muscle ischemia is involved in tissue repair and perfusion recovery in peripheral arterial disease (PAD) patients. Interleukin (IL)-22 is an inflammatory cytokine discovered in recent years and shows versatile functions; however, its role in PAD remains unknown. Here, we test whether IL-22 and its receptors are involved in angiogenesis in experimental PAD. METHODS AND RESULTS Both IL-22 and its receptor-IL-22 receptor 1(IL-22R1) were upregulated in muscle and endothelial cells after ischemia. In experimental PAD models, blocking IL-22 using IL-22 monoclonal antibody impaired perfusion recovery and angiogenesis; on the other hand, IL-22 treatment improved perfusion recovery. Ischemic muscle tissue was harvested 3 days after experimental PAD for biochemical test, IL-22 antagonism resulted in decreased Signal Transducer and Activator of Transcription (STAT3) phosphorylation, but did not alter the levels of VEGF-A or cyclic guanine monophosphate (cGMP) levels in ischemic muscle. In cultured endothelial cells, IL-22R1 was upregulated under simulated ischemic conditions, and IL-22 treatment increased STAT3 phosphorylation, endothelial cell survival and tube formation. Knock down of IL-22R1 or treatment with STAT3 inhibitor blunted IL-22-induced endothelial cell survival or tube formation. CONCULSION Ischemia-induced IL-22 and IL-22R1 upregulation improves angiogenesis in PAD by inducing STAT3 phosphorylation in endothelial cells. IL-22R1 may serve as a new therapeutic target for PAD.
Collapse
Affiliation(s)
- Hongyao Hu
- Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, 238Jiefang Road, Wuhan, Hubei, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, PR China.
| | - Le Li
- Department of Cardiology, Taikang Tongji (Wuhan) Hospital, PR China
| | - Taihui Yu
- Department of Cardiology, Hubei Provincial Hospital of Integrated Chinese&Western Medicine, Wuhan, PR China
| | - Yanjun Li
- Department of Cardiology, Taikang Tongji (Wuhan) Hospital, PR China
| | - Yanhong Tang
- Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, PR China
| |
Collapse
|
21
|
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14:e1006975. [PMID: 29630659 PMCID: PMC5908086 DOI: 10.1371/journal.ppat.1006975] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/19/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.
Collapse
Affiliation(s)
- Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher W. Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lucy Hanson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Cinzia Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
p38 Expression and Modulation of STAT3 Signaling in Oral Cancer. Pathol Oncol Res 2018; 26:183-192. [DOI: 10.1007/s12253-018-0405-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
|
23
|
Tohyama M, Shirakata Y, Hanakawa Y, Dai X, Shiraishi K, Murakami M, Miyawaki S, Mori H, Utsunomiya R, Masuda K, Hashimoto K, Sayama K. Bcl-3 induced by IL-22 via STAT3 activation acts as a potentiator of psoriasis-related gene expression in epidermal keratinocytes. Eur J Immunol 2018; 48:168-179. [PMID: 28901004 DOI: 10.1002/eji.201747017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/26/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
IL-22 induces STAT3 phosphorylation and mediates psoriasis-related gene expression. However, the signaling mechanism leading from pSTAT3 to the expression of these genes remains unclear. We focused on Bcl-3, which is induced by STAT3 activation and mediates gene expression. In cultured human epidermal keratinocytes, IL-22 increased Bcl-3, which was translocated to the nucleus with p50 via STAT3 activation. The increases in CXCL8, S100As and human β-defensin 2 mRNA expression caused by IL-22 were abolished by siRNA against Bcl-3. Although CCL20 expression was also augmented by IL-22, the knockdown of Bcl-3 increased its level. Moreover, the combination of IL-22 and IL-17A enhanced Bcl-3 production, IL-22-induced gene expression, and the expression of other psoriasis-related genes, including those encoding IL-17C, IL-19, and IL-36γ. The expression of these genes (except for CCL20) was also suppressed by the knockdown of Bcl-3. Bcl-3 overexpression induced CXCL8 and HBD2 expression but not S100As expression. We also compared Bcl-3 expression between psoriatic skin lesions and normal skin. Immunostaining revealed strong signals for Bcl-3 and p50 in the nucleus of epidermal keratinocytes from psoriatic skin. The IL-22-STAT3-Bcl-3 pathway may be important in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Mikiko Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuji Shirakata
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasushi Hanakawa
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Saori Miyawaki
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryo Utsunomiya
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kana Masuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Hashimoto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
24
|
Wang X, Guo R, Lv Y, Fu R. The regulatory role of Fos related antigen‑1 in inflammatory bowel disease. Mol Med Rep 2017; 17:1979-1985. [PMID: 29257201 DOI: 10.3892/mmr.2017.8071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
The etiology of inflammatory bowel disease (IBD) remains unclear. The ratio of Fos related antigen‑1 (Fra‑1)‑positive intestinal mucosa epithelial cells is significantly increased in active IBD. This study intends to explore the regulatory role of Fra‑1 in IBD. The Fra‑1 eukaryotic expression vector was constructed and stably transfected to establish the Fra‑1 overexpression HCT‑116 (116‑Fra‑1) intestinal epithelial cell line. The impact of Fra‑1 overexpression on intestinal mucosal epithelial cell damage repair function was tested using a scratch assay. The role of Fra‑1 overexpression on intestinal mucosal epithelial cell proliferation was evaluated using a Cell Counting Kit-8 assay. Apoptosis related proteins, B‑cell lymphoma 2 (Bcl‑2), c‑Myc, Survivin and Bcl‑extra large (Bcl‑xL), expression levels were detected by western blotting. Fra‑1 suppressed intestinal mucosal epithelial cell damage repair and proliferation. Fra‑1 inhibited the protein levels of Bcl‑2, c‑Myc, Survivin, and Bcl‑xL. Fra‑1 overexpression in intestinal mucosal epithelial cells may restrain damage repair after intestinal mucosal injury in IBD remittent period through weakening the protective effect of intestinal mucosa, thus increasing the risk of recurrence. Therefore, suppressing Fra‑1 expression in intestinal mucosal epithelial cells may contribute to IBD remittent maintenance and recurrence delay.
Collapse
Affiliation(s)
- Xianren Wang
- Department of Breast and Thyroid Surgery, Subsidiary Qianfoshan Hospital of Shandong University, Jinan, Shandong 250014, P.R. China
| | - Renle Guo
- Department of Vascular Surgery, Tai'an central hospital, Tai'an, Shandong 271099, P.R. China
| | - Yanfeng Lv
- Department of Anorectal Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250131, P.R. China
| | - Rongzhan Fu
- Department of Breast and Thyroid Surgery, Subsidiary Qianfoshan Hospital of Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
25
|
Xue M, Zhao J, Ying L, Fu F, Li L, Ma Y, Shi H, Zhang J, Feng L, Liu P. IL-22 suppresses the infection of porcine enteric coronaviruses and rotavirus by activating STAT3 signal pathway. Antiviral Res 2017; 142:68-75. [PMID: 28322925 PMCID: PMC7113769 DOI: 10.1016/j.antiviral.2017.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/09/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
Abstract
Interleukin-22 (IL-22), a member of the IL-10 superfamily, plays essential roles in fighting against mucosal microbial infection and maintaining mucosal barrier integrity within the intestine. However, little knowledge exists on the ability of porcine IL-22 (pIL-22) to fight against viral infection in the gut. In this study, we found that recombinant mature pIL-22 (mpIL-22) inhibited the infection of multiple diarrhea viruses, including alpha coronavirus, porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine rotavirus (PoRV), in the intestinal porcine epithelial cell line J2 (IPEC-J2) cells. mpIL-22 up-regulated the expression of the antimicrobial peptide beta-defensin (BD-2), cytokine IL-18 and IFN-λ. Furthermore, we found that mpIL-22 induced phosphorylation of STAT3 on Ser727 and Tyr705 in IPEC-J2 cells. Inhibition of STAT3 phosphorylation by S3I-201 abrogated the antiviral ability of mpIL-22 and the mpIL-22-induced expression of BD-2, IL-18, and IFN-λ. Together, mpIL-22 inhibited the infection of PoRV and enteric coronaviruses, and up-regulated the expression of antimicrobial genes in IPEC-J2, which were mediated by the activation of the STAT3 signal pathway. The significant antiviral activity of IL-22 to curtail multiple enteric diarrhea viruses in vitro suggests that pIL-22 could be a novel therapeutic against devastating viral diarrhea in piglets.
Collapse
Affiliation(s)
- Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jing Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810003, China
| | - Lan Ying
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810003, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Lin Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanlong Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jiaoer Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Pinghuang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
26
|
Wu Z, Hu Z, Cai X, Ren W, Dai F, Liu H, Chang J, Li B. Interleukin 22 attenuated angiotensin II induced acute lung injury through inhibiting the apoptosis of pulmonary microvascular endothelial cells. Sci Rep 2017; 7:2210. [PMID: 28526849 PMCID: PMC5438354 DOI: 10.1038/s41598-017-02056-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/06/2017] [Indexed: 01/30/2023] Open
Abstract
Apoptosis of pulmonary microvascular endothelial cells (PMVECs) was considered to be closely related to the pathogenesis of acute lung injury (ALI). We aim to investigate whether IL-22 plays protective roles in lung injury through inhibiting the apoptosis of PMVECs. ALI model was induced through subcutaneous infusion of angiotensin II (Ang II). Lung injury and infiltration of inflammatory cells were evaluated by determining the PaO2/FiO2, calculation of dry to weight ratio in lung, and immunohistochemisty analysis. Apoptosis of PMVECs was determined using TUNEL assay and flow cytometry, respectively. Immunofluorescence and Western blot analysis were used to determine the expression and localization of STAT3, as well as the nucleus transmission of STAT3 from cytoplasm after IL22 treatment. Pathological findings showed ALI was induced 1 week after AngII infusion. IL22 inhibited the AngII-induced ALI, attenuated the edema in lung and the infiltration of inflammatory cells. Also, it contributed to the apoptosis of PMVECs induced by AngII. Meanwhile, significant increase was noticed in the expression of STAT3, phosphorylation of Y705-STAT3, and migration from cytoplasm to the nucleus after IL-22 treatment (P < 0.05). The activation of STAT3 by IL22 showed significant attenuation after AG490 treatment. Our data indicated that IL22 showed protective effects on lung injury through inhibiting the AngII-induced PMVECs apoptosis and PMVEC barrier injury by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Xin Cai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Wei Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Feifeng Dai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Huagang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Jinxing Chang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| |
Collapse
|
27
|
Madonna S, Scarponi C, Morelli M, Sestito R, Scognamiglio PL, Marasco D, Albanesi C. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes. Oncotarget 2017; 8:24652-24667. [PMID: 28445952 PMCID: PMC5421877 DOI: 10.18632/oncotarget.15629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.
Collapse
Affiliation(s)
- Stefania Madonna
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Martina Morelli
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Rosanna Sestito
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
- Current address: Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Daniela Marasco
- Department of Pharmacy, CIRPEB, University of Naples “Federico II”, Naples, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| |
Collapse
|
28
|
Petruzzi MNMR, Cherubini K, Salum FG, de Figueiredo MAZ. Role of tumour-associated macrophages in oral squamous cells carcinoma progression: an update on current knowledge. Diagn Pathol 2017; 12:32. [PMID: 28381274 PMCID: PMC5382416 DOI: 10.1186/s13000-017-0623-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts over 90% of malignant neoplasms of the oral cavity. This pathological entity is associated to a high mortality rate that has remained unchanged over the past decades. Tumour-associated macrophages (TAMs) are believed to have potential involvement in OSCC progression. However, the molecular networks involved in communication between stroma and cancer cells have not yet been fully elucidated. MAIN BODY The role of M2 polarized cells in oral carcinogenesis is supported by a correlation between TAMs accumulation into OSCC stroma and poor clinical outcome. Signalling pathways such as the NF-κB and cytokines released in the tumour microenvironment promote a bidirectional cross-talk between M2 and OSCC cells. These interactions consequently result in an increased proliferation of malignant cells and enhances aggressiveness, thus reducing patients' survival time. CONCLUSIONS Here, we present a comprehensive review of the role of interleukin (IL)-1, IL-4, IL-6, IL-8, IL-10 and the receptor tyrosine kinase Axl in macrophage polarization to an M2 phenotype and OSCC progression. Understanding the molecular basis of oral carcinogenesis and metastatic spread of OSCC would promote the development of targeted treatment contributing to a more favourable prognosis.
Collapse
Affiliation(s)
- Maria Noel Marzano Rodrigues Petruzzi
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| | - Karen Cherubini
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| | - Fernanda Gonçalves Salum
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| | - Maria Antonia Zancanaro de Figueiredo
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| |
Collapse
|
29
|
Pso p27, a SERPINB3/B4-derived protein, is most likely a common autoantigen in chronic inflammatory diseases. Clin Immunol 2017; 174:10-17. [DOI: 10.1016/j.clim.2016.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/01/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
|
30
|
Gkouveris I, Nikitakis N, Karanikou M, Rassidakis G, Sklavounou A. JNK1/2 expression and modulation of STAT3 signaling in oral cancer. Oncol Lett 2016; 12:699-706. [PMID: 27347203 DOI: 10.3892/ol.2016.4614] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/22/2016] [Indexed: 01/24/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that link extracellular stimuli with intracellular responses and participate in numerous cellular processes such as growth, proliferation, differentiation, inflammation and apoptosis. Persistent activation of signal transducer and activator of transcription 3 (STAT3), which is accompanied by increases in STAT3 tyrosine phosphorylation, is associated with cell proliferation, differentiation and apoptosis in oral squamous cell carcinoma (OSCC). The role and significance of the activation of MAPKs, particularly of c-Jun N-terminal kinase (JNK), on STAT3 signaling in OSCC have not been thoroughly investigated. The present study examines the effects of JNK1/2 modulation on STAT3 signaling and cellular activities in OSCC cells. The expression levels of STAT3 [total, tyrosine phosphorylated (p-Tyr) and serine phosphorylated (p-Ser)], JNK, c-Jun and cyclin D1 were assessed in the OSCC cell lines SCC25 and SCC9. Inhibition of JNK1/2 was achieved by pharmacological agents (SP600125) and by small interfering RNA (siRNA) silencing, while JNK1/2 was induced by active MAPK kinase 7. Cell proliferation and viability rates were also evaluated. Inhibition of JNK1/2 with either SP600125 treatment or specific siRNA silencing resulted in decreased levels of p-Ser STAT3 and increased levels of p-Tyr STAT3 and cyclin D1 in both cell lines. Furthermore, JNK1/2 inhibition resulted in a dose-dependent increase in cell growth and viability in both cell lines. Opposite results were observed with JNK1/2 induction in both cell lines. The present results are supportive of a potential tumor suppressive role of JNK1/2 signaling in OSCC, which may be mediated through negative crosstalk with the oncogenic STAT3 signaling pathway. The possible therapeutic implications of JNK1/2 inhibition for patients with OSCC require to be investigated.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Department of Oral Pathology and Medicine, Dental School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Nikitakis
- Department of Oral Pathology and Medicine, Dental School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Karanikou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Rassidakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandra Sklavounou
- Department of Oral Pathology and Medicine, Dental School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Niccolai E, Taddei A, Ricci F, Rolla S, D'Elios MM, Benagiano M, Bechi P, Bencini L, Ringressi MN, Pini A, Castiglione F, Giordano D, Satolli MA, Coratti A, Cianchi F, Bani D, Prisco D, Novelli F, Amedei A. Intra-tumoral IFN-γ-producing Th22 cells correlate with TNM staging and the worst outcomes in pancreatic cancer. Clin Sci (Lond) 2016; 130:247-58. [PMID: 26590104 DOI: 10.1042/cs20150437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
PDAC (pancreatic ductal adenocarcinoma) is the fifth leading cause of cancer-related death. The causes of this cancer remain unknown, but increasing evidence indicates a key role of the host immune response and cytokines in human carcinogenesis. Intra-tumoral IL (interleukin)-22 levels have been shown to be elevated in PDAC patients. However, little is known regarding the expression and clinical relevance of Th22 cells in human PDAC and, furthermore, which TILs (tumour-infiltrating lymphocytes) are the main producers of IL-22 is unknown. In the present study, we characterized the functional proprieties of the different subsets of IL-22-producing TILs and analysed their relationship with the TNM staging system and patient survival. We have demonstrated for the first time that, in PDAC patients, the T-cells co-producing IFN-γ (interferon γ) and exerting perforin-mediated cytotoxicity are the major intra-tumoral source of IL-22. In addition, isolated Th22 cells were able to induce apoptosis, which was antagonized by IL-22. Finally, we observed that the IL-22-producing T-cells were significantly increased in tumour tissue and that this increase was positively correlated with TNM staging of PDAC and poorer patient survival. These novel findings support the dual role of the anti-tumour immune system and that IL-22-producing cells may participate in PDAC pathogenesis. Therefore monitoring Th22 levels could be a good diagnostic parameter, and blocking IL-22 signalling may represent a viable method for anti-PDAC therapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- Granzymes/metabolism
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukins/immunology
- Interleukins/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Paracrine Communication
- Perforin/metabolism
- Phenotype
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
- Interleukin-22
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Taddei
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Santena 19, 10126 Turin, Italy
| | - Federica Ricci
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Simona Rolla
- Centre for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Molecular Biology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Mario Milco D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy Department of Neuro-Skeletal Muscle and Sensory Organs, Interdisciplinary Internal Medicine Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Paolo Bechi
- Department of Surgery and Translational Medicine, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Lapo Bencini
- Department of Oncology, Division of General and Oncologic Surgery, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesca Castiglione
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Giordano
- Centre for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Molecular Biology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Maria Antonietta Satolli
- Centro Oncologico Ematologico Subalpino (COES), AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Andrea Coratti
- Department of Oncology, Division of General and Oncologic Surgery, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Surgery and Translational Medicine, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy Department of Neuro-Skeletal Muscle and Sensory Organs, Interdisciplinary Internal Medicine Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Francesco Novelli
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Santena 19, 10126 Turin, Italy Centre for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Molecular Biology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy Department of Neuro-Skeletal Muscle and Sensory Organs, Interdisciplinary Internal Medicine Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| |
Collapse
|
33
|
Parks OB, Pociask DA, Hodzic Z, Kolls JK, Good M. Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease. Front Cell Dev Biol 2016; 3:85. [PMID: 26793707 PMCID: PMC4710696 DOI: 10.3389/fcell.2015.00085] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines that has been extensively studied since its discovery in 2000. This review article aims to describe the cellular sources and signaling pathways of this cytokine as well as the functions of IL-22 in the intestine. In addition, this article describes the roles of IL-22 in the pathogenesis of several gastrointestinal diseases, including inhibition of inflammation and barrier defense against pathogens within the intestine. Since many of the functions of IL-22 in the intestine are incompletely understood, this review is meant to assess our current understanding of the roles of IL-22 and provide new opportunities for inquiry to improve human intestinal health and disease.
Collapse
Affiliation(s)
- Olivia B Parks
- Department of Pediatrics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Derek A Pociask
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Zerina Hodzic
- Department of Pediatrics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Jay K Kolls
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Misty Good
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Division of Newborn Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|
34
|
Prognostic Significance of Serine-Phosphorylated STAT3 Expression in pT1-T2 Oral Tongue Carcinoma. Clin Exp Otorhinolaryngol 2015; 8:275-80. [PMID: 26330924 PMCID: PMC4553360 DOI: 10.3342/ceo.2015.8.3.275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/25/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023] Open
Abstract
Objectives Phosphorylated (activated) STAT3 (pSTAT3) is a regulator of numerous genes that play an essential part in the onset, development and progression of cancer; it is involved in cell proliferation and preventing apoptosis, and in invasion, angiogenesis, and the evasion of immune surveillance. This study aimed mainly to investigate the potential prognostic role of pSTAT3 expression in oral tongue squamous cell carcinoma (SCC). Methods Phospho-ser727 STAT3 immunolabeling was correlated with prognostic parameters in 34 consecutive cases of pT1-T2 tongue SCCs undergoing primary surgery. Computer-based image analysis was used for the immunohistochemical reactions analysis. Results Statistical analysis showed a difference in disease-free survival (DFS) when patients were stratified by pN status (P=0.031). Most tumors had variable degrees (mean±SD, 80.7%±23.8%) of intense nuclear immunoreaction to pSTAT3. Our findings rule out any significant association of serine-phosphorylated nuclear STAT3 expression with tumor stage, grade, lymph node metastasis, recurrence rate, or DFS. Conclusion In spite of these results, it is worth further investigating the role of pSTAT3 (serine- and tyrosine-pSTAT3) in oral tongue SCC in larger series because preclinical models are increasingly showing that several anticancer strategies would benefit from STAT3 phosphorylation inhibition.
Collapse
|
35
|
Huang YH, Cao YF, Jiang ZY, Zhang S, Gao F. Th22 cell accumulation is associated with colorectal cancer development. World J Gastroenterol 2015; 21:4216-24. [PMID: 25892871 PMCID: PMC4394082 DOI: 10.3748/wjg.v21.i14.4216] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/27/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of Th22 cells and related cytokines in colorectal cancer (CRC) tissues, and the probably mechanism. METHODS CRC tumor and paratumor tissues were collected to detect the expression levels of Th22 cells and of related cytokines by immunohistochemistry, flow cytometry and real-time quantitative polymerase chain reaction (RT-qPCR). Interleukin (IL)-22 alone or with a STAT3 inhibitor was co-cultured with RKO cells in vitro to study the effects of IL-22 on colon cancer cells. IL-22 alone or with a STAT3 inhibitor was injected into a BALB/c nude mouse model with subcutaneously transplanted RKO cells to study the effects of IL-22 on colon cancer growth. RESULTS The percentage of Th22 cells in the CD4(+) T subset was significantly higher in tumor tissues compared with that in paratumor tissues (1.47% ± 0.083% vs 1.23% ± 0.077%, P < 0.05) as determined by flow cytometry. RT-qPCR analysis revealed that the mRNA expression levels of IL-22, aryl hydrocarbon receptor, CCL20 and CCL22 were significantly higher in tumor tissues compared with those in paratumor tissues. CCL27 mRNA also displayed a higher expression level in tumor tissues compared with that in paratumor tissues; however, these levels were not significantly different (2.58 ± 0.93 vs 2.30 ± 0.78, P > 0.05). IL-22 enhanced colon cancer cell proliferation in vitro and displayed anti-apoptotic effects; these effects were blocked by adding a STAT3 inhibitor. IL-22 promoted tumor growth in BALB/c nude mice; however, this effect was reversed by adding a STAT3 inhibitor. CONCLUSION Th22 cells that accumulate in CRC may be associated with the chemotactic effect of the tumor microenvironment. IL-22 is associated with CRC development, most likely via STAT3 activation.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Chemotaxis, Leukocyte
- Coculture Techniques
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Female
- Humans
- Interleukins/administration & dosage
- Interleukins/analysis
- Interleukins/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
- Tumor Burden
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Interleukin-22
Collapse
|
36
|
Akil H, Abbaci A, Lalloué F, Bessette B, Costes LMM, Domballe L, Charreau S, Guilloteau K, Karayan-Tapon L, Bernard FX, Morel F, Jauberteau MO, Lecron JC. IL22/IL-22R pathway induces cell survival in human glioblastoma cells. PLoS One 2015; 10:e0119872. [PMID: 25793261 PMCID: PMC4368808 DOI: 10.1371/journal.pone.0119872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.
Collapse
Affiliation(s)
- Hussein Akil
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Amazigh Abbaci
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Fabrice Lalloué
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Barbara Bessette
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Léa M. M. Costes
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Linda Domballe
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Karline Guilloteau
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- BIOalternatives, Gençay, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Marie-Odile Jauberteau
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- Service Immunologie et inflammation, CHU de Poitiers, Poitiers, France
| |
Collapse
|
37
|
Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, Simoni S, Albanesi C, Cavani A. Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol 2015; 45:922-31. [PMID: 25487261 DOI: 10.1002/eji.201445052] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/28/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022]
Abstract
Interleukin-17 (IL-17) and IL-22 have been reported to play critical roles in autoimmunity and inflammation but information about their role in cancer is limited. In this study, we investigated the role of IL-17 and IL-22 in the progression of human skin basal-cell carcinoma (BCC) and squamous-cell carcinoma (SCC). We found that both tumor types are infiltrated with an high number of IL-17(+) and IL-22(+) T lymphocytes, as demonstrated by immunohistochemistry and by FACS analysis performed on peritumoral T-cell lines isolated from skin biopsies. In vitro studies demonstrated that proliferation and migration of the BCC- and SCC-cell lines M77015 and CAL27 were increased by IL-17 and IL-22. Moreover, IL-17, alone or in combination with TNF-α, was able to induce the production of two cytokines important for tumor progression, IL-6 and IL-8, in CAL27. We also showed that IL-17 upregulated NF-κB signaling, while IL-22 activated the STAT3 pathway and the antiapoptotic AKT protein in M77015 and CAL27. Finally, in vivo experiments demonstrated that IL-17 and IL-22 enhanced tumor growth in nude mice injected with CAL27. Altogether, our findings indicate that high levels of IL-22 and IL-17 in the BCC and SCC microenvironment promote tumor progression.
Collapse
Affiliation(s)
- Lavinia Nardinocchi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|
39
|
Liu F, Pan X, Zhou L, Zhou J, Chen B, Shi J, Gao W, Lu L. Genetic polymorphisms and plasma levels of interleukin-22 contribute to the development of nonsmall cell lung cancer. DNA Cell Biol 2014; 33:705-14. [PMID: 24956177 DOI: 10.1089/dna.2014.2432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Interleukin (IL)-22, a relatively new member of the IL-10 family, has been implicated in inflammation and tumorigenesis. The aim of this study was to identify genetic polymorphisms in IL-22 and to measure plasma levels of IL-22 in patients with nonsmall cell lung cancer (NSCLC). Patients with NSCLC had a significantly higher frequency of IL-22 rs2227484 CT genotype (odds ratio [OR]=1.917, 95% confidence interval [CI] 1.001-3.670, p=0.038) and T allele (OR=1.878, 95% CI 1.010-3.491, p=0.049) as compared with controls. The rs2227484 genotype was associated with a 2.263-fold increased risk for advanced NSCLC (p=0.041). Among different subtypes of NSCLC, these associations were more obvious in the adenocarcinoma. Moreover, patients with high frequencies of genotypic polymorphisms had high plasma levels of IL-22. IL-22 polymorphisms and corresponding high levels of IL-22 in plasma may contribute to the development of NSCLC, especially adenocarcinoma.
Collapse
Affiliation(s)
- Fei Liu
- 1 Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
GKOUVERIS IOANNIS, NIKITAKIS NIKOLAOS, KARANIKOU MARIA, RASSIDAKIS GEORGE, SKLAVOUNOU ALEXANDRA. Erk1/2 activation and modulation of STAT3 signaling in oral cancer. Oncol Rep 2014; 32:2175-82. [DOI: 10.3892/or.2014.3440] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/16/2014] [Indexed: 11/05/2022] Open
|
41
|
Fukui H, Zhang X, Sun C, Hara K, Kikuchi S, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J, Imura J, Fujimori T, Sasako M, Miwa H. IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. Br J Cancer 2014; 111:763-71. [PMID: 24937671 PMCID: PMC4134496 DOI: 10.1038/bjc.2014.336] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Interleukin-22 (IL-22) has been recently highlighted owing to its biological significance in the modulation of tissue responses during inflammation. However, the role of IL-22 in carcinogenesis has remained unclear. Here, we investigated the pathophysiological significance of IL-22 expression in gastric cancer tissues and examined the mechanism by which IL-22 promotes gastric cancer cell invasion. METHODS Human gastric cancer specimens were analysed by immunohistochemistry for expression of IL-22 and IL-22 receptor 1 (IL-22R1). The effects of IL-22-induced STAT3 and ERK signalling on invasive ability of gastric cancer cells were examined using a small-interfering RNA system and specific inhibitors. AGS cells were co-cultured with cancer-associated fibroblasts (CAFs) from human gastric cancer tissues and assessed by invasion assay. RESULTS Interleukin-22 and its receptor were expressed in α-smooth muscle actin-positive stromal cells and tumour cells at the invasive front of gastric cancer tissues, respectively. The expression of IL-22 and IL-22R1 was significantly related to lymphatic invasion. Interleukin-22 treatment promoted the invasive ability of gastric cancer cells through STAT3 and ERK activation. The invasive ability of gastric cancer cells was significantly enhanced by co-culture with IL-22-expressing CAFs. CONCLUSIONS Interleukin-22 produced by CAFs promotes gastric cancer cell invasion via STAT3 and ERK signalling.
Collapse
Affiliation(s)
- H Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - X Zhang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
- Department of Geriatric Digestive Internal Medicine, Sichuan Academy of Medical Science & Sichuan People's Hospital, Chengdu 610072, China
| | - C Sun
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
- Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - K Hara
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - S Kikuchi
- Department of Surgery, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - T Yamasaki
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - T Kondo
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - T Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - T Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - J Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - J Imura
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi 321-0293, Japan
| | - T Fujimori
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi 321-0293, Japan
| | - M Sasako
- Department of Surgery, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - H Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| |
Collapse
|
42
|
Lim C, Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev 2014; 25:257-71. [PMID: 24856143 DOI: 10.1016/j.cytogfr.2014.04.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
Interleukin-22 (IL-22) is an IL-10 family cytokine produced by T cells and innate lymphoid cells. The IL-22 signaling pathway orchestrates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia and angiogenesis. While these functions can prevent initial establishment of tumors, they can also be hijacked by aggressive cancers to enhance tumor growth and metastasis. Thus, the role of the IL-22/IL-22R1 axis in cancer is complex and context-specific. Evidence of IL-22 involvement manifests as dysregulation of IL-22 expression and signaling in patients with many common cancers including those of the gut, skin, lung and liver. Unlike other cancer-associated cytokines, IL-22 has restricted tissue specificity as its unique receptor IL-22R1 is exclusively expressed on epithelial and tissue cells, but not immune cells. This makes it an attractive target for therapy as there is potential achieve anti-tumor immunity with fewer side effects. This review summarizes current findings on functions of IL-22 in association with general mechanisms for tumorigenesis as well as specific contributions to particular cancers, and ponders how best to approach further research in the field.
Collapse
Affiliation(s)
- Chrissie Lim
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
43
|
Chemoresistance to concanamycin A1 in human oral squamous cell carcinoma is attenuated by an HDAC inhibitor partly via suppression of Bcl-2 expression. PLoS One 2013; 8:e80998. [PMID: 24278362 PMCID: PMC3835574 DOI: 10.1371/journal.pone.0080998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/08/2013] [Indexed: 01/17/2023] Open
Abstract
V-ATPase is involved in the acidification of the microenvironment around/in solid tumors, such as oral squamous cell carcinoma (OSCC). V-ATPase is thought to induce tumor invasion and multi-drug resistance in several malignant tumors, and it also contributes to maintaining the intracellular pH under an acidic microenvironment by inducing proton extrusion into the extracellular medium. However, there is little information regarding the effects of V-ATPase inhibitors on OSCCs. In this study, the effects of a V-ATPase inhibitor, concanamycin A1 (CMA), on the proliferation and apoptosis of OSCC were investigated in vitro. We used four OSCC cell lines, MISK81-5, SAS, HSC-4 and SQUU-B. Acridine orange staining revealed that the red fluorescence was reduced in all of the low concentration CMA-treated OSCC cells, indicating that the acidification of vesicular organelles in the OSCCs was prevented by the treatment with low-concentration of CMA. CMA treatment induced apoptosis in MISK81-5, SAS and HSC-4 cells, but not in SQUU-B cells. The p-p38 expression was not altered in CMA-treated SQUU-B cells, but their levels were increased in the other cells. The Bax/Bcl-2 ratio in CMA-treated SQUU-B cells was dramatically decreased in comparison with that in the other cell lines treated with CMA. However, when the SQUU-B cells were treated with CMA and a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), the SQUU-B cells became more susceptible to the CMA-induced apoptosis. SAHA treatment led to a significantly decrease in the Bcl-2 expression in CMA-treated SQUU-B cells, resulting in a dramatically increased Bax/Bcl-2 ratio in comparison with that observed in the SQUU-B cells treated with CMA alone. These findings suggest that CMA could have an anti-tumor effect on OSCCs. In addition, combination of CMA with other agents, such as SAHA, could help improve the pro-apoptotic effects of CMA even in CMA-resistant OSCC cells.
Collapse
|
44
|
Yu H, Yuan J, Xiao C, Qin Y. Integrative genomic analyses of recepteur d'origine nantais and its prognostic value in cancer. Int J Mol Med 2013; 31:1248-54. [PMID: 23483216 DOI: 10.3892/ijmm.2013.1296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase (RTK) normally expressed at low levels in epithelial cells. RON is a 180-kDa heterodimeric protein composed of a 40-kDa α-chain and a 150-kDa transmembrane β-chain with intrinsic tyrosine kinase activity. The extracellular sequences of RON contain several domains including an N-terminal semaphorin (sema) domain, followed by the plexin, semaphorin, integrin (PSI) domain, and four immunoglobulin, plexin, transcription factor (IPT) domains. Here, we identified RON genes from 14 vertebrate genomes and found that RON exists in all types of vertebrates including fish, amphibians, birds and mammals. We found that the human RON gene showed predominant expression in the liver, lymph node, thymus, intestine, lung, mammary gland, bone marrow, brain, heart, placenta, bladder, cortex, cervix, skin, kidney and prostate. When searched in the PrognoScan database, human RON was also found to be expressed in bladder, blood, breast, glioma, esophageal, colorectal, head and neck, ovarian, lung and skin cancer. The relationship between the expression of RON and prognosis was found to vary in different cancer types, even in the same cancer from different databases. This suggests that the function of RON in these tumors may be multidimensional, not just as a tumor suppressor or oncogene. Six available single-nucleotide polymorphisms (SNPs) disrupting existing exonic splicing enhancers were identified in RON. This may contribute to the generation of active RON variants by alternative splicing, which is frequently observed in primary tumors.
Collapse
Affiliation(s)
- Haizhong Yu
- Department of Clinical Laboratory of the Traditional Chinese Medical Hospital of Nantong City, Nantong, Jiangsu, P.R. China.
| | | | | | | |
Collapse
|