1
|
Han J, Jeong H, Choi J, Kim H, Kwon T, Myung K, Park K, Park JI, Sánchez S, Jung D, Yu CS, Song IH, Shim J, Myung S, Kang H, Park T. Bioprinted Patient-Derived Organoid Arrays Capture Intrinsic and Extrinsic Tumor Features for Advanced Personalized Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407871. [PMID: 40151904 PMCID: PMC12120747 DOI: 10.1002/advs.202407871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Heterogeneity and the absence of a tumor microenvironment (TME) in traditional patient-derived organoid (PDO) cultures limit their effectiveness for clinical use. Here, Embedded Bioprinting-enabled Arrayed PDOs (Eba-PDOs) featuring uniformly arrayed colorectal cancer (CRC) PDOs within a recreated TME is presented. This model faithfully reproduces critical TME attributes, including elevated matrix stiffness (≈7.5 kPa) and hypoxic conditions found in CRC. Transcriptomic and immunofluorescence microscopy analysis reveal that Eba-PDOs more accurately represent actual tissues compared to traditional PDOs. Furthermore, Eba-PDO effectively capture the variability of CEACAM5 expression-a critical CRC marker-across different patients, correlating with patient classification and differential responses to 5-fluorouracil treatment. This method achieves an uniform size and shape within PDOs from the same patient while preserving distinct morphological features among those from different individuals. These features of Eba-PDO enable the efficient development of a label-free, morphology-based predictive model using supervised learning, enhancing its suitability for clinical applications. Thus, this approach to PDO bioprinting is a promising tool for generating personalized tumor models and advancing precision medicine.
Collapse
Affiliation(s)
- Jonghyeuk Han
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine & Georgia Institute of TechnologyAtlantaGA30332USA
| | - Hye‐Jin Jeong
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Center for Genome EngineeringInstitute for Basic ScienceDaejeon34126Republic of Korea
| | - Jeonghan Choi
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyeonseo Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Center for Genomic IntegrityInstitute for Basic ScienceUlsan44919Republic of Korea
| | - Kyungjae Myung
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Center for Genomic IntegrityInstitute for Basic ScienceUlsan44919Republic of Korea
| | - Kyemyung Park
- Graduate School of Health Science and Technology and Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsan44919Republic of Korea
| | - Jung In Park
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
- Catalan Institute for Research and Advanced Studies (ICREA)Barcelona08010Spain
| | - Deok‐Beom Jung
- Digestive Diseases Research CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chang Sik Yu
- Division of Colon and Rectal SurgeryDepartment of SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - In Ho Song
- Division of Colon and Rectal SurgeryDepartment of SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Jin‐Hyung Shim
- Research InstituteT&R Biofab Co. Ltd.Siheung15111Republic of Korea
- Department of Mechanical EngineeringTech University of KoreaSiheung15073Republic of Korea
| | - Seung‐Jae Myung
- Digestive Diseases Research CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
- Department of GastroenterologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
- EDIS BiotechSeoul05505Republic of Korea
| | - Hyun‐Wook Kang
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Tae‐Eun Park
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| |
Collapse
|
2
|
Li W, Gao H, Liu J. Identified VCAM1 as prognostic gene in gastric cancer by co-expression network analysis. Discov Oncol 2024; 15:771. [PMID: 39692880 PMCID: PMC11655750 DOI: 10.1007/s12672-024-01603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
The diffuse gastric cancer (DGC) is a malignant tumor distinct from intestinal gastric cancer (IGC). This study aims to identify genetic variances and potential diagnostic and therapeutic approaches for diverse types of gastric cancer utilizing an extensive dataset. Data from RNA sequencing and clinical pathological details were acquired from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) dataset. Co-expression gene modules were constructed via Weighted Gene Co-Expression Network Analysis (WGCNA), followed by deciphering gene functions and protein-protein interaction networks within significantly associated modules. In total, analysis was conducted on 56,753 genes from 247 individuals with gastric cancer. Particularly, 621 genes from the green module exhibited strong associations with the Lauren type of gastric cancer. The prominent genes in the green module showed enrichment in processes such as signal transduction, immune response, and the positive regulation of GTPase activity. Noteworthy among these, VCAM1 was identified as the central gene linked to patients' prognosis. Moreover, 72 gastric cancer specimens were collected from The First Affiliated Hospital of University of Science and Technology of China. Immunohistochemical analysis demonstrated a significantly higher expression of VCAM1 in DGC compared to IGC (p = 0.019). Furthermore, it was confirmed that VCAM1 expression serves as a prognostic indicator for patients with DGC (p = 0.002), a correlation not observed in IGC (p = 0.760). In conclusion, this study identifies VCAM1 as a promising diagnostic and prognostic factor, suggesting novel avenues for diagnostic and therapeutic approaches in gastric cancer.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
- Breast Cancer Center, Division of Life Sciences and Medicine,The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, NO. 107, West 2nd Ring Road, Hefei, Anhui, China
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Hong Gao
- Breast Cancer Center, Division of Life Sciences and Medicine,The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, NO. 107, West 2nd Ring Road, Hefei, Anhui, China
| | - Jianjun Liu
- Breast Cancer Center, Division of Life Sciences and Medicine,The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, NO. 107, West 2nd Ring Road, Hefei, Anhui, China.
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China.
| |
Collapse
|
3
|
Wang X, Wang C, Han W, Ma C, Sun J, Wang T, Hui Z, Lei S, Wang R. Bibliometric and visualized analysis of global research on microRNAs in gastric cancer: from 2013 to 2023. Front Oncol 2024; 14:1374743. [PMID: 38800413 PMCID: PMC11116657 DOI: 10.3389/fonc.2024.1374743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Gastric cancer (GC) imposes a heavy burden on global public health, and microRNAs (miRNAs) play a crucial role in the diagnosis and treatment of GC. Therefore, it is necessary to clarify the hotspots and frontiers in the field of miRNAs in GC to guide future research. A total of 2,051 publications related to miRNAs in GC from January 2013 to December 2023 were searched from the Web of Science Core Collection database. CiteSpace was used to identify research hotspots and delineate developmental trends. In the past decade, China, Nanjing Medical University, and Ba Yi were the most contributing research country, institute, and author in this field, respectively. The role of miRNAs as biomarkers in GC, the mechanism of miRNAs in the progression of GC, and the impact of the mutual effects between miRNAs and Helicobacter pylori on GC have been regarded as the research hotspots. The mechanisms of miRNAs on glucose metabolism and the application of the roles of circular RNAs as miRNA sponges in GC treatment will likely be frontiers. Overall, this study called for strengthened cooperation to identify targets and therapeutic regimes for local specificity and high-risk GC types, and to promote the translation of research results into clinical practice.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatrics, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Caihua Wang
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenjin Han
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Congmin Ma
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaru Sun
- School of Nursing, Xi’an Vocational and Technical College, Xi’an, China
| | - Tianmeng Wang
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhaozhao Hui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shuangyan Lei
- Department of Radiotherapy, Shaanxi Cancer Hospital, Xi’an, China
| | - Ronghua Wang
- Department of Pediatrics, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Kato Y, Fukazawa T, Tanimoto K, Kanawa M, Kojima M, Saeki I, Kurihara S, Touge R, Hirohashi N, Okada S, Hiyama E. Achaete-scute family bHLH transcription factor 2 activation promotes hepatoblastoma progression. Cancer Sci 2024; 115:847-858. [PMID: 38183173 PMCID: PMC10921009 DOI: 10.1111/cas.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
Achaete-scute family bHLH transcription factor 2 (ASCL2) is highly expressed in hepatoblastoma (HB) tissues, but its role remains unclear. Thus, biological changes in the HB cell line HepG2 in response to induced ASCL2 expression were assessed. ASCL2 expression was induced in HepG2 cells using the Tet-On 3G system, which includes doxycycline. Cell viability, proliferation activity, mobility, and stemness were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony-formation, migration, invasion, and sphere-formation assays. Quantitative reverse-transcription polymerase chain reaction was used to assess the expression of markers for proliferation (CCND1 and MYC), epithelial-mesenchymal transition (EMT; SNAI1, TWIST1, and ZEB1), mesenchymal-epithelial transition (CDH1), and stemness (KLF4, POU5F1, and SOX9). Compared with the non-induced HepG2 cells, cells with induced ASCL2 expression showed significant increases in viability, colony number, migration area (%), and sphere number on days 7, 14, 8, and 7, respectively, and invasion area (%) after 90 h. Furthermore, induction of ASCL2 expression significantly upregulated CCND1, MYC, POU5F1, SOX9, and KLF4 expression on days 2, 2, 3, 3, and 5, respectively, and increased the ratios of SNAI1, TWIST1, and ZEB1 to CDH1 on day 5. ASCL2 promoted the formation of malignant phenotypes in HepG2 cells, which may be correlated with the upregulation of the Wnt signaling pathway-, EMT-, and stemness-related genes. ASCL2 activation may therefore be involved in the progression of HB.
Collapse
Affiliation(s)
- Yutaka Kato
- Department of Pediatrics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takahiro Fukazawa
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Division of Medical Research Support, Advanced Research Support CenterEhime UniversityToonJapan
| | - Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Masami Kanawa
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
| | - Masato Kojima
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Isamu Saeki
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Sho Kurihara
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Ryo Touge
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Nobuyuki Hirohashi
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Eiso Hiyama
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| |
Collapse
|
5
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
6
|
Yang D, Shi M, You Q, Zhang Y, Hu Z, Xu J, Cai Q, Zhu Z. Tumor- and metastasis-promoting roles of miR-488 inhibition via HULC enhancement and EZH2-mediated p53 repression in gastric cancer. Cell Biol Toxicol 2023; 39:1341-1358. [PMID: 36449143 DOI: 10.1007/s10565-022-09760-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
Dysregulation of microRNAs (miRNAs or miRs) is implicated in the development of gastric cancer (GC), which is possibly related to their roles in targeting tumor-suppressive or tumor-promoting genes. Herein, the current study was intended to ascertain the function of miR-488 and its modulatory mechanism in GC. Initially, human GC cells were assayed for their in vitro malignancy after miRNA gain- or loss-of-function and RNA interference or overexpression. Also, tumorigenesis and liver metastasis were evaluated in nude mouse models. Results demonstrated that miR-488 elevation suppressed GC (MKN-45 and OCUM-1) cell proliferation, migration, and invasiveness in vitro and reduced their tumorigenesis and liver metastasis in vivo. The luciferase assay identified that miR-488 bound to HULC and inhibited its expression. Furthermore, HULC could enhance EZH2-H3K27me3 enrichment at the p53 promoter region and epigenetically repress the p53 expression based on the data from RIP- and ChIP-qPCR assay. Additionally, HULC was validated to enhance GC growth and metastasis in vitro and in vivo. Overall, HULC re-expression elicited by miR-488 inhibition can enhance EZH2-H3K27me3 enrichment in the p53 promoter and repress the p53 expression, thus promoting the growth and metastasis of GC.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Mengyao Shi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qing You
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
7
|
Zhao Y, Weng Z, Zhou X, Xu Z, Cao B, Wang B, Li J. Mesenchymal stromal cells promote the drug resistance of gastrointestinal stromal tumors by activating the PI3K-AKT pathway via TGF-β2. J Transl Med 2023; 21:219. [PMID: 36966336 PMCID: PMC10040136 DOI: 10.1186/s12967-023-04063-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are the prevailing sarcomas of the gastrointestinal tract. Tyrosine kinase inhibitors (TKIs) therapy, exemplified by Imatinib mesylate (IM), constitutes the established adjuvant therapy for GISTs. Nevertheless, post-treatment resistance poses a challenge that all patients must confront. The presence of tumor heterogeneity and secondary mutation mechanisms fail to account for some instances of acquired drug resistance. Certain investigations suggest a strong association between tumor drug resistance and mesenchymal stromal cells (MSC) in the tumor microenvironment, but the underlying mechanism remains obscure. Scarce research has explored the connection between GIST drug resistance and the tumor microenvironment, as well as the corresponding mechanism. METHODS Immunofluorescence and fluorescence-activated cell sorting (FACS) methodologies were employed to detect the presence of MSC in GIST samples. The investigation encompassed the examination of MSC migration towards tumor tissue and the impact of MSC on the survival of GIST cells under IM treatment. Through ELISA, western blotting, and flow cytometry analyses, it was confirmed that Transforming Growth Factor Beta 2 (TGF-β2) triggers the activation of the PI3K-AKT pathway by MSC, thereby facilitating drug resistance in GIST. RESULTS Our findings revealed a positive correlation between a high proportion of MSC and both GIST resistance and a poor prognosis. In vitro studies demonstrated the ability of MSC to migrate towards GIST. Additionally, MSC were observed to secrete TGF-β2, consequently activating the PI3K-AKT pathway and augmenting GIST resistance. CONCLUSIONS Our investigation has revealed that MSC within GISTs possess the capacity to augment drug resistance, thereby highlighting their novel mechanism and offering a promising target for intervention in GIST therapy.
Collapse
Affiliation(s)
- Yu Zhao
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Bei Cao
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| | - Juan Li
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
8
|
Kang X, Zhao C, Liu Y, Wang G. The phosphorylation level of Cofilin-1 is related to the pathological subtypes of gastric cancer. Medicine (Baltimore) 2022; 101:e31309. [PMID: 36316865 PMCID: PMC9622630 DOI: 10.1097/md.0000000000031309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to explore the relationship between multiple proteins belonging to the LIMK/Cofilin pathway, including LIMK1, LIMK2, Cofilin-1, and p-Cofilin-1 and clinical features of gastric cancer (GC) patients, including overall survival, TNM stages, and pathological subtypes. The expression of LIMK1, LIMK2, Cofilin-1 and p-Cofilin-1 in the GC tissues and adjacent normal stomach tissues from 141 patients were detected using immunohistochemistry (IHC) staining. Wilcoxon rank-sum test and Spearman rank correlation coefficients were used to measure the relationship between different TNM stages, pathological types, and selected parameters. OS was estimated using the Kaplan-Meier method and survival curves were compared using the log-rank test. Our results showed that, compared to those in the adjacent normal stomach tissues, LIMK1, LIMK2 and Cofilin-1 were up-regulated while p-Cofilin-1 was down-regulated in the GC tissues. LIMK1 level was positively correlated to the TNM stages of GC. According to the published dataset, the expression levels of both LIMK1 and LIMK2 were correlated to the overall survival time of GC patients. The level of Cofilin-1 was significantly different between GCs of different TNM stages. Moreover, most importantly, this is the first study to reveal that the level of Cofilin-1 is higher, and the level of p-Cofilin-1 is lower in the diffuse type of GC compared to that in intestinal type. Taken together, our study demonstrated that multiple factors in LIMK/Cofilin pathway including LIMK1, LIMK2, Cofilin-1, and p-Cofilin-1 were associated with the clinical and pathological features of GC, which is potentially helpful for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xi Kang
- Department of Hepatobiliary Surgery, Hebei Medical University 4th Hospital, Shijiazhuang, China
| | - Chunfang Zhao
- Depatment of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Yueping Liu
- Department of Pathology, Hebei Medical University 4th Hospital, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, Hebei Medical University 3rd Hospital, Shijiazhuang, China
- Department of General Surgery, Hebei Medical University 4th Hospital, Shijiazhuang, China
- * Correspondence: Guiying Wang, Department of General Surgery, Hebei Medical University 3rd Hospital, No. 139 Ziqiang road, Shijiazhuang 050000, China (e-mail: )
| |
Collapse
|
9
|
Han B, Fang T, Zhang Y, Zhang Y, Gao J, Xue Y. Association of the TGFβ gene family with microenvironmental features of gastric cancer and prediction of response to immunotherapy. Front Oncol 2022; 12:920599. [PMID: 36119489 PMCID: PMC9478444 DOI: 10.3389/fonc.2022.920599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
In the complex tumor microenvironment, TGFβ is a pleiotropic cytokine involved in regulating cellular processes such as cancer cell proliferation, apoptosis and metastasis. TGFβ defines three subtypes (TGFβ1, TGFβ2, and TGFβ3), of which TGFβ is highly expressed in many cancers, especially those showing high dissemination potential. In addition, increased expression of TGFβ in multiple cancers is usually positively correlated with epithelial mesenchymal transition (EMT) and coordinated with the expression of genes driving EMT-related genes. TGFβ signaling in the tumor microenvironment inhibits the antitumor function of multiple immune cell populations, including T cells and natural killer cells, and the resulting immunosuppression severely limits the efficacy of immune checkpoint inhibitors and other immunotherapeutic approaches. As a major pathway to enhance the efficacy of cancer immunotherapy effects, the role of TGFβ signaling inhibitors have been evaluated in many clinical trials. However, the potential functions and mechanisms of TGFβ1, TGFβ2 and TGFβ3 in gastric cancer progression and tumor immunology are unclear. In this study, we comprehensively analyzed TGFβ1, TGFβ2 and TGFβ3 and gastric cancer microenvironmental features, including immune cell infiltration, EMT, hypoxia, mutation, immunotherapy and drug treatment, based on HMUCH sequencing data (GSE184336) and public databases. We also validated the protein expression levels of TGFβ in gastric cancer tissues as well as the role of TGFβ factor in cytology experiments. This report reveals the important role of the TGFβ gene family in gastric cancer and provides possible relationships and potential mechanisms of TGFβ in gastric cancer.
Collapse
|
10
|
Nakazawa N, Sohda M, Yokobori T, Gombodorj N, Sano A, Sakai M, Oyama T, Kuwano H, Shirabe K, Saeki H. Cytoplasmic localization of connexin 26 suppresses transition of β-catenin into the nucleus in intestinal- and mix-type gastric cancer. Ann Gastroenterol Surg 2022; 6:505-514. [PMID: 35847440 PMCID: PMC9271025 DOI: 10.1002/ags3.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background Connexin is a basic molecule that forms gap junctions and undergoes localization changes to the cytoplasm in association with carcinogenesis. We aimed to investigate and clarify the significance of cytoplasmic Cx26 expression in gastric cancer. Methods We included 87 patients with intestinal- and mix-type gastric cancer and 111 patients with diffuse type gastric cancer who underwent surgery for gastric cancer between 1999 and 2006. Immunohistochemical staining for Cx26, β-catenin, and Wnt3a was performed and analyses of the relationship to clinicopathological factors were conducted based on the Lauren classification. In an in vitro study, the gastric cancer cell lines MKN7, MKN74, and MKN45 were used to evaluate the proliferative capacity using the water-soluble tetrazolium salt assay through forced expression of Cx26, and the relationship between Cx26 and β-catenin was investigated using proximity ligation assay (PLA) and co-immunoprecipitation. Additionally, functional analysis was performed by Cage analysis. Results In this study, high cytoplasmic Cx26 expression was associated with favorable prognosis in intestinal- and mix-type gastric cancer and could be an independent prognostic factor for overall survival. In terms of the mechanism, in in vitro experiments changes in Cx26 localization to the cytoplasm were shown to suppress the change of localization of β-catenin to the nucleus by binding to it in the cytoplasm. Conclusions Cytoplasmic Cx26 was found to be a prognostic factor in intestinal- and mix-type gastric cancer. Regarding the mechanism, in vitro studies revealed that cytoplasmic Cx26 inhibits the translocation of β-catenin to the nucleus.
Collapse
Affiliation(s)
- Nobuhiro Nakazawa
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Makoto Sohda
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Takehiko Yokobori
- Division of Integrated Oncology ResearchGunma University Initiative for Advanced ResearchMaebashiJapan
| | - Navchaa Gombodorj
- Division of Integrated Oncology ResearchGunma University Initiative for Advanced ResearchMaebashiJapan
| | - Akihiko Sano
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Makoto Sakai
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Tetsunari Oyama
- Department of Diagnostic PathologyGunma University Graduate School of MedicineMaebashiJapan
| | - Hiroyuki Kuwano
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Ken Shirabe
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| | - Hiroshi Saeki
- Department of General Surgical ScienceGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
11
|
Lin YM, Yeh KT, Yeh CM, Soon MS, Hsu LS. KLF10 Functions as an Independent Prognosis Factor for Gastric Cancer. Medicina (B Aires) 2022; 58:medicina58060711. [PMID: 35743973 PMCID: PMC9228861 DOI: 10.3390/medicina58060711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Krűppel-like factor 10 (KLF10) participates in the tumorigenesis of several human cancers by binding to the GC-rich region within the promoter regions of specific genes. KLF10 is downregulated in human cancers. However, the role of KLF10 in gastric cancer formation remains unclear. Materials and Methods: In this study, we performed immunohistochemical staining for KLF10 expression in 121 gastric cancer sections. Results: The loss of KLF10 expression was correlated with advanced stages and T status. Kaplan–Meier analysis revealed that patients with higher KLF10 levels had longer overall survival than those with lower KLF10 levels. Univariate analysis revealed that in patients with gastric cancer, advanced stages and low KLF10 levels were associated with survival. Multivariate analysis indicated that age, gender, advanced stages, and KLF10 expression were independent prognostic factors of the survival of patients with gastric cancer. After adjusting for age, gender, and stage, KLF10 expression was also found to be an independent prognostic factor in the survival of patients with gastric cancer. Conclusion: Our results collectively suggested that KLF10 may play a critical role in gastric cancer formation and is an independent prognosis factor of gastric cancer.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.); (C.-M.Y.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.); (C.-M.Y.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.); (C.-M.Y.)
| | - Maw-Soan Soon
- Department of Gastroenteology, Kuang Tien General Hospital, Taichung 433, Taiwan
- Department of Biology, Graduate Institute of Biotechnology, National Changhua University of Education, Changhua 500, Taiwan
- General Education Center, Chienkuo Technology University, Changhua 500, Taiwan
- Correspondence: (M.-S.S.); (L.-S.H.); Tel.: +886-4-2473-0022 (ext. 11682) (L.-S.H.)
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (M.-S.S.); (L.-S.H.); Tel.: +886-4-2473-0022 (ext. 11682) (L.-S.H.)
| |
Collapse
|
12
|
Diffuse gastric cancer: Emerging mechanisms of tumor initiation and progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188719. [PMID: 35307354 DOI: 10.1016/j.bbcan.2022.188719] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse- and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.
Collapse
|
13
|
Kim J, Park C, Kim KH, Kim EH, Kim H, Woo JK, Seong JK, Nam KT, Lee YC, Cho SY. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. NPJ Precis Oncol 2022; 6:9. [PMID: 35087207 PMCID: PMC8795238 DOI: 10.1038/s41698-022-00251-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Single-cell transcriptomic profiles analysis has proposed new insights for understanding the behavior of human gastric cancer (GC). GC offers a unique model of intratumoral heterogeneity. However, the specific classes of cells involved in carcinogenetic passage, and the tumor microenvironment of stromal cells was poorly understood. We characterized the heterogeneous cell population of precancerous lesions and gastric cancer at the single-cell resolution by RNA sequencing. We identified 10 gastric cell subtypes and showed the intestinal and diffuse-type cancer were characterized by different cell population. We found that the intestinal and diffuse-type cancer cells have the differential metaplastic cell lineages: intestinal-type cancer cells differentiated along the intestinal metaplasia lineage while diffuse-type cancer cells resemble de novo pathway. We observed an enriched CCND1 mutation in premalignant disease state and discovered cancer-associated fibroblast cells harboring pro-stemness properties. In particular, tumor cells could be categorized into previously proposed molecular subtypes and harbored specific subtype of malignant cell with high expression level of epithelial-myofibroblast transition which was correlated with poor clinical prognosis. In addition to intratumoral heterogeneity, the analysis revealed different cellular lineages were responsible for potential carcinogenetic pathways. Single-cell transcriptomes analysis of gastric pre-cancerous lesions and cancer may provide insights for understanding GC cell behavior, suggesting potential targets for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Jihyun Kim
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Charny Park
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eun Hye Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Kyu Woo
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea. .,Laboratory of Developmental Biology and Genomics, Research Institute of Veterinary Science, BK21 Program Plus for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Yong Chan Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Severance Hospital, Seoul, Republic of Korea.
| | - Soo Young Cho
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea. .,Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
14
|
Gallo A, Ronzio M, Bezzecchi E, Mantovani R, Dolfini D. NF-Y subunits overexpression in gastric adenocarcinomas (STAD). Sci Rep 2021; 11:23764. [PMID: 34887475 PMCID: PMC8660849 DOI: 10.1038/s41598-021-03027-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
NF-Y is a pioneer transcription factor-TF-formed by the Histone-like NF-YB/NF-YC subunits and the regulatory NF-YA. It binds to the CCAAT box, an element enriched in promoters of genes overexpressed in many types of cancer. NF-YA is present in two major isoforms-NF-YAs and NF-YAl-due to alternative splicing, overexpressed in epithelial tumors. Here we analyzed NF-Y expression in stomach adenocarcinomas (STAD). We completed the partitioning of all TCGA tumor samples (450) according to molecular subtypes proposed by TCGA and ACRG, using the deep learning tool DeepCC. We analyzed differentially expressed genes-DEG-for enriched pathways and TFs binding sites in promoters. CCAAT is the predominant element only in the core group of genes upregulated in all subtypes, with cell-cycle gene signatures. NF-Y subunits are overexpressed, particularly NF-YA. NF-YAs is predominant in CIN, MSI and EBV TCGA subtypes, NF-YAl is higher in GS and in the ACRG EMT subtypes. Moreover, NF-YAlhigh tumors correlate with a discrete Claudinlow cohort. Elevated NF-YB levels are protective in MSS;TP53+ patients, whereas high NF-YAl/NF-YAs ratios correlate with worse prognosis. We conclude that NF-Y isoforms are associated to clinically relevant features of gastric cancer.
Collapse
Affiliation(s)
- Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Eugenia Bezzecchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
15
|
Luo S, Lin R, Liao X, Li D, Qin Y. Identification and verification of the molecular mechanisms and prognostic values of the cadherin gene family in gastric cancer. Sci Rep 2021; 11:23674. [PMID: 34880371 PMCID: PMC8655011 DOI: 10.1038/s41598-021-03086-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
While cadherin (CDH) genes are aberrantly expressed in cancers, the functions of CDH genes in gastric cancer (GC) remain poorly understood. The clinical significance and molecular mechanisms of CDH genes in GC were assessed in this study. Data from a total of 1226 GC patients included in The Cancer Genome Atlas (TCGA) and Kaplan–Meier plotter database were used to independently explore the value of CDH genes in clinical application. The TCGA RNA sequencing dataset was used to explore the molecular mechanisms of CDH genes in GC. Using enrichment analysis tools, CDH genes were found to be related to cell adhesion and calcium ion binding in function. In TCGA cohort, 12 genes were found to be differentially expressed between GC para-carcinoma and tumor tissue. By analyzing GC patients in two independent cohorts, we identified and verified that CDH2, CDH6, CDH7 and CDH10 were significantly associated with a poor GC prognosis. In addition, CDH2 and CDH6 were used to construct a GC risk score signature that can significantly improve the accuracy of predicting the 5-year survival of GC patients. The GSEA approach was used to explore the functional mechanisms of the four prognostic CDH genes and their associated risk scores. It was found that these genes may be involved in multiple classic cancer-related signaling pathways, such as the Wnt and phosphoinositide 3-kinase signaling pathways in GC. In the subsequent CMap analysis, three small molecule compounds (anisomycin, nystatin and bumetanide) that may be the target molecules that determine the risk score in GC, were initially screened. In conclusion, our current study suggests that four CDH genes can be used as potential biomarkers for GC prognosis. In addition, a prognostic signature based on the CDH2 and CDH6 genes was constructed, and their potential functional mechanisms and drug interactions explored.
Collapse
Affiliation(s)
- Shanshan Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China.
| | - Rujing Lin
- Department of General Surgery, The People's Hospital of Binyang County, Nanning, 530405, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Daimou Li
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China.
| |
Collapse
|
16
|
Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, Hirose A, Yokozaki H, Sasaki H. Cell Cycle Regulation and DNA Damage Response Networks in Diffuse- and Intestinal-Type Gastric Cancer. Cancers (Basel) 2021; 13:5786. [PMID: 34830941 PMCID: PMC8616335 DOI: 10.3390/cancers13225786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic regulation in molecular networks including cell cycle regulation and DNA damage response play an important role in cancer. To reveal the feature of cancer malignancy, gene expression and network regulation were profiled in diffuse- and intestinal-type gastric cancer (GC). The results of the network analysis with Ingenuity Pathway Analysis (IPA) showed that the activation states of several canonical pathways related to cell cycle regulation were altered. The G1/S checkpoint regulation pathway was activated in diffuse-type GC compared to intestinal-type GC, while canonical pathways of the cell cycle control of chromosomal replication, and the cyclin and cell cycle regulation, were activated in intestinal-type GC compared to diffuse-type GC. A canonical pathway on the role of BRCA1 in the DNA damage response was activated in intestinal-type GC compared to diffuse-type GC, where gene expression of BRCA1, which is related to G1/S phase transition, was upregulated in intestinal-type GC compared to diffuse-type GC. Several microRNAs (miRNAs), such as mir-10, mir-17, mir-19, mir-194, mir-224, mir-25, mir-34, mir-451 and mir-605, were identified to have direct relationships in the G1/S cell cycle checkpoint regulation pathway. Additionally, cell cycle regulation may be altered in epithelial-mesenchymal transition (EMT) conditions. The alterations in the activation states of the pathways related to cell cycle regulation in diffuse- and intestinal-type GC highlighted the significance of cell cycle regulation in EMT.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Sabina Quader
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-0033, Japan;
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Hiroshi Yokozaki
- Department of Pathology, Kobe University of Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| |
Collapse
|
17
|
Diao L, Li Y, Mei Q, Han W, Hu J. Retracted: AIB1 induces epithelial-mesenchymal transition in gastric cancer via the PI3K/AKT signaling. J Cell Biochem 2021; 122:926-933. [PMID: 31692102 DOI: 10.1002/jcb.29530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Amplified in breast cancer 1 (AIB1) is overexpression in various cancers and promotes tumor cell proliferation, survival, and invasiveness. However, the role of AIB1 in the regulation of gastric cancer (GC) cell epithelial-mesenchymal transition (EMT) is still largely unclear. In the present study, immunohistochemistry showed that AIB1 was upregulated in our cohort of patients with GC and correlated with poor survival. Knockdown of AIB1 reduced the invasive ability of GC cells, downregulated the expression of epithelial cell marker E-cadherin, and upregulated mesenchymal cell marker vimentin. AIB1 overexpression elicited the opposite effect. PI-103, the inhibitor of the PI3K/AKT signaling, partially reversed AIB1 overexpression mediated a decrease in E-cadherin and an increase in vimentin. The present data demonstrated that AIB1 augmented the EMT via activation of PI3K/AKT signaling. In conclusion, our results suggested a novel role of AIB1 in GC invasion and EMT and raised the possibility of using this molecule as an indicator for GC treatment.
Collapse
Affiliation(s)
- Lei Diao
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Hu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Allegri L, Domenis R, Navarra M, Celano M, Russo D, Capriglione F, Damante G, Baldan F. Dihydrotanshinone exerts antitumor effects and improves the effects of cisplatin in anaplastic thyroid cancer cells. Oncol Rep 2021; 46:204. [PMID: 34318905 DOI: 10.3892/or.2021.8155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/08/2021] [Indexed: 11/06/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive type of thyroid cancer and is responsible for 20‑50% of thyroid cancer‑associated deaths. The absence of response to conventional treatments makes the search for novel therapeutics a clinical challenge. In the present study, the effects of 15,16‑dihydrotanshinone I (DHT), a tanshinone extracted from Salvia miltiorrhiza Bunge (Danshen), which has previously been shown to possess anticancer activity, were examined in two human ATC cell lines. DHT significantly reduced cell viability, which was coupled with an increase in apoptosis. DHT administration also reduced the colony‑forming ability and proliferation of these cells in soft agar and downregulated the expression of epithelial‑to‑mesenchymal transition‑related genes. In addition, DHT significantly reduced MAD2 expression, a target of HuR with a relevant role in ATC. Finally, cotreatment with cisplatin and DHT has a greater effect on cell viability than each compound alone. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that DHT exerts antitumor effects on ATC cells by reducing MAD2 expression levels. Moreover, a synergistic effect of DHT with cisplatin was shown. Further in vivo studies are required to assess this phytochemical compound as a potential adjuvant for the treatment of ATC.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| | - Rossana Domenis
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I‑98122 Messina, Italy
| | - Marilena Celano
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', I‑88100 Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', I‑88100 Catanzaro, Italy
| | - Francesca Capriglione
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', I‑88100 Catanzaro, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| | - Federica Baldan
- Department of Medicine, University of Udine, I‑33100 Udine, Italy
| |
Collapse
|
19
|
Yue CF, Li LS, Ai L, Deng JK, Guo YM. sMicroRNA-28-5p acts as a metastasis suppressor in gastric cancer by targeting Nrf2. Exp Cell Res 2021; 402:112553. [PMID: 33737068 DOI: 10.1016/j.yexcr.2021.112553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/11/2023]
Abstract
The transcription factor nuclear factor (erythroid-2)-related factor 2 (Nrf2) can principally serve a mode of protection for both the normal cells and cancer cells from cellular stress, and elevates cancer cell survival. microRNA-28 (miR-28) has been involved in the regulation of Nrf2 expression in breast epithelial cells. However, no comprehensive analysis has been conducted regarding the function of miR-28-5p regulating Nrf2 in gastric cancer (GC). In this study, we aimed to evaluate their interaction and biological roles in the migration and invasion of GC cells. The expression of Nrf2 in the cancer tissues harvested from 42 patients with GC was examined by an array of molecular techniques comprising of Immunohistochemical staining, RT-qPCR and Western blot analysis. Kaplan-Meier method was adopted for analysis of the correlation of Nrf2 with the prognosis of GC patients. Interaction between miR-28-5p and Nrf2 was determined using the bioinformatics analysis and dual luciferase reporter gene assay. Gain- and loss-of-function studies of miR-28-5p and Nrf2 were conducted to elucidate their effects on GC cell migration, invasion and metastasis, as well as expression pattern of several epithelial-mesenchymal transition (EMT)-related proteins. Results indicated that the expression pattern of Nrf2 was significantly upregulated in GC tissues and indicative of poor prognosis of GC patients. miR-28-5p was verified to target Nrf2 and downregulate its expression. GC cells with overexpression of miR-28-5p or Nrf2 knockdown exhibited a marked reduction in the migrated and invasive abilities, along with the N-cadherin expression yet an increase of E-cadherin expression. Furthermore, miR-28-5p exerted an inhibitory function on the metastatic and tumorigenicity of GC cells. In conclusion, miR-28-5p is a comprehensive tumor suppressor that inhibits GC cell migration and invasion through repressing the Nrf2 expression. Therefore, miR-28-5p may serve as a potential biomarker for the prognosis of GC and a novel therapeutic target in advanced GC.
Collapse
Affiliation(s)
- Cai-Feng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, PR China
| | - Lai-Sheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Lu Ai
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Jian-Kai Deng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Yun-Miao Guo
- Clinic Research Institute of Zhanjiang, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, PR China.
| |
Collapse
|
20
|
Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, Hirose A, Yokozaki H, Sasaki H. Molecular Network Profiling in Intestinal- and Diffuse-Type Gastric Cancer. Cancers (Basel) 2020; 12:3833. [PMID: 33353109 PMCID: PMC7765985 DOI: 10.3390/cancers12123833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in the acquisition of cancer stem cell (CSC) feature and drug resistance, which are the main hallmarks of cancer malignancy. Although previous findings have shown that several signaling pathways are activated in cancer progression, the precise mechanism of signaling pathways in EMT and CSCs are not fully understood. In this study, we focused on the intestinal and diffuse-type gastric cancer (GC) and analyzed the gene expression of public RNAseq data to understand the molecular pathway regulation in different subtypes of gastric cancer. Network pathway analysis was performed by Ingenuity Pathway Analysis (IPA). A total of 2815 probe set IDs were significantly different between intestinal- and diffuse-type GC data in cBioPortal Cancer Genomics. Our analysis uncovered 10 genes including male-specific lethal 3 homolog (Drosophila) pseudogene 1 (MSL3P1), CDC28 protein kinase regulatory subunit 1B (CKS1B), DEAD-box helicase 27 (DDX27), golgi to ER traffic protein 4 (GET4), chromosome segregation 1 like (CSE1L), translocase of outer mitochondrial membrane 34 (TOMM34), YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), ribonucleic acid export 1 (RAE1), par-6 family cell polarity regulator beta (PARD6B), and MRG domain binding protein (MRGBP), which have differences in gene expression between intestinal- and diffuse-type GC. A total of 463 direct relationships with three molecules (MYC, NTRK1, UBE2M) were found in the biomarker-filtered network generated by network pathway analysis. The networks and features in intestinal- and diffuse-type GC have been investigated and profiled in bioinformatics. Our results revealed the signaling pathway networks in intestinal- and diffuse-type GC, bringing new light for the elucidation of drug resistance mechanisms in CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Sabina Quader
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-0033, Japan;
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Hiroshi Yokozaki
- Department of Pathology, Kobe University of Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| |
Collapse
|
21
|
The Interplay of Tumor Stroma and Translational Factors in Endometrial Cancer. Cancers (Basel) 2020; 12:cancers12082074. [PMID: 32726992 PMCID: PMC7463731 DOI: 10.3390/cancers12082074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) is a common gynecologic malignancy which continues to have a poor prognosis in advanced stages due to current therapeutic limitations. A significant mechanism of chemoresistance in EC has been shown to also be the enhancement of epithelial to mesenchymal transition (EMT) and the subsequent obtainment of stem cell-like characteristics of EC. Current evidence on EMT in EC however fails to explain the relationship leading to an EMT signaling enhancement. Our review therefore focuses on understanding eukaryotic translation initiation factors (eIFs) as key regulators of the translational process in enhancing EMT and subsequently impacting higher chemoresistance of EC. We identified pathways connected to the development of a microenvironment for EMT, inducers of the process specifically related to estrogen receptors as well as their interplay with eIFs. In the future, investigation elucidating the translational biology of EC in EMT may therefore focus on the signaling between protein kinase RNA-like ER kinase (PERK) and eIF2alpha as well as eIF3B.
Collapse
|
22
|
Liu S, Rong G, Li X, Geng L, Zeng Z, Jiang D, Yang J, Wei Y. Diosgenin and GSK126 Produce Synergistic Effects on Epithelial-Mesenchymal Transition in Gastric Cancer Cells by Mediating EZH2 via the Rho/ROCK Signaling Pathway. Onco Targets Ther 2020; 13:5057-5067. [PMID: 32606728 PMCID: PMC7292386 DOI: 10.2147/ott.s237474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Background Diosgenin, a natural steroidal saponin isolated from Trigonella foenum-graecum, has been reported to exert anti-cancer effects. Inhibitors of enhancer of zeste homology 2 (EZH2) have been widely used in treatment of cancers. However, the effects of combined treatment with diosgenin and an EZH2 inhibitor on gastric cancer (GC) cells, and the mechanism for those effects are not fully understood. Methods AGS and SGC-7901 gastric cancer cells were treated with diosgenin (0 to 8 μM), followed by treatment with either diosgenin or an EZH2 inhibitor, GSK126 alone. Afterwards, an EZH2 overexpression plasmid and Rho inhibitor, GSK429286A was involved in cells. Cell proliferation, cell cycle distribution, and cell apoptosis, migration, and invasion were examined by CCK-8 assays, flow cytometry, and transwell assays. Western blotting was performed to detect the relative levels of protein expression. Results Treatment with diosgenin alone caused a dose-dependent decrease in the cell viability, and combined treatment with an EZH2 inhibitor plus GSK126 caused a further significant decrease. A further analysis revealed that treatment with either diosgenin or GSK126 alone induced significant increases in G0/G1 cell cycle arrest and apoptosis, and combined treatment with both agents induced further increases in those parameters. In addition, combined treatment with diosgenin and GSK126 synergistically induced even stronger effects on impaired cell proliferation, G0/G1 phase arrest, and cell apoptosis when compared to treatment with either diosgenin or GSK126 treatment alone. At the molecular level, we demonstrated that inhibition of Rho/ROCK signaling by combined treatment with diosgenin and GSK126 could downregulate the expression of epithelial–mesenchymal transition (EMT)-related molecules. We also found that EZH2 overexpression reversed the anti-tumor effect of diosgenin by inducing cell survival, blocking G1-phase arrest, and promoted EMT. While, these biological properties were further reversed by GSK429286A. Conclusion Collectively, combined treatment with diosgenin and GSK126 produced even more significant effects on GC cell inhibition by targeting EZH2 via Rho/ROCK signaling-mediated EMT, which might be a therapeutic strategy for improving the poor therapeutic outcomes obtained with GSK126 monotherapy.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Guihong Rong
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Xia Li
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Lijun Geng
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Zhineng Zeng
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Dongxiang Jiang
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Jun Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| | - Yesheng Wei
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, People's Republic of China
| |
Collapse
|
23
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| |
Collapse
|
24
|
Tanabe S, Hirose A, Whelan M, Yamada T. [Molecular Pathway and AOP Development Using Gene Network Analysis]. YAKUGAKU ZASSHI 2020; 140:485-489. [PMID: 32238629 DOI: 10.1248/yakushi.19-00190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) has initiated the adverse outcome pathway (AOP) Development Program in which the concept of AOP is applied to evaluate the safety of molecules such as chemicals. This program aims to assist regulatory needs and construct a knowledge base by accumulating AOP case studies. AOP consists of a molecular initiating event (MIE) as the initiating event of the pathway; key events (KEs) as the events themselves, such as cellular-molecular interactions; and adverse outcome (AO), such as signaling transduction-induced toxicity, as adverse events. KEs are extracted as important events at various levels, such as the molecular, cellular, tissue, organ, individual, and species levels; measurement of KEs and key event relationships (KERs), including mechanisms, plausibility, species differences, and empirical support information, are gathered. The development status of the AOP relating to histone deacetylase inhibition-induced testicular toxicity, currently being reviewed by the OECD, has been introduced. The AOP describing malignancies by Wnt ligand stimulation and Wnt signaling activation using gene expression network analysis-based mechanisms in molecular pathway elucidation has been suggested.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| | | | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| |
Collapse
|
25
|
Cai H, Hou X, Ding Y, Fu Z, Wang L, Du Y. Prediction of gastric cancer prognosis in the next-generation sequencing era. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies worldwide, and is caused by complex interactions of multiple risk factors such as environmental (Helicobacter pylori and Epstein–Barr Virus), hereditary (genetic alterations and epigenetic modifications), as well as dietary and lifestyle factors. GC is usually detected at an advanced stage, with a dismal prognosis. Even for patients with similar clinical or pathologic stage receiving similar treatment, the outcomes are still uneven and unpredictable. To better incorporate genetic and epigenetic profiles into GC prognostic predication, gene expression signatures have been developed to predict GC outcomes. More recently, the advancement of high-throughput sequencing technology, also known as next-generation sequencing (NGS) technology, and analysis has provided the basis for accurate molecular classification of GC tumors. Here, we summarized and updated the literature related to NGS studies of GC, including whole-genome sequencing, whole-exome sequencing, RNA sequencing, and targeted sequencing, and discussed current progresses. NGS has facilitated the identification of genetic/epigenetic targets for screening as well as development of targeted agent therapy, thus enabling individualized patient management and treatment.
Collapse
Affiliation(s)
- Hui Cai
- Department of General Surgery, Changhai Hospital, Second Military Medical University Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- PLA Marine Corps Hospital, Chaozhou, Guangdong 521000, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, P. R. China
| | - Zhongxing Fu
- Ningguo Bio-Leader Biotechnology Co., Ltd., Anhui, Hefei, P. R. China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-related Diseases, Shanghai, P. R. China
| | - Yan Du
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
26
|
Perrot-Applanat M, Vacher S, Pimpie C, Chemlali W, Derieux S, Pocard M, Bieche I. Differential gene expression in growth factors, epithelial mesenchymal transition and chemotaxis in the diffuse type compared with the intestinal type of gastric cancer. Oncol Lett 2019; 18:674-686. [PMID: 31289541 PMCID: PMC6546989 DOI: 10.3892/ol.2019.10392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is a highly heterogeneous disease and one of the major causes of cancer-related mortality worldwide. Diffuse-type gastric adenocarcinoma (or poorly cohesive- with independent cells) is characterized by aggressive behavior (rapid invasion, chemoresistance and peritoneal metastasis), as compared with intestinal-subtype adenocarcinoma. Diffuse subtype GC additionally has a substantially increasing incidence rate in Europe and the USA, and was often associated with younger age. Our objective was to analyze the expression and clinical significance of genes involved in several signaling pathways in diffuse-type GC. Tumors samples and non-malignant gastric tissues were obtained from patients with GC (diffuse-type and intestinal-subtype adenocarcinoma). The expression of 33 genes coding for proteins involved in four categories, growth factors and receptors, epithelial-mesenchymal transition, cell proliferation and migration, and angiogenesis was determined by reverse transcription-quantitative polymerase chain reaction. The expression of 22 genes was significantly upregulated in diffuse-type GC and two were downregulated (including CDH1) compared with normal tissues. Among these genes, acompared with intestinal-subtype adenocarcinoma, diffuse-type GC revealed elevated levels of IGF1 and IGF1R, FGF7 and FGFR1, ZEB2, CXCR4, CXCL12 and RHOA, and decreased levels of CDH1, MMP9 and MKI67. The expression of selected genes was compared with other genes and according to clinical parameters. Furthermore, TGF-β expression was significantly increased in linitis, a sub-population of diffusely infiltrating type associated with extensive fibrosis and tumor invasion. Our study identified new target genes (IGF1, FGF7, CXCR4, TG-β and ZEB2) whose expression is associated with aggressive phenotype of diffuse-type GC.
Collapse
Affiliation(s)
- Martine Perrot-Applanat
- INSERM U965, Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Sophie Vacher
- Department of Genetics, Pharmacogenomics Unit-Institut Curie, University of Paris-Descartes-Paris 5, 75005 Paris, France
| | - Cynthia Pimpie
- INSERM U965, Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Walid Chemlali
- Department of Genetics, Pharmacogenomics Unit-Institut Curie, University of Paris-Descartes-Paris 5, 75005 Paris, France
| | - Simon Derieux
- Department of Digestive and Oncology Surgery-Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Marc Pocard
- INSERM U965, Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
- Department of Digestive and Oncology Surgery-Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Ivan Bieche
- Department of Genetics, Pharmacogenomics Unit-Institut Curie, University of Paris-Descartes-Paris 5, 75005 Paris, France
| |
Collapse
|
27
|
Cao B, Zhao Y, Zhang Z, Li H, Xing J, Guo S, Qiu X, Zhang S, Min L, Zhu S. Gene regulatory network construction identified NFYA as a diffuse subtype-specific prognostic factor in gastric cancer. Int J Oncol 2018; 53:1857-1868. [PMID: 30106137 PMCID: PMC6192729 DOI: 10.3892/ijo.2018.4519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 02/27/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022] Open
Abstract
Lauren classification is a pathology-based gastric cancer (GC) subtyping system, which is widely used in the clinical treatment of patients with GC. However, genome-scale molecular characteristics to distinguish between diffuse (DF) and intestinal (IT) GC remain incompletely characterized, particularly at the transcriptional regulatory level. In the present study, gene regulatory networks were constructed using the Passing Attributes between Networks for Data Assimilation (PANDA) algorithm for DF, IT and mixed GC. The results indicated that >85% of transcription factor (TF)-target edges were shared among all three GC subtypes. In TF enrichment analysis, 13 TFs, including nuclear transcription factor Y subunit α (NFYA) and forkhead box L1, were activated in DF GC, whereas 8 TFs, including RELA proto-oncogene and T-cell leukemia homeobox 1 (TLX1), were activated in IT GC. Out of these identified TFs, NFYA [Hazard ratio (HR) (95% confidence interval, CI)=0.560 (0.349, 0.900), P=0.017] and sex determining region Y [HR (95% CI)=0.603 (0.375, 0.969), P=0.037] were identified as independent prognostic factors in DF GC, but not in IT GC, whereas TLX1 [HR (95% CI)=0.547 (0.321, 0.9325), P=0.027] was identified as an independent prognostic factor in IT GC, but not in DF GC. Verification at the cellular level was also performed; interference of NFYA expression using small interfering RNA in MGC803 cells (DF GC-derived cells) markedly inhibited cell growth and colony formation. Similar effects were also detected in SGC-7901 cells (IT GC-derived cells), but to a lesser extent. In conclusion, identified gene regulatory networks differed between distinct GC subtypes, in which the same TFs had different biological effects. Specifically, NFYA was identified as a DF subtype-specific independent prognostic factor in GC.
Collapse
Affiliation(s)
- Bin Cao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Jie Xing
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Xintao Qiu
- Department of Biomedical Informatics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
28
|
Wu DM, Hong XW, Wang LL, Cui XF, Lu J, Chen GQ, Zheng YL. MicroRNA-17 inhibition overcomes chemoresistance and suppresses epithelial-mesenchymal transition through a DEDD-dependent mechanism in gastric cancer. Int J Biochem Cell Biol 2018; 102:59-70. [DOI: 10.1016/j.biocel.2018.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
|
29
|
Alessandrini L, Manchi M, De Re V, Dolcetti R, Canzonieri V. Proposed Molecular and miRNA Classification of Gastric Cancer. Int J Mol Sci 2018; 19:E1683. [PMID: 29882766 PMCID: PMC6032377 DOI: 10.3390/ijms19061683] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a common malignant neoplasm worldwide and one of the main cause of cancer-related deaths. Despite some advances in therapies, long-term survival of patients with advanced disease remains poor. Different types of classification have been used to stratify patients with GC for shaping prognosis and treatment planning. Based on new knowledge of molecular pathways associated with different aspect of GC, new pathogenetic classifications for GC have been and continue to be proposed. These novel classifications create a new paradigm in the definition of cancer biology and allow the identification of relevant GC genomic subsets by using different techniques such as genomic screenings, functional studies and molecular or epigenetic characterization. An improved prognostic classification for GC is essential for the development of a proper therapy for a proper patient population. The aim of this review is to discuss the state-of-the-art on combining histological and molecular classifications of GC to give an overview of the emerging therapeutic possibilities connected to the latest discoveries regarding GC.
Collapse
Affiliation(s)
- Lara Alessandrini
- Pathology, IRCCS CRO National Cancer Institute, 33081 Aviano, Italy.
| | - Melissa Manchi
- Pathology, IRCCS CRO National Cancer Institute, 33081 Aviano, Italy.
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, 33081 Aviano, Italy.
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | | |
Collapse
|
30
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Molecular pathway network of EFNA1 in cancer and mesenchymal stem cells. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.2.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Nie Y, Wu K, Yu J, Liang Q, Cai X, Shang Y, Zhou J, Pan K, Sun L, Fang J, Yuan Y, You W, Fan D. A global burden of gastric cancer: the major impact of China. Expert Rev Gastroenterol Hepatol 2017; 11:651-661. [PMID: 28351219 DOI: 10.1080/17474124.2017.1312342] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is a highly aggressive cancer and a major cause of cancer-related deaths worldwide. Approximately half of the world's GC cases and deaths occur in china. GC presents challenges in early diagnosis and effective therapy due to a lack of understanding of the underlying molecular biology. The primary goals of this review are to outline current GC research in china and describe future trends in this field. Areas covered: This review mainly focuses on a series of GC-related advances China has achieved. Considerable progress has been made in understanding the role of H. pylori in GC by a series of population-based studies in well-established high-risk areas; A few germline and somatic alterations have been identified by 'omics' studies; Studies on the mechanisms of malignant phenotypes have helped us to form an in-depth understanding of GC and advance drug discovery. Moreover, identification of potential biomarkers and targeted therapies have facilitated the diagnosis and treatment of GC. However, many challenges remain. Expert commentary: To combat GC, sufficient funding is important. More attention should be paid on early diagnosis and the discovery of novel efficient biomarkers and the development of biomarker-based or targeted therapeutics in GC.
Collapse
Affiliation(s)
- Yongzhan Nie
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Kaichun Wu
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jun Yu
- b Department of Medicine and Therapeutics and Institute of Digestive Disease , Chinese University of Hong Kong , Hong Kong , China
| | - Qiaoyi Liang
- b Department of Medicine and Therapeutics and Institute of Digestive Disease , Chinese University of Hong Kong , Hong Kong , China
| | - Xiqiang Cai
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Yulong Shang
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jinfeng Zhou
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Kaifeng Pan
- c Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology , Peking University Cancer Hospital & Institute , Beijing , China
| | - Liping Sun
- d Tumor Etiology and Screening, Department of Cancer Institute and General Surgery , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Jingyuan Fang
- e Renji Hospital , Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Yuan Yuan
- d Tumor Etiology and Screening, Department of Cancer Institute and General Surgery , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Weicheng You
- c Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology , Peking University Cancer Hospital & Institute , Beijing , China
| | - Daiming Fan
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
32
|
Min L, Zhao Y, Zhu S, Qiu X, Cheng R, Xing J, Shao L, Guo S, Zhang S. Integrated Analysis Identifies Molecular Signatures and Specific Prognostic Factors for Different Gastric Cancer Subtypes. Transl Oncol 2017; 10:99-107. [PMID: 28013168 PMCID: PMC5198736 DOI: 10.1016/j.tranon.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth leading cause of cancer-related deaths worldwide. As an effective and easily performed method, microscopy-based Lauren classification has been widely accepted by gastrointestinal surgeons and pathologists for GC subtyping, but molecular characteristics of different Lauren subtypes were poorly revealed. METHODS GSE62254 was used as a derivation cohort, and GSE15459 was used as a validation cohort. The difference between diffuse and intestinal GC on the gene expression level was measured. Gene ontology (GO) enrichment analysis was performed for both subgroups. Hierarchical clustering and heatmap exhibition were also performed. Kaplan-Meier plot and Cox proportional hazards model were used to evaluate survival grouped by the given genes or hierarchical clusters. RESULTS A total of 4598 genes were found differentially expressed between diffuse and intestinal GC. Immunity- and cell adhesion-related GOs were enriched for diffuse GC, whereas DNA repair- and cell cycle-related GOs were enriched for intestinal GC. We proposed a 40-gene signature (χ2=30.71, P<.001) that exhibits better discrimination for prognosis than Lauren classification (χ2=12.11, P=.002). FRZB [RR (95% CI)=1.824 (1.115-2.986), P=.017] and EFEMP1 [RR (95% CI)=1.537 (0.969-2.437), P=.067] were identified as independent prognostic factors only in diffuse GC but not in intestinal GC patients. KRT23 [RR (95% CI)=1.616 (0.938-2.785), P=.083] was identified as an independent prognostic factor only in intestinal GC patients but not in diffuse GC patients. Similar results were achieved in the validation cohort. CONCLUSION We found that GCs with different Lauren classifications had different molecular characteristics and identified FRZB, EFEMP1, and KRT23 as subtype-specific prognostic factors for GC patients.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China
| | - Xintao Qiu
- Department of Biomedical Informatics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Rui Cheng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China
| | - Jie Xing
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China
| | - Linlin Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, PR China.
| |
Collapse
|
33
|
Chong Y, Tang D, Gao J, Jiang X, Xu C, Xiong Q, Huang Y, Wang J, Zhou H, Shi Y, Wang D. Galectin-1 induces invasion and the epithelial-mesenchymal transition in human gastric cancer cells via non-canonical activation of the hedgehog signaling pathway. Oncotarget 2016; 7:83611-83626. [PMID: 27835885 PMCID: PMC5347792 DOI: 10.18632/oncotarget.13201] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Galectin-1 (Gal-1) has been reported to be an independent prognostic indicator of poor survival in gastric cancer and overexpression of Gal-1 enhances the invasiveness of gastric cancer cells. However, the downstream mechanisms by which Gal-1 promotes invasion remains unclear. Moreover, the function of Gal-1 in the epithelial-mesenchymal transition (EMT) in gastric cancer has not yet been elucidated. In this study, we observed Gal-1 expression was upregulated and positively associated with metastasis and EMT markers in 162 human gastric cancer tissue specimens. In vitro studies showed Gal-1 induced invasion, the EMT phenotype and activated the non-canonical hedgehog (Hh) pathway in gastric cancer cell lines. Furthermore, our data revealed that Gal-1 modulated the non-canonical Hh pathway by increasing the transcription of glioma-associated oncogene-1 (Gli-1) via a Smoothened (SMO)-independent manner, and that upregulation of Gal-1 was strongly associated with gastric cancer metastasis. We conclude that Gal-1 promotes invasion and the EMT in gastric cancer cells via activation of the non-canonical Hh pathway, suggesting Gal-1 could represent a promising therapeutic target for the prevention and treatment of gastric cancer metastasis.
Collapse
Affiliation(s)
- Yang Chong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Dong Tang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Jun Gao
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Xuetong Jiang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Chuanqi Xu
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Qingquan Xiong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Yuqin Huang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Jie Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Huaicheng Zhou
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Youquan Shi
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| |
Collapse
|
34
|
Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells 2016; 8:384-395. [PMID: 27928465 PMCID: PMC5120243 DOI: 10.4252/wjsc.v8.i11.384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics. METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases. RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin. CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Takeshi Kawabata
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kazuhiko Aoyagi
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Hiroshi Yokozaki
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Hiroki Sasaki
- Shihori Tanabe, Division of Risk Assessment, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
35
|
Gao L, Hao J, Niu YY, Tian M, Yang X, Zhu CH, Ding XL, Liu XH, Zhang HR, Liu C, Qin XM, Wu XZ. Network pharmacology dissection of multiscale mechanisms of herbal medicines in stage IV gastric adenocarcinoma treatment. Medicine (Baltimore) 2016; 95:e4389. [PMID: 27583849 PMCID: PMC5008533 DOI: 10.1097/md.0000000000004389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence has shown that Chinese Herbal Medicine (CHM) has efficient therapeutic effects for advanced gastric adenocarcinoma, while the therapeutic mechanisms underlying this treatment remain unclear.In this study, the Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of CHM treatment, and correlation analysis was applied to identify the most effective components in the formulas. A network pharmacological approach was developed to decipher the potential therapeutic mechanisms of CHM.CHM treatment was an independent protective factor. The hazard ratio was 0.364 (95% CI 0.245-0.540; P < 0.001). The median survival time was 18 months for patients who received CHM treatment, while for patients without CHM treatment was decreased to 9 months (P < 0.001). Thirteen out of the total 204 herbs were significantly correlated with favorable survival outcomes (P < 0.05), likely representing the most effective components in these formulas. Bioinformatics analyses suggested that the simultaneous manipulation of multiple targets in proliferation pathways (such as epidermal growth factor receptor, fibroblast growth factor receptor 2, human epidermal growth factor receptor 2, proliferating cell nuclear antigen, and insulin like growth factor 2) and the process of cancer metastasis (collagen families, fibronectin 1 and matrix metalloproteinases families) might largely account for the mechanisms of the 13 herbs against gastric adenocarcinoma.A network pharmacology method was introduced to decipher the underlying mechanisms of CHM, which provides a good foundation for herbal research based on clinical data.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan
| | - Jian Hao
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Yang-Yang Niu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Miao Tian
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, P.R. China
| | - Xue Yang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Cui-Hong Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Xiu-Li Ding
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Xiao-Hui Liu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Hao-Ran Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Chang Liu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan
| | - Xiong-Zhi Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan
- Correspondence: Xiong-Zhi Wu, Zhong-Shan-Men Inpatient Department, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, He-Xi District, Tianjin 300060, P.R. China (e-mail: )
| |
Collapse
|
36
|
Discovery of a Good Responder Subtype of Esophageal Squamous Cell Carcinoma with Cytotoxic T-Lymphocyte Signatures Activated by Chemoradiotherapy. PLoS One 2015; 10:e0143804. [PMID: 26625258 PMCID: PMC4666638 DOI: 10.1371/journal.pone.0143804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/10/2015] [Indexed: 01/01/2023] Open
Abstract
Definitive chemoradiotherapy (CRT) is a less invasive therapy for esophageal squamous cell carcinoma (ESCC). Five-year survival rate of locally advanced ESCC patients by definitive CRT were 37%. We previously reported that tumor-specific cytotoxic T-lymphocyte (CTL) activation signatures were preferentially found in long-term survivors. However, it is unknown whether the CTL activation is actually driven by CRT. We compared gene expression profiles among pre- and post-treatment biopsy specimens of 30 ESCC patients and 121 pre-treatment ESCC biopsy specimens. In the complete response (CR) cases, 999 overexpressed genes including at least 234 tumor-specific CTL-activation associated genes such as IFNG, PRF1, and GZMB, were found in post-treatment biopsy specimens. Clustering analysis using expression profiles of these 234 genes allowed us to distinguish the immune-activated cases, designating them as I-type, from other cases. However, despite the better CR rate in the I-type, overall survival was not significantly better in both these 30 cases and another 121 cases. Further comparative study identified a series of epithelial to mesenchymal transition-related genes overexpressed in the early relapse cases. Importantly, the clinical outcome of CDH2-negative cases in the I-type was significantly better than that of the CDH2-positive cases in the I-type. Furthermore, NK cells, which were activated by neutrophils-producing S100A8/S100A9, and CTLs were suggested to cooperatively enhance the effect of CRT in the CDH2-negative I-type. These results suggested that CTL gene activation may provide a prognostic advantage in ESCCs with epithelial characteristics.
Collapse
|
37
|
Tanabe S. Signaling involved in stem cell reprogramming and differentiation. World J Stem Cells 2015; 7:992-998. [PMID: 26328015 PMCID: PMC4550631 DOI: 10.4252/wjsc.v7.i7.992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
38
|
Tanabe S. Origin of cells and network information. World J Stem Cells 2015; 7:535-540. [PMID: 25914760 PMCID: PMC4404388 DOI: 10.4252/wjsc.v7.i3.535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
All cells are derived from one cell, and the origin of different cell types is a subject of curiosity. Cells construct life through appropriately timed networks at each stage of development. Communication among cells and intracellular signaling are essential for cell differentiation and for life processes. Cellular molecular networks establish cell diversity and life. The investigation of the regulation of each gene in the genome within the cellular network is therefore of interest. Stem cells produce various cells that are suitable for specific purposes. The dynamics of the information in the cellular network changes as the status of cells is altered. The components of each cell are subject to investigation.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
39
|
Wang YK, Chen Z, Yun T, Li CY, Jiang B, Lv XX, Chu GH, Wang SN, Yan H, Shi LF. Human epidermal growth factor receptor 2 expression in mixed gastric carcinoma. World J Gastroenterol 2015; 21:4680-4687. [PMID: 25914479 PMCID: PMC4402317 DOI: 10.3748/wjg.v21.i15.4680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/29/2014] [Accepted: 02/11/2015] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate human epidermal growth factor receptor 2 (HER2) amplification and protein expression in mixed gastric carcinoma.
METHODS: Fluorescence in situ hybridization and immunohistochemistry were used to detect HER2 amplification and protein expression in 277 cases of mixed gastric carcinoma. Protein staining intensity was rate as 1+, 2+, or 3+.
RESULTS: Of the 277 cases, 114 (41.2%) expressed HER2 protein. HER2 3+ staining was observed in 28/277 (10.1%) cases, 2+ in 37/277 (13.4%) cases, and 1+ in 49/277 (17.7%) cases. A HER2 amplification rate of 17% was detected, of which 25/28 (89.3%) were observed in the HER2 3+ staining group, 17/37 (45.9%) in 2+, and 5/49 (10.2%) in 1+. Of the 47 patients with HER2 amplification who received chemotherapy plus trastuzumab, 22 demonstrated median progression-free and overall survivals of 9.1 mo and 16.7 mo, respectively, which were significantly better than those achieved with chemotherapy alone (5.6 mo and 12.1 mo, respectively) in 19 previously treated patients (Ps < 0.05).
CONCLUSION: HER2 detection in mixed gastric carcinoma displays high heterogeneity. Relatively quantitative parameters are needed for assessing the level of HER2 amplification and protein expression.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma/chemistry
- Carcinoma/drug therapy
- Carcinoma/genetics
- Carcinoma/mortality
- Carcinoma/pathology
- Disease Progression
- Disease-Free Survival
- Female
- Gene Amplification
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Male
- Middle Aged
- Neoplasms, Complex and Mixed/chemistry
- Neoplasms, Complex and Mixed/drug therapy
- Neoplasms, Complex and Mixed/genetics
- Neoplasms, Complex and Mixed/mortality
- Neoplasms, Complex and Mixed/pathology
- Patient Selection
- Predictive Value of Tests
- RNA, Messenger/analysis
- Receptor, ErbB-2/analysis
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Stomach Neoplasms/chemistry
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/mortality
- Stomach Neoplasms/pathology
- Time Factors
- Trastuzumab/therapeutic use
- Treatment Outcome
Collapse
|
40
|
Yu P, Fan S, Huang L, Yang L, Du Y. MIR210 as a potential molecular target to block invasion and metastasis of gastric cancer. Med Hypotheses 2015; 84:209-212. [PMID: 25618442 DOI: 10.1016/j.mehy.2014.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/28/2014] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a process driving invasion, recurrence, and metastasis of gastric cancer, and EMT is triggered by specific physiological factors that arise during tumorigenesis, such as hypoxia. Identifying the molecular mechanisms underlying EMT will potentially yield insight into the pathways fueling cancer recurrence and metastasis and thus, lead to novel molecular targets that will improve treatment of the disease. The microRNA210 (MIR210) is such a candidate molecule mediating EMT in gastric cancer based on a number of observations. First, MIR210 is often highly overexpressed in gastric cancer. Second, MIR210 is a hypoxia-specific miRNA, and its expression is significantly increased in hypoxic environments where EMT develops. Third, MIR210 is regulated by hypoxia inducible factor 1α (HIF-1α), a key transcription factor mediating important tumor associated processes such as EMT and angiogenesis in response to hypoxia during tumorigenesis. Finally, MIR210 has been intriguingly associated with Helicobacterpylori infection, which typically develops in an anaerobic environment and is known to have a causal role in the development of gastric cancer. Although studies have shown that MIR210 is often highly expressed in gastric cancer and associated with specific pathological conditions, functional experiments have not yet been performed to determine the role of MIR210 and downstream mediators in the development and progression of gastric cancer. Here, MIR210 is proposed as a viable molecular target in the treatment of gastric cancer, specifically for the inhibition of invasion and metastasis.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Sunfu Fan
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ling Huang
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Litao Yang
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yian Du
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|