1
|
Estrella LD, Manganaro JE, Sheldon L, Roland N, Snyder AD, George JW, Emanuel K, Lamberty BG, Stauch KL. Chronic glial activation and behavioral alterations induced by acute/subacute pioglitazone treatment in a mouse model of traumatic brain injury. Brain Behav Immun 2024; 123:64-80. [PMID: 39242055 DOI: 10.1016/j.bbi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Traumatic brain injury (TBI) is a disabling neurotraumatic condition and the leading cause of injury-related deaths and disability in the United States. Attenuation of neuroinflammation early after TBI is considered an important treatment target; however, while these inflammatory responses can induce secondary brain injury, they are also involved in the repair of the nervous system. Pioglitazone, which activates peroxisome proliferator-activated receptor gamma, has been shown to decrease inflammation acutely after TBI, but the long-term consequences of its use remain unknown. For this reason, the impacts of treatment with pioglitazone during the acute/subacute phase (30 min after injury and each subsequent 24 h for 5 days) after TBI were interrogated during the chronic phase (30- and 274-days post-injury (DPI)) in mice using the controlled cortical impact model of experimental TBI. Acute/subacute pioglitazone treatment after TBI results in long-term deleterious consequences, including disruption of tau homeostasis, chronic glial cell activation, neuronal pathology, and worsened injury severity particularly at 274 DPI, with male mice being more susceptible than female mice. Further, male pioglitazone-treated TBI mice exhibited increased dominant and offensive-like behavior while having a decreased non-social exploring behavior at 274 DPI. After TBI, both sexes exhibited glial activation at 30 DPI when treated with pioglitazone; however, while injury severity was increased in females it was not impacted in male mice. This work reveals that although pioglitazone has been shown to lead to attenuated TBI outcomes acutely, sex-based differences, timing and long-term consequences of treatment with glitazones must be considered and further studied prior to their clinical use for TBI therapy.
Collapse
Affiliation(s)
- L Daniel Estrella
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Jane E Manganaro
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Lexi Sheldon
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Nashanthea Roland
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Austin D Snyder
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Joseph W George
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Katy Emanuel
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Benjamin G Lamberty
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Kelly L Stauch
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA.
| |
Collapse
|
2
|
Baghcheghi Y, Razazpour F, Seyedi F, Arefinia N, Hedayati-Moghadam M. Exploring the molecular mechanisms of PPARγ agonists in modulating memory impairment in neurodegenerative disorders. Mol Biol Rep 2024; 51:945. [PMID: 39215798 DOI: 10.1007/s11033-024-09850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are characterized by progressive memory impairment and cognitive decline. This review aims to unravel the molecular mechanisms involved in the enhancement of memory function and mitigation of memory impairment through the activation of PPARγ agonists in neurodegenerative diseases. The findings suggest that PPARγ agonists modulate various molecular pathways involved in memory formation and maintenance. Activation of PPARγ enhances synaptic plasticity, promotes neuroprotection, suppresses neuroinflammation, attenuates oxidative stress, and regulates amyloid-beta metabolism. The comprehensive understanding of these molecular mechanisms would facilitate the development of novel therapeutic approaches targeting PPARγ to improve memory function and ultimately to alleviate the burden of neurodegenerative diseases. Further research, including clinical trials, is warranted to explore the efficacy, safety, and optimal use of specific PPARγ agonists as potential therapeutic agents in the treatment of memory impairments associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Seyedi
- Department of Anatomical Sciences, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasir Arefinia
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
3
|
Guo X, Zhou J, La Yan, Liu X, Yuan Y, Ye J, Zhang Z, Chen H, Ma Y, Zhong Z, Luo G, Chen H. Very long-chain fatty acids control peroxisome dynamics via a feedback loop in intestinal stem cells during gut regeneration. Dev Cell 2024:S1534-5807(24)00398-8. [PMID: 39047737 DOI: 10.1016/j.devcel.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Peroxisome dynamics are crucial for intestinal stem cell (ISC) differentiation and gut regeneration. However, the precise mechanisms that govern peroxisome dynamics within ISCs during gut regeneration remain unknown. Using mouse colitis and Drosophila intestine models, we have identified a negative-feedback control mechanism involving the transcription factors peroxisome proliferator-activated receptors (PPARs) and SOX21. This feedback mechanism effectively regulates peroxisome abundance during gut regeneration. Following gut injury, the released free very long-chain fatty acids (VLCFAs) increase peroxisome abundance by stimulating PPARs-PEX11s signaling. PPARs act to stimulate peroxisome fission and inhibit pexophagy. SOX21, which acts downstream of peroxisomes during ISC differentiation, induces peroxisome elimination through pexophagy while repressing PPAR expression. Hence, PPARs and SOX21 constitute a finely tuned negative-feedback loop that regulates peroxisome dynamics. These findings shed light on the complex molecular mechanisms underlying peroxisome regulation in ISCs, contributing to our understanding of gut renewal and repair.
Collapse
Affiliation(s)
- Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - La Yan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinbao Ye
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Ren X, Li YF, Pei TW, Wang HS, Wang YH, Chen T. Rosiglitazone regulates astrocyte polarization and neuroinflammation in a PPAR-γ dependent manner after experimental traumatic brain injury. Brain Res Bull 2024; 209:110918. [PMID: 38432497 DOI: 10.1016/j.brainresbull.2024.110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear. OBJECTIVE This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions. METHODS SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI. RESULTS Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05). CONCLUSION ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.
Collapse
Affiliation(s)
- Xu Ren
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Yun-Fei Li
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Tian-Wei Pei
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Hao-Sheng Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Yu-Hai Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Tao Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China.
| |
Collapse
|
5
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhao Q, Li H, Li H, Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol 2023; 14:1185533. [PMID: 37475717 PMCID: PMC10354289 DOI: 10.3389/fphar.2023.1185533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) has become one of the most important causes of death and disability worldwide. A series of neuroinflammatory responses induced after TBI are key factors for persistent neuronal damage, but at the same time, such inflammatory responses can also promote debris removal and tissue repair after TBI. The concept of pleiotropic neuroprotection delves beyond the single-target treatment approach, considering the multifaceted impacts following TBI. This notion embarks deeper into the research-oriented treatment paradigm, focusing on multi-target interventions that inhibit post-TBI neuroinflammation with enhanced therapeutic efficacy. With an enriched comprehension of TBI's physiological mechanisms, this review dissects the advancements in developing pleiotropic neuroprotective pharmaceuticals to mitigate TBI. The aim is to provide insights that may contribute to the early clinical management of the condition.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
7
|
Lei Y, Klionsky DJ. Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ 2023; 30:1416-1429. [PMID: 37045910 PMCID: PMC10244319 DOI: 10.1038/s41418-023-01162-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway that is vital for maintaining cell homeostasis and promoting cell survival under stressful conditions. Dysregulation of autophagy is associated with a variety of human diseases, such as cancer, neurodegenerative diseases, and metabolic disorders. Therefore, this pathway must be precisely regulated at multiple levels, involving epigenetic, transcriptional, post-transcriptional, translational, and post-translational mechanisms, to prevent inappropriate autophagy activity. In this review, we focus on autophagy regulation at the transcriptional level, summarizing the transcription factors that control autophagy gene expression in both yeast and mammalian cells. Because the expression and/or subcellular localization of some autophagy transcription factors are altered in certain diseases, we also discuss how changes in transcriptional regulation of autophagy are associated with human pathophysiologies.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Pang Q, Zheng L, Ren Z, Xu H, Guo H, Shan W, Liu R, Gu Z, Wang T. Mechanism of Ferroptosis and Its Relationships with Other Types of Programmed Cell Death: Insights for Potential Therapeutic Benefits in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1274550. [PMID: 36062196 PMCID: PMC9433211 DOI: 10.1155/2022/1274550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022]
Abstract
Traumatic brain injury (TBI) is a serious health issue with a high incidence, high morbidity, and high mortality that poses a large burden on society. Further understanding of the pathophysiology and cell death models induced by TBI may support targeted therapies for TBI patients. Ferroptosis, a model of programmed cell death first defined in 2012, is characterized by iron dyshomeostasis, lipid peroxidation, and glutathione (GSH) depletion. Ferroptosis is distinct from apoptosis, autophagy, pyroptosis, and necroptosis and has been shown to play a role in secondary brain injury and worsen long-term outcomes after TBI. This review systematically describes (1) the regulatory pathways of ferroptosis after TBI, (2) the neurobiological links between ferroptosis and other cell death models, and (3) potential therapies targeting ferroptosis for TBI patients.
Collapse
Affiliation(s)
- Qiuyu Pang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Lexin Zheng
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiyang Ren
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Wenqi Shan
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiya Gu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Navarrete C, García-Martín A, Correa-Sáez A, Prados ME, Fernández F, Pineda R, Mazzone M, Álvarez-Benito M, Calzado MA, Muñoz E. A cannabidiol aminoquinone derivative activates the PP2A/B55α/HIF pathway and shows protective effects in a murine model of traumatic brain injury. J Neuroinflammation 2022; 19:177. [PMID: 35810304 PMCID: PMC9270745 DOI: 10.1186/s12974-022-02540-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a primary mechanical injury and a secondary injury associated with neuroinflammation, blood-brain barrier (BBB) disruption and neurodegeneration. We have developed a novel cannabidiol aminoquinone derivative, VCE-004.8, which is a dual PPARγ/CB2 agonist that also activates the hypoxia inducible factor (HIF) pathway. VCE-004.8 shows potent antifibrotic, anti-inflammatory and neuroprotective activities and it is now in Phase II clinical trials for systemic sclerosis and multiple sclerosis. Herein, we investigated the mechanism of action of VCE-004.8 in the HIF pathway and explored its efficacy in a preclinical model of TBI. METHODS Using a phosphoproteomic approach, we investigated the effects of VCE-004.8 on prolyl hydroxylase domain-containing protein 2 (PHD2) posttranslational modifications. The potential role of PP2A/B55α in HIF activation was analyzed using siRNA for B55α. To evaluate the angiogenic response to the treatment with VCE-004.8 we performed a Matrigel plug in vivo assay. Transendothelial electrical resistance (TEER) as well as vascular cell adhesion molecule 1 (VCAM), and zonula occludens 1 (ZO-1) tight junction protein expression were studied in brain microvascular endothelial cells. The efficacy of VCE-004.8 in vivo was evaluated in a controlled cortical impact (CCI) murine model of TBI. RESULTS Herein we provide evidence that VCE-004.8 inhibits PHD2 Ser125 phosphorylation and activates HIF through a PP2A/B55α pathway. VCE-004.8 induces angiogenesis in vivo increasing the formation of functional vessel (CD31/α-SMA) and prevents in vitro blood-brain barrier (BBB) disruption ameliorating the loss of ZO-1 expression under proinflammatory conditions. In CCI model VCE-004.8 treatment ameliorates early motor deficits after TBI and attenuates cerebral edema preserving BBB integrity. Histopathological analysis revealed that VCE-004.8 treatment induces neovascularization in pericontusional area and prevented immune cell infiltration to the brain parenchyma. In addition, VCE-004.8 attenuates neuroinflammation and reduces neuronal death and apoptosis in the damaged area. CONCLUSIONS This study provides new insight about the mechanism of action of VCE-004.8 regulating the PP2A/B55α/PHD2/HIF pathway. Furthermore, we show the potential efficacy for TBI treatment by preventing BBB disruption, enhancing angiogenesis, and ameliorating neuroinflammation and neurodegeneration after brain injury.
Collapse
Affiliation(s)
| | | | - Alejandro Correa-Sáez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Francisco Fernández
- FEA Radiodiagnóstico, Sección de Neurorradiología Diagnóstica. Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Pineda
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Louvain, Belgium
| | - Marina Álvarez-Benito
- Unidad de Radiodiagnóstico Y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA. .,Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain. .,Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
10
|
Faghfouri AH, Khajebishak Y, Payahoo L, Faghfuri E, Alivand M. PPAR-gamma agonists: Potential modulators of autophagy in obesity. Eur J Pharmacol 2021; 912:174562. [PMID: 34655597 DOI: 10.1016/j.ejphar.2021.174562] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Autophagy pathways are involved in the pathogenesis of some obesity related health problems. As obesity is a nutrient sufficiency condition, autophagy process can be altered in obesity through AMP activated protein kinase (AMPK) inhibition. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) as the main modulator of adipogenesis process can be effective in the regulation of obesity related phenotypes. As well, it has been revealed that PPAR-gamma and its agonists can regulate autophagy in different normal or cancer cells. However, their effects on autophagy modulation in obesity have been investigated in the limited number of studies. In the current comprehensive mechanistic review, we aimed to investigate the possible mechanisms of action of PPAR-gamma on the process of autophagy in obesity through narrating the effects of PPAR-gamma on autophagy in the non-obesity conditions. Moreover, mode of action of PPAR-gamma agonists on autophagy related implications comprehensively reviewed in the various studies. Understanding the different effects of PPAR-gamma agonists on autophagy in obesity can help to develop a new approach to management of obesity.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaser Khajebishak
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Laleh Payahoo
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Yeung JHY, Palpagama TH, Wood OWG, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. EAAT2 Expression in the Hippocampus, Subiculum, Entorhinal Cortex and Superior Temporal Gyrus in Alzheimer's Disease. Front Cell Neurosci 2021; 15:702824. [PMID: 34588956 PMCID: PMC8475191 DOI: 10.3389/fncel.2021.702824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a neuropathological disorder characterized by the presence and accumulation of amyloid-beta plaques and neurofibrillary tangles. Glutamate dysregulation and the concept of glutamatergic excitotoxicity have been frequently described in the pathogenesis of a variety of neurodegenerative disorders and are postulated to play a major role in the progression of AD. In particular, alterations in homeostatic mechanisms, such as glutamate uptake, have been implicated in AD. An association with excitatory amino acid transporter 2 (EAAT2), the main glutamate uptake transporter, dysfunction has also been described. Several animal and few human studies examined EAAT2 expression in multiple brain regions in AD but studies of the hippocampus, the most severely affected brain region, are scarce. Therefore, this study aims to assess alterations in the expression of EAAT2 qualitatively and quantitatively through DAB immunohistochemistry (IHC) and immunofluorescence within the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus (STG) regions, between human AD and control cases. Although no significant EAAT2 density changes were observed between control and AD cases, there appeared to be increased transporter expression most likely localized to fine astrocytic branches in the neuropil as seen on both DAB IHC and immunofluorescence. Therefore, individual astrocytes are not outlined by EAAT2 staining and are not easily recognizable in the CA1–3 and dentate gyrus regions of AD cases, but the altered expression patterns observed between AD and control hippocampal cases could indicate alterations in glutamate recycling and potentially disturbed glutamatergic homeostasis. In conclusion, no significant EAAT2 density changes were found between control and AD cases, but the observed spatial differences in transporter expression and their functional significance will have to be further explored.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Oliver W G Wood
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Moon JH, Hong JM, Park SY. The antidiabetic drug troglitazone protects against PrP (106‑126)‑induced neurotoxicity via the PPARγ‑autophagy pathway in neuronal cells. Mol Med Rep 2021; 23:430. [PMID: 33846779 PMCID: PMC8047904 DOI: 10.3892/mmr.2021.12069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Prion diseases, which involve the alteration of cellular prion protein into a misfolded isoform, disrupt the central nervous systems of humans and animals alike. Prior research has suggested that peroxisome proliferator-activator receptor (PPAR)γ and autophagy provide some protection against neurodegeneration. PPARs are critical to lipid metabolism regulation and autophagy is one of the main cellular mechanisms by which cell function and homeostasis is maintained. The present study examined the effect of troglitazone, a PPARγ agonist, on autophagy flux in a prion peptide (PrP) (106–126)-mediated neurodegeneration model. Western blot analysis confirmed that treatment with troglitazone increased LC3-II and p62 protein expression, whereas an excessive increase in autophagosomes was verified by transmission electron microscopy. Troglitazone weakened PrP (106–126)-mediated neurotoxicity via PPARγ activation and autophagy flux inhibition. A PPARγ antagonist blocked PPARγ activation as well as the neuroprotective effects induced by troglitazone treatment, indicating that PPARγ deactivation impaired troglitazone-mediated protective effects. In conclusion, the present study demonstrated that troglitazone protected primary neuronal cells against PrP (106–126)-induced neuronal cell death by inhibiting autophagic flux and activating PPARγ signals. These results suggested that troglitazone may be a useful therapeutic agent for the treatment of neurodegenerative disorders and prion diseases.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
13
|
Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 2021; 35:524-538. [PMID: 33527472 PMCID: PMC9290810 DOI: 10.1111/fcp.12656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) constitutes a major health problem worldwide and is a leading cause of death and disability in individuals, contributing to devastating socioeconomic consequences. Despite numerous promising pharmacological strategies reported as neuroprotective in preclinical studies, the translation to clinical trials always failed, albeit the great diversity of therapeutic targets evaluated. In this review, first, we described epidemiologic features, causes, and primary and secondary injuries of TBI. Second, we outlined the current literature on animal models of TBI, and we described their goals, their advantages and disadvantages according to the species used, the type of injury induced, and their clinical relevance. Third, we defined the concept of neuroprotection and discussed its evolution. We also identified the reasons that might explain the failure of clinical translation. Then, we reviewed post‐TBI neuroprotective treatments with a focus on the following pleiotropic drugs, considered “low hanging fruit” with high probability of success: glitazones, glibenclamide, statins, erythropoietin, and progesterone, that were largely tested and demonstrated efficient in preclinical models of TBI. Finally, our review stresses the need to establish a close cooperation between basic researchers and clinicians to ensure the best clinical translation for neuroprotective strategies for TBI.
Collapse
Affiliation(s)
- Dominique Lerouet
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Catherine Marchand-Leroux
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Valérie C Besson
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| |
Collapse
|
14
|
Pu H, Zheng X, Jiang X, Mu H, Xu F, Zhu W, Ye Q, Jizhang Y, Hitchens TK, Shi Y, Hu X, Leak RK, Dixon CE, Bennett MV, Chen J. Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARγ. J Cereb Blood Flow Metab 2021; 41:511-529. [PMID: 32757740 PMCID: PMC7922743 DOI: 10.1177/0271678x20941393] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-term neurological recovery after severe traumatic brain injury (TBI) is strongly linked to the repair and functional restoration of injured white matter. Emerging evidence suggests that the anti-inflammatory cytokine interleukin-4 (IL-4) plays an important role in promoting white matter integrity after cerebral ischemic injury. Here, we report that delayed intranasal delivery of nanoparticle-packed IL-4 boosted sensorimotor neurological recovery in a murine model of controlled cortical impact, as assessed by a battery of neurobehavioral tests for up to five weeks. Post-injury IL-4 treatment failed to reduce macroscopic brain lesions after TBI, but preserved the structural and functional integrity of white matter, at least in part through oligodendrogenesis. IL-4 directly facilitated the differentiation of oligodendrocyte progenitor cells (OPCs) into mature myelin-producing oligodendrocytes in primary cultures, an effect that was attenuated by selective PPARγ inhibition. IL-4 treatment after TBI in vivo also failed to stimulate oligodendrogenesis or improve white matter integrity in OPC-specific PPARγ conditional knockout (cKO) mice. Accordingly, IL-4-afforded improvements in sensorimotor neurological recovery after TBI were markedly impaired in the PPARγ cKO mice compared to wildtype controls. These results support IL-4 as a potential novel neurorestorative therapy to improve white matter functionality and mitigate the long-term neurological consequences of TBI.
Collapse
Affiliation(s)
- Hongjian Pu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuan Zheng
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoyan Jiang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hongfeng Mu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Xu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ye
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunneng Jizhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Vl Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Martínez-Drudis L, Amorós-Aguilar L, Torras-Garcia M, Serra-Elias B, Costa-Miserachs D, Portell-Cortés I, Coll-Andreu M. Delayed voluntary physical exercise restores "when" and "where" object recognition memory after traumatic brain injury. Behav Brain Res 2021; 400:113048. [PMID: 33279639 DOI: 10.1016/j.bbr.2020.113048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Physical exercise has been associated with improved cognition and may even reduce memory deficits after brain injuries. The aims of this work were to: 1) assess whether voluntary physical exercise can reduce the deficits associated with traumatic brain injury (TBI) in two different components of episodic-like memory based on object recognition, temporal order memory ("when"), and object location memory ("where"); and 2) determine whether changes in levels of brain-derived neurotrophic factor (BDNF) in the hippocampus and prefrontal cortex, as well as alterations in hippocampal cytokines, insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF), may influence the effects exercise has on either or both tasks. The rats were distributed into a sham group, a TBI group that remained sedentary (TBI-sed), and a TBI group that had access to a running wheel for a 25-day period from post-injury day 11 (TBI-exe). The rats were sacrificed after the "where" memory task, at post-injury day 37. Physical exercise restored the "when" and "where" memories, which had been impaired by the TBI, and increased the concentration of BDNF in the hippocampus, but not the prefrontal cortex. Neither TBI nor exercise were found to significantly affect hippocampal cytokines, IGF-1 or VEGF at this time post-injury. BDNF levels showed significant positive correlations with exercise, and with "when" (but not "where") memory. These results indicate that post-injury physical exercise restores "when" and "where" object recognition memory tasks after TBI, and that increased BDNF seems to be involved in this effect, particularly with regard to "when" memory.
Collapse
Affiliation(s)
- Laura Martínez-Drudis
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CHU de Quebec Research Center, Axe Neurosciences, Department of Molecular Medicine, Faculty of medicine, Université Laval, Quebec City, Canada
| | - Laura Amorós-Aguilar
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Meritxell Torras-Garcia
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Bruna Serra-Elias
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - David Costa-Miserachs
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Isabel Portell-Cortés
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Margalida Coll-Andreu
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
16
|
Chen G, Li J, Wang Z, Liu W. Ezetimibe protects against spinal cord injury by regulating autophagy and apoptosis through inactivation of PI3K/AKT/mTOR signaling. Am J Transl Res 2020; 12:2685-2694. [PMID: 32655800 PMCID: PMC7344056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Spinal cord injury (SCI) is a severe traumatic disease of the central nervous system characterized by high incidence and disability rate. We aimed to investigate the therapeutic potential of Ezetimibe (Eze) in SCI and identify the underlying mechanisms. Acute SCI rat model was established by using the modified weight-drop method. Following administration with Eze, the neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) locomotor scale score, and the motor neurons were stained with Nissl staining. The pathological changes of spinal cord tissues were tested using Hematoxylin and eosin staining. The presence of apoptotic cells was examined using Terminal dexynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Moreover, the expression of main autophagy markers LC3II/I, Beclin1 and p62 and apoptosis-related proteins was tested using western blot analysis. The changes of PI3K/AKT/mTOR signaling-associated proteins were measured. Experimental results showed that Eze treatment obviously improved functional recovery, the neuronal survival and morphological characteristics of spinal cord. Additionally, Eze administration dramatically upregulated the expression of LC3II/I and Beclin1 whereas downregulated that of p62. Concurrently, significantly reduced apoptosis was observed following Eze intervention, accompanied by increased expression of anti-apoptotic protein Bcl-2 and decreased expression of pro-apoptotic proteins Bax, cleaved caspase-3 and cleaved caspase-9. Further results indicated that Eze treatment remarkably suppressed the expression of phospho-PI3K (p-PI3K), p-AKT and p-mTOR. These findings demonstrated that Eze could protect against SCI by activating autophagy and hindering apoptosis through regulating PI3K/AKT/mTOR signaling, suggesting a potential candidate for SCI therapy.
Collapse
Affiliation(s)
- Gang Chen
- Orthopedics Department, Union Hospital Affiliated to Fujian Medical University Fuzhou 350000, Fujian Province, China
| | - Jiandong Li
- Orthopedics Department, Union Hospital Affiliated to Fujian Medical University Fuzhou 350000, Fujian Province, China
| | - Zhenyu Wang
- Orthopedics Department, Union Hospital Affiliated to Fujian Medical University Fuzhou 350000, Fujian Province, China
| | - Wenge Liu
- Orthopedics Department, Union Hospital Affiliated to Fujian Medical University Fuzhou 350000, Fujian Province, China
| |
Collapse
|
17
|
Zhao Y, Wei X, Song J, Zhang M, Huang T, Qin J. Peroxisome Proliferator-Activated Receptor γ Agonist Rosiglitazone Protects Blood-Brain Barrier Integrity Following Diffuse Axonal Injury by Decreasing the Levels of Inflammatory Mediators Through a Caveolin-1-Dependent Pathway. Inflammation 2019; 42:841-856. [PMID: 30488141 DOI: 10.1007/s10753-018-0940-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our early experiments confirmed that rosiglitazone (RSG), a peroxisome proliferator-activated receptor γ (PPARγ) agonist, had therapeutic potential for the treatment of diffuse axonal injury (DAI) by inhibiting the expression of amyloid-beta precursor protein and reducing the loss and abnormal phosphorylation of tau, but the underlying mechanisms were not fully defined. In this study, we aimed to investigate a possible role for PPARγ in the protection of blood-brain barrier (BBB) integrity in a rat model of DAI, and the underlying mechanisms. PPAR agonists and antagonists were intraperitoneally injected after DAI. Treatment with RSG ameliorated axonal injury, cell apoptosis, glia activation, and the release of inflammatory factors such as TNF-α, IL-1β, and IL-6. It also increased the expression of tight junction-associated proteins like ZO-1, claudin-5, and occludin-1, whereas the PPARγ antagonist GW9662 had the opposite effects. These effects were also studied in a BBB in vitro model, consisting of a monolayer of human microvascular endothelial cells (HBMECs) subjected to oxygen and glucose deprivation (OGD). Treatment with RSG ameliorated the loss of BBB integrity and the increased permeability induced by OGD by reducing the release of inflammatory factors and maintaining the expression of tight junction-associated proteins. Interestingly, caveolin-1 was found located mainly in endothelial cells, and RSG increased the expression of caveolin-1, which decreased following OGD. In contrast, caveolin-1 siRNA abrogated the protective effects of RSG in the in vitro BBB model. In conclusion, we provide evidence that PPARγ plays an important role in a series of processes associated with DAI, and that the PPARγ agonist RSG can protect BBB integrity by decreasing the levels of inflammatory mediators through a caveolin-1-dependent pathway.
Collapse
Affiliation(s)
- Yonglin Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xing Wei
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tingqin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Qin
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, People's Republic of China.
| |
Collapse
|
18
|
Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int J Mol Sci 2019; 20:ijms20246157. [PMID: 31817617 PMCID: PMC6941053 DOI: 10.3390/ijms20246157] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation affects conformational change, interaction, catalytic activity, and subcellular localization of proteins. Because the post-modification of proteins regulates diverse cellular signaling pathways, the precise control of phosphorylation states is essential for maintaining cellular homeostasis. Kinases function as phosphorylating enzymes, and phosphatases dephosphorylate their target substrates, typically in a much shorter time. The c-Jun N-terminal kinase (JNK) signaling pathway, a mitogen-activated protein kinase pathway, is regulated by a cascade of kinases and in turn regulates other physiological processes, such as cell differentiation, apoptosis, neuronal functions, and embryonic development. However, the activation of the JNK pathway is also implicated in human pathologies such as cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, the proper balance between activation and inactivation of the JNK pathway needs to be tightly regulated. Dual specificity phosphatases (DUSPs) regulate the magnitude and duration of signal transduction of the JNK pathway by dephosphorylating their substrates. In this review, we will discuss the dynamics of phosphorylation/dephosphorylation, the mechanism of JNK pathway regulation by DUSPs, and the new possibilities of targeting DUSPs in JNK-related diseases elucidated in recent studies.
Collapse
|
19
|
Zeng Z, Zhang Y, Jiang W, He L, Qu H. Modulation of autophagy in traumatic brain injury. J Cell Physiol 2019; 235:1973-1985. [PMID: 31512236 DOI: 10.1002/jcp.29173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is defined as a traumatically induced structural injury or physiological disruption of brain function as a result of external forces, leading to adult disability and death. A growing body of evidence reveals that alterations in autophagy-related proteins exist extensively in both experimentally and clinically after TBI. Of note, the autophagy pathway plays an essential role in pathophysiological processes, such as oxidative stress, inflammatory response, and apoptosis, thus contributing to neurological properties of TBI. With this in mind, this review summarizes a comprehensive overview on the beneficial and detrimental effects of autophagy in pathophysiological conditions and how these activities are linked to the pathogenesis of TBI. Moreover, the relationship between oxidative stress, inflammation, apoptosis, and autophagy occur TBI. Ultimately, multiple compounds and various drugs targeting the autophagy pathway are well described in TBI. Therefore, autophagy flux represents a potential clinical therapeutic value for the treatment of TBI and its complications.
Collapse
Affiliation(s)
- Zhiqing Zeng
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| | - Yao Zhang
- Department of Clinical Laboratory, The First People's Hospital of Changde City, Changde City, Hunan Province, China
| | - Weiping Jiang
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| | - Lu He
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| | - Hongtao Qu
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
20
|
Feng C, Li D, Chen M, Jiang L, Liu X, Li Q, Geng C, Sun X, Yang G, Zhang L, Yao X. Citreoviridin induces myocardial apoptosis through PPAR-γ-mTORC2-mediated autophagic pathway and the protective effect of thiamine and selenium. Chem Biol Interact 2019; 311:108795. [PMID: 31419397 DOI: 10.1016/j.cbi.2019.108795] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Citreoviridin (CIT), a mycotoxin and ATP synthase inhibitor, is regarded as one of aetiology factors of cardiac beriberi and Keshan disease. Thiamine (VB1) and selenium (Se) improve the recovery of these two diseases respectively. The underlying mechanisms of cardiotoxic effect of CIT and cardioprotective effect of VB1 and Se have not been fully elucidated. In this study, we found that ectopic ATP synthase was more sensitive to CIT treatment than mitochondrial ATP synthase in H9c2 cardiomyocytes. CIT inhibited the transcriptional activity of peroxisome proliferator activated receptor gamma (PPAR-γ) in mice hearts and H9c2 cells. PPAR-γ agonist attenuated the inhibitory effect of CIT on mechanistic target of rapamycin complex 2 (mTORC2) and stimulatory effect of CIT on autophagy in cardiomyocytes. CIT induced apoptosis through lysosomal-mitochondrial axis in cardiomyocytes. PPAR-γ agonist and autophagy inhibitor alleviated CIT-induced apoptosis and accelerated cardiac biomarker. VB1 and Se accelerated the basal transcriptional activity of PPAR-γ in mice hearts and H9c2 cells. Furthermore, VB1 and Se reversed the effect of CIT on PPAR-γ, autophagy and apoptosis. Our findings defined PPAR-γ-mTORC2-autophagy pathway as the key link between CIT cardiotoxicity and cardioprotective effect of VB1 and Se. The present study would shed new light on the pathogenesis of cardiomyopathy and the cardioprotective mechanism of micronutrients.
Collapse
Affiliation(s)
- Chang Feng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Dandan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Min Chen
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Xiaofang Liu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Chengyan Geng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China
| | - Lianchun Zhang
- Department of Nursing, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
21
|
Ren X, Wan C, Niu Y. Overexpression of lncRNA TCTN2 protects neurons from apoptosis by enhancing cell autophagy in spinal cord injury. FEBS Open Bio 2019; 9:1223-1231. [PMID: 31050183 PMCID: PMC6609579 DOI: 10.1002/2211-5463.12651] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Neuronal apoptosis is the main pathological feature of spinal cord injury (SCI), while autophagy contributes to ameliorating neuronal damage via inhibition of apoptosis. Here, we investigated the role of tectonic family member 2 (TCTN2) long non-coding RNA on apoptosis and autophagy in SCI. TCTN2 was down-regulated in the spinal cord tissues of a rat model of SCI and in oxygen-glucose deprivation-induced hypoxic SY-SH-5Y cells, while microRNA-216b (miR-216b) was up-regulated. Overexpression of TCTN2 reduced neuron apoptosis by inducing autophagy, and TCTN2 was observed to negatively regulate miR-216b. Furthermore, TCTN2 promoted autophagy to repress apoptosis through the miR-216b-Beclin-1 pathway, and overexpression of TCTN2 improved neurological function in the SCI rat model. In summary, our data suggest that TCTN2 enhances autophagy by targeting the miR-216b-Beclin-1 pathway, thereby ameliorating neuronal apoptosis and relieving spinal cord injury.
Collapse
Affiliation(s)
- Xiao‐dong Ren
- Department of RehabilitationThe General HospitalTianjin Medical UniversityChina
| | - Chun‐xiao Wan
- Department of RehabilitationThe General HospitalTianjin Medical UniversityChina
| | - Ya‐li Niu
- Department of RehabilitationThe General HospitalTianjin Medical UniversityChina
| |
Collapse
|
22
|
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. Pharmacol Ther 2018; 191:1-22. [PMID: 29909238 PMCID: PMC6195437 DOI: 10.1016/j.pharmthera.2018.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022]
Abstract
Although advances in medical technology and health care have improved the early diagnosis and management for cardiorenal metabolic disorders, the prevalence of obesity, insulin resistance, diabetes, hypertension, dyslipidemia, and kidney disease remains high. Findings from numerous population-based studies, clinical trials, and experimental evidence have consolidated a number of theories for the pathogenesis of cardiorenal metabolic anomalies including resistance to the metabolic action of insulin, abnormal glucose and lipid metabolism, oxidative and nitrosative stress, endoplasmic reticulum (ER) stress, apoptosis, mitochondrial damage, and inflammation. Accumulating evidence has recently suggested a pivotal role for proteotoxicity, the unfavorable effects of poor protein quality control, in the pathophysiology of metabolic dysregulation and related cardiovascular complications. The ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathways, two major although distinct cellular clearance machineries, govern protein quality control by degradation and clearance of long-lived or damaged proteins and organelles. Ample evidence has depicted an important role for protein quality control, particularly autophagy, in the maintenance of metabolic homeostasis. To this end, autophagy offers promising targets for novel strategies to prevent and treat cardiorenal metabolic diseases. Targeting autophagy using pharmacological or natural agents exhibits exciting new strategies for the growing problem of cardiorenal metabolic disorders.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Adam T Whaley-Connell
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - James R Sowers
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
23
|
Wen L, You W, Wang H, Meng Y, Feng J, Yang X. Polarization of Microglia to the M2 Phenotype in a Peroxisome Proliferator-Activated Receptor Gamma-Dependent Manner Attenuates Axonal Injury Induced by Traumatic Brain Injury in Mice. J Neurotrauma 2018; 35:2330-2340. [PMID: 29649924 DOI: 10.1089/neu.2017.5540] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence indicates that activated microglia play an important role in the inflammatory response following traumatic brain injury (TBI). Inhibiting M1 and stimulating M2 activated microglia have demonstrated protective effects in several animal models of central nervous system diseases. However, it is not clear whether the polarization of microglia to M2 attenuates axonal injury following TBI. In this study, we used a lateral fluid percussion injury device to induce axonal injury in mice. Mice were randomly assigned to the sham, TBI, TBI + rosiglitazone (peroxisome proliferator-activated receptor gamma [PPAR-γ] agonist), and TBI + GW9662 (PPAR-γ antagonist) groups. Axonal injury was assessed using immunohistochemical staining for beta amyloid precursor protein. The inflammatory response was assessed by enzyme-linked immunosorbent assay, microglia polarization was assessed using specific markers of M1 and M2 microglia, and neurological function was assessed using the neurological severity score. Following TBI, microglia of the M1 phenotype increased significantly, while those of the M2 phenotype decreased. Rosiglitazone-induced PPAR-γ activation promoted microglia polarization to the M2 phenotype, which reduced the inflammatory response, attenuated axonal injury in the cerebral cortex, and improved neurological function. Conversely, GW9662 inhibited the polarization of microglia to M2 and aggravated inflammation and axonal injury. Our in vitro findings in lipopolysaccharide-induced microglia were consistent with those of our in vivo experiments. In conclusion, the polarization of microglia to the M2 phenotype via PPAR-γ activation attenuated axonal injury following TBI in mice, which may be a potential therapeutic approach for TBI-induced axonal injury.
Collapse
Affiliation(s)
- Liang Wen
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Wendong You
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Hao Wang
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Yuanyuan Meng
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Junfeng Feng
- 2 Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Xiaofeng Yang
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| |
Collapse
|
24
|
Zhang L, Wang H. Autophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. Front Mol Neurosci 2018; 11:190. [PMID: 29922127 PMCID: PMC5996030 DOI: 10.3389/fnmol.2018.00190] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most devastating forms of brain injury. Many pathological mechanisms such as oxidative stress, apoptosis and inflammation all contribute to the secondary brain damage and poor outcomes of TBI. Current therapies are often ineffective and poorly tolerated, which drive the explore of new therapeutic targets for TBI. Autophagy is a highly conserved intracellular mechanism during evolution. It plays an important role in elimination abnormal intracellular proteins or organelles to maintain cell stability. Besides, autophagy has been researched in various models including TBI. Previous studies have deciphered that regulation of autophagy by different molecules and pathways could exhibit anti-oxidative stress, anti-apoptosis and anti-inflammation effects in TBI. Hence, autophagy is a promising target for further therapeutic development in TBI. The present review provides an overview of current knowledge about the mechanism of autophagy, the frequently used methods to monitor autophagy, the functions of autophagy in TBI as well as its potential molecular mechanisms based on the pharmacological regulation of autophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Wolf MS, Bayır H, Kochanek PM, Clark RSB. The role of autophagy in acute brain injury: A state of flux? Neurobiol Dis 2018; 122:9-15. [PMID: 29704549 DOI: 10.1016/j.nbd.2018.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
It is established that increased autophagy is readily detectable after various types of acute brain injury, including trauma, focal and global cerebral ischemia. What remains controversial, however, is whether this heightened detection of autophagy in brain represents a homeostatic or pathologic process, or an epiphenomenon. The ultimate role of autophagy after acute brain injury likely depends upon: 1) the degree of brain injury and the overall autophagic burden; 2) the capacity of individual cell types to ramp up autophagic flux; 3) the local redox state and signaling of parallel cell death pathways; 4) the capacity to eliminate damage associated molecular patterns and toxic proteins and metabolites both intra- and extracellularly; and 5) the timing of the pro- or anti-autophagic intervention. In this review, we attempt to reconcile conflicting studies that support both a beneficial and detrimental role for autophagy in models of acute brain injury.
Collapse
Affiliation(s)
- Michael S Wolf
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA; Brain Care Institute, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Brain Care Institute, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Brain Care Institute, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
26
|
High Glucose Induces Autophagy through PPAR γ-Dependent Pathway in Human Nucleus Pulposus Cells. PPAR Res 2018; 2018:8512745. [PMID: 29686698 PMCID: PMC5852907 DOI: 10.1155/2018/8512745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a multiorgan disorder affecting many types of connective tissues, including bone and cartilage. High glucose could accelerate the autophagy in nucleus pulposus (NP) cells. In our present study, we investigated whether peroxisome proliferator-activated receptor γ (PPAR-γ) pathway is involved into autophagy regulation in NP cells under high glucose condition. After NP cells were treated with different high glucose concentrations for 72 hours, the rate of autophagy increased. Moreover, the levels of PPARγ, Beclin-1, and LC3II were significantly increased and p62 was significantly decreased compared to control group. Then, NP cells were treated with high glucose plus PPARγ agonist or PPARγ antagonist, respectively. The rate of autophagy and the levels of Beclin-1 and LC3II increased, but p62 decreased when PPARγ agonist was used. On the contrary, the rate of autophagy and the levels of Beclin-1 and LC3II decreased, while p62 increased when PPARγ antagonist was added. These results suggested that autophagy induced by high glucose in NP cells was through PPARγ-dependent pathway.
Collapse
|
27
|
Garg C, Seo JH, Ramachandran J, Loh JM, Calderon F, Contreras JE. Trovafloxacin attenuates neuroinflammation and improves outcome after traumatic brain injury in mice. J Neuroinflammation 2018; 15:42. [PMID: 29439712 PMCID: PMC5812039 DOI: 10.1186/s12974-018-1069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Background Trovafloxacin is a broad-spectrum antibiotic, recently identified as an inhibitor of pannexin-1 (Panx1) channels. Panx1 channels are important conduits for the adenosine triphosphate (ATP) release from live and dying cells that enhances the inflammatory response of immune cells. Elevated extracellular levels ATP released upon injury activate purinergic pathways in inflammatory cells that promote migration, proliferation, phagocytosis, and apoptotic signals. Here, we tested whether trovafloxacin administration attenuates the neuroinflammatory response and improves outcomes after brain trauma. Methods The murine controlled cortical impact (CCI) model was used to determine whether in vivo delivery of trovafloxacin has anti-inflammatory and neuroprotective actions after brain trauma. Locomotor deficit was assessed using the rotarod test. Levels of tissue damage markers and inflammation were measured using western blot, qPCR, and immunofluorescence. In vitro assays were used to evaluate whether trovafloxacin blocks ATP release and cell migration in a chemotactic-stimulated microglia cell line. Results Trovafloxacin treatment of CCI-injured mice significantly reduced tissue damage markers and improved locomotor deficits. In addition, trovafloxacin treatment significantly reduced mRNA levels of several pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), which correlates with an overall reduction in the accumulation of inflammatory cell types (neutrophils, microglia/macrophages, and astroglia) at the injury zone. To determine whether trovafloxacin exerted these effects by direct action on immune cells, we evaluated its effect on ATP release and cell migration using a chemotactic-stimulated microglial cell line. We found that trovafloxacin significantly inhibited both ATP release and migration of these cells. Conclusion Our results show that trovafloxacin administration has pronounced anti-inflammatory and neuroprotective effects following brain injury. These findings lay the foundation for future studies to directly test a role for Panx1 channels in pathological inflammation following brain trauma. Electronic supplementary material The online version of this article (10.1186/s12974-018-1069-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charu Garg
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Joon Ho Seo
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Ji Meng Loh
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Frances Calderon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
28
|
Neuroprotective effects of pifithrin-α against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci Rep 2018; 8:2368. [PMID: 29402897 PMCID: PMC5799311 DOI: 10.1038/s41598-018-19654-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Cortical and hippocampal neuronal damages caused by traumatic brain injury (TBI) are associated with motor and cognitive impairments; however, only little attention paid to the striatal damage. It is known that the p53 tumor-suppressor transcription factor participated in TBI-induced secondary brain damage. We investigated how the p53 inactivator pifithrin (PFT)-α affected TBI-induced striatal neuronal damage at 24 h post-injury. Sprague-Dawley rats subjected to a controlled cortical impact were used as TBI models. We observed that p53 mRNA significantly increased, whereas p53 protein expression was distributed predominantly in neurons but not in glia cells in striatum after TBI. PFT-α improved motor deficit following TBI. PFT-α suppressed TBI-induced striatal glial activation and expression of proinflammatory cytokines. PFT-α alleviated TBI-induced oxidative damage TBI induced autophagy was evidenced by increased protein expression of Beclin-1 and shift of microtubule-associated light chain (LC)3-I to LC3-II, and decreased p62. These effects were reduced by PFT-α. Post-injury PFT-α treatment reduced the number of degenerating (FJC-positive) and apoptotic neurons. Our results suggest that PFT-α may provide neuroprotective effects via p53-dependent or -independent mechanisms depending on the cell type and timing after the TBI and can possibly be developed into a novel therapy to ameliorate TBI-induced neuronal damage.
Collapse
|
29
|
Effects of prenatal PPAR-γ agonist rosiglitazone exposure on rat hippocampus development in a time-dependent manner: A stereological and histopathological study. Hum Exp Toxicol 2017; 37:827-835. [DOI: 10.1177/0960327117730883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rosiglitazone is in the thiazolidinedione class of drugs used in the treatment of type 2 diabetes mellitus. It works as an insulin sensitizer by binding to the peroxisome proliferator–activated receptor gamma. We investigated the effects of prenatally administered rosiglitazone on pyramidal cell numbers and morphologies in the hippocampus at postnatal period using histochemical and stereological techniques, congenital morphological properties and the number of offspring in rats. Eighteen female rats were grouped into control (C), low-dose rosiglitazone (LDR) and high-dose rosiglitazone (HDR). LDR pregnant rats received 2 mg/kg/day of rosiglitazone via oral gavage during the first 16 days of the pregnancy. HDR rats received 5 mg/kg/day. The infants were grouped into newborn (NB), 4 week (4 W) and 12 week (12 W). A side from histopathologic and congenital assessments, stereological analyses were performed using the optical fractionator method. Congenital anomaly was not detected in any of the rosiglitazone treatment groups, and their number of offspring was similar to that of the C group. Stereological counts revealed a significant reduction in the number of hippocampal pyramidal cells in the C and LDR groups but not in the HDR group until birth to 12th week. When NB groups were compared, the number of pyramidal cells in the HDRNB group was less than those in the LDRNB and CNB groups. HDR affected apoptosis or the proliferation and maturation of progenitor cells to the pyramidal neuron during neurodevelopment in the hippocampus, whereas LDR did not adversely affect neuronal development and did not cause congenital anomalies.
Collapse
|
30
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
31
|
Zhao YL, Song JN, Ma XD, Zhang BF, Li DD, Pang HG. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res 2016; 11:944-50. [PMID: 27482223 PMCID: PMC4962592 DOI: 10.4103/1673-5374.184493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury.
Collapse
Affiliation(s)
- Yong-Lin Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xu-Dong Ma
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bin-Fei Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dan-Dong Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong-Gang Pang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
32
|
Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G. Autophagy in acute brain injury. Nat Rev Neurosci 2016; 17:467-84. [PMID: 27256553 DOI: 10.1038/nrn.2016.51] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Klas Blomgren
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital Q2:07, 17176 Stockholm, Sweden
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital Q2:07, 17176 Stockholm, Sweden.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
33
|
Liu H, Rose ME, Culver S, Ma X, Dixon CE, Graham SH. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats. Biochem Biophys Res Commun 2016; 472:648-55. [PMID: 26947332 DOI: 10.1016/j.bbrc.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 11/28/2022]
Abstract
Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1-5 d, 14-20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted.
Collapse
Affiliation(s)
- Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Sherman Culver
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Xiecheng Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA.
| |
Collapse
|