1
|
Shi Y, Liu J, Hou M, Tan Z, Chen F, Zhang J, Liu Y, Leng Y. Ursolic acid improves necroptosis via STAT3 signaling in intestinal ischemia/reperfusion injury. Int Immunopharmacol 2024; 138:112463. [PMID: 38971110 DOI: 10.1016/j.intimp.2024.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.
Collapse
Affiliation(s)
- Yajing Shi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, PR China
| | - Jie Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Min Hou
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Zhiguo Tan
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Feng Chen
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Jianmin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqiang Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yufang Leng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Zhang L, Lu J. Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia 2024; 177:106074. [PMID: 38906386 DOI: 10.1016/j.fitote.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Major polyphenols in Rosmarinus officinalis L. primarily consist of phenolic acids, phenolic diterpenes, and flavonoids, all of which have pharmacological properties including anti-inflammatory and antibacterial characteristics. Numerous in vitro and animal studies have found that rosemary polyphenols have the potential to decrease the severity of intestinal inflammation. The beneficial effects of rosemary polyphenols were associated with anti-inflammatory properties, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community (increased core probiotics and SCFA-producing bacteria, and decreased potential pathogens) and metabolism (changes in SCFA and bile acid metabolites). This paper provides a better understanding of the anti-inflammatory properties of rosemary polyphenols and suggests that rosemary polyphenols might be employed as strong anti-inflammatory agents to prevent intestinal inflammation and lower the risk of inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Lu
- China Animal Husbandry Group, Beijing 100070, China
| |
Collapse
|
3
|
Qiuxiao-Zhu, Huiyao-Hao, Li N, Zibo-Liu, Qian-Wang, Linyi-Shu, Lihui-Zhang. Protective effects and mechanisms of dapagliflozin on renal ischemia/reperfusion injury. Transpl Immunol 2024; 84:102010. [PMID: 38325526 DOI: 10.1016/j.trim.2024.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Renal diseases have a significant negative impact on human health and the quality of life. Renal ischemia/reperfusion (I/R) injury is considered as one of the leading causes of renal dysfunction and tissue damage. Oxidative stress and inflammation are responsible for cellular apoptosis playing critical roles in renal I/R injury. Recent studies suggested that dapagliflozin-a medication used to treat Type 2 Diabetes-may exert protective effects on I/R injury in kidneys by alleviating oxidative stress and inflammation. Our study evaluated the protective effects of dapagliflozinon in renal I/R injury. METHODS A group of 32 male Sprague-Dawley rats were divided into four groups: 1) control group without any manipulation; 2) sham-operated control group with surgery but without I/R injury; 3) experimental group with 30-min I/R injury; and 4) therapeutic group with 30-min IR injury and dapagliflozin therapy. The fourth therapeutic group received 1 mg/kg dapagliflozin delivered once daily by oral gavage. All rats were evaluated by measurements of neutrophil gelatinase-associated lipocalin (NGAL), creatinine kinase (CR), blood urea nitrogen (BUN), kidney injury molecule-1 (KIM-1), myoglobin (MYO), creatinine kinase (CK), lactate dehydrogenase (LDH) LD, GSH, superoxide dismutase (SOD), MDA, interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a and glutathione peroxidase (GSH-Px) levels. TUNEL and flow cytometry assays evaluated apoptosis. RESULTS Overall, the 30-min exposure to I/R injury significantly elevated levels of NGAL, CR, BUN, CK, LDH, KIM-1, and MYO (all p < 0.05). Inflammatory cytokine levels (IL-6 and TNF-a) were also increased after I/R injury (p > 0.05). At the same time, I/R injury decreased levels of SOD and GSH-Px (p > 0.05). In contrast, administration of dapagliflozin following I/R injury reduced renal damage, enhanced antioxidant capacity, and suppressed inflammatory responses (all p > 0.05), thus improving renal function, while reducing oxidative stress status and inflammatory responses. Further investigations revealed that dapagliflozin exerted its protective effects on renal tissues by activating the phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling pathway, inhibiting cellular apoptosis, and promoting proliferation and autophagy through bone morphogenetic protein 4 (BMP4). CONCLUSION These findings documented that dapagliflozin protected kidneys from I/R injury suggesting its therapeutic potential.
Collapse
Affiliation(s)
- Qiuxiao-Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Huiyao-Hao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zibo-Liu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Qian-Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Linyi-Shu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lihui-Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
4
|
Pan D, Qu Y, Shi C, Xu C, Zhang J, Du H, Chen X. Oleanolic acid and its analogues: promising therapeutics for kidney disease. Chin Med 2024; 19:74. [PMID: 38816880 PMCID: PMC11140902 DOI: 10.1186/s13020-024-00934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Kidney diseases pose a significant threat to human health due to their high prevalence and mortality rates. Worryingly, the clinical use of drugs for kidney diseases is associated with more side effects, so more effective and safer treatments are urgently needed. Oleanolic acid (OA) is a common pentacyclic triterpenoid that is widely available in nature and has been shown to have protective effects in kidney disease. However, comprehensive studies on its role in kidney diseases are still lacking. Therefore, this article first explores the botanical sources, pharmacokinetics, derivatives, and safety of OA, followed by a summary of the anti-inflammatory, immunomodulatory, anti-oxidative stress, autophagy-enhancing, and antifibrotic effects of OA and its analogues in renal diseases, and an analysis of the molecular mechanisms, aiming to provide further insights for the development of novel drugs for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Dan Pan
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yilun Qu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Jie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
5
|
Chen L, Chen Y, Wang M, Lai L, Zheng L, Lu H. Ursolic acid alleviates cancer cachexia by inhibiting STAT3 signaling pathways in C2C12 myotube and CT26 tumor-bearing mouse model. Eur J Pharmacol 2024; 969:176429. [PMID: 38423241 DOI: 10.1016/j.ejphar.2024.176429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Cancer cachexia, a multi-organ disorder resulting from tumor and immune system interactions, prominently features muscle wasting and affects the survival of patients with cancer. Ursolic acid (UA) is known for its antioxidant, anti-inflammatory, and anticancer properties. However, its impact on cancer cachexia remains unexplored. This study aimed to assess the efficacy of UA in addressing muscle atrophy and organ dysfunction in cancer cachexia and reveal the mechanisms involved. UA dose-dependently ameliorated C2C12 myotube atrophy. Mechanistically, it inhibited the expression of muscle-specific RING finger containing protein 1 (MURF1) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and upregulated the mRNA or protein levels of myogenic differentiation antigen and myogenin in cultured C2C12 myotubes treated with conditioned medium. In vivo, UA protected CT26 tumor-bearing mice against loss of body weight, as well as increased skeletal muscle and epididymal fat without affecting tumor growth. Additionally, UA increased food intake in CT26 tumor-bearing mice. The mRNA expression of tumor necrosis-α and interleukin 6 was significantly downregulated in the intestine, gastrocnemius, and heart tissues following 38 d UA administration. UA treatment reversed the levels of myocardial function indicators, including creatine kinase, creatine kinase-MB, lactate dehydrogenase, car-dial troponin T, and glutathione. Finally, UA treatment significantly inhibited the expression of MURF1, the phosphorylation of nuclear factor kappa-B p65, and STAT3 in the gastrocnemius muscle and heart tissues of cachexic mice. Our findings suggest that UA is a promising natural compound for developing dietary supplements for cancer cachexia therapy owing to its anti-catabolic effects.
Collapse
Affiliation(s)
- Li Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Yan Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Mengxia Wang
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linglin Lai
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linbo Zheng
- Department Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Huiqin Lu
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
6
|
Zhai J, Chen Z, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. The Protective Effects of Curcumin against Renal Toxicity. Curr Med Chem 2024; 31:5661-5669. [PMID: 38549536 DOI: 10.2174/0109298673271161231121061148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 09/25/2024]
Abstract
Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.
Collapse
Affiliation(s)
- Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| |
Collapse
|
7
|
Yu JT, Fan S, Li XY, Hou R, Hu XW, Wang JN, Shan RR, Dong ZH, Xie MM, Dong YH, Shen XY, Jin J, Wen JG, Liu MM, Wang W, Meng XM. Novel insights into STAT3 in renal diseases. Biomed Pharmacother 2023; 165:115166. [PMID: 37473682 DOI: 10.1016/j.biopha.2023.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai Fan
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Yang XL, Wang CX, Wang JX, Wu SM, Yong Q, Li K, Yang JR. In silico evidence implicating novel mechanisms of Prunella vulgaris L . as a potential botanical drug against COVID-19-associated acute kidney injury. Front Pharmacol 2023; 14:1188086. [PMID: 37274117 PMCID: PMC10232756 DOI: 10.3389/fphar.2023.1188086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
COVID-19-associated acute kidney injury (COVID-19 AKI) is an independent risk factor for in-hospital mortality and has the potential to progress to chronic kidney disease. Prunella vulgaris L., a traditional Chinese herb that has been used for the treatment of a variety of kidney diseases for centuries, could have the potential to treat this complication. In this study, we studied the potential protective role of Prunella vulgaris in COVID-19 AKI and explored its specific mechanisms applied by network pharmacology and bioinformatics methods. The combination of the protein-protein interaction network and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment -target gene network revealed eight key target genes (VEGFA, ICAM1, IL6, CXCL8, IL1B, CCL2, IL10 and RELA). Molecular docking showed that all these eight gene-encoded proteins could be effectively bound to three major active compounds (quercetin, luteolin and kaempferol), thus becoming potential therapeutic targets. Molecular dynamics simulation also supports the binding stability of RELA-encoded protein with quercetin and luteolin. Together, our data suggest that IL6, VEGFA, and RELA could be the potential drug targets by inhibiting the NF-κB signaling pathway. Our in silico studies shed new insights into P. vulgaris and its ingredients, e.g., quercetin, as potential botanical drugs against COVID-19 AKI, and warrant further studies on efficacy and mechanisms.
Collapse
Affiliation(s)
- Xue-Ling Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun-Xuan Wang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shi-Min Wu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qing Yong
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ju-Rong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Aguilar-Guadarrama AB, Yáñez-Ibarra G, Cancino-Marentes ME, González-Ibarra P, Ortiz-Andrade R, Sánchez-Recillas A, Rodríguez-Carpena JG, Aguirre-Vidal Y, Medina-Diaz IM, Ávila-Villarreal G. Chromatographic Techniques and Pharmacological Analysis as a Quality Control Strategy for Serjania triquetra a Traditional Medicinal Plant. Pharmaceuticals (Basel) 2022; 15:ph15101289. [PMID: 36297401 PMCID: PMC9611020 DOI: 10.3390/ph15101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Serjania triquetra is a medicinal plant widely used in traditional medicine for the treatment of urinary tract diseases, renal affections, and its complications. The population can buy this plant in folk markets as a raw material mixed with several herbal remedies or as a health supplement. On the market, two commercial presentations were found for the vegetal material; one had a bulk appearance and the other was marketed wrapped in cellophane bags (HESt-2, HESt-3). Nevertheless, the plant has not been exhaustively investigated and quality control techniques have not been developed. This research aimed to realize a phytochemical study using an authentic, freshly collected sample as a reference for S. triquetra (HESt-1), using the compounds identified. A method for the determination of preliminary chromatographic fingerprinting was developed. Additionally, the vasorelaxant effect from three samples was evaluated with ex vivo rat models. Thus, three hydroalcoholic extracts (HESt-1, HESt-2, and HESt-3) were prepared by maceration. A total of nine compounds were fully identified from HESt-1 after the extract was subjected to open-column chromatography. Seven metabolites were detected by gas chromatography, while ursolic acid (UA) and allantoin were isolated and identified using UPLC-MS and NMR, respectively. Three extracts were analyzed for their chromatographic fingerprint by UPLC-MS. Biological activity was explored by ex vivo rat aorta ring model to evaluate vasorelaxant activity. All extracts showed a vasorelaxant effect in a concentration-dependent and endothelium-dependent manner. S. triquetra vascular activity may be attributed to UA and allantoin compounds previously described in the literature for this activity.
Collapse
Affiliation(s)
- A. Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico
| | - Guadalupe Yáñez-Ibarra
- Centro Nayarita de Innovación y Transferencia de Tecnología A. C. “Unidad Especializada en I+D+i en Calidad de Alimentos y Productos Naturales”, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | | | - Paola González-Ibarra
- Unidad Académica de Salud Integral, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Rolffy Ortiz-Andrade
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida 97069, Mexico
| | - Amanda Sánchez-Recillas
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida 97069, Mexico
| | - Javier-German Rodríguez-Carpena
- Centro Nayarita de Innovación y Transferencia de Tecnología A. C. “Unidad Especializada en I+D+i en Calidad de Alimentos y Productos Naturales”, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Yoshajandith Aguirre-Vidal
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A.C. (INECOL), Xalapa 91073, Mexico
| | - Irma-Martha Medina-Diaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico
| | - Gabriela Ávila-Villarreal
- Centro Nayarita de Innovación y Transferencia de Tecnología A. C. “Unidad Especializada en I+D+i en Calidad de Alimentos y Productos Naturales”, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
- Correspondence:
| |
Collapse
|
10
|
Wei X, Lan Y, Nong Z, Li C, Feng Z, Mei X, Zhai Y, Zou M. Ursolic acid represses influenza A virus-triggered inflammation and oxidative stress in A549 cells by modulating the miR-34c-5p/TLR5 axis. Cytokine 2022; 157:155947. [PMID: 35780710 DOI: 10.1016/j.cyto.2022.155947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ursolic acid (UA) is a pentacyclic triterpenoid compound with a wide range of anti-tumor, anti-inflammatory, hypotensive and other pharmacological effects. Here, the biological roles and regulatory mechanisms of UA in influenza A virus (IAV)-treated A549 cells were investigated. METHOD The cytotoxic impacts of UA on A549 cells with or without IAV treatment were determined using MTT and LDH assays. The inflammatory responses and oxidative stress of IAV-treated A549 cells were measured by RT-qPCR, ELISA, DCFH-DA probe, and colorimetric assays. A dual luciferase assay was carried out to validate the molecular interaction between miR-34c-5p and TLR5. Promoter methylation was detected by MSP experiment. Methylation-related proteins were quantified by western blot. Virus replication was assessed by TCID50 and western blot assays. RESULTS UA significantly ameliorated IAV-triggered cell injury and inflammatory response, virus replication and oxidative stress by elevating cell viability, ROS level and the activities of SOD and GSH-Px but reducing the LDH, MDA, and TCID50 values and the expression of virus-related proteins (NP) and cytokines (TNF-α, IL-1β, IL-6, and IL-18). Moreover, UA promoted miR-34c-5p expression by repressing DNMTs-mediated methylation. TLR5 was verified to be a direct target of miR-34c-5p and could be downregulated by UA. Rescue experiments revealed that silencing miR-34c-5p diminished the regulatory roles of UA in IAV-treated A549 cells. CONCLUSION Our data elucidated that UA attenuated IAV-triggered inflammatory responses and oxidative stress in A549 cells by regulating the miR-34c-5p/TLR5 axis, suggesting that UA plays a protective role in IAV-induced pneumonia.
Collapse
Affiliation(s)
- Xing Wei
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Province, China
| | - Yuying Lan
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Province, China
| | - Zhifei Nong
- Department of Pediatrics, Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530022, Guangxi Province, China
| | - Chongjin Li
- Department of Pediatrics, Maoming Hospital of Traditional Chinese Medicine, Maoming 525000, Guangdong Province, China
| | - Zhiqiong Feng
- Department of Pediatrics, Jinshazhou Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Xiaoping Mei
- Department of Pediatrics, Guangxi International Zhuang Medicine Hospital, Nanning 530200, Guangxi Province, China
| | - Yang Zhai
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Province, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Nanning 530200, Guangxi Province, China; Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning 530200, Guangxi Province, China
| | - Min Zou
- Department of Pediatrics, Guangxi International Zhuang Medicine Hospital, Nanning 530200, Guangxi Province, China.
| |
Collapse
|
11
|
Pei J, Wu M, Cai S, Peng J, Zhan X, Wang D, Wang W, An N. The Protective Effect of Ursolic Acid on Unilateral Ureteral Obstruction in Rats by Activating the Nrf2/HO-1 Antioxidant Signaling Pathway. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3690524. [PMID: 36059402 PMCID: PMC9436538 DOI: 10.1155/2022/3690524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Renal interstitial fibrosis is a common pathological feature of a variety of kidney diseases that progress to end-stage renal disease. The excessive deposition of extracellular matrix (ECM) is a typical pathological change of renal interstitial fibrosis. The production of reactive oxygen species in renal tubules is an important factor leading to the development of renal interstitial fibrosis. Ursolic acid (UA) is a natural pentacyclic triterpene carboxylic acid compound widely found in plants. It has anti-inflammatory, antioxidant, and antitumor cell proliferation effects. It can reduce the development of fibrosis by inhibiting the oxidative stress response of the liver; there is currently no relevant research on whether UA can protect the renal interstitial fibrosis by resisting oxidative stress in the kidneys. In this study, our purpose is to investigate the effect of ursolic acid on renal interstitial fibrosis after unilateral ureteral obstruction (UUO) in rats and its related mechanisms. We established a UUO model by surgically ligating the right ureter of the rat and instilling UA preparation (40 mg/kg/d) through the stomach after the operation, once a day for 7 days. We found that UUO caused impaired renal function, increased pathological damage, increased renal interstitial fibrosis, increased apoptosis, increased oxidative stress damage, and decreased antioxidants. However, after UA preparations were given, the abovementioned damage was significantly improved. At the same time, we also found that UA preparations can significantly increase the relative expression of Nrf2/HO-1 signaling pathway in kidney tissue after UUO. In order to further verify whether the Nrf2/HO-1 signaling pathway is involved in the development of renal interstitial fibrosis, we injected zinc protoporphyrin (ZnPP, 45 umol/kg), a specific blocker of the Nrf2/HO-1 signaling pathway, into the intraperitoneal cavity after UUO in rats and before the gastric perfusion of ursolic acid preparations. Subsequently, we observed that the protective effect of UA on renal interstitial fibrosis after UUO in rats was reversed. Combining all the research results, we proved that UA has a protective effect on renal interstitial fibrosis after UUO in rats, which may be achieved by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jun Pei
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Moudong Wu
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shuyu Cai
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinpu Peng
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiong Zhan
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Dan Wang
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Wei Wang
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Nini An
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| |
Collapse
|
12
|
Plants with Therapeutic Potential for Ischemic Acute Kidney Injury: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6807700. [PMID: 35656467 PMCID: PMC9152371 DOI: 10.1155/2022/6807700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Acute kidney injury (AKI) is a complex condition which has an intricate pathology mostly involving hemodynamic, inflammatory, and direct toxic effects at the cellular level with high morbidity and mortality ratios. Renal ischemic reperfusion injury (RIRI) is the main factor responsible for AKI, most often observed in different types of shock, kidney transplantation, sepsis, and postoperative procedures. The RIRI-induced AKI is accompanied by increased reactive oxygen species generation together with the activation of various inflammatory pathways. In this context, plant-derived medicines have shown encouraging nephroprotective properties. Evidence provided in this systemic review leads to the conclusion that plant-derived extracts and compounds exhibit nephroprotective action against renal ischemic reperfusion induced-AKI by increasing endogenous antioxidants and decreasing anti-inflammatory cytokines. However, there is no defined biomarker or target which can be used for treating AKI completely. These plant-derived extracts and compounds are only tested in selected transgenic animal models. To develop the results obtained into a therapeutic entity, one should apply them in proper vertebrate multitransgenic animal models prior to further validation in humans.
Collapse
|
13
|
Tripathi P, Alshahrani S. Mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis by ursolic acid against cisplatin-induced oxidative stress and nephrotoxicity in rats. Hum Exp Toxicol 2021; 40:S397-S405. [PMID: 34569348 DOI: 10.1177/09603271211045953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ursolic acid (UA) is a natural pentacyclic triterpenoid that is known for its benefits under several pathological conditions. Cisplatin (CP) is among the most preferred chemotherapeutic agents; however, its nephrotoxicity limits its clinical utility. PURPOSE This study was aimed to determine the role of UA in the reduction of CP-induced nephrotoxicity and mitigation of pro-inflammatory cytokines and apoptosis in a rat model. METHODOLOGY Male Wistar rats were randomized into vehicle control, CP (7.5 mg/kg), UA 10 mg/kg, and CP with UA 5 and 10 mg/kg groups. Kidney and blood samples were collected for assessment of renal function, measurement of pro-inflammatory cytokines, apoptosis markers, antioxidant activity, and tissue histology. RESULTS CP significantly increased the levels of serum Cr, BUN, and uric acid; it also induced histological damage reflecting the pathophysiology observed during nephrotoxicity. CP has also shown its pro-oxidant activity in kidney tissue because CP decreased the levels of GSH, SOD, and CAT; it increased the lipid peroxidation as measured by MDA content. In addition, CP significantly upregulated the activity of pro-inflammatory cytokines and expression of apoptotic markers, that is, there were increased levels of IL-1β, IL-6, TNF-α, caspase-3, and caspase-9. Two weeks of continuous treatment of UA showed significant recovery against CP-induced nephrotoxicity; UA decreased the levels of Cr, BUN, and uric acid and ameliorated histological damage. UA also downregulated the activities of IL-1β, IL-6, and TNF-α as well as expression of caspase-3 and caspase-9. Furthermore, CP-induced oxidative stress that was antagonized by UA-the levels of GSH, SOD, and CAT were significantly increased while MDA content was decreased. CONCLUSIONS UA has a protective effect against CP-induced nephrotoxicity, which may be due to its antioxidant activity and mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis.
Collapse
Affiliation(s)
- Pankaj Tripathi
- Department of Pharmacology and Toxicology, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
14
|
Yuan L, Zhang L, Yao N, Wu L, Liu J, Liu F, Zhang H, Hu X, Xiong Y, Xia C. Upregulation of UGT1A1 expression by ursolic acid and oleanolic acid via the inhibition of the PKC/NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153726. [PMID: 34536821 DOI: 10.1016/j.phymed.2021.153726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Isomeric ursolic acid (UA) and oleanolic acid (OA) compounds have recently garnered great attention due to their biological effects. Previously, it had been shown that UA and OA can exert important pharmacological action via the protein kinase C (PKC) and nuclear factor-κB (NF-κB) signaling, and that they can induce the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) in HepG2 cells. This study aims to investigate the role of PKC/NF-κB signaling in regulating the expression of UGT1A1 and examine how UA and OA induce UGT1A1 based on this signaling pathway. METHODS HepG2 cells, hp65-overexpressed HepG2 cell and lentivirus-hp65-shRNA silenced HepG2 cells were stimulated with PKC/NF-κB specific agonists and inhibitors for 24 h in the presence or absence of UA and OA. The expression of UGT1A1, PKC, and NF-κB were determined by qRT-PCR, western blot, and dual-luciferase reporter gene assays. RESULTS PKC/NF-κB activation downregulates UGT1A1 expression. This effect is countered by UA and OA treatment. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), the agonists of PKC and NF-κB signaling, respectively, significantly inhibit hp65-mediated UGT1A1 luciferase activity. UA, OA, and the PKC/NF-κB inhibitors suppress this effect. PMA and LPS do not affect UGT1A1 activity in p65-silenced HepG2 cells; however, UA and OA mildly influence UGT1A1 expression in these cells. CONCLUSION The activation of PKC/NF-κB signaling can significantly downregulate UGT1A1 expression. By inhibiting the PKC/NF-κB signaling pathway, UA and OA promote UGT1A1 expression in HepG2 cells.
Collapse
Affiliation(s)
- Li Yuan
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Lingming Zhang
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Na Yao
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Lingna Wu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Xiao Hu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
15
|
Güler MC, Tanyeli A, Erdoğan DG, Eraslan E, Çomaklı S, Polat E, Doğanay S. Urapidil alleviates ovarian torsion detorsion injury via regulating oxidative stress, apoptosis, autophagia, and inflammation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:935-942. [PMID: 34712424 PMCID: PMC8528257 DOI: 10.22038/ijbms.2021.57196.12736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023]
Abstract
Objective(s): This study aimed to determine anti-inflammatory, antioxidant, and antiapoptotic properties of urapidil (Ura) against ovarian torsion detorsion (T/D) injury in rats. Materials and Methods: 40 female Wistar albino rats were grouped as sham, T/D, T/D+dimethyl sulfoxide (DMSO), T/D+Urapidil (Ura) 0.5 mg/kg (low dose), and T/D+Urapidil (Ura) 5 mg/kg (high dose) groups. In treatment groups, Ura was administered intraperitoneally just before detorsion. Biochemical parameters (TAS, TOS, MDA, MPO, and SOD) and immunohistochemical (IL-1β, TNF-α, NF-κB, LC3B, and Caspase-3) analyzes were performed. Results: In the T/D group, OSI and MPO levels were elevated significantly while TAS values decreased compared with the sham group. A significant difference occurred in the low dose treatment group in TAS and OSI levels compared with the T/D group. In the high dose treatment group, significant elevation in TAS but reduction in OSI and MDA levels were observed compared with the T/D group. Immunohistochemical staining resulted in IL-1β, TNF-α, NF-κB, LC3B, and caspase-3 immunopositivity in the T/D group, while Ura treatment decreased those parameters. Intensive congestion and hemorrhage were observed in the T/D group, but contrary to this, treatment groups had alleviated congestion and hemorrhage. Conclusion: These results suggest that Ura demonstrated protective effects against ovarian T/D injury via anti-oxidative, anti-inflammatory, and anti-apoptotic features.
Collapse
Affiliation(s)
- Mustafa Can Güler
- Department of Physiology, Atatürk University, Faculty of Medicine, Erzurum, Turkey
| | - Ayhan Tanyeli
- Department of Physiology, Atatürk University, Faculty of Medicine, Erzurum, Turkey
| | - Derya Güzel Erdoğan
- Department of Physiology, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| | - Ersen Eraslan
- Department of Physiology, Yozgat Bozok University, Faculty of Medicine, Yozgat, Turkey
| | - Selim Çomaklı
- Department of Pathology, Atatürk University, Veterinary Faculty, Erzurum, Turkey
| | - Elif Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Songül Doğanay
- Department of Physiology, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| |
Collapse
|
16
|
Zhu H, Wang X, Wang X, Liu B, Yuan Y, Zuo X. Curcumin attenuates inflammation and cell apoptosis through regulating NF-κB and JAK2/STAT3 signaling pathway against acute kidney injury. Cell Cycle 2020; 19:1941-1951. [PMID: 32615888 DOI: 10.1080/15384101.2020.1784599] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Curcumin alleviates septic acute kidney injury (SAKI); however, the underlying mechanism remained unclear. To explore this, SAKI cell model and mice model were conducted by using LPS and cecal ligation and puncture (CLP), respectively. Cell counting kit-8 (CCK-8) and enzyme-linked immunosorbent assay (ELISA) assays indicated that LPS reduced the viability, but upregulated the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6, whereas Curcumin pretreatment had no effect on viability, but reduced the levels of TNF-α and IL-6. Further assays showed that Curcumin partly attenuated the LPS-induced injury as the viability was enhanced, TNF-α and IL-6 expressions and cell apoptosis rates were reduced. Western blot analysis indicated that Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, p-65-NF-κB and cell apoptosis pathways were activated by LPS but suppressed by Curcumin. Mice SAKI model further indicated that the serum Cystatin C (Cys-C), creatinine (Cr) and blood urea nitrogen (BUN) were increased within 24 h of model construction while those indicators were decreased at 48 h. Pretreated with Curcumin, NF-κB inhibitor (PDTC) or JAK2 inhibitor (AG-490) could weaken the renal histological injury and the increased serum Cys-C, Cr and BUN, IL-6 and TNF-α induced by CLP. Moreover, PDTC, AG-490 and Curcumin all significantly reversed the previously increased expressions of p-JAK2/STAT3, p-p65 and proapoptotic proteins in the mice with AKI. The present study revealed that Curcumin attenuated SAKI through inhibiting NF-κB and JAK2/STAT3 signaling pathways, and proposed that Curcumin could be a potential therapeutic agent for treating SAKI.
Collapse
Affiliation(s)
- Hongkun Zhu
- Department of Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing, China
| | - Xinjun Wang
- Second Clinical Medical College, Nanjing University of Chinese Medicine , Nanjing, China
| | - Xiaoxiao Wang
- GCP Center, The First Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing, China
| | - Bei Liu
- First Clinical Medical College, Nanjing University of Chinese Medicine , Nanjing, China
| | - Yizhen Yuan
- First Clinical Medical College, Nanjing University of Chinese Medicine , Nanjing, China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| |
Collapse
|
17
|
de Souza P, da Silva LM, de Andrade SF, Gasparotto Junior A. Recent Advances in the Knowledge of Naturally-derived Bioactive Compounds as Modulating Agents of the Renin-angiotensin-aldosterone System: Therapeutic Benefits in Cardiovascular Diseases. Curr Pharm Des 2020; 25:670-684. [PMID: 30931846 DOI: 10.2174/1381612825666190329122443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND One of the biggest challenges to public health worldwide is to reduce the number of events and deaths related to the cardiovascular diseases. Numerous approaches have been applied to reach this goal, and drug treatment intervention has been indispensable along with an effective strategy for reducing both cardiovascular morbidity and mortality. Renin-angiotensin-aldosterone system (RAAS) blockade is currently one of the most important targets of cardiovascular drug therapy. Many studies have proven the valuable properties of naturally-derived bioactive compounds to treat cardiovascular diseases. METHODS The goal of this review, therefore, is to discuss the recent developments related to medicinal properties about natural compounds as modulating agents of the RAAS, which have made them an attractive alternative to be available to supplement the current therapy options. RESULTS Data has shown that bioactive compounds isolated from several natural products act either by inhibiting the angiotensin-converting enzyme or directly by modulating the AT1 receptors of angiotensin II, which consequently changes the entire classical axis of this system. CONCLUSION While there are a few evidence about the positive actions of different classes of secondary metabolites for the treatment of cardiovascular and renal diseases, data is scarce about the clinical assays established to demonstrate their value in humans.
Collapse
Affiliation(s)
- Priscila de Souza
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Luisa M da Silva
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Sérgio F de Andrade
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratorio de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciencias da Saude, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
18
|
Guo A, Wang W, Shi H, Wang J, Liu T. Identification of Hub Genes and Pathways in a Rat Model of Renal Ischemia-Reperfusion Injury Using Bioinformatics Analysis of the Gene Expression Omnibus (GEO) Dataset and Integration of Gene Expression Profiles. Med Sci Monit 2019; 25:8403-8411. [PMID: 31699960 PMCID: PMC6863034 DOI: 10.12659/msm.920364] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to identify hub genes and pathways in a rat model of renal ischemia-reperfusion injury (IRI) using bioinformatics analysis of the Gene Expression Omnibus (GEO) microarray dataset and integration of gene expression profiles. Material/Methods GEO software and the GEO2R calculation method were used to analyze two mRNA profiles, including GSE 39548 and GSE 108195. The co-expression of differentially expressed genes (DEGs) were identified and searched in the DAVID and STRING databases for pathway and protein-protein interaction (PPI) analysis. Cytoscape was used to draw the PPI network. DEGs were also analyzed using the Molecular Complex Detection (MCODE) algorithm. Cytoscape and cytoHubba were used to analyze the hub genes and visualize the molecular interaction networks. Rats (n=20) included the IRI model group (n=10) and a control group (n=10). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to measure and compare the expression of the identified genes in rat renal tissue in the IRI model and the control group. Results Ten hub genes were identified, STAT3, CD44, ITGAM, CCL2, TIMP1, MYC, THBS1, IGF1, SOCS3, and CD14. Apart from IGF1, qRT-PCR showed that expression of these genes was significantly increased in renal tissue in the rat model of IRI. The HIF-1α signaling pathway was involved in IRI in the rat model, which was supported by MCODE analysis. Conclusions In a rat model of renal IRI, bioinformatics analysis of the GEO dataset and integration of gene expression profiles identified involvement of HIF-1α signaling and the STAT3 hub gene.
Collapse
Affiliation(s)
- Ao Guo
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Weitie Wang
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Hongyu Shi
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jiping Wang
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Tiecheng Liu
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
19
|
Nath KA, Garovic VD, Grande JP, Croatt AJ, Ackerman AW, Farrugia G, Katusic ZS, Belcher JD, Vercellotti GM. Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex. Am J Physiol Renal Physiol 2019; 317:F695-F704. [PMID: 31215802 PMCID: PMC6842883 DOI: 10.1152/ajprenal.00085.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase (HO) activity is exhibited by inducible (HO-1) and constitutive (HO-2) proteins. HO-1 protects against ischemic and nephrotoxic acute kidney injury (AKI). We have previously demonstrated that HO-2 protects against heme protein-induced AKI. The present study examined whether HO-2 is protective in ischemic AKI. Renal ischemia was imposed on young and aged HO-2+/+ and HO-2-/- mice. On days 1 and 2 after renal ischemia, there were no significant differences in renal function between young male HO-2+/+ and HO-2-/- mice, between young female HO-2+/+ and HO-2-/- mice, or between aged female HO-2+/+ and HO-2-/- mice. However, in aged male mice, HO-2 deficiency worsened renal function on days 1 and 2 after ischemic AKI, and, on day 2 after ischemia, such deficiency augmented upregulation of injury-related genes and worsened histological injury. Renal HO activity was markedly decreased in unstressed aged male HO-2-/- mice and remained so after ischemia, despite exaggerated HO-1 induction in HO-2-/- mice after ischemia. Such exacerbation of deficiency of HO-2 protein and HO activity may reflect phosphorylated STAT3, as activation of this proinflammatory transcription factor was accentuated early after ischemia in aged male HO-2-/- mice. This exacerbation may not reflect impaired induction of nephroprotectant genes, since the induction of HO-1, sirtuin 1, and β-catenin was accentuated in aged male HO-2-/- mice after ischemia. We conclude that aged male mice are hypersensitive to ischemic AKI and that HO-2 mitigates such sensitivity. We speculate that this protective effect of HO-2 may be mediated, at least in part, by suppression of phosphorylated STAT3-dependent signaling.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - John D Belcher
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
20
|
Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res 2019; 312:5-23. [DOI: 10.1007/s00403-019-01968-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
21
|
Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8512048. [PMID: 31223427 PMCID: PMC6541953 DOI: 10.1155/2019/8512048] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene which is found in common herbs and medicinal plants that are reputed for a variety of pharmacological effects. Both as an active principle of these plants and as a nutraceutical ingredient, the pharmacology of UA in the CNS and other organs and systems has been extensively reported in recent years. In this communication, the antioxidant and anti-inflammatory axis of UA's pharmacology is appraised for its therapeutic potential in some common CNS disorders. Classic examples include the traumatic brain injury (TBI), cerebral ischemia, cognition deficit, anxiety, and depression. The pharmacological efficacy for UA is demonstrated through the therapeutic principle of one drug → multitargets → one/many disease(s). Both specific enzymes and receptor targets along with diverse pharmacological effects associated with oxidative stress and inflammatory signalling are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
22
|
Zhang J, Tang L, Li GS, Wang J. The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Ren Fail 2019; 40:680-686. [PMID: 30741618 PMCID: PMC6282432 DOI: 10.1080/0886022x.2018.1544565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The present study aimed to explore the protective mechanism of curcumin-precondition in renal ischemia-reperfusion (I/R) injury. Thirty male SD rats were randomly equally divided into Sham, IRI, and Curcumin groups (n = 10). The model of IRI was induced by clamping the left renal artery for 45 min followed by 24 h reperfusion with the contralateral nephrectomy. ELISA was used to examine the expression of Cr, BUN, IL-8, TNF-α, and IL-6 in the serum; RT-PCR was used to detect the mRNA level of IL-8,TNF-α, and IL-6 in the kidney; The morphology of kidney was examined by Periodic Acid-Schiff stain (PAS). The expression of JAK2, p-JAK2, STAT3, p-STAT3, p65, and p-p65 in kidney were detected by Western blotting. The result displayed that Curcumin pretreatment can significantly increase the expression of p-JAK2 and p-STAT3 and reduce the expression of Cr, BUN, IL-8, TNF-α, IL-6, and p-p65. In addition, Curcumin can attenuate the kidney pathological injury and have no effect on the expression of JAK2, STAT3, and p65. Our findings showed the protective effect of Curcumin in I/R injury is associated with suppressing NF-κB mediating inflammation by activating JAK2/STAT3 signal pathway.
Collapse
Affiliation(s)
- Jiong Zhang
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Li Tang
- b Department of Nephrology , Zigong Third People's Hospital , Zigong , China
| | - Gui Sen Li
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Jia Wang
- c General Medicine Center and University of Electronic Science and Technology , Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| |
Collapse
|
23
|
Sun CY, Nie J, Zheng ZL, Zhao J, Wu LM, Zhu Y, Su ZQ, Zheng GJ, Feng B. Renoprotective effect of scutellarin on cisplatin-induced renal injury in mice: Impact on inflammation, apoptosis, and autophagy. Biomed Pharmacother 2019; 112:108647. [PMID: 30797149 DOI: 10.1016/j.biopha.2019.108647] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Cisplatin remains the standard first-line chemotherapeutic agent in the treatment of many types of cancers, but its clinical application is hindered by its severe nephrotoxicity. Previous studies reported that scutellarin enhanced the anti-cancer activity of cisplatin in lung cancer cells, with no confirmation on cisplatin-induced renal damage. Here, we investigated the nephroprotective effect of scutellarin on cisplatin-induced renal injury and its underlying mechanisms. Renal function, histological change, inflammation, apoptosis, autophagy and involved pathways were investigated. Pretreatment with scutellarin prevented cisplatin-induced decline of renal function including BUN, CRE, and histological damage. Scutellarin also reduced renal inflammation by suppressing the levels of pro-inflammatory cytokine, TNF-α and IL-6. Similarly, scutellarin administration inhibited apoptosis triggered by cisplatin through reducing the expressions of Cleaved caspase-3, Cleaved PARP, p53, and the ratio of Bax/Bcl-2. Moreover, scutellarin prevented cisplatin-induced inhibition of autophagy via enhancing LC3-II/LC3-I and Atg7, and inhibition of p62. Of note, the activations of JNK, ERK, p38 and stat3 induced by cisplatin were strikingly attenuated in scutellarin-treated mice. Thus, these results provide compelling evidence that scutellarin is a novel nephroprotectant against cisplatin-induced renal toxicity.
Collapse
Affiliation(s)
- Chao-Yue Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Juan Nie
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuo-Liang Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jie Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Liu-Mei Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, no 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Ying Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zu-Qing Su
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Guang-Juan Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Bing Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
24
|
Zhang G, Wang Q, Wang W, Yu M, Zhang S, Xu N, Zhou S, Cao X, Fu X, Ma Z, Liu R, Mao J, Lai EY. Tempol Protects Against Acute Renal Injury by Regulating PI3K/Akt/mTOR and GSK3β Signaling Cascades and Afferent Arteriolar Activity. Kidney Blood Press Res 2018; 43:904-913. [PMID: 29870982 PMCID: PMC6065105 DOI: 10.1159/000490338] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Free radical scavenger tempol is a protective antioxidant against ischemic injury. Tubular epithelial apoptosis is one of the main changes in the renal ischemia/reperfusion (I/R) injury. Meanwhile some proteins related with apoptosis and inflammation are also involved in renal I/R injury. We tested the hypothesis that tempol protects against renal I/R injury by activating protein kinase B/mammalian target of rapamycin (PKB, Akt/mTOR) and glycogen synthase kinase 3β (GSK3β) pathways as well as the coordinating apoptosis and inflammation related proteins. METHODS The right renal pedicle of C57Bl/6 mouse was clamped for 30 minutes and the left kidney was removed in the study. The renal injury was assessed with serum parameters by an automatic chemistry analyzer. Renal expressions of Akt/mTOR and GSK3β pathways were measured by western blot in I/R mice treated with saline or tempol (50mg/kg) and compared with sham-operated mice. RESULTS The levels of blood urea nitrogen (BUN), creatinine and superoxide anion (O2.-) increased, and superoxide dismutase (SOD) and catalase (CAT) decreased significantly after renal I/R injury. However, tempol treatment prevented the changes. Besides, I/R injury reduced renal expression of p-Akt, p-GSK3β, p-mTOR, Bcl2 and increased NF-κB, p-JNK and p53 in kidney, tempol significantly normalized these changes. In addition, renal I/R injury reduced the response of afferent arteriole to Angiotensin II (Ang II), while tempol treatment improved the activity of afferent arteriole. CONCLUSION Tempol attenuates renal I/R injury. The protective mechanisms seem to relate with activation of PI3K/Akt/mTOR and GSK3β pathways, inhibition of cellular damage markers and inflammation factors, as well as improvement of afferent arteriolar activity.
Collapse
Affiliation(s)
- Gensheng Zhang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Wang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Wang
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghua Yu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suping Zhang
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Xu
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suhan Zhou
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Cao
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Fu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zufu Ma
- Department of Nephrology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Jianhua Mao
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - En Yin Lai
- Department of Physiology, and the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|
25
|
Thakur R, Sharma A, Lingaraju MC, Begum J, Kumar D, Mathesh K, Kumar P, Singh TU, Kumar D. Ameliorative effect of ursolic acid on renal fibrosis in adenine-induced chronic kidney disease in rats. Biomed Pharmacother 2018; 101:972-980. [PMID: 29635907 DOI: 10.1016/j.biopha.2018.02.143] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
Ursolic acid (UA), an ursane-type pentacyclic triterpenoid commonly found in apple peels and holy basil has been shown to possess many beneficial effects. Renal fibrosis is a complication of kidney injury and associated with increased risk of morbidity and mortality. In our previous investigation, a lupane-type pentacyclic triterpenoid, betulinic acid (BA) was found to have protective effect on chronic kidney disease (CKD) and renal fibrosis. This prompted us to explore the therapeutic value of UA, a chemically related compound to BA in CKD. CKD was induced by feeding adenine with the feed at a concentration of 0.75% for 28 days. UA at the dose rate of 30 mg/kg in 0.5% carboxy methyl cellulose (CMC) was administered by oral route, simultaneously with adenine feeding for 28 days. Adenine feeding increased the kidney weight to body weight index, decreased the kidney function due to injury as indicated by increased markers like serum urea, uric acid, creatinine, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) and initiated the fibrotic response in kidney by increasing the profibrotic proteins viz. transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), fibronectin and collagen. However, treatment with UA reversed the damage induced by adenine as shown by reduced kidney injury and fibrosis markers which was further clearly evident in histological picture indicating the suitability of UA for use in CKD.
Collapse
Affiliation(s)
- Richa Thakur
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Anshuk Sharma
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India.
| | - Jubeda Begum
- Department of Veterinary Microbiology, College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263153, UK, India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Karikalan Mathesh
- Centre for Wildlife Conservation Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Pawan Kumar
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| |
Collapse
|
26
|
Lu J, Yi Y, Pan R, Zhang C, Han H, Chen J, Liu W. Berberine protects HK-2 cells from hypoxia/reoxygenation induced apoptosis via inhibiting SPHK1 expression. J Nat Med 2017; 72:390-398. [PMID: 29260413 DOI: 10.1007/s11418-017-1152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023]
Abstract
Renal ischemia reperfusion injury (RIRI) refers to the irreversible damage for renal function when blood perfusion is recovered after ischemia for an extended period, which is common in clinical surgeries and has been regarded as a major risk for acute renal failures (ARF) that is accompanied with unimaginably high morbidity and mortality. Hypoxia during ischemia followed by reoxygenation via reperfusion serves as a major event contributing to cell apoptosis, which has been widely accepted as the vital pathogenesis in RIRI. Preventing apoptosis in renal tubular epithelial cell has been considered as effective method for blocking RIRI. In this paper, we established a hypoxia/reoxygenation (H/R) injury model in human proximal tubular epithelial HK-2 cells. Here, we found increased SPHK1 levels in H/R injured HK-2 cells, which could be significantly down regulated after berberine treatment. Berberine has been reported to exert a protective effect on H/R-induced apoptosis of HK-2 cells. So, in our present study, we planned to investigate whether SPHK1 participated in the anti-apoptosis process of berberine in H/R injured HK-2 cells. Our study confirmed the protective effect of berberine against H/R-induced apoptosis in HK-2 cells through promoting cells viability, inhibiting cells apoptosis, and down-regulating p-P38, caspase-3, caspase-9 as well as SPHK1, while up regulating the ratio of Bcl-2/Bax. However, SPHK1 overexpression in HK-2 cells induced severe apoptosis, which can be significantly ameliorated with additional berberine treatment. We concluded that berberine could remarkably prevent H/R-induced apoptosis in HK-2 cells through down-regulating SPHK1 expression levels, and the mechanisms included the suppression of p38 MAPK activation and mitochondrial stress pathways.
Collapse
Affiliation(s)
- Jianrao Lu
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Yang Yi
- Department of Nephrology, Jingan District Central Hospital/Jingan Branch, Huashan Hospital affiliated to Fudan University, Shanghai, 200040, China
| | - Ronghua Pan
- Department of Nephrology, Liyang Hospital of traditional Chinese medicine, Jiangsu Province, 213300, China.
| | - Chuanfu Zhang
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Haiyan Han
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jie Chen
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Wenrui Liu
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
27
|
|
28
|
Wang H, Sim MK, Loke WK, Chinnathambi A, Alharbi SA, Tang FR, Sethi G. Potential Protective Effects of Ursolic Acid against Gamma Irradiation-Induced Damage Are Mediated through the Modulation of Diverse Inflammatory Mediators. Front Pharmacol 2017; 8:352. [PMID: 28670276 PMCID: PMC5472704 DOI: 10.3389/fphar.2017.00352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
This study was aimed to evaluate the possible protective effects of ursolic acid (UA) against gamma radiation induced damage both in vitro as well as in vivo. It was observed that the exposure to gamma radiation dose- and time-dependently caused a significant decrease in the cell viability, while the treatment of UA attenuated this cytotoxicity. The production of free radicals including reactive oxygen species (ROS) and NO increased significantly post-irradiation and further induced lipid peroxidation and oxidative DNA damage in cells. These deleterious effects could also be effectively blocked by UA treatment. In addition, UA also reversed gamma irradiation induced inflammatory responses, as indicated by the decreased production of TNF-α, IL-6, and IL-1β. NF-κB signaling pathway has been reported to be a key mediator involved in gamma radiation-induced cellular damage. Our results further demonstrated that gamma radiation dose- and time-dependently enhanced NF-κB DNA binding activity, which was significantly attenuated upon UA treatment. The post-irradiation increase in the expression of both phospho-p65, and phospho-IκBα was also blocked by UA. Moreover, the treatment of UA was found to significantly prolong overall survival in mice exposed to whole body gamma irradiation, and reduce the excessive inflammatory responses. Given its radioprotective efficacy as described here, UA as an antioxidant and NF-κB pathway blocker, may function as an important pharmacological agent in protecting against gamma irradiation-induced injury.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
- Singapore Nuclear Research and Safety Initiative, National University of SingaporeSingapore, Singapore
| | - Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Weng Keong Loke
- Agent Diagnostic and Therapeutic Laboratory, Defence and Environmental Research Institute, DSO National LaboratoriesSingapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of SingaporeSingapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| |
Collapse
|