1
|
Tagé BSS, Gonzatti MB, Vieira RP, Keller AC, Bortoluci KR, Aimbire F. Three Main SCFAs Mitigate Lung Inflammation and Tissue Remodeling Nlrp3-Dependent in Murine HDM-Induced Neutrophilic Asthma. Inflammation 2024; 47:1386-1402. [PMID: 38329636 DOI: 10.1007/s10753-024-01983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Neutrophilic asthma is generally defined by poorly controlled symptoms and high levels of neutrophils in the lungs. Short-chain fatty acids (SCFAs) are proposed as nonpharmacological therapy for allergic asthma, but their impact on the neutrophilic asthma lacks evidence. SCFAs regulate immune cell responses and impact the inflammasome NLRP3, a potential pharmacological target for neutrophilic asthma. Here, we explored the capacity of SCFAs to mitigate murine-induced neutrophilic asthma and the contribution of NLRP3 to this asthma. The objective of this study is to analyze whether SCFAs can attenuate lung inflammation and tissue remodeling in murine neutrophilic asthma and NLRP3 contribution to this endotype. Wild-type (WT) C57BL6 mice orotracheally received 10 μg of HDM (house dust mite) in 80 μL of saline on days 0, 6-10. To explore SCFAs, each HDM group received 200 mM acetate, propionate, or butyrate. To explore NLRP3, Nlrp3 KO mice received the same protocol of HDM. On the 14th day, after euthanasia, bronchoalveolar lavage fluid (BALF) and lungs were collected to evaluate cellularity, inflammatory cytokines, and tissue remodeling. HDM group had increased BALF neutrophil influx, TNF-α, IFN-γ, IL-17A, collagen deposition, and mucus secretion compared to control. SCFAs distinctively attenuate lung inflammation. Only features of tissue remodeling were Nlrp3-dependent such as collagen deposition, mucus secretion, active TGF-β cytokine, and IMs CD206+. SCFAs greatly decreased inflammatory cytokines and tissue remodeling. Only tissue remodeling was dependent on NLRP3. It reveals the potential of SCFAs to act as an additional therapy to mitigate neutrophilic asthma and the NLRP3 contribution to asthma.
Collapse
Affiliation(s)
- Barbara S S Tagé
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil.
| | - Michelangelo B Gonzatti
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Rodolfo P Vieira
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Anápolis, GO, 75083-515, Brazil
- Postgraduate Program in Bioengineering, University Brasil, São Paulo, SP, 08230-030, Brazil
- Postgraduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, 11010-150, Brazil
| | - Alexandre C Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Karina R Bortoluci
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil
| |
Collapse
|
2
|
Shanto PC, Fahad MAA, Jung HI, Park M, Kim H, Bae SH, Lee BT. Multi-functional dual-layer nanofibrous membrane for prevention of postoperative pancreatic leakage. Biomaterials 2024; 307:122508. [PMID: 38394713 DOI: 10.1016/j.biomaterials.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Postoperative pancreatic leakage due to pancreatitis in patients is a life-threatening surgical complication. The majority of commercial barriers are unable to meet the demands for pancreatic leakage due to poor adhesiveness, toxicity, and inability to degrade. In this study, we fabricated mitomycin-c and thrombin-loaded multifunctional dual-layer nanofibrous membrane with a combination of alginate, PCL, and gelatin to resolve the leakage due to suture line disruption, promote hemostasis, wound healing, and prevent postoperative tissue adhesion. Electrospinning was used to fabricate the dual-layer system. The study results demonstrated that high gelatin and alginate content in the inner layer decreased the fiber diameter and water contact angle, and crosslinking allowed the membrane to be more hydrophilic, making it highly biodegradable, and adhering firmly to the tissue surfaces. The results of in vitro biocompatibility and hemostatic assay revealed that the dual-layer had a higher cell proliferation and showed effective hemostatic properties. Moreover, the in vivo studies and in silico molecular simulation indicated that the dual layer was covered at the wound site, prevented suture disruption and leakage, inhibited hemorrhage, and reduced postoperative tissue adhesion. Finally, the study results proved that dual-layer multifunctional nanofibrous membrane has a promising therapeutic potential in preventing postoperative pancreatic leakage.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea.
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyeyoung Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea; Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
3
|
Cao X, Yu C, Cheng S, Wang Y, Zhang Z, Huang J. Co-Delivery of Astaxanthin and si TGF-β1 via Ionizable Liposome Nanoparticles for Improved Idiopathic Pulmonary Fibrosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597290 DOI: 10.1021/acsami.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Alleviating the injury of type II alveolar epithelial cells (AEC 2s) and inhibiting the activation and differentiation of fibroblasts are significant for improving the therapeutic effect of idiopathic pulmonary fibrosis (IPF). To this aim, ionizable liposome nanoparticles (ASNPs) coloaded with antioxidant drug astaxanthin (AST) and small interfering RNA targeting transforming growth factor β1 (siTGF-β1) were developed for enhanced IPF therapy. ASNPs showed high loading and intracellular delivery efficiency for AST and siTGF-β1. After the injection of ASNPs in an IPF mice model, the loaded AST largely scavenged reactive oxygen species (ROS) in the diseased lung to reduce AEC2 apoptosis, thereby ensuring the integrity of the alveolar epithelium. Meanwhile, siTGF-β1, delivered by ASNPs, significantly silenced the expression of TGF-β1 in fibroblasts, inhibiting the differentiation of fibroblasts into myofibroblasts as well as reducing the excessive deposition of extracellular matrix (ECM). The combined use of the two drugs exhibited an excellent synergistic antifibrotic effect and was conducive to minimizing alveolar epithelial damage. This work provides a codelivery strategy of AST and siTGF-β1, which shows great promise for the treatment of IPF by simultaneously reducing alveolar epithelial damage and inhibiting fibroblast activation.
Collapse
Affiliation(s)
- Xiaoling Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
4
|
Kopecky BJ, Lavine KJ. Cardiac macrophage metabolism in health and disease. Trends Endocrinol Metab 2024; 35:249-262. [PMID: 37993313 PMCID: PMC10949041 DOI: 10.1016/j.tem.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
6
|
Tirunavalli SK, Kuncha M, Sistla R, Andugulapati SB. Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. J Nutr Biochem 2023; 116:109294. [PMID: 36948431 DOI: 10.1016/j.jnutbio.2023.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder that severely impairs lung function, by increasing lung stiffness. Sesamol, a phenolic Phyto-molecule isolated from sesame seeds, possess a rich source of protein and is known to have extensive nutritional and health effects. Here we investigated the effect of sesamol on TGF-β/periostin-induced fibroblast differentiation in in vitro and bleomycin-induced pulmonary fibrosis in an in vivo model. Our results demonstrated that activation of (DHLF, LL29, NHLF and A549) cells with TGF-β, elevates the epithelial to mesenchymal, extracellular matrix, and collagen deposition and periostin signaling marker's expression, further treatment with sesamol attenuated these markers significantly. In addition, sesamol treatment improved the TGF-β-induced contraction and migration of cells. Mechanistic studies showed that activation of IPF cells with periostin increased the TGF-β signaling and treatment with sesamol significantly abrogated the periostin-induced TGF-β activation and its downstream fibrotic marker's expression. In in vivo, sesamol treatment attenuated the lung inflammation, infiltration of cells, wall thickening and the formation of fibrous bands significantly in BLM-induced fibrosis rats. Molecular studies revealed that sesamol treatment reduced the bleomycin-induced fibrotic, inflammatory, apoptotic marker's expression by modulating the TGF-β/periostin crosstalk signaling in a dose-dependent manner. Further, treatment with sesamol dramatically improved lung function and decreased mortality. Our study first time reports the sesamol's inhibitory effects on periostin signalling. Collectively, our study demonstrated that periostin and TGF-β seem to work in a positive-feedback loop, inducing the other, therefore, targeting TGF-β/periostin signaling may provide a better therapeutic approach against IPF and other fibrotic disorders.
Collapse
Affiliation(s)
- Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Madhusudhana Kuncha
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
7
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
8
|
Chen G, Li J, Liu H, Zhou H, Liu M, Liang D, Meng Z, Gan H, Wu Z, Zhu X, Han P, Liu T, Gu R, Liu S, Dou G. Cepharanthine Ameliorates Pulmonary Fibrosis by Inhibiting the NF-κB/NLRP3 Pathway, Fibroblast-to-Myofibroblast Transition and Inflammation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020753. [PMID: 36677811 PMCID: PMC9864377 DOI: 10.3390/molecules28020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis (PF) is one of the sequelae of Corona Virus Disease 2019 (COVID-19), and currently, lung transplantation is the only viable treatment option. Hence, other effective treatments are urgently required. We investigated the therapeutic effects of an approved botanical drug, cepharanthine (CEP), in a cell culture model of transforming growth factor-β1 (TGF-β1) and bleomycin (BLM)-induced pulmonary fibrosis rat models both in vitro and in vivo. In this study, CEP and pirfenidone (PFD) suppressed BLM-induced lung tissue inflammation, proliferation of blue collagen fibers, and damage to lung structures in vivo. Furthermore, we also found increased collagen deposition marked by α-smooth muscle actin (α-SMA) and Collagen Type I Alpha 1 (COL1A1), which was significantly alleviated by the addition of PFD and CEP. Moreover, we elucidated the underlying mechanism of CEP against PF in vitro. Various assays confirmed that CEP reduced the viability and migration and promoted apoptosis of myofibroblasts. The expression levels of myofibroblast markers, including COL1A1, vimentin, α-SMA, and Matrix Metallopeptidase 2 (MMP2), were also suppressed by CEP. Simultaneously, CEP significantly suppressed the elevated Phospho-NF-κB p65 (p-p65)/NF-κB p65 (p65) ratio, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels, and elevated inhibitor of NF-κB Alpha (IκBα) degradation and reversed the progression of PF. Hence, our study demonstrated that CEP prevented myofibroblast activation and treated BLM-induced pulmonary fibrosis in a dose-dependent manner by regulating nuclear factor kappa-B (NF-κB)/ NLRP3 signaling, thereby suggesting that CEP has potential clinical application in pulmonary fibrosis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ruolan Gu
- Correspondence: (R.G.); (S.L.); (G.D.)
| | | | | |
Collapse
|
9
|
Cai Z, Guo H, Qian J, Liu W, Li Y, Yuan L, Zhou Y, Lin R, Xie X, Yang Q, Wu G, Li Q, Zhao L, Liu F, Wang J, Lu W. Effects of bone morphogenetic protein 4 on TGF- β1-induced cell proliferation, apoptosis, activation and differentiation in mouse lung fibroblasts via ERK/p38 MAPK signaling pathway. PeerJ 2022; 10:e13775. [PMID: 35915750 PMCID: PMC9338752 DOI: 10.7717/peerj.13775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Fibroblasts, in particular myofibroblasts, are the critical effector cells in idiopathic pulmonary fibrosis (IPF), a deadly lung disease characterized by abnormal lung remodeling and the formation of "fibroblastic foci". Aberrant activation of TGF-β1 is frequently encountered and promotes fibroblast proliferation, activation, and differentiation in pulmonary fibrosis. Hence, the inhibition of TGF-β1-induced lung fibroblast activation holds promise as a therapeutic strategy for IPF. The present study aimed to investigate the potential effect and underlying mechanisms of bone morphogenetic protein 4 (BMP4) on TGF-β1-induced proliferation, apoptosis, activation and myofibroblast differentiation of adult lung fibroblasts. Here, we demonstrated that BMP4 expression was significantly decreased in TGF-β1-stimulated mouse primary lung fibroblasts (PLFs). BMP4 inhibited proliferation and apoptosis resistance of TGF-β1-stimulated mouse PLFs. BMP4 suppressed TGF-β1-induced fibroblast activation and differentiation in mouse PLFs. We also found that BMP4 inhibited TGF-β1-induced ERK and p38 MAPK phosphorylation. Our findings indicate that BMP4 exerts its anti-fibrotic effects by regulating fibroblast proliferation, apoptosis, activation and differentiation via the inhibition of the ERK/p38 MAPK signaling pathway, and thus has a potential for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhou Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Qian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Wei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - You Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ran Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiong Yang
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Guoying Wu
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Qiongqiong Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
11
|
Zúñiga-Hernández J, Sambra V, Echeverría F, Videla LA, Valenzuela R. N-3 PUFAs and their specialized pro-resolving lipid mediators on airway inflammatory response: beneficial effects in the prevention and treatment of respiratory diseases. Food Funct 2022; 13:4260-4272. [PMID: 35355027 DOI: 10.1039/d1fo03551g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Respiratory diseases include a wide range of pathologies with different clinical manifestations, affecting the normal airways and lung function. An increase in the inflammatory response is considered a characteristic hallmark of these diseases, being also a critical factor for their progression. The n-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (C20:4n-3, EPA), docosahexaenoic acid (C22:6n-3, DHA) and their lipid mediators are known to have an inflammation pro-resolution effect. The effects of these n-3 PUFAs in the prevention and treatment of respiratory diseases are beginning to be understood. Consequently, this article aims to analyze the influence of n-3 PUFAs and their lipid mediators on the inflammatory response in respiratory health, emphasizing recent data concerning their beneficial effects in the prevention and possible treatment of different respiratory diseases, particularly asthma, airway allergic syndromes and chronic obstructive pulmonary disease. The review includes studies regarding the effects of EPA, DHA, and their specialized pro-resolving lipid mediators (SPMs) on in vivo and in vitro models of respiratory disease, concluding that EPA and DHA have a positive impact in attenuating the pro-inflammatory response in respiratory diseases, reducing symptoms like nasal congestion, fever and difficulty in breathing. Controversial data reported are probably due to differences in several factors, including the dosages, administration vehicles, and the supplementation times employed, which are aspects that remain to be addressed in future studies.
Collapse
Affiliation(s)
| | - Verónica Sambra
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile. .,Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
12
|
Sofyan F, Munir D, Putra IB, Wardani RS, Hadi RS, Zahara D, Sembiring RJ, Rambe AYM, Ashar T. Effect of Thymoquinone and Transforming Growth Factor-β1 on the Cell Viability of Nasal Polyp-Derived Fibroblast. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Nasal polyps are benign masses in the nasal cavity and the abnormal growth of sinonasal tissue due to a chronic inflammatory process. Many fibroblasts populate the nasal polyp stroma release cytokines such as Transforming Growth Factor (TGF) and producing a variety of cytokines resulting in inflammatory cell infiltration. Thymoquinone (TQ) is the main active component in Nigella sativa oil and has the ability to reduces cell viability in many cancer cell line.
AIM: The purpose of this study was to determine the effect of TQ and TGF-β1 on cell viability of Nasal Polyp-Derived Fibroblast.
MATERIALS AND METHODS: Nasal polyp-derived fibroblasts were isolated from nasal polyp specimen and treated with various concentrations of TQ at 1–1000 μM and TGF-β1 at 5 ng/ml to determine the cell viability using the Cell Counting Kit-8 assay after 48 h incubation.
RESULTS: TQ significantly reduced the viability of nasal polyp fibroblast cells to 72.49% at 20 μM and reduced to 5% at 50 μM until 1000 μM with IC50 at 21.93 μM. TGF-β1 at 5 ng/ml significantly reduced the viability of nasal polyp fibroblast cells to 81.96% and TGF-β1 appears to have a dual effect that depends on the concentration of TQ.
CONCLUSION: This study proved that TQ and TGF-β1 were able to reduce the viability of nasal polyp fibroblast cells.
Collapse
|
13
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
14
|
Maresin-1 and Inflammatory Disease. Int J Mol Sci 2022; 23:ijms23031367. [PMID: 35163291 PMCID: PMC8835953 DOI: 10.3390/ijms23031367] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an essential action to protect the host human body from external, harmful antigens and microorganisms. However, an excessive inflammation reaction sometimes exceeds tissue damage and can disrupt organ functions. Therefore, anti-inflammatory action and resolution mechanisms need to be clarified. Dietary foods are an essential daily lifestyle that influences various human physiological processes and pathological conditions. Especially, omega-3 fatty acids in the diet ameliorate chronic inflammatory skin diseases. Recent studies have identified that omega-3 fatty acid derivatives, such as the resolvin series, showed strong anti-inflammatory actions in various inflammatory diseases. Maresin-1 is a derivative of one of the representative omega-3 fatty acids, i.e., docosahexaenoic acid (DHA), and has shown beneficial action in inflammatory disease models. In this review, we summarize the detailed actions of maresin-1 in immune cells and inflammatory diseases.
Collapse
|
15
|
Sueda Y, Okazaki R, Funaki Y, Hasegawa Y, Ishikawa H, Hirayama Y, Inui G, Harada T, Takata M, Morita M, Yamasaki A. Specialized Pro-Resolving Mediators Do Not Inhibit the Synthesis of Inflammatory Mediators Induced by Tumor Necrosis Factor-α in Synovial Fibroblasts. Yonago Acta Med 2022; 65:111-125. [DOI: 10.33160/yam.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuriko Sueda
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Funaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Rheumatology/ Collagen Disease Medicine, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Hiroki Ishikawa
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuki Hirayama
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Genki Inui
- Respiratory Medicine, National Hospital Organization Yonago Medical Center, Yonago 683-0006, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Masato Morita
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
16
|
Rodríguez MJ, Sabaj M, Tolosa G, Herrera Vielma F, Zúñiga MJ, González DR, Zúñiga-Hernández J. Maresin-1 Prevents Liver Fibrosis by Targeting Nrf2 and NF-κB, Reducing Oxidative Stress and Inflammation. Cells 2021; 10:3406. [PMID: 34943914 PMCID: PMC8699629 DOI: 10.3390/cells10123406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a complex process characterized by the excessive accumulation of extracellular matrix (ECM) and an alteration in liver architecture, as a result of most types of chronic liver diseases such as cirrhosis, hepatocellular carcinoma (HCC) and liver failure. Maresin-1 (MaR1) is derivative of ω-3 docosahexaenoic acid (DHA), which has been shown to have pro-resolutive and anti-inflammatory effects. We tested the hypothesis that the application of MaR1 could prevent the development of fibrosis in an animal model of chronic hepatic damage. Sprague-Dawley rats were induced with liver fibrosis by injections of diethylnitrosamine (DEN) and treated with or without MaR1 for four weeks. In the MaR1-treated animals, levels of AST and ALT were normalized in comparison with DEN alone, the hepatic architecture was improved, and inflammation and necrotic areas were reduced. Cell proliferation, assessed by the mitotic activity index and the expression of Ki-67, was increased in the MaR1-treated group. MaR1 attenuated liver fibrosis and oxidative stress was induced by DEN. Plasma levels of the pro-inflammatory mediators TNF-α and IL-1β were reduced in MaR1-treated animals, whereas the levels of IL-10, an anti-inflammatory cytokine, increased. Interestingly, MaR1 inhibited the translocation of the p65 subunit of NF-κB, while increasing the activation of Nrf2, a key regulator of the antioxidant response. Finally, MaR1 treatment reduced the levels of the pro-fibrotic mediator TGF-β and its receptor, while normalizing the hepatic levels of IGF-1, a proliferative agent. Taken together, these results suggest that MaR1 improves the parameters of DEN-induced liver fibrosis, activating hepatocyte proliferation and decreasing oxidative stress and inflammation. These results open the possibility of MaR1 as a potential therapeutic agent in fibrosis and other liver pathologies.
Collapse
Affiliation(s)
- María José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Matías Sabaj
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Gerardo Tolosa
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Francisca Herrera Vielma
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - María José Zúñiga
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| |
Collapse
|
17
|
Lantz C, Becker A, Thorp EB. Can polarization of macrophage metabolism enhance cardiac regeneration? J Mol Cell Cardiol 2021; 160:87-96. [PMID: 34293342 PMCID: PMC8571050 DOI: 10.1016/j.yjmcc.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
While largely appreciated for their antimicrobial and repair functions, macrophages have emerged as indispensable for the development, homeostasis, and regeneration of tissue, including regeneration of the neonatal heart. Upon activation, mammalian neonatal macrophages express and secrete factors that coordinate angiogenesis, resolution of inflammation, and ultimately cardiomyocyte proliferation. This is contrary to adult macrophages in the adult heart, which are incapable of inducing significant levels of cardiac regeneration. The underlying mechanisms by which pro-regenerative macrophages are activated and regulated remain vague. A timely hypothesis is that macrophage metabolism contributes to this proliferative and regenerative potential. This is because we now appreciate the significant contributions of metabolites to immune cell programming and function, beyond solely bioenergetics. After birth, the metabolic milieu of the neonate is subject to significant alterations in oxygenation and nutrient supply, which will affect how metabolic substrates are catabolized. In this context, we discuss potential roles for select macrophage metabolic pathways during cardiac regeneration.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amanda Becker
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Heart Center, Stanley Manne Children's Research Institute, Chicago, IL, USA.
| |
Collapse
|
18
|
Yap JMG, Ueda T, Kanemitsu Y, Takeda N, Fukumitsu K, Fukuda S, Uemura T, Tajiri T, Ohkubo H, Maeno K, Ito Y, Oguri T, Ugawa S, Niimi A. AITC inhibits fibroblast-myofibroblast transition via TRPA1-independent MAPK and NRF2/HO-1 pathways and reverses corticosteroids insensitivity in human lung fibroblasts. Respir Res 2021; 22:51. [PMID: 33579280 PMCID: PMC7881560 DOI: 10.1186/s12931-021-01636-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background Little is known on the role of transient receptor potential ankyrin 1 (TRPA1) in fibroblast—myofibroblast transition (FMT) that can lead to airway remodeling which is a major problem for severe asthma and fibrosis. Thus, this study investigated the effect of TRPA1 modulators on transforming growth factor beta 1(TGF-β1) -treated lung fibroblasts. Methods MRC-5 cells were preincubated with TGF-β1 for 24 h. TRPA1 agonist or antagonist were added and further incubated for 24 h. The changes in TRPA1 and alpha-smooth muscle actin (α-SMA) expressions by stimuli were evaluated using qRT-PCR, western blot and immunohistochemical analyses. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni’s post hoc analysis for comparison of multiple groups and paired 2-tailed Student’s t-test between 2 groups. Results MRC-5 cells treated by TGF-β1 significantly upregulated α-SMA mRNA expressions (P < 0.01), but downregulated TRPA1 gene expression (P < 0.001). Post-treatment of TRPA1 activator, allyl isothiocyanate (AITC), after TGF-β1 significantly downregulated the α-SMA gene induction (P < 0.01 at 24 h), protein expression (P < 0.05) and immunoreactivity with stress fibers (P < 0.05). On the other hand, TRPA1 antagonist HC-030031 did not prevent this effect, and instead tended to facilitate the suppressive effect of AITC when co-stimulated. AITC significantly increased phosphorylated- extracellular signal-regulated kinase (ERK) 1/2 and heme oxygenase (HO)-1 protein expressions (P < 0.05) in TGF-β1-treated cells. Combined inhibition with ERK1/2 mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor (NRF2) almost completely reversed AITC-induced α-SMA suppression (P < 0.05). Dexamethasone was not able to inhibit the upregulated α-SMA induction by TGF-β1. However, AITC improved dexamethasone-insensitive myodifferentiation in the presence of the corticosteroid (P < 0.01). Conclusion We found that AITC exerts protective effect on TGF-β1-induced α-SMA induction by activating ERK1/2 MAPK and NRF2/HO-1 pathways in lung fibroblasts. It also overcomes corticosteroids insensitivity in TGF-β1-induced α-SMA induction. TRPA1 antagonist modulates the suppressive effect, but not prevent it. AITC and TRPA1 antagonist may be therapeutic agents in treating chronic respiratory diseases.
Collapse
Affiliation(s)
- Jennifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Testsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
19
|
Andugulapati SB, Gourishetti K, Tirunavalli SK, Shaikh TB, Sistla R. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153298. [PMID: 32781391 PMCID: PMC7395646 DOI: 10.1016/j.phymed.2020.153298] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is a progressive inflammatory disorder driven by a fibrotic cascade of events such as epithelial to mesenchymal transition, extracellular matrix production and collagen formation in the lungs in a sequential manner. IPF incidences were raising rapidly across the world. FDA approved pirfenidone and nintedanib (tyrosine kinase inhibitors) are being used as a first-line treatment drugs for IPF, however, neither the quality of life nor survival rates have been improved because of patient noncompliance due to multiple side effects. Thus, the development of novel therapeutic approaches targeting TGF-β mediated cascade of fibrotic events is urgently needed to improve the survival of the patients suffering from devastating disease. PURPOSE The aim of this study was to investigate and validate the anti-fibrotic properties of Biochanin-A (isoflavone) against TGF-β mediated fibrosis in in vitro, ex vivo, in vivo models and to determine the molecular mechanisms that mediate these anti-fibrotic effects. METHODS The therapeutic activity of BCA was determined in in vitro/ex vivo models. Cells were pre-treated with BCA and incubated in presence or absence of recombinant-TGF-β to stimulate the fibrotic cascade of events. Pulmonary fibrosis was developed by intratracheal administration of bleomycin in rats. BCA treatment was given for 14 days from post bleomycin instillation and then various investigations (collagen content, fibrosis gene/protein expression and histopathological changes) were performed to assess the anti-fibrotic activity of BCA. RESULTS In vitro/ex vivo (Primary normal, IPF cell line and primary IPF cells/ Precision cut mouse lung slices) experiments revealed that, BCA treatment significantly (p < 0.001) reduced the expression of TGF-β modulated fibrotic genes/protein expressions (including their functions) which are involved in the cascade of fibrotic events. BCA treatment significantly (p < 0.01) reduced the bleomycin-induced inflammatory cell-infiltration, inflammatory markers expression, collagen deposition and expression of fibrotic markers in lung tissues equivalent or better than pirfenidone treatment. In addition, BCA treatment significantly (p < 0.001) attenuated the TGF-β1/BLM-mediated increase of TGF-β/Smad2/3 phosphorylation and resulted in the reduction of pathological abnormalities in lung tissues determined by histopathology observations. CONCLUSION Collectively, BCA treatment demonstrated the remarkable therapeutic effects on TGF-β/BLM mediated pulmonary fibrosis using IPF cells and rodent models. This current study may offer a novel treatment approach to halt and may be even rescue the devastating lung scarring of IPF.
Collapse
Affiliation(s)
- Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Karthik Gourishetti
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Satya Krishna Tirunavalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Taslim Babru Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India.
| |
Collapse
|
20
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
21
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
22
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
23
|
Tang W, Zhang Y, Tang L, Zhang J, Xiong L, Wang B. Inhibitory effect of tranilast on the myofibroblast differentiation of rat mesenchymal stem cells induced by transforming growth factor‑β1 in vitro. Mol Med Rep 2018; 18:5693-5700. [PMID: 30365138 DOI: 10.3892/mmr.2018.9588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/12/2018] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is able to attenuate organ fibrosis; however, increasing evidence has indicated that MSCs may be an important cell source of myofibroblasts, which are vital pathogenic cells in fibrotic diseases. The results of the present study revealed that co‑culturing with exogenous transforming growth factor (TGF)‑β1 can induce the transdifferentiation of cultured rat MSCs into myofibroblasts in vitro. Treatment of the MSCs with tranilast [N‑(3',4'‑dimethoxycinnamoyl)‑anthranilic acid] attenuated this fibrotic process. Immunocytochemical staining, western blot analysis, reverse transcription‑quantitative polymerase chain reaction analysis and cell viability assays were performed in order to evaluate the molecular mechanisms underlying the effects of tranilast on TGF‑β1‑mediated MSC‑to‑myofibroblast activation. The results demonstrated that TGF‑β1 upregulated the expression of α‑smooth muscle actin (α‑SMA) and collagen type I, and increased the phosphorylation of mothers against decapentaplegic homolog 3 (Smad3) and extracellular signal‑regulated kinase 1/2 (ERK1/2) in the rat MSCs; by contrast, tranilast pretreatment downregulated their expression. Furthermore, the proliferation of MSCs induced by TGF‑β1 was decreased by pretreatment with tranilast. In conclusion, the results of the present study demonstrated that tranilast treatment markedly suppressed the TGF‑β1‑induced differentiation of cultured rat MSCs into myofibroblasts, potentially by inhibiting the Smad3 and ERK1/2 signaling pathways. Therefore, this may be a potential antifibrotic therapeutic strategy, serving as an adjuvant treatment following transplantation of MSCs.
Collapse
Affiliation(s)
- Wenxian Tang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yuejuan Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Lin Tang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jun Zhang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Lei Xiong
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Baohe Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
24
|
Doyle R, Sadlier DM, Godson C. Pro-resolving lipid mediators: Agents of anti-ageing? Semin Immunol 2018; 40:36-48. [PMID: 30293857 DOI: 10.1016/j.smim.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential response to injury and its timely and adequate resolution permits tissue repair and avoidance of chronic inflammation. Ageing is associated with increased inflammation, sub-optimal resolution and these act as drivers for a number of ageing-associated pathologies. We describe the role played by specialised proresolving lipid mediators (SPMs) in the resolution of inflammation and how insufficient levels of these mediators, or compromised responsiveness may play a role in the pathogenesis of many ageing-associated pathologies, e.g. Alzheimer's Disease, atherosclerosis, obesity, diabetes and kidney disease. Detailed examination of the resolution phase of inflammation highlights the potential to harness these lipid mediators and or mimetics of their bioactions, in particular, their synthetic analogues to promote effective resolution of inflammation, without compromising the host immune system.
Collapse
Affiliation(s)
- Ross Doyle
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Mater Misericordiae University Hospital, Eccles St., Inns Quay, Dublin 7, Ireland.
| | - Denise M Sadlier
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Mater Misericordiae University Hospital, Eccles St., Inns Quay, Dublin 7, Ireland
| | - Catherine Godson
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|