1
|
Darvishi S, Hosseinzadeh H, Kazeminava F, Mahoutforoush A, Tajik M, Rasoulzadehzali M, Mohammadi R, Sadjadi S, Javanbakht S. Heparin-functionalized Cu-based metal-organic framework: An efficient active and passive targeting nanocarrier for anticancer doxorubicin drug delivery. Int J Biol Macromol 2024; 282:136648. [PMID: 39437945 DOI: 10.1016/j.ijbiomac.2024.136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
In this study, by innovative combining the unique characteristics of Cu-based metal-organic framework (MOF) with the versatile attributes of saccharides (i.e., heparin, Hep), a promising approach is established for active and passive targeting DDS, Cu-MOF/Hep, with a pH-controlled release profile and enhanced drug efficacy. The characterization of the synthesized materials (i.e., FT-IR, XRD, SEM, EDX, TEM, DLS, and TGA) confirms the successful synthesis of Cu-MOF/Hep. In vitro studies concerning the loading and release of DOX observed that a higher amount of DOX was released at pH 5 (>90 % on 96 h, 41 °C) compared to pH 7.4 (<10 % on 96 h, 37 °C). The sensitive feature of the used MOF to the pH conditions increased the drug release in environmental conditions similar to cancer tissues. Furthermore, cytotoxicity assessments indicated notable cytotoxicity effects of DOX-loaded Cu-MOF/Hep on MCF-7 cells (IC50: ∼10 μg/mL in 48 h) with a significant apoptosis rate. The existence of CD44 receptors on the surfaces of cells underscores the significance of Hep-modified systems in facilitating the apoptosis of cancerous cells. The results suggest that the combined Cu-MOF and Hep have the potential to be a viable option for creating platforms that deliver anticancer treatments.
Collapse
Affiliation(s)
- Sima Darvishi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Hossein Hosseinzadeh
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mahoutforoush
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Tajik
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | | | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Samaheh Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Siamak Javanbakht
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Kazeminava F, Javanbakht S, Latifi Z, Rasoulzadehzali M, Abbaszadeh M, Alimohammadzadeh B, Mahdipour M, Fattahi A, Hamishehkar H, Adibag Z, Nouri M. Ultrasound-assisted encapsulating folic acid-based carbon quantum dots within breast cancer cell-derived exosomes as a co-receptors-mediated anticancer nanocarrier for enhanced breast cancer therapy. Sci Rep 2024; 14:16941. [PMID: 39043763 PMCID: PMC11266556 DOI: 10.1038/s41598-024-67934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
The nonspecific nature of cancer drug delivery often results in substantial toxic side effects during treatments for breast cancer. To mitigate these negative outcomes, our approach involves loading methotrexate (MTX) within carbon quantum dots (CQDs) synthesized from folic acid, which are then enveloped in exosomal membranes obtained from breast cancer cells (Ex@MTX-CQDs). Analysis utilizing nanoparticle tracking techniques has demonstrated that these Ex@MTX-CQDs maintain the physical and biochemical properties of their exosomal precursors. The release profile of MTX indicated a restricted release percentage (less than 10%) under normal physiological conditions, which is contrasted by a more consistent release rate (approximately 65%) when emulating the conditions found within tumor tissues. The toxicological assessments have confirmed that the presence of exosomes combined with leftover folic acid significantly improves the delivery efficacy of MTX directly to the cancerous cells through the binding to folate and heparan sulfate proteoglycan receptors. This process results in increased disruption of the mitochondrial membrane potential and subsequently triggers apoptosis, ultimately leading to the destruction of cancerous cells. Our research could potentially contribute to the further innovation and application of nanocarriers derived from biological sources for the targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siamak Javanbakht
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mahmoud Abbaszadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Adibag
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Liu F, Li Y, Wei Q, Liu J. Degradable bifunctional phototherapy composites based on upconversion nanoparticle-metal phenolic network for multimodal tumor therapy in the near-infrared biowindow. J Colloid Interface Sci 2024; 663:436-448. [PMID: 38417295 DOI: 10.1016/j.jcis.2024.02.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Phototherapy has garnered increasing attention as it allows for precise treatment of tumor sites with its accurate spatiotemporal control. In this study, we have successfully synthesized degradable bifunctional phototherapy agents (UCNPs@mSiO2@MPN-MC540/DOX) based on upconversion nanoparticle (UCNPs) and metal phenolic network (MPN), serving as a novel nanoplatform for multimodal tumor treatment in the near-infrared (NIR) biological window. To address the issue of low light penetration depth, the UCNPs we synthesized exhibited efficient light conversion ability under 808 nm laser irradiation to activate the photosensitizer Merocyanine 540 (MC540) for photodynamic therapy. Simultaneously, the 808 nm NIR light can also excite the MPN layer to achieve photothermal therapy for tumors. Additionally, the MPN layer possesses the capability of self-degradation under weakly acidic conditions. Within the tumor microenvironment, the MPN layer gradually degrades, facilitating the controlled release of the chemotherapy drug doxorubicin (DOX), thus achieving pH-responsive drug release and reducing the side effects of chemotherapy. This study provides an example of NIR-excited multimodal tumor treatment and pH-responsive drug release, offering a therapy model for precise tumor therapy.
Collapse
Affiliation(s)
- Fangfang Liu
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Shouguang, Weifang, China, 262700.
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444
| | - Qin Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| |
Collapse
|
4
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Wang S, Qi G, Zhang Z, Yin Q, Li N, Li Z, Shi G, Hu H, Hao L. cRGD-Conjugated GdIO Nanoclusters for the Theranostics of Pancreatic Cancer through the Combination of T 1-T 2 Dual-Modal MRI and DTX Delivery. Molecules 2023; 28:6134. [PMID: 37630386 PMCID: PMC10459307 DOI: 10.3390/molecules28166134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Clinically, magnetic resonance imaging (MRI) often uses contrast agents (CAs) to improve image contrast, but single-signal MRI CAs are often susceptible to calcification, hemorrhage, and magnetic sensitivity. Herein, iron acetylacetone and gadolinium acetylacetone were used as raw materials to synthesize a T1-T2 dual-mode imaging gadolinium-doped iron oxide (GdIO) nanocluster. Moreover, to endow the nanoclusters with targeting properties and achieve antitumor effects, the cyclic Arg-Gly-Asp (cRGD) peptide and docetaxel (DTX) were attached to the nanocluster surface, and the efficacy of the decorated nanoclusters against pancreatic cancer was evaluated. The final synthesized material cRGD-GdIO-DTX actively targeted αvβ3 on the surface of Panc-1 pancreatic cancer cells. Compared with conventional passive targeting, the enrichment of cRGD-GdIO-DTX in tumor tissues improved, and the diagnostic accuracy was significantly enhanced. Moreover, the acidic tumor microenvironment triggered the release of DTX from cRGD-GdIO-DTX, thus achieving tumor treatment. The inhibition of the proliferation of SW1990 and Panc-1 pancreatic cancer cells by cRGD-GdIO-DTX was much stronger than that by the untargeted GdIO-DTX and free DTX in vitro. In addition, in a human pancreatic cancer xenograft model, cRGD-GdIO-DTX considerably slowed tumor development and demonstrated excellent magnetic resonance enhancement. Our results suggest that cRGD-GdIO-DTX has potential applications for the precise diagnosis and efficient treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shengchao Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China; (S.W.)
| | - Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China; (S.W.)
| | - Zhichen Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China; (S.W.)
| | - Qiangqiang Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China; (S.W.)
| | - Na Li
- Department of Imaging Medicine and Nuclear Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154002, China
| | - Zhongtao Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China; (S.W.)
| | - Guangyue Shi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China; (S.W.)
| | - Haifeng Hu
- Medical Imaging Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China; (S.W.)
| |
Collapse
|
6
|
Farhan M. Insights on the Role of Polyphenols in Combating Cancer Drug Resistance. Biomedicines 2023; 11:1709. [PMID: 37371804 PMCID: PMC10296548 DOI: 10.3390/biomedicines11061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chemotherapy resistance is still a serious problem in the treatment of most cancers. Many cellular and molecular mechanisms contribute to both inherent and acquired drug resistance. They include the use of unaffected growth-signaling pathways, changes in the tumor microenvironment, and the active transport of medicines out of the cell. The antioxidant capacity of polyphenols and their potential to inhibit the activation of procarcinogens, cancer cell proliferation, metastasis, and angiogenesis, as well as to promote the inhibition or downregulation of active drug efflux transporters, have been linked to a reduced risk of cancer in epidemiological studies. Polyphenols also have the ability to alter immunological responses and inflammatory cascades, as well as trigger apoptosis in cancer cells. The discovery of the relationship between abnormal growth signaling and metabolic dysfunction in cancer cells highlights the importance of further investigating the effects of dietary polyphenols, including their ability to boost the efficacy of chemotherapy and avoid multidrug resistance (MDR). Here, it is summarized what is known regarding the effectiveness of natural polyphenolic compounds in counteracting the resistance that might develop to cancer drugs as a result of a variety of different mechanisms.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Tian Y, Ma B, Yu S, Li Y, Pei H, Tian S, Zhao X, Liu C, Zuo Z, Wang Z. Clinical antitumor application and pharmacological mechanisms of Dahuang Zhechong Pill. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
8
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
9
|
Zhang X, Li N, Zhang G, Li J, Liu Y, Wang M, Ren X. Nano Strategies for Artemisinin Derivatives to Enhance Reverse Efficiency of Multidrug Resistance in Breast Cancer. Curr Pharm Des 2023; 29:3458-3466. [PMID: 38270162 DOI: 10.2174/0113816128282248231205105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Artemisinin (ART) has been found to exert anti-tumor activity by regulating the cell cycle, inducing apoptosis, inhibiting angiogenesis and tumor invasion and metastasis. Its derivatives (ARTs) can regulate the expression of drug-resistant proteins and reverse the multidrug resistance (MDR) of tumor cells by inhibiting intracellular drug efflux, inducing apoptosis and autophagy of tumor cells, thus enhancing the sensitivity of tumor cells to chemotherapy and radiotherapy. Recent studies have shown that nanodrugs play an important role in the diagnosis and treatment of cancer, which can effectively solve the shortcomings of poor hydrophilicity and low bioavailability of ARTs in the human body, prolong the in vivo circulation time, improve the targeting of drugs (including tumor tissues or specific organelles), and control the release of drugs in target tissues, thereby reducing the side effect. This review systematically summarized the latest research progress of nano-strategies of ARTs to enhance the efficiency of MDR reversal in breast cancer (BC) from the following two aspects: (1) Chemicals encapsulated in nanomaterials based on innovative anti-proliferation mechanism: non-ABC transporter receptor candidate related to ferroptosis (dihydroartemisinin/DHA analogs). (2) Combination therapy strategy of nanomedicine (drug-drug combination therapy, drug-gene combination, and chemical-physical therapy). Self-assembled nano-delivery systems enhance therapeutic efficacy through increased drug loading, rapid reactive release, optimized delivery sequence, and realization of cascade-increasing effects. New nanotechnology methods must be designed for specific delivery routines to achieve targeting administration and overcome MDR without affecting normal cells. The significance of this review is to expect that ART and ARTs can be widely used in clinical practice. In the future, nanotechnology can help people to treat multidrug resistance of breast cancer more accurately and efficiently.
Collapse
Affiliation(s)
- Xueyan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guoqin Zhang
- Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiayang Li
- Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Haihe Laboratory of Modern Chinese Medicine, Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
10
|
Qian X, Xia C, Chen X, Li Q, Li D. Self-assembled amphiphilic copolymers-doxorubicin conjugated nanoparticles for gastric cancer therapy with low in vivo toxicity and high efficacy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2202-2219. [PMID: 35924948 DOI: 10.1080/09205063.2022.2100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amphiphilic copolymers have long been utilized to turn hydrophobic anticancer drugs into nanoparticles administered to patients with cancer. A lack of stability in these monotherapies may be blamed for their poor clinical results in patients with cancer. We propose novel nanotherapies based on polymeric small prodrugs that preserve pharmacologic effectiveness while significantly reducing the toxicity of the fabricated drugs in animals to overcome this problem. Doxorubicin is attached to the end of the PLA fragments through a hydrolyzable ester bond utilizing methoxypolyethylene glycol-block-poly(d, l-lactic acid) (mPEG-PCL(2K)) with conjugates to mimic the self-assembly of colloidal nanotherapies. In a gastric cancer xenograft model, this nanotherapy displays a long-lasting suppression of tumor growth once a reasonable dosage is administered. Our findings imply that a toxic chemical and hydrophobic can be converted into therapeutic effective self-delivery nanotreatment.
Collapse
Affiliation(s)
- Xiaoqi Qian
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Chenmei Xia
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Xia Chen
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Qianqian Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Dong Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
11
|
Al-Mutairi AA, Alkhatib MH. Antitumor Effects of a Solid Lipid Nanoparticle Loaded with Gemcitabine and Oxaliplatin on the Viability, Apoptosis, Autophagy and Hsp90 of Ovarian Cancer Cells. J Microencapsul 2022; 39:467-480. [PMID: 35916335 DOI: 10.1080/02652048.2022.2109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Aim: The present study aimed to explore the sensitizing capability of the anticancer agents, gemcitabine (GEM) and oxaliplatin (OXA), encapsulated in a novel SLN (GEM:OXA-SLN) against the ovarian cancer cell lines. METHODS A novel SLN, prepared using hot homogenization by mixing phosphatidylcholine, cholesterol, tween 80 and oleic acid, was characterized using Transmission Electron Microscope and zetasizer. The anticancer activities and the underlying molecular mechanisms of GEM:OXA-SLN were investigated. RESULTS The average z-diameter of the homogeneous spherical GEM:OXA-SLN was (70.33 ± 0.70) nm with zeta potential (-7.69 ± 0.61) mV. GEM:OXA-SLN significantly inhibited the viability of ovarian cancer cells in a dose-dependent manner within 24 h. It also triggered the induction of autophagy cellular death, suppression of multidrug resistance efflux pump and inhibition of heat shock protein (Hsp90). CONCLUSION The encapsulation of GEM and OXA in SLN improved the efficacy of the drugs and diminished the ovarian cancer cell's resistance.
Collapse
Affiliation(s)
- Ashwaq A Al-Mutairi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mayson H Alkhatib
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
12
|
Atmaca H, Oguz F, Ilhan S. Drug delivery systems for cancer treatment: a review of marine-derived polysaccharides. Curr Pharm Des 2022; 28:1031-1045. [DOI: 10.2174/1381612828666220211153931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is a disease characterized by uncontrolled cell proliferation and the spread of cells to other tissues and remains one of the worldwide problems waiting to be solved. There are various treatment strategies for cancer, such as chemotherapy, surgery, radiotherapy, and immunotherapy, although it varies according to its type and stage. Many chemotherapeutic agents have limited clinical use due to lack of efficacy, off-target toxicity, metabolic instability, or poor pharmacokinetics. One possible solution to this high rate of clinical failure is to design drug delivery systems that deliver drugs in a controlled and specific manner and are not toxic to normal cells.
Marine systems contain biodiversity, including components and materials that can be used in biomedical applications and therapy. Biomaterials such as chitin, chitosan, alginate, carrageenan, fucoidan, hyaluronan, agarose, and ulvan obtained from marine organisms have found use in DDSs today. These polysaccharides are biocompatible, non-toxic, biodegradable, and cost-effective, making them ideal raw materials for increasingly complex DDSs with a potentially regulated release. In this review, the contributions of polysaccharides from the marine environment to the development of anticancer drugs in DDSs will be discussed.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Ferdi Oguz
- Department of Biology, The Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| |
Collapse
|
13
|
Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Xu Q, Li Q, Yang Z, Huang P, Hu H, Mo Z, Qin Z, Xu Z, Chen T, Yang S. Lenvatinib and Cu 2-xS nanocrystals co-encapsulated in poly(D,L-lactide- co-glycolide) for synergistic chemo-photothermal therapy against advanced hepatocellular carcinoma. J Mater Chem B 2021; 9:9908-9922. [PMID: 34842266 DOI: 10.1039/d1tb01808f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lenvatinib (LT) is gradually replacing sorafenib as an alternative targeted drug against advanced hepatocellular carcinoma (HCC). However, the anticancer effects of LT are still limited because of its low cytotoxicity, multidrug resistance (MDR), and tumor relapse. Herein, we constructed a smart biophotonic nanoplatform to overcome the barriers preventing high performance. LT and copper sulfide nanocrystals (Cu2-xS NCs) with excellent photothermal properties in the near-infrared-II (NIR-II) zone were co-encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) through nanoprecipitation. Both in vitro and in vivo evaluations demonstrated that Cu2-xS NCs enhanced the anticancer efficacy of LT, without recurrence. In addition, the presence of copper ions could allow glutathione (GHS) to be consumed and oxygen to be produced, likely suppressing the expression of P-glycoprotein (P-gp) and overcoming the issue of MDR relating to LT. More importantly, synergistic chemo-photothermal therapy with LT and Cu2-xS NCs was more effective than any single therapy or theoretical combination. This nanoplatform is promising for advancing future LT-based treatment strategies for HCC therapy.
Collapse
Affiliation(s)
- Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Qiuting Li
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Piao Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zizhen Qin
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
16
|
Beyaz H, Uludag H, Kavaz D, Rizaner N. Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:163-181. [PMID: 34287795 DOI: 10.1007/5584_2021_648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Breast cancer is the leading cancer type diagnosed among women in the world. Unfortunately, drug resistance to current breast cancer chemotherapeutics remains the main challenge for a higher survival rate. The recent progress in the nanoparticle platforms and distinct features of nanoparticles that enhance the efficacy of therapeutic agents, such as improved delivery efficacy, increased intracellular cytotoxicity, and reduced side effects, hold great promise to overcome the observed drug resistance. Currently, multifaceted investigations are probing the resistance mechanisms associated with clinical drugs, and identifying new breast cancer-associated molecular targets that may lead to improved therapeutic approaches with the nanoparticle platforms. Nanoparticle platforms including siRNA, antibody-specific targeting and the role of nanoparticles in cellular processes and their effect on breast cancer were discussed in this article.
Collapse
Affiliation(s)
- Huseyin Beyaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey.
| | - Hasan Uludag
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Doga Kavaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
- Biotechnology Research Center, Cyprus International University, Nicosia, Turkey
| | - Nahit Rizaner
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
- Biotechnology Research Center, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
17
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
18
|
Drača D, Edeler D, Saoud M, Dojčinović B, Dunđerović D, Đmura G, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN. Antitumor potential of cisplatin loaded into SBA-15 mesoporous silica nanoparticles against B16F1 melanoma cells: in vitro and in vivo studies. J Inorg Biochem 2021; 217:111383. [PMID: 33582397 DOI: 10.1016/j.jinorgbio.2021.111383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
CP (cisplatin) and mesoporous silica SBA-15 (Santa Barbara amorphous 15) loaded with CP (→SBA-15|CP) were tested in vitro and in vivo against low metastatic mouse melanoma B16F1 cell line. SBA-15 only, as drug carrier, is found to be not active, while CP and SBA-15|CP revealed high cytotoxicity in lower μM range. The activity of SBA-15|CP was found similar to the activity of CP alone. Both CP and SBA-15|CP induced inhibition of cell proliferation (carboxyfluorescein succinimidyl ester - CFSE assay) along with G2/M arrest (4',6-diamidino-2-phenylindole - DAPI assay). Apoptosis (Annexin V/ propidium iodide - PI assay), through caspase activation (apostat assay) and nitric oxide (NO) production (diacetate(4-amino-5-methylamino-2',7'-difluorofluorescein-diacetat) - DAF FM assay), was identified as main mode of cell death. However, slight elevated autophagy (acridine orange - AO assay) was detected in treated B16F1 cells. CP and SBA-15|CP did not affect production of ROS (reactive oxygen species) in B16F1 cells. Both SBA-15|CP and CP induced in B16F1 G2 arrest and subsequent senescence. SBA-15|CP, but not CP, blocked the growth of melanoma in C57BL/6 mice. Moreover, hepato- and nephrotoxicity in SBA-15|CP treated animals were diminished in comparison to CP confirming multiply improved antitumor potential of immobilized CP. Outstandingly, SBA-15 boosted in vivo activity and diminished side effects of CP.
Collapse
Affiliation(s)
- Dijana Drača
- Department of Immunology, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - David Edeler
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany
| | - Biljana Dojčinović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, dr Subotića 1, 11000 Belgrade, Serbia
| | - Goran Đmura
- Animal Facility, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany; Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany.
| |
Collapse
|
19
|
Yadav P, Mishra H, Nagpal M, Aggarwal G. Expanding Opportunities in Treatment of Leukemia by Solid Lipid Nanoparticles. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201001155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Leukemia is a severe type of blood cancer that involves an abnormal proliferation
of blood-forming cells. Its conventional treatment faces many challenges, including resistance,
lack of specificity and high unwanted toxicity of drugs. Nano drug delivery systems help in
overcoming these challenges by delivering the drug to the target site actively or passively. Solid
lipid nanoparticles are gaining popularity because they reduce unwanted toxicity, are biocompatible,
increase bioavailability and are versatile in terms of incorporated agents (hydrophilic as well as
lipophilic drugs, genes, enzymes, etc.).
Purpose:
The aim of this review is to discuss recent advancements in anti-leukemic therapy utilizing
solid lipid nanoparticles (SLNs) as successful carriers in enhancing the efficiency of the treatment
and bioavailability of the incorporated drug along with overcoming multidrug resistance.
Methods:
This review represents the existing literature on the applications of SLNs in anti-leukemic
therapy. A qualitative literature review has been performed for this purpose. We performed keyword
research in popular databases such as Google Scholar, Wiley, Elsevier, Scopus, Google patent
and PubMed. Only articles published in English and from reputed journals from specific fields were
considered. Benchmark studies having major importance from 2000 to 2020 were selected to follow
the progress in the field across the globe.
Results:
This article improves the understanding of the role of SLNs in the treatment of leukemia.
Traditional anti-leukemic therapy involves many challenges, including resistance, lack of specificity
and high unwanted toxicity of drugs. SLNs are emerging as a better alternative to conventional
delivery systems as they can reduce unwanted toxicity, are biocompatible, and can provide active as
well as passive molecular targeting.
Conclusion:
SLNs provide several advantages in drug delivery for leukemia, including enhancement
of efficiency and bioavailability and reduction of toxicity by virtue of their small size, lipid
core, non-dependency on organic solvents and versatility in terms of incorporated drugs.
Collapse
Affiliation(s)
- Prarthna Yadav
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi,India
| | - Harshita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi,India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab,India
| | - Geeta Aggarwal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi,India
| |
Collapse
|
20
|
Martinelli C, Biglietti M. Nanotechnological approaches for counteracting multidrug resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:1003-1020. [PMID: 35582219 PMCID: PMC8992571 DOI: 10.20517/cdr.2020.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
Every year, cancer accounts for a vast portion of deaths worldwide. Established clinical protocols are based on chemotherapy, which, however, is not tumor-selective and produces a series of unbearable side effects in healthy tissues. As a consequence, multidrug resistance (MDR) can arise causing metastatic progression and disease relapse. Combination therapy has demonstrated limited responses in the treatment of MDR, mainly due to the different pharmacokinetic properties of administered drugs and to tumor heterogeneity, challenges that still need to be solved in a significant percentage of cancer patients. In this perspective, we briefly discuss the most relevant MDR mechanisms leading to therapy failure and we report the most advanced strategies adopted in the nanomedicine field for the design and evaluation of ad hoc nanocarriers. We present some emerging classes of nanocarriers developed to reverse MDR and discuss recent progress evidencing their limits and promises.
Collapse
|
21
|
Javanbakht S, Saboury A, Shaabani A, Mohammadi R, Ghorbani M. Doxorubicin Imprinted Photoluminescent Polymer as a pH-Responsive Nanocarrier. ACS APPLIED BIO MATERIALS 2020; 3:4168-4178. [DOI: 10.1021/acsabm.0c00254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O.
Box 19396-4716, Tehran 55555, Iran
| | - Ayda Saboury
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O.
Box 19396-4716, Tehran 55555, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666, Iran
| |
Collapse
|
22
|
Fraix A, Conte C, Gazzano E, Riganti C, Quaglia F, Sortino S. Overcoming Doxorubicin Resistance with Lipid-Polymer Hybrid Nanoparticles Photoreleasing Nitric Oxide. Mol Pharm 2020; 17:2135-2144. [PMID: 32286080 DOI: 10.1021/acs.molpharmaceut.0c00290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report on tailored lipid-polymer hybrid nanoparticles (NPs) delivering nitric oxide (NO) under the control of visible light as a tool for overcoming doxorubicin (DOX) resistance. The NPs consist of a polymeric core and a coating. They are appropriately designed to entrap DOX in the poly(lactide-co-glycolide) core and a NO photodonor (NOPD) in the phospholipid shell to avoid their mutual interaction both in the ground and excited states. The characteristic red fluorescence of DOX, useful for its tracking in cells, is well preserved upon incorporation within the NPs, even in the copresence of NOPD. The NP scaffold enhances the NO photoreleasing efficiency of the entrapped NOPD when compared with that of the free compound, and the copresence of DOX does not significantly affect such enhanced photochemical performance. Besides, the delivery of DOX and NOPD from NPs is also not mutually influenced. Experiments carried out in M14 DOX-resistant melanoma cells demonstrate that NO release from the multicargo NPs can be finely regulated by excitation with visible light, at a concentration level below the cytotoxic doses but sufficient enough to inhibit the efflux transporters mostly responsible for DOX cellular extrusion. This results in increased cellular retention of DOX with consequent enhancement of its antitumor activity. This approach, in principle, is not dependent on the type of chemotherapeutic used and may pave the way for new treatment modalities based on the photoregulated release of NO to overcome the multidrug resistance phenomenon and improve cancer chemotherapies.
Collapse
Affiliation(s)
- Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | - Elena Gazzano
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | - Chiara Riganti
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
23
|
Yang Z, Guo Q, Cai Y, Zhu X, Zhu C, Li Y, Li B. Poly(ethylene glycol)-sheddable reduction-sensitive polyurethane micelles for triggered intracellular drug delivery for osteosarcoma treatment. J Orthop Translat 2020; 21:57-65. [PMID: 32099805 PMCID: PMC7029171 DOI: 10.1016/j.jot.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The survival rate of osteosarcoma therapy still lags behind overall cancer therapies due to the intrinsic or acquired drug resistance. Developing novel drug delivery systems that may overcome drug resistance would greatly facilitate osteosarcoma therapy. METHODS Poly(ethylene glycol) (PEG)-sheddable reduction-sensitive polyurethane (SS-PU-SS-PEG) was synthesized using a disulfide-containing polycaprolactone diol as the hydrophobic block and a cystamine-functionalized PEG as the hydrophilic block. SS-PU-SS-PEG micelles were then prepared to load the anti-tumor drug Doxorubicin (DOX) in order to achieve triggered intracellular drug delivery to improve the efficacy of osteosarcoma therapy. RESULTS When DOX was used as a model drug, the drug-loaded SS-PU-SS-PEG micelles were about 82∼94 nm in diameter and exhibited good stability in phosphate buffer saline (PBS). The micelles could release about 80% DOX in a quantitative fashion within 5 hours under a reductive environment. The intracellular drug release of DOX-loaded SS-PU-SS-PEG micelles increased upon incubation with Saos-2 cells in vitro. The micelles had good biocompatibility. In vitro, DOX-loaded SS-PU-SS-PEG micelles showed significant antitumor activity toward Saos-2 cells, which was close to that of free DOX. In vivo, DOX-loaded SS-PU-SS-PEG micelles exhibited better antitumor activity than free DOX. CONCLUSION Findings from this study suggest that the SS-PU-SS-PEG micelles could achieve well-controlled triggered drug release in a reduction environment and could therefore improve the antitumor efficacy of osteosarcoma therapies. TRANSLATION POTENTIAL OF THIS ARTICLE In this study we developed PEG-sheddable reduction-sensitive polyurethane micelles (SS-PU-SS-PEG), which were able to achieve well-controlled triggered release of anti-tumor drug Doxorubicin (DOX) in an intracellular reduction environment. DOX-loaded SS-PU-SS-PEG micelles markedly improved the antitumor efficacy in a Saos-2 cells-bearing xenograft tumor model. Therefore, such micelles might be used as a novel drug delivery system for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhengjie Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, Wuxi No.2 People's Hospital, Nanjing Medical University, Wuxi, China
| | - Qianping Guo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Yan Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Xuesong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Yuling Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Bin Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Niemelä E, Desai D, Niemi R, Doroszko M, Özliseli E, Kemppainen K, Rahman NA, Sahlgren C, Törnquist K, Eriksson JE, Rosenholm JM. Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. Eur J Pharm Biopharm 2020; 148:1-9. [PMID: 31917332 DOI: 10.1016/j.ejpb.2019.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
Metastatic tumors are the main cause of cancer-related death, as the invading cancer cells disrupt normal functions of distant organs and are nearly impossible to eradicate by traditional cancer therapeutics. This is of special concern when the cancer has created multiple metastases and extensive surgery would be too dangerous to execute. Therefore, combination chemotherapy is often the selected treatment form. However, drug cocktails often have severe adverse effects on healthy cells, whereby the development of targeted drug delivery could minimize side-effects of drugs and increase the efficacy of the combination therapy. In this study, we utilized the folate antagonist methotrexate (MTX) as targeting ligand conjugated onto mesoporous silica nanoparticles (MSNs) for selective eradication of folate receptor-expressing invasive thyroid cancer cells. The MSNs was subsequently loaded with the drug fingolimod (FTY720), which has previously been shown to efficiently inhibit proliferation and invasion of aggressive thyroid cancer cells. To assess the efficiency of our carrier system, comprehensive in vitro methods were employed; including flow cytometry, confocal microscopy, viability assays, invasion assay, and label-free imaging techniques. The in vitro results show that MTX-conjugated and FTY720-loaded MSNs potently attenuated both the proliferation and invasion of the cancerous thyroid cells while keeping the off-target effects in normal thyroid cells reasonably low. For a more physiologically relevant in vivo approach we utilized the chick chorioallantoic membrane (CAM) assay, showing decreased invasive behavior of the thyroid derived xenografts and an increased necrotic phenotype compared to tumors that received the free drug cocktail. Thus, the developed multidrug-loaded MSNs effectively induced apoptosis and immobilization of invasive thyroid cancer cells, and could potentially be used as a carrier system for targeted drug delivery for the treatment of diverse forms of aggressive cancers that expresses folate receptors.
Collapse
Affiliation(s)
- E Niemelä
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - D Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - R Niemi
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - M Doroszko
- Institute of Biomedicine, University of Turku, Finland; Department of Immunology, Genetics and Pathology, Section for Neuro-oncology, Uppsala University, Sweden
| | - E Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - K Kemppainen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - N A Rahman
- Institute of Biomedicine, University of Turku, Finland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - C Sahlgren
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - K Törnquist
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - J E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| | - J M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
25
|
Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Mackhraj I, Govender T. pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Mol Pharm 2019; 16:4594-4609. [DOI: 10.1021/acs.molpharmaceut.9b00713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kaminee Maduray
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mokhtar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackhraj
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Liu Y, Zhou Z, Lin X, Xiong X, Zhou R, Zhou M, Huang Y. Enhanced Reactive Oxygen Species Generation by Mitochondria Targeting of Anticancer Drug To Overcome Tumor Multidrug Resistance. Biomacromolecules 2019; 20:3755-3766. [PMID: 31465208 DOI: 10.1021/acs.biomac.9b00800] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a major clinical tumor chemotherapeutic burden, multidrug resistance (MDR) is often a result of up-regulation of P-glycoprotein (P-gp), which strongly enhances anticancer drug efflux. The excess mitochondrial reactive oxygen species (ROS) could not only inhibit the function of P-gp through insufficient adenosine triphosphate supply but also cause apoptosis in MDR cells. Here, we designed a mitochondria targeting nanoparticulate system (GNPs-P-Dox-GA) for overcoming MDR through enhanced ROS generation, where increased cellular uptake as well as mitochondria accumulation were both realized by glycyrrhetinic acid (GA). First, doxorubicin was conjugated with GA (GA-Dox) and then grafted onto a N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer backbone via hydrazone bond (P-Dox-GA). The obtained P-Dox-GA was subsequently attached to the surface of gelatin nanoparticles (GNPs). As gelatin is a substrate of tumor extracellular metal matrix protease-2 (MMP2), GNPs-P-Dox-GA nanoparticles could be degraded and release small size P-Dox-GA to facilitate tumor tissue penetration. After P-Dox-GA internalized by tumor cells under GA mediation, Dox-GA detached from HPMA copolymer through hydrolysis of hydrazone bond and then efficiently delivered to mitochondria. Compared to non-GA modified carriers, GNPs-P-Dox-GA exhibited increased cellular uptake nearly 4-fold and mitochondria distribution 8.8-fold, and increased ROS production level nearly 3-fold, significantly decreased efflux rate (55% compared with Dox group) in drug resistant HepG2/ADR cells, and then led to improved in vitro antitumor efficiency in HepG2/ADR cells (IC50 only 19.5% of unmodified ones) as well as exciting in vivo antitumor efficiency on HepG2/ADR heterotopic tumor nude mice (1.75-fold higher tumor growth inhibition rate than free drug).
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , People's Republic of China
| | - Zhou Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , People's Republic of China
| | - Xi Lin
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , People's Republic of China
| | - Xiaofeng Xiong
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , People's Republic of China
| | - Rui Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , People's Republic of China
| | - Minglu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , People's Republic of China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , People's Republic of China
| |
Collapse
|
27
|
Kumar K, Yadav L, Kondaiah P, Chaudhary S. Efficacious Doxorubicin Delivery Using Glutathione‐Responsive Hollow Non‐phospholipid Vesicles Bearing Lipoyl Cholesterols. ChemMedChem 2019; 14:1633-1640. [DOI: 10.1002/cmdc.201900335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/19/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Krishan Kumar
- Department of ChemistryMalaviya National Institute of Technology, Jawaharlal Nehru Marg Jaipur 302017 India
| | - Lalit Yadav
- Department of ChemistryMalaviya National Institute of Technology, Jawaharlal Nehru Marg Jaipur 302017 India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of Science Bangalore 560012 India
| | - Sandeep Chaudhary
- Department of ChemistryMalaviya National Institute of Technology, Jawaharlal Nehru Marg Jaipur 302017 India
| |
Collapse
|
28
|
Lee GJ, Kim TI. pH-Responsive i-motif Conjugated Hyaluronic Acid/Polyethylenimine Complexes for Drug Delivery Systems. Pharmaceutics 2019; 11:E247. [PMID: 31137791 PMCID: PMC6572266 DOI: 10.3390/pharmaceutics11050247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022] Open
Abstract
i-motif is cytosine (C)-rich oligonucleotide (ODN) which shows pH-responsive structure change in acidic condition. Therefore, it has been utilized for the trigger of intercalated drug release, responding to environmental pH change. In this study, 2.76 molecules of i-motif binding ODNs (IBOs) were conjugated to each hyaluronic acid (HA) via amide bond linkages. Synthesis of HA-IBO conjugate (HB) was confirmed by FT-IR and agarose gel electrophoresis with Stains-All staining. After hybridization of HB with i-motif ODN (IMO), it was confirmed that doxorubicin (DOX) could be loaded in HB-IMO hybrid structure (HBIM) with 65.6% of drug loading efficiency (DLE) and 25.0% of drug loading content (DLC). At pH 5.5, prompt and significant DOX release from HBIM was observed due to the disruption of HBIM hybrid structure via i-motif formation of IMO, contrary to pH 7.4 condition. Then, HBIM was complexed with low molecular weight polyethylenimine (PEI1.8k), forming positively charged nanostructures (Z-average size: 126.0 ± 0.4 nm, zeta-potential: 16.1 ± 0.3 mV). DOX-loaded HBIM/PEI complexes displayed higher anticancer efficacy than free DOX in A549 cells, showing the potential for pH-responsive anticancer drug delivery systems.
Collapse
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Tae-Il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
29
|
Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019; 179:505-516. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Bio-nano interface investigation models are mainly based on the type of proteins present on corona, bio-nano interaction responses and the evaluation of final outcomes. Due to the extensive diversity in correlative models for investigation of nanoparticles biological responses, a comprehensive model considering different aspects of bio-nano interface from nanoparticles properties to protein corona fingerprints appeared to be essential and cannot be ignored. In order to minimize divergence in studies in the era of bio-nano interface and protein corona with following therapeutic implications, a useful investigation model on the basis of RADAR concept is suggested. The contents of RADAR concept consist of five modules: 1- Reshape of our strategy for synthesis of nanoparticles (NPs), 2- Application of NPs selected based on human fluid, 3- Delivery strategy of NPs selected based on target tissue, 4- Analysis of proteins present on corona using correct procedures and 5- Risk assessment and risk reduction upon the collection and analysis of results to increase drug delivery efficiency and drug efficacy. RADAR grouping strategy for revisiting protein corona phenomenon as a key of success will be discussed with respect to the current state of knowledge.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyed Mojtaba Daghighi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ismael Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Methotrexate loaded on magnetite iron nanoparticles coated with chitosan: Biosynthesis, characterization, and impact on human breast cancer MCF-7 cell line. Int J Biol Macromol 2018; 120:1170-1180. [PMID: 30172815 DOI: 10.1016/j.ijbiomac.2018.08.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/28/2018] [Accepted: 08/23/2018] [Indexed: 11/20/2022]
Abstract
Methotrexate (MTX) is effective therapeutic agent treated many tumors and autoimmune diseases. The aim of our study was to design an effective delivery nanocarrier for methotrexate to improve stability and biodistribution, reduce adverse effects and maximize clinical efficacy. Magnetite nanoparticles (Fe3O4-NPs) were synthesized using Pterocladiella. The size of Fe3O4-NPs, CS-Fe3O4-NPs and MTX/CS-Fe3O4-NPs were 37.6, 61.4 and 150 nm respectively. Methotrexate loading efficiency was 74.15% of total amount of MTX loaded on CS-Fe3O4-NPs and 39.8% of the loaded drug was initially released and the remaining amount was released through 120 h. The IC50 of MTX and MTX/CS-Fe3O4-NPs was 51.4 and 9.7 μg/ml respectively after 72 h. MTX/CS-Fe3O4-NPs caused remarkable damage to the membrane of MCF-7 cells led to increasing the LDH activity 5 fold in MCF-7 cells as compared with MTX treated once. DNA fragmentation and caspase-3 activity were higher in MCF-7 cells treated with MTX/CS-Fe3O4-NPs than that of MTX. Up-regulation of caspase3 and DHFR genes expression was observed in the treatment with MTX/CS-Fe3O4-NPs. The loading of MTX on chitosan coated Fe3O4-NPs improves the release and anticancer efficacy of MTX for effective cancer treatment.
Collapse
|
31
|
Tan KH, Sattari S, Donskyi IS, Cuellar-Camacho JL, Cheng C, Schwibbert K, Lippitz A, Unger WES, Gorbushina A, Adeli M, Haag R. Functionalized 2D nanomaterials with switchable binding to investigate graphene-bacteria interactions. NANOSCALE 2018; 10:9525-9537. [PMID: 29744504 DOI: 10.1039/c8nr01347k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene-pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene's structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed "trapping" and "nano-knives" mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of "trapping" and "nano-knives" mechanisms for the antibacterial activity of graphene sheets.
Collapse
Affiliation(s)
- Kok H Tan
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rahikkala A, Pereira SAP, Figueiredo P, Passos MLC, Araújo ARTS, Saraiva MLMFS, Santos HA. Mesoporous Silica Nanoparticles for Targeted and Stimuli-Responsive Delivery of Chemotherapeutics: A Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800020] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Antti Rahikkala
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Sarah A. P. Pereira
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
| | - Patrícia Figueiredo
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Marieta L. C. Passos
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
| | - André R. T. S. Araújo
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
- Unidade de Investigação para o Desenvolvimento do Interior; Instituto Politécnico da Guarda; 6300-559 Guarda Portugal
| | - M. Lúcia M. F. S. Saraiva
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
| | - Hélder A. Santos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Helsinki Institute of Life Science (HiLIFE); University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
33
|
Edeler D, Arlt S, Petković V, Ludwig G, Drača D, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN. Delivery of [Ru(η6-p-cymene)Cl2{Ph2P(CH2)3SPh-κP}] using unfunctionalized and mercapto functionalized SBA-15 mesoporous silica: Preparation, characterization and in vitro study. J Inorg Biochem 2018; 180:155-162. [DOI: 10.1016/j.jinorgbio.2017.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
34
|
Liu HN, Guo NN, Wang TT, Guo WW, Lin MT, Huang-Fu MY, Vakili MR, Xu WH, Chen JJ, Wei QC, Han M, Lavasanifar A, Gao JQ. Mitochondrial Targeted Doxorubicin-Triphenylphosphonium Delivered by Hyaluronic Acid Modified and pH Responsive Nanocarriers to Breast Tumor: in Vitro and in Vivo Studies. Mol Pharm 2018; 15:882-891. [PMID: 29357260 DOI: 10.1021/acs.molpharmaceut.7b00793] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multidrug resistance (MDR) is the major obstacle for chemotherapy. In a previous study, we have successfully synthesized a novel doxorubicin (DOX) derivative modified by triphenylphosphonium (TPP) to realize mitochondrial delivery of DOX and showed the potential of this compound to overcome DOX resistance in MDA-MB-435/DOX cells. (1) To introduce specificity for DOX-TPP to cancer cells, here we report on the conjugation of DOX-TPP to hyaluronic acid (HA) by hydrazone bond with adipic acid dihydrazide (ADH) as the acid-responsive linker, producing HA- hydra-DOX-TPP nanoparticles. Hyaluronic acid (HA) is a natural water-soluble linear glycosaminoglycan, which was hypothesized to increase the accumulation of nanoparticles containing DOX-TPP in the mitochondria of tumor cells upon systemic administration, overcoming DOX resistance, in vivo. Our results showed HA- hydra-DOX-TPP to self-assemble to core/shell nanoparticles of good dispersibility and effective release of DOX-TPP from the HA- hydra-DOX-TPP conjugate in cancer cells, which was followed by enhanced DOX mitochondria accumulation. The HA- hydra-DOX-TPP nanoparticles also showed improved anticancer effects, better tumor cell apoptosis, and better safety profile compared to free DOX in MCF-7/ADR bearing mice.
Collapse
Affiliation(s)
- Hui-Na Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Ning-Ning Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Tian-Tian Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Wang-Wei Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Meng-Ting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Ming-Yi Huang-Fu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Wen-Hong Xu
- Department of Radiation Oncology, Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital , Zhejiang University, College of Medicine , Hangzhou , Zhejiang , China
| | - Jie-Jian Chen
- Department of Radiation Oncology, Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital , Zhejiang University, College of Medicine , Hangzhou , Zhejiang , China
| | - Qi-Chun Wei
- Department of Radiation Oncology, Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital , Zhejiang University, College of Medicine , Hangzhou , Zhejiang , China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
35
|
Kutlehria S, Behl G, Patel K, Doddapaneni R, Vhora I, Chowdhury N, Bagde A, Singh M. Cholecalciferol-PEG Conjugate Based Nanomicelles of Doxorubicin for Treatment of Triple-Negative Breast Cancer. AAPS PharmSciTech 2018; 19:792-802. [PMID: 29019073 PMCID: PMC5792308 DOI: 10.1208/s12249-017-0885-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/18/2017] [Indexed: 11/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the leading cancer in women. Chemotherapeutic agents used for TNBC are mainly associated with dose-dependent toxicities and development of resistance. Hence, novel strategies to overcome resistance and to offer dose reduction are warranted. In this study, we designed a novel dual-functioning agent, conjugate of cholecalciferol with PEG2000 (PEGCCF) which can self-assemble into micelles to encapsulate doxorubicin (DOX) and act as a chemosensitizer to improve the therapeutic potential of DOX. DOX-loaded PEGCCF (PEGCCF-DOX) micelles have particle size, polydispersity index (PDI), and zeta potential of 40 ± 8.7 nm, 0.180 ± 0.051, and 2.39 ± 0.157 mV, respectively. Cellular accumulation studies confirmed that PEGCCF was able to concentration-dependently enhance the cellular accumulation of DOX and rhodamine 123 in MDA-MB-231 cells through its P-glycoprotein (P-gp) inhibition activity. PEGCCF-DOX exhibited 1.8-, 1.5-, and 2.9-fold enhancement in cytotoxicity of DOX in MDA-MB-231, MDA-MB-468, and MDA-MB-231DR (DOX-resistant) cell lines, respectively. Western blot analyses showed that PEGCCF-DOX caused significant reduction in tumor markers including mTOR, c-Myc, and antiapoptotic marker Bcl-xl along with upregulation of preapoptotic marker Bax. Further, reduction in mTOR activity by PEGCCF-DOX indicates reduced P-gp activity due to P-gp downregulation as well and, hence, PEGCCF causes enhanced chemosensitization and induces apoptosis. Substantially enhanced apoptotic activity of DOX (10-fold) in MDA-MB-231(DR) cells confirmed apoptotic potential of PEGCCF. Conclusively, PEGCCF nanomicelles are promising delivery systems for improving anticancer activity of DOX in TNBC, thereby reducing its side effects and may act as a potential carrier for other chemotherapeutic agents.
Collapse
Affiliation(s)
- Shallu Kutlehria
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Gautam Behl
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
- College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Imran Vhora
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA.
| |
Collapse
|
36
|
Waghray D, Zhang Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J Med Chem 2017; 61:5108-5121. [PMID: 29251920 DOI: 10.1021/acs.jmedchem.7b01457] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. P-glycoprotein (P-gp), a promiscuous drug efflux pump, has been extensively studied for its association with MDR due to overexpression in cancer cells. Several P-gp inhibitors or modulators have been investigated in clinical trials in hope of circumventing MDR, with only limited success. Alternative strategies are actively pursued, such as the modification of existing drugs, development of new drugs, or combination of novel drug delivery agents to evade P-gp-dependent efflux. Despite the importance and numerous studies, these efforts have mostly been undertaken without a priori knowledge of how drugs interact with P-gp at the molecular level. This review highlights and discusses progress toward and challenges impeding drug development for inhibiting or evading P-gp in the context of our improved understanding of the structural basis and mechanism of P-gp-mediated MDR.
Collapse
Affiliation(s)
- Deepali Waghray
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
37
|
Ghorbani M, Hamishehkar H. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:561-570. [DOI: 10.1016/j.msec.2017.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|
38
|
Xu Y, Asghar S, Gao S, Chen Z, Huang L, Yin L, Ping Q, Xiao Y. Polysaccharide-based nanoparticles for co-loading mitoxantrone and verapamil to overcome multidrug resistance in breast tumor. Int J Nanomedicine 2017; 12:7337-7350. [PMID: 29066886 PMCID: PMC5644570 DOI: 10.2147/ijn.s145620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the potential of polyelectrolyte complex nanoparticles (PENPs) based on hyaluronic acid/chitosan hydrochloride (HA/HCS) for co-loading mitoxantrone (MTO) and verapamil (VRP) to overcome multidrug resistance in breast tumors. PENPs co-loaded with MTO and VRP (MTO-VRP-PENPs) were affected by the method of preparation, molecular weight of HA, mass ratios and initial concentrations of HA/HCS, pH, and drug quantities. Optimized MTO-VRP-PENPs were ~209 nm in size with a zeta potential of approximately -24 mV. Encapsulation efficiencies (%) of MTO and VRP were 98.33%±0.27% and 44.21%±8.62%, respectively. MTO and VRP were successfully encapsulated in PENPs in a molecular or amorphous state. MTO-VRP-PENPs showed significant cytotoxicity in MCF-7/ADR cells in contrast to MTO-loaded PENPs (MTO-PENPs). The reversal index of MTO-VRP-PENPs was 13.25 and 10.33 times greater than that of the free MTO and MTO-PENPs, respectively. In conclusion, MTO-VRP-PENPs may serve as a promising carrier to overcome tumor drug resistance.
Collapse
Affiliation(s)
- Yurui Xu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shiya Gao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Lin Huang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lining Yin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanyu Xiao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Abstract
With the rapid expansion of nanoscience and nanotechnology in interdisciplinary fields, multifunctional nanomaterials have attracted particular attention. Recent advances in nanotherapeutics for cancer applications provided diverse groups of synthetic particles with defined cellular and biological functions. The advance of nanotechnology significantly increased the number of possibilities for the construction of diverse biological tools. Such materials are destined to be of great importance because of the opportunity to combine the biotechnological potential of nanoparticles together with the recognition, sensitivity and modulation of cellular pathways or genes when applied to living organisms. In this mini review three main types of Si-based nanomaterials are highlighted in the area of their application for therapy and imaging: porous silicon nanoparticles (pSiNPs), mesoporous silica nanoparticles (MSNs), focusing on their nanoconstructs containing coordination compounds, and periodic mesoporous silica nanoparticles (PMONPs). Moreover, a critical discussion on the research efforts in the construction of nanotheranostics is presented.
Collapse
Affiliation(s)
- Nikola Ž Knežević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia.
| | | |
Collapse
|
40
|
Zhao Y, Yang A, Tu P, Hu Z. Anti-tumor effects of the American cockroach, Periplaneta americana. Chin Med 2017; 12:26. [PMID: 28919922 PMCID: PMC5596864 DOI: 10.1186/s13020-017-0149-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
Since the incidence of cancer has been on the rise due to increasing exposure to various carcinogenic factors in recent years, cancer has gradually become the first killer to the health of human beings. A growing attention has been paid to anti-cancer effects of traditional Chinese medicine (TCM) with low toxicity and good efficacy. As a kind of TCM, Periplaneta americana (P. americana) has a good effect on clinical application, and its anti-tumor effects has been increasingly well studied. In this review, the research progress on the anti-tumor effects of P. americana was summarized. The main mechanisms of its anti-tumor effects include suppression of tumor cell growth, induction of cell cycle arrest and tumor cell apoptosis, inhibition of angiogenesis, enhancement of immunity, and reversal of tumor drug resistance. This review aims to provide an overview of the research on anti-tumor effects of P. americana and aids in its further application as an anti-tumor drug.
Collapse
Affiliation(s)
- Yanan Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North Third Ring Road, Chaoyang District, Beijing, 100029 China
| | - Ailin Yang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North Third Ring Road, Chaoyang District, Beijing, 100029 China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North Third Ring Road, Chaoyang District, Beijing, 100029 China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North Third Ring Road, Chaoyang District, Beijing, 100029 China
| |
Collapse
|
41
|
Varshosaz J, Davoudi MA, Rasoul-Amini S. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells. J Liposome Res 2017; 28:285-295. [DOI: 10.1080/08982104.2017.1370471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Davoudi
- Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Rasoul-Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Plichta A, Kowalczyk S, Kamiński K, Wasyłeczko M, Więckowski S, Olędzka E, Nałęcz-Jawecki G, Zgadzaj A, Sobczak M. ATRP of Methacrylic Derivative of Camptothecin Initiated with PLA toward Three-Arm Star Block Copolymer Conjugates with Favorable Drug Release. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Andrzej Plichta
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sebastian Kowalczyk
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzysztof Kamiński
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Monika Wasyłeczko
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Stanisław Więckowski
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | | | | | |
Collapse
|
43
|
Crans DC, Peters BJ, Wu X, McLauchlan CC. Does anion-cation organization in Na+-containing X-ray crystal structures relate to solution interactions in inhomogeneous nanoscale environments: Sodium-decavanadate in solid state materials, minerals, and microemulsions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Keller G, Steinmann D, Quaas A, Grünwald V, Janssen S, Hussein K. New concepts of personalized therapy in salivary gland carcinomas. Oral Oncol 2017; 68:103-113. [PMID: 28325631 DOI: 10.1016/j.oraloncology.2017.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/18/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Salivary gland carcinomas are rare tumours and therapy strategies are less standardized than in lung, gastric or breast cancer. Therapy is based on surgery, but not all carcinomas are completely resectable, e.g. because carcinomas often show infiltration of nerves. For further therapy decision pathology is recommended, but evaluation of potential targets for personalized therapy is not part of the routine panel. Many salivary gland carcinomas can be resistant to radio- and/or chemotherapy, which limits therapeutic options. This review summarizes new concepts for personalized therapy in salivary gland carcinoma patients. Targeting growth receptors HER2, EGFR, AR and ER is possible but, in some studies, potential target molecules were not adequately tested before therapy. In addition, approximately 20-25% of carcinomas have RAS mutation (mainly H-RAS), which could explain resistance to therapy. Possible therapy options in the future could be immunomodulation (inhibition of PDL1/PD1 signalling), nanoparticles (gold nanoparticles conjugated to cetuximab can increase radiosensitivity) and drug delivery systems (trastuzumab emtansine/T-DM1).
Collapse
Affiliation(s)
- Gunter Keller
- Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany; Department of Cranio-Maxillo-Facial Surgery, Henriettenstift, Hannover, Germany
| | - Diana Steinmann
- Institute for Radiation Therapy and Special Oncology, Hannover Medical School (MHH), Hannover, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Viktor Grünwald
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | | | - Kais Hussein
- Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
45
|
Kankala RK, Tsai PY, Kuthati Y, Wei PR, Liu CL, Lee CH. Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics. J Mater Chem B 2017; 5:1507-1517. [PMID: 32264641 DOI: 10.1039/c6tb03146c] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The use of nanotechnology to overcome multidrug resistance (MDR) in cancer cells has been predominant. Herein, we report the conjugation of copper(ii)-doxorubicin complexes on the surfaces of layered double hydroxide nanoparticles (LDHs) along with ascorbic acid intercalation in the gallery space to demonstrate synergistic effects to conquer MDR. The pH-sensitive release of doxorubicin (Dox) and the sustained release of ascorbic acid (AA) generate high amounts of hydrogen peroxide intracellularly that concomitantly results in conversion to cytotoxic free radicals through a copper(ii)-catalyzed Fenton-like reaction. Therefore, the combination of the chemotherapeutic agent (Dox) and free radical attack can devastate the MDR for effective cancer treatment through the co-delivery system.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan.
| | | | | | | | | | | |
Collapse
|
46
|
Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1327-1341. [DOI: 10.1016/j.msec.2016.11.073] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
|
47
|
Edeler D, Kaluđerović MR, Dojčinović B, Schmidt H, Kaluđerović GN. SBA-15 mesoporous silica particles loaded with cisplatin induce senescence in B16F10 cells. RSC Adv 2016. [DOI: 10.1039/c6ra22596a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanoparticles obtained by loading of cisplatin into mesoporous silica SBA-15 (SBA-15|CP) change the phenotype of surviving B16F10 melanoma cells from malignant to senescent.
Collapse
Affiliation(s)
- David Edeler
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- D 06120 Halle (Saale)
- Germany
- Institute of Chemistry
| | - Milena R. Kaluđerović
- Department of Oral
- Maxillary, Facial and Reconstructive Plastic Surgery
- University Hospital of Leipzig
- 04103 Leipzig
- Germany
| | - Biljana Dojčinović
- Department of Chemistry
- Institute of Chemistry
- Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
| | - Harry Schmidt
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- D-06120 Halle
- Germany
| | - Goran N. Kaluđerović
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- D 06120 Halle (Saale)
- Germany
| |
Collapse
|