1
|
Cui L, Zhao S, Teng HL, Yang B, Liu Q, Qin A. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. NPJ Precis Oncol 2025; 9:19. [PMID: 39825088 PMCID: PMC11742673 DOI: 10.1038/s41698-024-00794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
Osteosarcoma represents 20% of primary malignant bone tumors globally. Assessing its prognosis is challenging due to the complex roles of integrins in tumor development and metastasis. This study utilized 209,268 osteosarcoma cells from the GEO database to identify integrin-associated genes using advanced analysis methods. A novel machine learning framework combining 10 algorithms was developed to construct an Integrin-related Signature (IRS), which demonstrated robust predictive power across multiple datasets. The IRS's utility in predicting overall survival was confirmed using data from The Cancer Genome Atlas, underscoring its potential in personalized cancer management.
Collapse
Affiliation(s)
- Lei Cui
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuai Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Hai Long Teng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Biao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China.
| | - An Qin
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China.
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Sun X, Li C. Neural repair function of osteopontin in stroke and stroke‑related diseases (Review). Exp Ther Med 2024; 28:459. [PMID: 39478739 PMCID: PMC11523235 DOI: 10.3892/etm.2024.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Stroke, including hemorrhagic stroke and ischemic stroke, is a common disease of the central nervous system. It is characterized by a high mortality and disability rate and is closely associated with atherosclerosis, hypertension hyperglycemia, atrial fibrillation and unhealthy living habits. The continuous development of surgery and medications has decreased the mortality rate of patients with stroke and has greatly improved the disease prognosis. At present, the direction of clinical treatment and research has gradually shifted to the repair of nerve function after stroke. Osteopontin (OPN) is a widely distributed extracellular matrix protein. Due to its structural characteristics, OPN can be cut and modified into terminal fragments with different functions, which play different roles in various pathophysiological processes, such as formation of tumors, inflammation and autoimmune diseases. It has also become a potential diagnostic and therapeutic marker. In order to comprehensively analyze the specific role of OPN in nerve repair and its relationship with stroke and stroke-related diseases, the following key words were used: 'Osteopontin, stroke, atherosis, neuroplasticity, neural repair'. PubMed, Web of Science and Cochrane articles related to OPN were searched and summarized. The present review describes the OPN structure, isoforms, functions and its neural repair mechanism, and its association with the occurrence and development of stroke and related diseases was explored.
Collapse
Affiliation(s)
- Xin Sun
- Department of Neurosurgery, Yanbian University Affiliated Hospital, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Chunhao Li
- Department of Neurosurgery, Yanbian University Affiliated Hospital, Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
3
|
Sergi CM. Pediatric cancer-pathology and microenvironment influence: a perspective into osteosarcoma and non-osteogenic mesenchymal malignant neoplasms. Discov Oncol 2024; 15:358. [PMID: 39154307 PMCID: PMC11330953 DOI: 10.1007/s12672-024-01240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Pediatric cancer remains the leading cause of disease-related death among children aged 1-14 years. A few risk factors have been conclusively identified, including exposure to pesticides, high-dose radiation, and specific genetic syndromes, but the etiology underlying most events remains unknown. The tumor microenvironment (TME) includes stromal cells, vasculature, fibroblasts, adipocytes, and different subsets of immunological cells. TME plays a crucial role in carcinogenesis, cancer formation, progression, dissemination, and resistance to therapy. Moreover, autophagy seems to be a vital regulator of the TME and controls tumor immunity. Autophagy is an evolutionarily conserved intracellular process. It enables the degradation and recycling of long-lived large molecules or damaged organelles using the lysosomal-mediated pathway. The multifaceted role of autophagy in the complicated neoplastic TME may depend on a specific context. Autophagy may function as a tumor-suppressive mechanism during early tumorigenesis by eliminating unhealthy intracellular components and proteins, regulating antigen presentation to and by immune cells, and supporting anti-cancer immune response. On the other hand, dysregulation of autophagy may contribute to tumor progression by promoting genome damage and instability. This perspective provides an assortment of regulatory substances that influence the features of the TME and the metastasis process. Mesenchymal cells in bone and soft-tissue sarcomas and their signaling pathways play a more critical role than epithelial cells in childhood and youth. The investigation of the TME in pediatric malignancies remains uncharted primarily, and this unique collection may help to include novel advances in this setting.
Collapse
Affiliation(s)
- Consolato M Sergi
- Division of Anatomic Pathology, Department of Laboratory Medicine, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Laboratory Medicine, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada.
- University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Agrawal AC, Saini D, Nanda R. Serum Osteopontin as a Potential Marker for Metastasis and Prognosis in Primary Osteogenic Sarcoma: A Systematic Review. Cureus 2024; 16:e60544. [PMID: 38887353 PMCID: PMC11181102 DOI: 10.7759/cureus.60544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, poses significant challenges in diagnosis and prognosis. It is a painful medical burden, and treating it is still a difficult issue. Osteopontin (OPN), a multifunctional extracellular matrix protein, has emerged as a promising biomarker in this context. This systematic review explores the role of OPN as a diagnostic and prognostic marker in OS, highlighting its potential in enhancing early detection, monitoring disease progression, and predicting patient outcomes. Various studies have demonstrated elevated levels of OPN in OS patients, correlating with tumor aggressiveness, metastatic potential, and poor prognosis. In addition, OPN's involvement in tumor microenvironment regulation and metastatic processes underscores its clinical relevance as a biomarker. For this systematic review, comprehensive literature searches were conducted in the PubMed databases for research published between the database's establishment and November 11, 2022. Out of the nine studies that were available for analysis, a higher level of OPN in primary osteogenic sarcoma patients indicates a poorer prognosis and higher incidence of metastasis. OS has not shown commensurable progress with concerns to treatment approches and survical outcomes. However, the discovery of a biological marker that can predict metastasis and severity will be a groundbreaking development for advancements in OS diagnosis and treatment. Therefore, understanding the intricate interplay between OPN and OS pathogenesis holds promise for improving patient management and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alok C Agrawal
- Orthopedics, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Dikshant Saini
- Orthopedic Surgery, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Rachita Nanda
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| |
Collapse
|
5
|
Yin C, Chokkakula S, Li J, Li W, Yang W, Chong S, Zhou W, Wu H, Wang C. Unveiling research trends in the prognosis of osteosarcoma: A bibliometric analysis from 2000 to 2022. Heliyon 2024; 10:e27566. [PMID: 38515706 PMCID: PMC10955242 DOI: 10.1016/j.heliyon.2024.e27566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Background Osteosarcoma (OSA) is the most prevalent form of malignant bone tumor in children and adolescents, producing osteoid and immature bone. Numerous high quality studies have been published in the OSA field, however, no bibliometric study related to this area has been reported thus far. Therefore, the present study retrieved the published data from 2000 to 2022 to reveal the dynamics, development trends, hotspots and future directions of the OSA. Methods Publications regard to osteogenic sarcoma and prognosis were searched in the core collection on Web of Science database. The retrieved publications were analyzed by publication years, journals, categories, countries, citations, institutions, authors, keywords and clusters using the two widely available bibliometric visualization tools, VOS viewer (Version 1.6.16), Citespace (Version 6.2. R1). Results A total of 6260 publications related to the current topic were retrieved and analyzed, revealing exponential increase in the number of publications with an improvement in the citations on the OSA over time, in which China and the USA are the most productive nations. Shanghai Jiao Tong University, University of Texas System and Harvard University are prolific institutions, having highest collaboration network. Oncology Letters and Journal of Clinical Oncology are the most productive and the most cited journals respectively. The Wang Y is a prominent author and articles published by Bacci G had the highest number of citations indicating their significant impact in the field. According to keywords analysis, osteosarcoma, expression and metastasis were the most apparent keywords whereas the current research hotspots are biomarker, tumor microenvironment, immunotherapy and DNA methylation. Conclusion Our findings offer valuable information for researchers to understand the current research status and the necessity of future research to mitigate the mortality of the OS patients.
Collapse
Affiliation(s)
- Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, South Korea
| | - Jie Li
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Weiguang Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Siomui Chong
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
- Institute of Collaborative Innovation, University of Macau, Macau, China
- Centro Medico Kong Wan (Macau), Macao, China
| | - Wenzheng Zhou
- Department of Orthopaedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Haiyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Chengbin Wang
- Department of Laboratory Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Ma Y, Chen B, Zhang B, Zhang C, Zhu Q, Wang X, Liu Z, Liu H. High expression of integrin-binding sialoprotein (IBSP) is associated with poor prognosis of osteosarcoma. Aging (Albany NY) 2023; 16:28-42. [PMID: 38006395 PMCID: PMC10817378 DOI: 10.18632/aging.205235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION Osteosarcoma is a malignant tumor, accounting for 20% of primary malignant bone tumors worldwide. However, the role of IBSP as a biomarker in osteosarcoma progression has not been studied yet. METHODS 85 cases of IBSP expression and clinical characteristics were obtained from TARGET database. Through the Kaplan-Meier curve, subgroup analysis, and univariate and multivariate Cox analysis, we further assessed the independent predictive capacity of IBSP expression for overall survival (OS) and relapse-free survival (RFS). RESULTS The mRNA expression of IBSP was higher in osteosarcoma than normal tissue (P < 0.0001). IBSP expression grouped by vital status showed statistical differences (P = 0.042). The race (P = 0.0183), vital status (P = 0.0034), and sample type (P = 0.0020) showed significant differences. IBSP expression exhibited satisfied diagnostic ability for osteosarcoma. The univariate and multivariate analysis confirmed that IBSP expression was an independent risk factor for OS (HR = 3.425, 95% CI: 1.604-7.313, P = 0.002) and RFS (HR = 3.377, 95% CI: 1.775-6.424, P < 0.001) in osteosarcoma patients. High IBSP expression was significantly associated with poor OS and RFS (P < 0.0001). The higher IBSP expression was observed in osteosarcoma (P < 0.001), confirmed by the IHC staining. The CCK-8 and colony formation assay showed that IBSP knockdown inhibits cell proliferation while overexpression promotes cell proliferation (P < 0.05). CONCLUSION High expression of IBSP was associated with poor OS and RFS. IBSP could serve as a potential biomarker for osteosarcoma, which could aid in early detection and disease monitoring.
Collapse
Affiliation(s)
- Yihang Ma
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Boyin Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Chao Zhang
- Department of Operating Room, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Qingsan Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Xu Wang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Zhengang Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Haochuan Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| |
Collapse
|
7
|
Wang Y, Sun N, Zhang Z, Zhou Y, Liu H, Zhou X, Zhang Y, Zhao Y. Overexpression Pattern of miR-301b in Osteosarcoma and Its Relevance with Osteosarcoma Cellular Behaviors via Modulating SNX10. Biochem Genet 2023; 61:87-100. [PMID: 35732962 DOI: 10.1007/s10528-022-10241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/07/2022] [Indexed: 01/24/2023]
Abstract
Prior studies have noted the importance of microRNAs (miRNAs) in development and progression of osteosarcoma (OS), but the influence of miR-301b is less investigated. This investigation aimed to explore the biological role of miR-301b/SNX10 in OS. GSE28423 and GSE28424 arrays delivered the corresponding miR-301b and sorting nexin 10 (SNX10) expression levels in OS samples. miR-301b and SNX10 expressions were also measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting in cells. Cell counting kit (CCK)-8 and transwell analysis were applied to measure cell characteristics. Luciferase reporter assay and Pearson correlation analysis were used to detect the relevance between miR-301b and SNX10. miR-301b was extremely increased in OS tissues compared with normal tissues, while SNX10 was decreased. The proliferation, invasion, and migration capabilities were limited following a low expression level of miR-301b whereas miR-301b overexpression promoted cellular malignant behaviors. miR-301b negatively targeted SNX10. The elevated SNX10 expression highlighted the inhibitory function on cell proliferation, migration, and invasion in OS cells treated by miR-301b inhibitor. Reduction of miR-301b induced the decrease of epithelial-mesenchymal transition (EMT)-related markers including N-cadherin, Vimentin, and matrix metallo-proteinase 9 (MMP)9. These results are added to the complete expanding field of the potential effects of miR-301b in OS cell malignant behaviors and demonstrate its promising role for further use to treat human OS.
Collapse
Affiliation(s)
- Yaozong Wang
- Department of Orthopedics, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Naikun Sun
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zheyi Zhang
- Department of Medical Imaging, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yuanyuan Zhou
- Medical College Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Hongyi Liu
- Medical College Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Xu Zhou
- Department of Oncology & Vascular Intervention Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No. 201 HuBinNan Road, Xiamen, 361000, China
| | - Ying Zhang
- Department of Orthopedics, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yilin Zhao
- Department of Oncology & Vascular Intervention Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No. 201 HuBinNan Road, Xiamen, 361000, China.
| |
Collapse
|
8
|
Zheng SS, Wu YF, Zhang BH, Huang C, Xue TC. A novel myeloid cell marker genes related signature can indicate immune infiltration and predict prognosis of hepatocellular carcinoma: Integrated analysis of bulk and single-cell RNA sequencing. Front Mol Biosci 2023; 10:1118377. [PMID: 36959981 PMCID: PMC10027926 DOI: 10.3389/fmolb.2023.1118377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Myeloid cells are physiologically related to innate immunity and inflammation. Tumor-associated myeloid cells gained increasing interest because of their critical roles in tumor progression and anticancer immune responses in human malignancies. However, the associations between tumor-associated myeloid cell-related genes and hepatocellular carcinoma have yet to be revealed. Here, through the integrating analysis of bulk and single-cell RNA (scRNA) sequencing of public HCC samples, we developed a gene signature to investigate the role of HCC-specific myeloid signature genes in HCC patients. We firstly defined 317 myeloid cell marker genes through analyzing scRNA data of HCC from the GEO dataset. After selecting the differentially expressed genes, eleven genes were also proved prognostic. Then we built a gene signature from the TCGA cohort and verified further with the ICGC dataset by applying the LASSO Cox method. An eight genes signature (FABP5, C15orf48, PABPC1, TUBA1B, AKR1C3, NQO1, AKR1B10, SPP1) was achieved finally. Patients in the high risk group correlated with higher tumor stages and poor survival than those in the low-risk group. The risk score was proved to be an independent risk factor for prognosis. The high risk group had higher infiltrations of dendritic cells, macrophages and Tregs. And the APC co-inhibition, T cell co-inhibition pathways were also activated. Besides, the risk score positively correlated with multidrug resistance proteins. In conclusion, our myeloid cell marker genes related signature can predict patients' survival and may also indicate the levels of immune infiltration and drug resistance.
Collapse
Affiliation(s)
- Su-Su Zheng
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Yan-Fang Wu
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Bo-Heng Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
- Center for Evidence-based Medicine, Shanghai Medical School, Fudan University, Shanghai, China
| | - Cheng Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- *Correspondence: Cheng Huang, ; Tong-Chun Xue,
| | - Tong-Chun Xue
- The Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
- *Correspondence: Cheng Huang, ; Tong-Chun Xue,
| |
Collapse
|
9
|
Zhang J, Li H. Identification of potential extracellular vesicle protein markers altered in osteosarcoma from public databases. Proteomics Clin Appl 2022:e2200084. [PMID: 36571514 DOI: 10.1002/prca.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Extracellular vesicles (EVs) have become promising biomarkers for cancer management. Particularly, the molecular cargo such as proteins carried by EVs are similar to their cells of origin, providing important information that can be used for cancer diagnostics, prognosis, and treatment monitoring. However, to date, molecular analysis on EVs is still challenging, limited by the availability of efficient analytical technologies, largely due to the small size of EVs. In this work, we developed a computational workflow for in silico identification of potential EV protein markers from genomic and proteomic databases, and applied it for the discovery of osteosarcoma (OS) EV protein markers. EXPERIMENTAL DESIGN Both mRNA and protein data were computed and compared from publicly accessible databases, and top markers with high differential expression levels were selected. RESULTS Thirty nine markers were identified overexpressed and seven found to be downregulated. These identified markers have been found to be associated with OS on different aspects in literature, demonstrating the usability of this workflow. CONCLUSIONS AND CLINICAL RELEVANCE This work provides a list of potential EV protein markers that are either overexpressed or downregulated in OS for further experimental validation for improved clinical management of OS.
Collapse
Affiliation(s)
- Jinhe Zhang
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Shah MA, Hamid A, Faheem HI, Rasul A, Baokbah TAS, Haris M, Yousaf R, Saleem U, Iqbal S, Alves MS, Khan Z, Hussain G, Alsharfi I, Khan H, Jeandet P. Uncovering the Anticancer Potential of Polydatin: A Mechanistic Insight. Molecules 2022; 27:7175. [PMID: 36364001 PMCID: PMC9656535 DOI: 10.3390/molecules27217175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin or 3-O-β-d-resveratrol-glucopyranoside (PD), a stilbenoid component of Polygonum cuspicadum (Polygonaceae), has a variety of biological roles. In traditional Chinese medicine, P. cuspicadum extracts are used for the treatment of infections, inflammation, and cardiovascular disorders. Polydatin possesses a broad range of biological activities including antioxidant, anti-inflammatory, anticancer, and hepatoprotective, neuroprotective, and immunostimulatory effects. Currently, a major proportion of the population is victimized with cervical lung cancer, ovarian cancer and breast cancer. PD has been recognized as a potent anticancer agent. PD could effectively inhibit the migration and proliferation of ovarian cancer cells, as well as the expression of the PI3K protein. The malignancy of lung cancer cells was reduced after PD treatments via targeting caspase 3, arresting cancer cells at the S phase and inhibiting NLRP3 inflammasome by downregulation of the NF-κB pathway. This ceases cell cycle, inhibits VEGF, and counteracts ROS in breast cancer. It also prevents cervical cancer by regulating epithelial-to-mesenchymal transition (EMT), apoptosis, and the C-Myc gene. The objective of this review is thus to unveil the polydatin anticancer potential for the treatment of various tumors, as well as to examine the mechanisms of action of this compound.
Collapse
Affiliation(s)
| | - Ayesha Hamid
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hafiza Ishmal Faheem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent 9000, Belgium
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Zahid Khan
- Department of Pharmacognosy, Faculty of Pharmacy, Federal Urdu University of Arts, Science & Technology, Karachi 75300, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ifat Alsharfi
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection, University of Reims Champagne-Ardenne, USC INRAe 1488, 51100 Reims, France
| |
Collapse
|
11
|
Karampatsou SI, Paltoglou G, Genitsaridi SM, Kassari P, Charmandari E. The Effect of a Comprehensive Life-Style Intervention Program of Diet and Exercise on Four Bone-Derived Proteins, FGF-23, Osteopontin, NGAL and Sclerostin, in Overweight or Obese Children and Adolescents. Nutrients 2022; 14:3772. [PMID: 36145151 PMCID: PMC9505283 DOI: 10.3390/nu14183772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The adipose and bone tissues demonstrate considerable interconnected endocrine function. In the present study, we determined the concentrations of fibroblast growth factor-23 (FGF-23), osteopontin, neutrophil gelatinase-associated lipocalin (NGAL) and sclerostin in 345 children and adolescents who were overweight or obese (mean age ± SD mean: 10.36 ± 0.16 years; 172 males, 173 females; 181 prepubertal; and 164 pubertal) before and after their participation in a comprehensive life-style intervention program of diet and exercise for one year. Following the one-year life-style interventions, there was a significant decrease in BMI (p < 0.01), FGF-23 (p < 0.05), osteopontin (p < 0.01) and NGAL (p < 0.01), and an increase in sclerostin (p < 0.01) concentrations. BMI z-score (b = 0.242, p < 0.05) and fat mass (b = 0.431, p < 0.05) were the best positive predictors and waist-to-height ratio (WHtR) (b = −0.344, p < 0.05) was the best negative predictor of the change of osteopontin. NGAL concentrations correlated positively with HbA1C (b = 0.326, p < 0.05), WHtR (b = 0.439, p < 0.05) and HOMA-IR (b = 0.401, p < 0.05), while BMI (b = 0.264, p < 0.05), fat mass (b = 1.207, p < 0.05), HDL (b = 0.359, p < 0.05) and waist circumference (b = 0.263, p < 0.05) were the best positive predictors of NGAL. These results indicate that FGF-23, osteopontin, NGAL and sclerostin are associated with being overweight or obese and are altered in relation to alterations in BMI. They also indicate a crosstalk between adipose tissue and bone tissue and may play a role as potential biomarkers of glucose metabolism. Further studies are required to delineate the physiological mechanisms underlying this association in children and adolescents.
Collapse
Affiliation(s)
- Sofia I. Karampatsou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Sofia M. Genitsaridi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Penio Kassari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Jámbor K, Koroknai V, Kiss T, Szász I, Pikó P, Balázs M. Gene Expression Patterns of Osteopontin Isoforms and Integrins in Malignant Melanoma. PATHOLOGY AND ONCOLOGY RESEARCH 2022; 28:1610608. [PMID: 36091936 PMCID: PMC9448871 DOI: 10.3389/pore.2022.1610608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Osteopontin (OPN) is a multifunctional glycoprotein that physiologically interacts with different types of integrins. It is considered to be a possible prognostic biomarker in certain tumor types; however, various splicing isoforms exist, which have not been investigated in melanoma. We aimed to define the relative expression pattern of five OPN isoforms and clarify the prognostic significance of the splice variants in melanoma. We also aimed to investigate the expression pattern of eight integrins in the same tumors. Gene expression analyses revealed that the relative expression of OPNa, OPNb, and OPNc is significantly higher in metastatic tumors compared to primary lesions (p < 0.01), whereas the expression of OPN4 and OPN5 was low in both. The more aggressive nodular melanomas had higher expression levels compared to the superficial spreading subtype (p ≤ 0.05). The relative expression of the eight tested integrins was low, with only the expression of ITGB3 being detectable in nodular melanoma (Medianlog2 = 1.274). A positive correlation was found between Breslow thickness and the expression of OPNc variant, whereby thicker tumors (>4 mm) had significantly higher expression (p ≤ 0.05). The Breslow thickness was negatively correlated with the expression of OPN4, and similarly with ITGA2. OPNc also exhibited significant positive correlation with the presence of metastasis. Our data show that high expression of OPNa, OPNb, and especially OPNc and low expression of OPN4 and ITGA2 are associated with an advanced stage of tumor progression and poor prognosis in melanoma.
Collapse
Affiliation(s)
- Krisztina Jámbor
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Tímea Kiss
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Szász
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter Pikó
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
- *Correspondence: Margit Balázs,
| |
Collapse
|
13
|
Chen R, Zhao M, An Y, Liu D, Tang Q, Teng G. A Prognostic Gene Signature for Hepatocellular Carcinoma. Front Oncol 2022; 12:841530. [PMID: 35574316 PMCID: PMC9091376 DOI: 10.3389/fonc.2022.841530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is the third most common cause of cancer-related deaths in China and immune-based therapy can improve patient outcomes. In this study, we investigated the relationship between immunity-associated genes and hepatocellular carcinoma from the prognostic perspective. The data downloaded from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) and the Gene Expression Omnibus (GEO) was screened for gene mutation frequency using the maftools package. Immunity-associated eight-gene signature with strong prognostic ability was constructed and proved as an independent predictor of the patient outcome in LIHC. Seven genes in the immune-related eight-gene signature were strongly associated with the infiltration of M0 macrophages, resting mast cells, and regulatory T cells. Our research may provide clinicians with a quantitative method to predict the prognosis of patients with liver cancer, which can assist in the selection of the optimal treatment plan.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Zhongda Hospital, Nanjing, China
| | - Meng Zhao
- School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yanli An
- Medical School of Southeast University, Nanjing, China.,Department of Radiology, Medical School of Southeast University, Nanjing, China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, China
| | - Gaojun Teng
- Department of Radiology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
14
|
Higher Expression of SPP1 Predicts Poorer Survival Outcomes in Head and Neck Cancer. J Immunol Res 2022; 2021:8569575. [PMID: 34977258 PMCID: PMC8718292 DOI: 10.1155/2021/8569575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Secreted phosphoprotein 1 (SPP1) participated in various biological processes in many cancers, including immune response, tumor progression, and prognosis. However, SPP1 in head and neck squamous cell carcinoma (HNSCC) remains unknown. Clinical-genetic data of HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. The differential expression of SPP1 in HNSCC tissues and adjacent normal tissues was quantified by bioinformatics methods and verified by western blot and other differential biological methods. We concluded that SPP1 is significantly upregulated in tumor tissues and can become a prognostic biomarker for HNSCC.
Collapse
|
15
|
Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin - The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne) 2022; 13:1014853. [PMID: 36619570 PMCID: PMC9813443 DOI: 10.3389/fendo.2022.1014853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional noncollagenous matrix phosphoprotein that is expressed both intracellularly and extracellularly in various tissues. As a growth regulatory protein and proinflammatory immunochemokine, OPN is involved in the pathological processes of many diseases. Recent studies have found that OPN is widely involved in the aging processes of multiple organs and tissues, such as T-cell senescence, atherosclerosis, skeletal muscle regeneration, osteoporosis, neurodegenerative changes, hematopoietic stem cell reconstruction, and retinal aging. However, the regulatory roles and mechanisms of OPN in the aging process of different tissues are not uniform, and OPN even has diverse roles in different developmental stages of the same tissue, generating uncertainty for the future study and utilization of OPN. In this review, we will summarize the regulatory role and molecular mechanism of OPN in different tissues and cells, such as the musculoskeletal system, central nervous system, cardiovascular system, liver, and eye, during senescence. We believe that a better understanding of the mechanism of OPN in the aging process will help us develop targeted and comprehensive therapeutic strategies to fight the spread of age-related diseases.
Collapse
|
16
|
Moynihan E, Bassi G, Ruffini A, Panseri S, Montesi M, Velasco-Torrijos T, Montagner D. Click Pt(IV)-Carbohydrates Pro-Drugs for Treatment of Osteosarcoma. Front Chem 2021; 9:795997. [PMID: 34950638 PMCID: PMC8688915 DOI: 10.3389/fchem.2021.795997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The selectivity vs. cancer cells has always been a major challenge for chemotherapeutic agents and in particular for cisplatin, one of the most important anticancer drugs for the treatment of several types of tumors. One strategy to overtake this challenge is to modify the coordination sphere of the metallic center with specific vectors whose receptors are overexpressed in the tumoral cell membrane, such as monosaccharides. In this paper, we report the synthesis of four novel glyco-modified Pt(IV) pro-drugs, based on cisplatin scaffold, and their biological activity against osteosarcoma (OS), a malignant tumor affecting in particular adolescents and young adults. The sugar moiety and the Pt scaffold are linked exploiting the Copper Azide Alkyne Cycloaddition (CUAAC) reaction, which has become the flagship of click chemistry due to its versatility and mild conditions. Cytotoxicity and drug uptake on three different OS cell lines as well as CSCs (Cancer Stem Cell) are described.
Collapse
Affiliation(s)
- Eoin Moynihan
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Giada Bassi
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Andrea Ruffini
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Trinidad Velasco-Torrijos
- Department of Chemistry, Maynooth University, Maynooth, Ireland.,Kathleen Londsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland.,Kathleen Londsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
17
|
Du Y, Zhang L, Wang Z, Zhao X, Zou J. Endocrine Regulation of Extra-skeletal Organs by Bone-derived Secreted Protein and the effect of Mechanical Stimulation. Front Cell Dev Biol 2021; 9:778015. [PMID: 34901023 PMCID: PMC8652208 DOI: 10.3389/fcell.2021.778015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Bone serves as the support for body and provide attachment points for the muscles. The musculoskeletal system is the basis for the human body to complete exercise. Studies believe that bone is not only the basis for constructing structures, but also participates in the regulation of organs outside bone. The realization of this function is closely related to the protein secreted by bone. Whether bone can realize their positions in the human body is also related to their secretion. Bone-derived proteins provide a medium for the targeted regulation of bones on organs, making the role of bone in human body more profound and concrete. Mechanical stimulation effects the extra-skeletal organs by causing quantitative changes in bone-derived factors. When bone receives mechanical stimulation, the nichle of bone responds, and the secretion of various factors changes. However, whether the proteins secreted by bone can interfere with disease requires more research. In this review article, we will first introduce the important reasons and significance of the in-depth study on bone-derived secretory proteins, and summarize the locations, structures and functions of these proteins. These functions will not only focus on the bone metabolism process, but also be reflected in the cross-organ regulation. We specifically explain the role of typical bone-derived secretory factors such as osteocalcin (OCN), osteopontin (OPN), sclerostin (SOST) and fibroblast growth factor 23 (FGF23) in different organs and metabolic processes, then establishing the relationship between them and diseases. Finally, we will discuss whether exercise or mechanical stimulation can have a definite effect on bone-derived secretory factors. Understanding their important role in cross-organ regulation is of great significance for the treatment of diseases, especially for the elderly people with more than one basic disease.
Collapse
Affiliation(s)
- Yuxiang Du
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Zhikun Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
18
|
Guo Q, Ma J, Wu J. MiRNA-218 inhibits cell proliferation, migration and invasion by targeting Runt-related transcription factor 2 (Runx2) in human osteosarcoma cells. Regen Ther 2021; 18:508-515. [PMID: 34977284 PMCID: PMC8668442 DOI: 10.1016/j.reth.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The deregulation of miRNA-218 has been found in a number of cancers. Using miRNA-218 as a target for Runt-related transcription factor 2 (Runx2), we sought to understand the role of miRNA-218 in osteosarcoma (OS). METHODS The expression of miRNA-218 was detected in the OS tumor tissues and OS cells. The Runx2 expression level was evaluated in Saos-2, 143B, U2OS, and MG-63. miRNA-218 overexpressed U2OS cells were achieved by transfection with miRNA-218 mimics. The role of miRNA-218 in inhibiting OS tumorigenesis was explored by CCK8, colony formation, cell wound scratch and Transwell assay. TargetScan and dual-luciferase reporter assay identified the interaction between miRNA-218 and Runx2. The inhibitive effect of miRNA-218 on OS through targeting Runx2 was also evaluated. RESULTS MiRNA-218 levels were remarkably down-regulated in OS tumor tissues and cell lines. The overexpression of miRNA-218 suppressed U2OS cell development and metastasis. The target interaction between miRNA-218 and Runx2 was validated, and their expression showed a negative correlation in U2OS cells. The suppressed U2OS cell development and metastasis were remarkably reversed by Runx2 overexpression. CONCLUSION MiRNA-218 showed an inhibitive effect on the development and metastasis of osteosarcoma cell proliferation by targeting Runx2. Our findings may provide novel clues for OS treatment.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, Jinan Fifth People's Hospital, No. 24297, Jingshi Road, Huaiyin District, Jinan City, Shandong, 250022, China
| | - Junan Ma
- Department of Orthopedics, Chengwu County People's Hospital Affiliated to First Medical University of Shandong, No. 66, Bole Street, Chengwu County, Heze City, Shndong, 274200, China
| | - Jing Wu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, 223001, China
| |
Collapse
|
19
|
Liang S, Li Y, Wang B. The cancer-related transcription factor Runx2 combined with osteopontin: a novel prognostic biomarker in resected osteosarcoma. Int J Clin Oncol 2021; 26:2347-2354. [PMID: 34546483 DOI: 10.1007/s10147-021-02025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Osteosarcoma is the most common primary bone cancer in children and young adults. Recent experimental evidence has indicated that Runx2/OPN axis play important roles in the metastasis of osteosarcoma cells. The present study aimed to explore their relationship and prognostic significance in surgically resected osteosarcoma. METHODS The expression of runt-related transcription factor2(Runx2) and osteopontin (OPN) in clinical specimens from 105 osteosarcoma patients were detected by immunohistochemistry. The correlations between Runx2, OPN, and clinicopathologic data were analyzed by Chi-square (χ2) tests. The prognostic values were determined by univariate and multivariate survival analysis. The accuracy of oncologic outcome prediction was evaluated by receiver-operating characteristics curves. RESULTS The results showed there is a significant positive correlation between Runx2 and OPN expression at protein levels (P = 0.015). Runx2 and OPN were both independent predictors for overall survival and metastasis-free survival. When Runx2 and OPN were taken into consideration together, the predictive range was extended and the sensitivity was improved, and more significant and better biomarkers for osteosarcoma metastasis and survival. CONCLUSIONS These results suggest that a combined Runx2/OPN expression could be a valuable independent predictor of tumor metastasis and survival in osteosarcoma patients.
Collapse
Affiliation(s)
- Shoulei Liang
- Department of Bone Disease, The Second Hospital of Tangshan, No.21, Jianshe North Road, Tangshan, 063000, China
| | - Yong Li
- Department of Bone Disease, The Second Hospital of Tangshan, No.21, Jianshe North Road, Tangshan, 063000, China
| | - Baocang Wang
- Department of Bone Disease, The Second Hospital of Tangshan, No.21, Jianshe North Road, Tangshan, 063000, China.
| |
Collapse
|
20
|
Polydatin Induces Differentiation and Radiation Sensitivity in Human Osteosarcoma Cells and Parallel Secretion through Lipid Metabolite Secretion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3337013. [PMID: 34336090 PMCID: PMC8318750 DOI: 10.1155/2021/3337013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
Osteosarcoma is a bone cancer characterized by the production of osteoid tissue and immature bone from mesenchymal cells. Osteosarcoma mainly affects long bones (femur is most frequently site) and occur in children and young adults with greater incidence. Here, we investigated the role accomplished by polydatin, a natural antioxidative compound, in promoting osteogenic differentiation alone or after radiation therapy on osteosarcoma cells. In vitro, polydatin significantly induced cell cycle arrest in S-phase and enhanced bone alkaline phosphatase activity. Moreover, the differentiation process was paralleled by the activation of Wnt-β-catenin pathway. In combination with radiotherapy, the pretreatment with polydatin promoted a radiosensitizing effect on osteosarcoma cancer cells as demonstrated by the upregulation of osteogenic markers and reduced clonogenic survival of tumor cells. Additionally, we analyzed, by mass spectrometry, the secretion of sphingolipid, ceramides, and their metabolites in osteosarcoma cells treated with polydatin. Overall, our results demonstrate that polydatin, through the secretion of sphingolipids and ceramide, induced osteogenic differentiation, alone and in the presence of ionizing therapy. Future investigations are needed to validate the use of polydatin in clinical practice as a potentiating agent of radiotherapy-induced anticancer effects.
Collapse
|
21
|
Ma J, Hu X, Dai B, Wang Q, Wang H. Bioinformatics analysis of laryngeal squamous cell carcinoma: seeking key candidate genes and pathways. PeerJ 2021; 9:e11259. [PMID: 33954053 PMCID: PMC8052978 DOI: 10.7717/peerj.11259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is the second most aggressive head and neck squamous cell carcinoma. Although much work has been done to optimize its treatment, patients with LSCC still have poor prognosis. Therefore, figuring out differentially expressed genes (DEGs) contained in the progression of LSCC and employing them as potential therapeutic targets or biomarkers for LSCC is extremely meaningful. Methods Overlapping DEGs were screened from two standalone Gene Expression Omnibus datasets, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. By applying STRING and Cytoscape, a protein–protein network was built, and module analysis was carried out. The hub genes were selected by maximal clique centrality with the CytoHubba plugin of Cytoscape. UALCAN and GEPIA data were examined to validate the gene expression findings. Moreover, the connection of the hub genes with LSCC patient overall survival was studied employing The Cancer Genome Atlas. Then, western blot, qRT-PCR, CCK-8, wound healing and transwell assays were bring to use for further verify the key genes. Results A total of 235 DEGs were recorded, including 83 upregulated and 152 downregulated genes. A total of nine hub genes that displayed a high degree of connectivity were selected. UALCAN and GEPIA databases verified that these genes were highly expressed in LSCC tissues. High expression of the SPP1, SERPINE1 and Matrix metalloproteinases 1 (MMP1) genes was connected to worse prognosis in patients with LSCC, according to the GEPIA online tool. Western blot and qRT-PCR testify SPP1, SERPINE1 and MMP1 were upregulated in LSCC cells. Inhibition of SPP1, SERPINE1 and MMP1 suppressed cell proliferation, invasion and migration. Conclusion The work here identified effective and reliable diagnostic and prognostic molecular biomarkers by unified bioinformatics analysis and experimental verification, indicating novel and necessary therapeutic targets for LSCC.
Collapse
Affiliation(s)
- Jinhua Ma
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaodong Hu
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Baoqiang Dai
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qiang Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hongqin Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
22
|
Kiss T, Jámbor K, Koroknai V, Szász I, Bárdos H, Mokánszki A, Ádány R, Balázs M. Silencing Osteopontin Expression Inhibits Proliferation, Invasion and Induce Altered Protein Expression in Melanoma Cells. Pathol Oncol Res 2021; 27:581395. [PMID: 34257527 PMCID: PMC8262222 DOI: 10.3389/pore.2021.581395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Osteopontin (OPN) is a multifunctional phosphoprotein that is expressed in different types of cancers, including melanoma. OPN overexpression is associated with tumor progression and metastasis formation; however, the role of OPN in cell invasion and metastasis formation is not completely understood. In this study we aimed to define OPN expression in melanoma tissues and cell lines and investigate the effect of OPN expression on cell proliferation and invasion after inhibiting OPN expression with small interfering RNA (siRNA). OPN gene expression was determined by qRT-PCR, while protein expression was examined using a Proteome Profiler Oncology Array. siRNA-mediated OPN knockdown led to decreased OPN expression in melanoma cell lines, which was associated with decreased cell proliferation and invasion. Proteome profile analysis revealed significantly different protein expression between the original and transfected cell lines. The altered expression of the differently expressed proteins was validated at the mRNA level. Furthermore, OPN-specific siRNA was able to reduce OPN expression and inhibit the invasiveness of melanoma cells. Our results revealed for the first time that silencing the OPN gene influences proliferation and invasion of melanoma cells by effecting EGFR, tenascin C, survivin, galectin-3 and enolase 2 expression. To predict protein-protein interactions along with putative pathways we used STRING analysis for the differentially expressed proteins. These proteins formed multiple clusters, including extracellular matrix organization, regulation of angiogenesis, cell death and cell migration, PI3K-Akt, MAPK and focal adhesion signaling pathways. Taken together these data suggest that OPN might be an ideal target for drug development and therapies.
Collapse
Affiliation(s)
- Tímea Kiss
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Jámbor
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Viktória Koroknai
- MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - István Szász
- MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Helga Bárdos
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Perego S, Sansoni V, Ziemann E, Lombardi G. Another Weapon against Cancer and Metastasis: Physical-Activity-Dependent Effects on Adiposity and Adipokines. Int J Mol Sci 2021; 22:ijms22042005. [PMID: 33670492 PMCID: PMC7922129 DOI: 10.3390/ijms22042005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Physically active behavior has been associated with a reduced risk of developing certain types of cancer and improved psychological conditions for patients by reducing anxiety and depression, in turn improving the quality of life of cancer patients. On the other hand, the correlations between inactivity, sedentary behavior, and overweight and obesity with the risk of development and progression of various cancers are well studied, mainly in middle-aged and elderly subjects. In this article, we have revised the evidence on the effects of physical activity on the expression and release of the adipose-tissue-derived mediators of low-grade chronic inflammation, i.e., adipokines, as well as the adipokine-mediated impacts of physical activity on tumor development, growth, and metastasis. Importantly, exercise training may be effective in mitigating the side effects related to anti-cancer treatment, thereby underlining the importance of encouraging cancer patients to engage in moderate-intensity activities. However, the strong need to customize and adapt exercises to a patient’s abilities is apparent. Besides the preventive effects of physically active behavior against the adipokine-stimulated cancer risk, it remains poorly understood how physical activity, through its actions as an adipokine, can actually influence the onset and development of metastases.
Collapse
Affiliation(s)
- Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Correspondence: ; Tel.: +39-0266214068
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| |
Collapse
|
24
|
Bernauer C, Man YKS, Chisholm JC, Lepicard EY, Robinson SP, Shipley JM. Hypoxia and its therapeutic possibilities in paediatric cancers. Br J Cancer 2021; 124:539-551. [PMID: 33106581 PMCID: PMC7851391 DOI: 10.1038/s41416-020-01107-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
In tumours, hypoxia-a condition in which the demand for oxygen is higher than its availability-is well known to be associated with reduced sensitivity to radiotherapy and chemotherapy, and with immunosuppression. The consequences of hypoxia on tumour biology and patient outcomes have therefore led to the investigation of strategies that can alleviate hypoxia in cancer cells, with the aim of sensitising cells to treatments. An alternative therapeutic approach involves the design of prodrugs that are activated by hypoxic cells. Increasing evidence indicates that hypoxia is not just clinically significant in adult cancers but also in paediatric cancers. We evaluate relevant methods to assess the levels and extent of hypoxia in childhood cancers, including novel imaging strategies such as oxygen-enhanced magnetic resonance imaging (MRI). Preclinical and clinical evidence largely supports the use of hypoxia-targeting drugs in children, and we describe the critical need to identify robust predictive biomarkers for the use of such drugs in future paediatric clinical trials. Ultimately, a more personalised approach to treatment that includes targeting hypoxic tumour cells might improve outcomes in subgroups of paediatric cancer patients.
Collapse
Affiliation(s)
- Carolina Bernauer
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Y K Stella Man
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Julia C Chisholm
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Surrey, UK
- Sarcoma Clinical Trials in Children and Young People Team, The Institute of Cancer Research, London, UK
| | - Elise Y Lepicard
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK.
| |
Collapse
|
25
|
Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. J Pers Med 2021; 11:jpm11020088. [PMID: 33572559 PMCID: PMC7911184 DOI: 10.3390/jpm11020088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix (ECM) plays an active role in cell life through a tightly controlled reciprocal relationship maintained by several fibrous proteins, enzymes, receptors, and other components. It is also highly involved in cancer progression. Because of its role in cancer etiology, the ECM holds opportunities for cancer therapy on several fronts. There are targets in the tumor-associated ECM at the level of signaling molecules, enzyme expression, protein structure, receptor interactions, and others. In particular, the ECM is implicated in invasiveness of tumors through its signaling interactions with cells. By capitalizing on the biology of the tumor microenvironment and the opportunities it presents for intervention, the ECM has been investigated as a therapeutic target, to facilitate drug delivery, and as a prognostic or diagnostic marker for tumor progression and therapeutic intervention. This review summarizes the tumor ECM biology as it relates to drug delivery with emphasis on design parameters targeting the ECM.
Collapse
|
26
|
Zong J, Fan Z, Zhang Y. Serum Tumor Markers for Early Diagnosis of Primary Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:413-422. [PMID: 33376710 PMCID: PMC7755348 DOI: 10.2147/jhc.s272762] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Primary hepatocellular carcinoma (HCC) is one of the most frequently occurring pernicious tumors in the world. It is typically very insidious in the early stages with no obvious symptoms. Its development and metastasis are very rapid. Upon diagnosis, most patients have already reached a local advanced stage or have established distant metastases. The treatment of HCC is limited, with poor prognosis and short natural survival time. In order to improve the efficiency of early diagnosis, it is particularly significant to choose economic and effective diagnosis methods. Ultrasound, magnetic resonance imaging, and computed tomography are usually used in the clinic, but these methods are extremely limited in the diagnosis of HCC. Tumor markers have become the main effective early clinical diagnosis method. Potential serum tumor markers include alpha fetoprotein heterogeneity, Golgi protein 73, phosphatidylinositol proteoglycan (GPC-3), osteopontin, abnormal prothrombin, and heat shock protein. These tumor markers provide new ideas and methods for the diagnosis of HCC. A combination of multiple markers can make up for the deficiency of single marker detection and provide a new strategy for the prognosis and auxiliary diagnosis of HCC. This review introduces protein tumor markers utilized over the past five years.
Collapse
Affiliation(s)
- Jingjing Zong
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing210009, People’s Republic of China
| | - Zhe Fan
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing210009, People’s Republic of China
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian116033, People’s Republic of China
| | - Yewei Zhang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing210009, People’s Republic of China
| |
Collapse
|
27
|
Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020; 12:cancers12123719. [PMID: 33322371 PMCID: PMC7763692 DOI: 10.3390/cancers12123719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma. Abstract Natural killer (NK) cells are innate lymphoid cells with potent antitumor activity. One of the most NK cell cytotoxicity-sensitive tumor types is sarcoma, an aggressive mesenchyme-derived neoplasm. While a combination of radical surgery and radio- and chemotherapy can successfully control local disease, patients with advanced sarcomas remain refractory to current treatment regimens, calling for novel therapeutic strategies. There is accumulating evidence for NK cell-mediated immunosurveillance of sarcoma cells during all stages of the disease, highlighting the potential of using NK cells as a therapeutic tool. However, sarcomas display multiple immunoevasion mechanisms that can suppress NK cell function leading to an uncontrolled tumor outgrowth. Here, we review the current evidence for NK cells’ role in immune surveillance of sarcoma during disease initiation, promotion, progression, and metastasis, as well as the molecular mechanisms behind sarcoma-mediated NK cell suppression. Further, we apply this basic understanding of NK–sarcoma crosstalk in order to identify and summarize the most promising candidates for NK cell-based sarcoma immunotherapy.
Collapse
|
28
|
El-Aziz RMA, Zaki I, El-Deen IM, Abd-Rahman MS, Mohammed FZ. In Vitro Anticancer Evaluation of Some Synthesized 2H-Quinolinone and Halogenated 2H-Quinolinone Derivatives as Therapeutic Agents. Anticancer Agents Med Chem 2020; 20:2304-2315. [PMID: 32781965 DOI: 10.2174/1871520620666200811122753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Searching for new cytotoxic agents with apoptosis induction may represent a viable strategy for cancer treatment to overcome the increased resistance to available anticancer agents. OBJECTIVE The purpose of the current study was aimed at preparation and anticancer evaluation of two new series of 2H-quinolinone and halogenated 2H-quinolinone derivatives against two cancer cell lines. METHODS Two new series of 2H-quinolinone and halogenated 2H-quinolinone derivatives were prepared and screened for their cytotoxicity against breast MCF-7 and liver HepG-2 cancer cell lines as well as normal breast MCF-10a. RESULTS The tested molecules revealed good cytotoxicity and selectivity toward cancer cell lines relative to normal cells. These compounds were analyzed by DNA flow cytometry on MCF-7 cells. They were found to cause G2/M phase arrest and induced apoptosis at the pre-G1 phase. In addition, increased caspase 3/7 activity and decreased osteopontin expression verified the apoptotic activity. CONCLUSION The potent compounds discovered in this study can be a hit for the discovery of new cytotoxic agents and are worthy of further investigation.
Collapse
Affiliation(s)
- Rahma M Abd El-Aziz
- Chemistry Department (Biochemistry Branch), Faculty of Science, Port Said University, Port Said, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ibrahim M El-Deen
- Chemistry Department (Biochemistry Branch), Faculty of Science, Port Said University, Port Said, Egypt
| | - Marwa S Abd-Rahman
- Head of Central Lab, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Faten Z Mohammed
- Chemistry Department (Biochemistry Branch), Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
Wang M, Liu T, Hu X, Yin A, Liu J, Wang X. EMP1 promotes the malignant progression of osteosarcoma through the IRX2/MMP9 axis. Panminerva Med 2020; 62:150-154. [PMID: 32716150 DOI: 10.23736/s0031-0808.20.03913-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous studies have demonstrated that EMP1 is an oncogene. In this paper, we aim to uncover the role of EMP1 in stimulating the malignant progression of osteosarcoma (OS) by the IRX2/MMP9 axis. METHODS EMP1 levels in 49 OS tissues and adjacent ones were detected. Potential correlation between EMP1 level and clinical data of OS patients was determined. Migratory and invasive abilities in SaOS-2 and U2OS cells influenced by EMP1 were examined by Transwell and wound healing assay. The involvement of IRX2 in OS cell metastasis regulated by EMP1 was finally explored. RESULTS EMP1 was upregulated in OS tissues than those of normal ones. Higher rates of lymphatic metastasis and distant metastasis were found in OS patients expressing higher level of EMP1, who suffered a worse prognosis. Knockdown of EMP1 inhibited migratory and invasive abilities in OS cells. Protein levels of IRX2 and MMP9 were upregulated after overexpression of EMP1. Rescue experiments verified that IRX2 was involved in EMP1-regulated malignant progression of OS. CONCLUSIONS EMP1 is upregulated in OS tissues and closely linked to lymphatic metastasis and distant metastasis. It stimulates the malignant progression of OS through the IRX2/MMP9 axis.
Collapse
Affiliation(s)
- Mingfa Wang
- Department of Four Branches of Bone, Juxian People's Hospital, Rizhao, China
| | - Tianyu Liu
- Department of Four Branches of Bone, Juxian People's Hospital, Rizhao, China
| | - Xiaowei Hu
- Department of Two Branches of Bone, Juxian People's Hospital, Rizhao, China
| | - Aicong Yin
- Department of Oncology, Juxian People's Hospital, Rizhao, China
| | - Jingmin Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Xiaoge Wang
- Department of Two Branches of Bone, Juxian People's Hospital, Rizhao, China -
| |
Collapse
|
30
|
Zhou J, Wang W, Liang Z, Ni B, He W, Wang D. Clinical significance of CD38 and CD101 expression in PD-1 +CD8 + T cells in patients with epithelial ovarian cancer. Oncol Lett 2020; 20:724-732. [PMID: 32565998 PMCID: PMC7285834 DOI: 10.3892/ol.2020.11580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Previous studies using mouse liver tumor models have indicated that coexpression of CD38 and CD101 in programmed cell death-1 (PD-1)+CD8+ T cells may reflect fixed dysregulation of CD8+ T cells and thus indicate a poor response to anti-PD-1 immunotherapy. However, whether CD38 and CD101 expression in PD-1+CD8+ T cells can predict the clinical status and efficacy of chemotherapy for various cancer types, including ovarian cancer (OC), remains unclear. In the present study, peripheral blood mononuclear cells (PBMCs) were obtained by Ficoll-Hypaque gradient centrifugation from 96 fresh samples from healthy adult volunteers and patients with epithelial OC, aged 55.21±9.91 years. Additionally, tumor-infiltrating lymphocytes (TILs) were separated using a combination of mechanical, chemical and enzymatic digestion from fresh surgically removed tumor tissues from 15 patients with epithelial OC. The expression of CD38 and CD101 in PD-1+CD8+ T cells or TILs was detected by flow cytometry or immunofluorescence (IF) staining, respectively. The association between the level of CD38/CD101 expression and clinicopathological parameters or postoperative chemotherapy in patients with OC was statistically analyzed. The levels of CD38/CD101-coexpressing PD-1+CD8+ T cells were significantly increased in PBMCs and TILs of patients with OC compared with those of healthy volunteers. The frequency of PD-1+CD38+CD101+CD8+ T cells among the total PD-1+CD8+ T cell subpopulation was negatively associated with clinical stage, lymph node metastasis and postoperative chemotherapy prognosis in patients with OC. Furthermore, IF staining confirmed colocalization of CD38 and CD101 on the majority of TILs in OC tissues. Thus, the present study suggests that coexpression of CD38 and CD101 in peripheral PD-1+CD8+ T cells and TILs may serve as a new indicator for diagnosis and treatment efficacy in patients with epithelial OC.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China.,Department of Immunology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenting Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wei He
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
31
|
Ethyl Acetate Fraction from Hedyotis diffusa plus Scutellaria barbata Suppresses Migration of Bone-Metastatic Breast Cancer Cells via OPN-FAK/ERK/NF- κB Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3573240. [PMID: 32351594 PMCID: PMC7171636 DOI: 10.1155/2020/3573240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
Hedyotis diffusa plus Scutellaria barbata is a couplet of medicinal that has been commonly used to treat inflammation-related diseases and various types of tumors. However, the effect of this couplet on tumor cell migration has not been elucidated. With the aid of MCF-7-BOM, a bone-metastatic subline of ER + breast cancer MCF-7, we showed that ethyl acetate fraction extracted at an equal weight ratio of Hedyotis diffusa plus Scutellaria barbata (EA11) inhibited cell migration of MCF-7-BOM in a concentration-dependent manner. To define the underlying molecular mechanism, we revealed that EA11 reduced the expression of osteopontin (OPN) and interfered with the FAK/ERK/NF-κB signaling pathways, which are both critical for breast cancer bone metastasis. This study strongly suggested EA11 may represent a potential therapeutic agent against bone metastasis of breast cancer.
Collapse
|
32
|
Yang Q, Chen T, Yao Z, Zhang X. Prognostic value of pre-treatment Naples prognostic score (NPS) in patients with osteosarcoma. World J Surg Oncol 2020; 18:24. [PMID: 32000789 PMCID: PMC6993441 DOI: 10.1186/s12957-020-1789-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the clinical significance of pre-treatment Naples prognostic score (NPS) in patients with osteosarcoma. METHODS The clinical data of 133 osteosarcoma patients between January 2011 and February 2018 in our hospital was retrospectively collected and analyzed. NPS was calculated from four parameters, including serum albumin level, serum total cholesterol (TC), lymphocyte-to-monocyte ratio (LMR), and neutrophil-to-lymphocyte ratio (NLR). Patients were divided into three groups (group 1-3) based on NPS. The relationships between NPS and clinical features, overall survival (OS), and progression-free survival (PFS) were analyzed. Two prediction models based on NPS and clinical parameters were developed: clinical parameters model (model A), and the combined model of NPS and clinical parameters (model B). Their predictive performances were further evaluated and compared. RESULTS The median follow-up time of this cohort was 46.0 (range, 5-75) months, while the median OS and PFS was 40 (range, 5-75) months and 36 (range, 5-71) months, respectively. NPS was significantly correlated with gender, tumor location, Enneking stage, pathological fracture, local recurrence, and metastasis (all P < 0.05). Variables of NPS, Enneking stage, local recurrence, metastasis, and NLR were confirmed as independent prognostic factors for OS and PFS by univariate and multivariate Cox analysis. Prediction model B obtained larger AUCs for OS and PFS and showed better consistency between nomogram-predicted and actual survival than that of model A at the follow-up time of 1-, 3-, and 5-year. CONCLUSIONS NPS was a novel, reliable, and multidimensional prognostic scoring system with favorable predictive performance for patients with osteosarcoma.
Collapse
Affiliation(s)
- Qiankun Yang
- Department Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tong Chen
- Department Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Zhongxiang Yao
- Department of Physiology, Army Medical University, Chongqing, China
| | - Xiaojing Zhang
- Department Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
33
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Chatrabnous N, Arabnezhad MR. The Effects of Astaxanthin on Proliferation and Differentiation of MG-63 Osteosarcoma Cells via Aryl Hydrocarbon Receptor (AhR) Pathway: A Comparison with AhR Endogenous Ligand. Nutr Cancer 2019; 72:1400-1410. [PMID: 31847600 DOI: 10.1080/01635581.2019.1679199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Osteosarcoma (OS) is the most prevalent bone-related malignancy with a high mortality rate among children and adolescents. In the present study, first we explored the effects of astaxanthin (AST) on proliferation and differentiation of the MG-63 osteosarcoma cell line, and then compared its effects with AhR endogenous ligand (FICZ).Methods: Cell proliferation and cytotoxicity assay were performed using MTT. To identify possible mechanisms underlying AST-induced changes in osteogenic metabolism via the AHR pathway, we defined changes in CYP1A1, osteocalcin, osteopontin, type I collagen, and Runx2 gene expression using RT-PCR.Results: AST upregulated CYP1A1, osteocalcin, osteopontin, type I collagen, and Runx2 expression in trends of increasing its concentration. FICZ showed a biphasic effect on MG-63 cell proliferation. At high concentrations, it significantly decreased the cell viability, while at lower concentrations it was increased as compared to the control. Increasing FICZ concentrations from 1 nm to 1 μM, down-regulated the expression of Runx2, osteopontin, osteocalcin and collagen type 1 at the transcriptional levels. It seems that AST can augment the proliferation and differentiation of MG-63 via the AhR-dependent pathway, while FICZ suppresses the proliferation and differentiation of MG-63.Conclusion: We concluded that various AhR ligands show different behaviors in the modulation of MG-63 cells.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nazanin Chatrabnous
- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Arabnezhad
- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Wang J, Hao F, Fei X, Chen Y. SPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-181c. Am J Transl Res 2019; 11:6924-6937. [PMID: 31814897 PMCID: PMC6895505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Patients diagnosed with hepatocellular carcinoma (HCC) suffered a high risk of recurrence and poor prognosis. Identification of differentially expressed genes (DEGs) in HCC provides potential biomarkers for evaluating prognosis and specific therapeutic treatments. In this study, DEGs over-expressed in HCC specimens with a fold change over 2.0 were collected through integrative bioinformatics analysis from GEO datasets. Gene ontology and KEGG pathway enrichment were conducted by applying DAVID database. We noticed Secreted phosphoprotein 1 (SPP1) as one of the signature genes up-regulated in HCC tissues with a close relation to the tumor process. Eighty-seven paired HCC specimens from our medical center were explored to verify the aberrant expression of SPP1 by IHC and qRT-PCR assay. Depletion of SPP1 in HCC Hep3B cells was established. The cell proliferation was impaired in SPP1 depleted cells, along with a resistance of cell apoptosis by down-regulating SPP1. Intriguingly, we further validated a direct interaction between miR-181c and SPP1, which indicated a post-transcriptional regulation mechanism of SPP1 in HCC. Thus, our results suggest that SPP1 may function as an enhancer of HCC growth targeted by miR-181c, and probably provide us an innovational target for HCC diagnose and therapeutic treatment.
Collapse
Affiliation(s)
- Junqing Wang
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Fengjie Hao
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Yongjun Chen
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| |
Collapse
|
35
|
Kovacheva M, Zepp M, Schraad M, Berger S, Berger MR. Conditional Knockdown of Osteopontin Inhibits Breast Cancer Skeletal Metastasis. Int J Mol Sci 2019; 20:E4918. [PMID: 31590218 PMCID: PMC6801824 DOI: 10.3390/ijms20194918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
High osteopontin (OPN) expression is linked to breast cancer bone metastasis. In this study we modulated osteopontin levels conditionally and investigated any related antineoplastic effects. Therefore, we established cell clones from human breast cancer MDA-MB-231 cells, in which the expression of OPN is regulated by the Tet-Off tet-off system. These cells, which conditionally express a specific miRNA targeting OPN, were used for in vitro studies as well as for a bone metastasis model in nude rats. Changes in whole-genome expression elicited by conditional OPN knockdown and vesicle formation were also analyzed. The alkylphosphocholine erufosine was used for combination therapy. Conditional OPN knockdown caused mild anti-proliferative, but more intensive anti-migratory and anti clonogenic effects, as well as partial and complete remissions of soft tissue and osteolytic lesions. These effects were associated with specific gene and protein expression modulations following miRNA-mediated OPN knockdown. Furthermore, high levels of OPN were detected in vesicles derived from rats harboring breast cancer skeletal metastases. Finally, the combination of OPN inhibition and erufosine treatment caused an additive reduction of OPN levels in the investigated breast cancer cells. Thus, knockdown of OPN alone or in combination with erufosine is a promising strategy in breast cancer skeletal metastasis treatment.
Collapse
Affiliation(s)
- Marineta Kovacheva
- German Cancer Research Center (DKFZ), Toxicology and Chemotherapy Unit, 69120 Heidelberg, Germany.
| | - Michael Zepp
- German Cancer Research Center (DKFZ), Toxicology and Chemotherapy Unit, 69120 Heidelberg, Germany.
| | - Muriel Schraad
- German Cancer Research Center (DKFZ), Toxicology and Chemotherapy Unit, 69120 Heidelberg, Germany.
| | - Stefan Berger
- Central Institute of Mental Health, Department of Molecular Biology, 68159 Mannheim, Germany.
| | - Martin R Berger
- German Cancer Research Center (DKFZ), Toxicology and Chemotherapy Unit, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
The Tumor Microenvironment of Pediatric Sarcoma: Mesenchymal Mechanisms Regulating Cell Migration and Metastasis. Curr Oncol Rep 2019; 21:90. [PMID: 31418125 PMCID: PMC6695368 DOI: 10.1007/s11912-019-0839-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents a selection of regulatory molecules of tumor microenvironmental properties and metastasis. Signaling pathways controlling mesenchymal biology in bone and soft-tissue sarcomas found in children and adolescents are prioritized. RECENT FINDINGS The tumor microenvironment of pediatric tumors is still relatively unexplored. Highlighted findings are mainly on deregulated genes associated with cell adhesion, migration, and tumor cell dissemination. How these processes are involved in a mesenchymal phenotype and metastasis is further discussed in relation to the epithelial to mesenchymal transition (EMT) in epithelial tumors. Cell plasticity is emerging as a concept with impact on tumor behavior. Sarcomas belong to a heterogeneous group of tumors where local recurrence and tumor spread pose major challenges despite intense multimodal treatments. Molecular pathways involved in the metastatic process are currently being characterized, and tumor-regulatory properties of structural components, and infiltrating, non-malignant cell types should be further investigated.
Collapse
|