1
|
Yang Z, Cai J, Li J, Liu X, Liu W, Cui K, Bai Z, Dong Y, Peng D, Duan Q, Shahzad A, Zhang Q. The Mechanism of TRIM21 Inhibiting the Invasion and Migration of ccRCC by Stabilizing ASS1. Mol Carcinog 2025; 64:260-278. [PMID: 39513657 DOI: 10.1002/mc.23840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive invasion and metastasis, presenting significant clinical challenges. Gaining insights into the molecular mechanisms underlying its progression is crucial for the development of effective therapeutic strategies. Addressing a critical knowledge gap in understanding ccRCC tumorigenesis, this study aims to elucidate the expression patterns of TRIM21 in ccRCC, unravel its impact on ccRCC patient prognosis, and investigate the regulatory role of TRIM21 in ASS1 expression and urea cycle dysregulation within the context of ccRCC. The results demonstrate that TRIM21 is downregulated in ccRCC, and low expression of TRIM21 predicts an unfavorable prognosis for ccRCC patients. Furthermore, the upregulation of TRIM21 can inhibit the migration and invasion of ccRCC cells by regulating the ubiquitination modification of ASS1. This not only expands the functional role of TRIM21 in ccRCC tumorigenesis but also demonstrates its ability to reverse urea cycle dysregulation through stabilizing ASS1 expression. Specifically, abnormal downregulation of TRIM21 in ccRCC reduces K63 ubiquitination modification of ASS1, leading to decreased stability of the ASS1 protein, aggravated urea cycle dysregulation, and facilitated migration and invasion of ccRCC cells. Additionally, reduction in ASS1 reverses the depressed migration and invasion caused by overexpression of TRIM21 in ccRCC cells. In summary, our findings contribute to a deeper understanding of the functional role played by TRIM21 in ccRCC progression, pinpoint a unique and novel regulatory mechanism involving ectopic downregulation-mediated ASS1 ubiquitination modification and urea cycle dysfunction during ccRCC progression, and provide fresh insights for further investigation into the pathogenesis and metabolic reprogramming associated with ccRCC.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jihao Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ziyuan Bai
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yurong Dong
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongmei Peng
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Weng C, Jin R, Jin X, Yang Z, He C, Zhang Q, Xu J, Lv B. Exploring the Mechanisms, Biomarkers, and Therapeutic Targets of TRIM Family in Gastrointestinal Cancer. Drug Des Devel Ther 2024; 18:5615-5639. [PMID: 39654601 PMCID: PMC11626976 DOI: 10.2147/dddt.s482340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Rijuan Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zimei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenghai He
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Qiuhua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
3
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Chiang DC, Yap BK. TRIM25, TRIM28 and TRIM59 and Their Protein Partners in Cancer Signaling Crosstalk: Potential Novel Therapeutic Targets for Cancer. Curr Issues Mol Biol 2024; 46:10745-10761. [PMID: 39451518 PMCID: PMC11506413 DOI: 10.3390/cimb46100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Aberrant expression of TRIM proteins has been correlated with poor prognosis and metastasis in many cancers, with many TRIM proteins acting as key oncogenic factors. TRIM proteins are actively involved in many cancer signaling pathways, such as p53, Akt, NF-κB, MAPK, TGFβ, JAK/STAT, AMPK and Wnt/β-catenin. Therefore, this review attempts to summarize how three of the most studied TRIMs in recent years (i.e., TRIM25, TRIM28 and TRIM59) are involved directly and indirectly in the crosstalk between the signaling pathways. A brief overview of the key signaling pathways involved and their general cross talking is discussed. In addition, the direct interacting protein partners of these TRIM proteins are also highlighted in this review to give a picture of the potential protein-protein interaction that can be targeted for future discovery and for the development of novel therapeutics against cancer. This includes some examples of protein partners which have been proposed to be master switches to various cancer signaling pathways.
Collapse
Affiliation(s)
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
5
|
Ye K, Wang PC, Chen YX, Huang QZ, Chi P. E3 ubiquitin ligase BTBD3 inhibits tumorigenesis of colorectal cancer by regulating the TYRO3/Wnt/β-catenin signaling axis. Cancer Cell Int 2024; 24:306. [PMID: 39227913 PMCID: PMC11373184 DOI: 10.1186/s12935-024-03478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/β-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/β-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/β-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/β-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated β-catenin and led to β-catenin degradation, therefore blocked the Wnt/β-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Kai Ye
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Peng-Cheng Wang
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Yan-Xin Chen
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Qiao-Zhen Huang
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
6
|
Wang H, Lou J, Liu H, Liu Y, Xie B, Zhang W, Xie J, Pan H, Han W. TRIM59 deficiency promotes M1 macrophage activation and inhibits colorectal cancer through the STAT1 signaling pathway. Sci Rep 2024; 14:16081. [PMID: 38992114 PMCID: PMC11239810 DOI: 10.1038/s41598-024-66388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor-associated macrophages play a crucial role in the tumor microenvironment. Tripartite motif 59 (TRIM59), a member of the tripartite motif (TRIM) family, is known to be associated with immunological diseases and macrophage activation. The functional and molecular mechanisms by which TRIM59 affects the occurrence and development of colorectal cancer (CRC) through macrophages are still not well understood. To address this, we generated macrophage-specific TRIM59 conditional knockout mice and utilized these mice to establish colitis-associated cancer and MC38 transplanted CRC models for further investigation. We found that the deficiency of TRIM59 in macrophages inhibited colorectal tumorigenesis in mice. This tumor-suppressive effect was achieved by promoting the activation of M1 macrophages via STAT1 signaling pathway. Further mechanistic studies revealed that TRIM59 could regulate macrophage polarization by ubiquitinating and degrading STAT1. These findings provide evidence that TRIM59 deficiency promotes M1 macrophage activation and inhibits CRC through the STAT1 signaling pathway, suggesting that the TRIM59/STAT1 signaling pathway may be a promising target for CRC.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Liu
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
- Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
7
|
Li J, Cao H, Yang J, Wang B. IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma. Sci Rep 2024; 14:3014. [PMID: 38321126 PMCID: PMC10847447 DOI: 10.1038/s41598-024-53422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignancy of the head and neck. Recently, circular RNA (circRNA) has been studied extensively in multisystem diseases. However, there are few research on biological functions and molecular mechanisms of circRNAs in LSCC. CircRNA array was used to detect the differentially expressed circRNAs. Kaplan-Meier and cox regression analysis were used to identify survival based on circMMP9. The qRT-PCR, RNase R treatment, sanger sequencing and in situ hybridization were used to verify circMMP9 expression, characteristics and localization in LSCC tissues and cells. Functionally, colony formation, MTS, transwell and in vivo assays were proceeded to detect the biological function of circMMP9 in LSCC progression. The RNA-seq was conducted to identify the molecular targets of circMMP9. Mechanically, MeRIP, RNA Immunoprecipitation (RIP), RNA pulldown, Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried on to verify the regulatory mechanism of circMMP9. CircMMP9 was discovered upregulated in LSCC tissues and cells, and high level of circMMP9 was associated with poor prognosis, low degree of pathological grading, high TNM stage and lymph node metastasis of LSCC. CircMMP9 knockdown prevented LSCC progression both in vitro and in vivo, whereas, circMMP9 overexpression had the opposite effect. CircMMP9 was stabilized by IGF2BP2 in m6A-dependent manner. TRIM59 was identified as downstream target of circMMP9. CircMMP9 recruited ETS1 to stimulate TRIM59 transcription. Moreover, TRIM59 accelerated LSCC progression via activating the PI3K/AKT signal pathway. Our findings offered a unique regulatory mechanism for circMMP9 in LSCC, as well as a novel proof that circMMP9 may be utilize as a diagnostic marker and therapeutic target for LSCC patients.
Collapse
Affiliation(s)
- Jinling Li
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianwang Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baoshan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Zhao MH, Wu AW. Targeting KRAS G12C mutations in colorectal cancer. Gastroenterol Rep (Oxf) 2022; 11:goac083. [PMID: 36632627 PMCID: PMC9825714 DOI: 10.1093/gastro/goac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
With the advent of Kirsten rat sarcoma viral oncogene homologue G12C (KRAS G12C) inhibitors, RAS is no longer considered undruggable. For the suppression of RAS, new therapeutic approaches have been suggested. However, current clinical studies have indicated therapeutic resistance after short-lived tumour suppression. According to preclinical studies, this might be associated with acquired genetic alterations, reactivation of downstream pathways, and stimulation for upstream signalling. In this review, we aimed to summarize current approaches for combination therapy to alleviate resistance to KRAS G12C inhibitors in colorectal cancer with a focus on the mechanisms of therapeutic resistance. We also analysed the relationship between various mechanisms and therapeutic resistance.
Collapse
Affiliation(s)
- Ming-He Zhao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education; Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Ai-Wen Wu
- Corresponding author. Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing 100142, China. Tel/Fax: +86-10-88196981;
| |
Collapse
|
10
|
Niu Y, Fu X, Lin Q, Liang H, Luo X, Zuo S, Liu L, Li N. The composition and antiviral activity of scTRIM59 in Mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2022; 130:86-92. [PMID: 36055555 DOI: 10.1016/j.fsi.2022.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The tripartite motif (TRIM) proteins play critical roles in viral infection by modulating innate immunity. However, the molecular and antiviral activity of TRIM59 in mandrain fish is not fully understood. In present study, we cloned and sequenced the TRIM59 core sequence and explored its characteristics in Mandarin fish. The Siniperca chuatsi TRIM59 (scTRIM59) showed relatively high expression in immune-related organs. scTRIM59 expression was significantly down-regulated post ISKNV infection in vivo and vitro, but up-regulated at the early stages of SCRV infection in CPB cells. The overexpression of scTRIM59 inhibited ISKNV and SCRV infection, but decreased the expression of IRF3/IRF7-mediated signal genes. However, knockdown of scTRIM59 promoted the ISKNV and SCRV infection, but increased the expression of IRF3/IRF7-mediated signal genes. Those results indicated that scTRIM59 negatively regulated ISKNV, SCRV infection and IRF3/IRF7-mediated signal genes. This study provided new ideas about the function of scTRIM59.
Collapse
Affiliation(s)
- Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Xia Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Shaozhi Zuo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China.
| |
Collapse
|
11
|
Feng X, Yang G, Zhang L, Tao S, SHIM JS, Chen L, Wu Q. TRIM59 guards ER proteostasis and prevents Bortezomib-mediated colorectal cancer (CRC) cells’ killing. Invest New Drugs 2022; 40:1244-1253. [DOI: 10.1007/s10637-022-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
|
12
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
13
|
Zhang Y, Zhang W, Zheng L, Guo Q. The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 2022; 13:999380. [PMID: 36249749 PMCID: PMC9561884 DOI: 10.3389/fphar.2022.999380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif (TRIM) containing proteins are a class of E3 ubiquitin ligases, which are critically implicated in the occurrence and development of tumors. They can function through regulating various aspects of tumors, such as tumor proliferation, metastasis, apoptosis and the development of drug resistance during tumor therapy. Some members of TRIM family proteins can mediate protein ubiquitination and chromosome translocation via modulating several signaling pathways, like p53, NF-κB, AKT, MAPK, Wnt/β-catenin and other molecular regulatory mechanisms. The multi-domain nature/multi-functional biological role of TRIMs implies that blocking just one function or one domain might not be sufficient to obtain the desired therapeutic outcome, therefore, a detailed and systematic understanding of the biological functions of the individual domains of TRIMs is required. This review mainly described their roles and underlying mechanisms in tumorigenesis and progression, and it might shade light on a potential targeting strategy for TRIMs in tumor treatment, especially using PROTACs.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| |
Collapse
|
14
|
Protective effects of monoammonium glycyrrhizinate on fatty deposit degeneration induced in primary calf hepatocytes by sodium oleate administration in vitro. Res Vet Sci 2022; 150:213-223. [DOI: 10.1016/j.rvsc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
15
|
Zhang JN, Ding DY, Yang SY, Tao QF, Yang Y, Zhou WP. The role of Tripartite motif containing 59 (TRIM59) in the proliferation and prognosis of intrahepatic cholangiocarcinoma. Pathol Res Pract 2022; 236:153989. [PMID: 35753134 DOI: 10.1016/j.prp.2022.153989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022]
Abstract
Tripartite motif containing 59 (TRIM59) is a crucial gene that is involved in the process of various types of cancer,including breast cancer, lung cancer, colorectal cancer,and so on. Its abnormal expression can affect tumor cell proliferation, metastasis, or apoptosis. In liver cancer, the incidence of intrahepatic cholangiocarcinoma (ICC) is increasing. However, However, it has not been clearly reported on TRIM59 affects the progress of intrahepatic cholangiocarcinoma cells.Firstly, we review the expression of TRIM59 in different cancers and the corresponding normal tissues,and the results preliminarily showed that TRIM59 may be abnormally expressed in many cancers. The author focuses on whether TRIM59 plays a crucial biological role in intrahepatic cholangiocarcinoma. Therefore, we have confirmed through online websites that TRIM59 is highly expressed in intrahepatic cholangiocarcinoma tissues. Furthermore we further found that TRIM59 can be used as an effective prognostic marker for the prognostic guidance of patient survival time. Next, we explore whether the expression level of TRIM59 in intrahepatic cholangiocarcinoma is related to proliferation through the CCK-8 and EDU assay in two ICC cell lines. To further explore how TRIM59 affected the molecular mechanism involved in intrahepatic cholangiocarcinoma cell growth, we found that STAT3 promotes TRIM59 transcription and TRIM59 can affect tumor progression by regulating the PI3K/AKT signaling pathway through luciferase reporter assay and Western blot experiments. In summary, we first found that TRIM59 has great research value in ICC through bioinformatic analysis, then its expression level is closely related to the prognosis through the analysis of clinicopathological indicators of patients with ICC, and the biological mechanism of TRIM59 in ICC provides precise research or therapeutic targets for future cancer treatment. The findings improve our understanding of the potential of TRIM59 in biological functions in ICC and may hold promise as markers for the diagnosis,treatment, and prognosis of ICC. DATA AVAILABILITY: The raw data of this study are derived from the TCGA database, which are publicly available databases.
Collapse
Affiliation(s)
- Jia-Ning Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China; Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Dong-Yang Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Shi-Ye Yang
- The Sixth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Qi-Fei Tao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China.
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China.
| |
Collapse
|
16
|
Dahpy MA, Salama RHM, Kamal AA, El-Deek HE, AbdelMotaleb AA, Abd-El-Rehim AS, Hassan EA, Alsanory AA, Saad MM, Ali M. Evaluation of tripartite motif 59 and its diagnostic utility in benign bowel diseases and colorectal cancer. J Biochem Mol Toxicol 2022; 36:e23065. [PMID: 35377964 DOI: 10.1002/jbt.23065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/31/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in developing countries. Tripartite motif-59 (TRIM59) a member of the TRIM ubiquitin ligase family, is a surface molecule that regulates biological processes such as cell proliferation, apoptosis, and tumorigenesis. Previous studies reported that TRIM59 expression was upregulated in human CRC, however, the expression pattern and role of TRIM59 in benign colorectal lesions remain unclear. Sixty patients diagnosed with CRC and 60 patients with benign lesions (Crohn's disease, ulcerative colitis, adenoma, and familial adenomatous polyposis) were recruited to the present study. TRIM59 gene expression was assessed by real-time quantitative polymerase chain reaction. Expression of TRIM59 protein and p-AKT were determined using, enzyme-linked immunoassay while p53 expression was detected by immunohistochemistry. Antioxidant/oxidant role of glutathione (GSH)/malondialdehyde (MDA) were evaluated by colorimetric methods in all of the studied groups. Our results showed upregulated expressions of TRIM59 gene and protein levels in CRC tissues and benign colonic lesions compared to nontumor tissues. Their levels were higher in inflammatory compared to noninflammatory bowel lesions. There were significant interrelations among TRIM59 gene expression, protein levels, tumor, node, metastasis staging, and the presence of metastasis (p < 0.0001). Receiver-operator characteristic curve analyses showed that at the cutoff point of 2.5 TRIM59 mRNA expression can discriminate between CRC cases and benign bowel group (area under the curve [AUC]: 0.639, sensitivity: 86.7%, specificity: 41.7%), and between CRC and controls (AUC: 0.962, sensitivity: 90%, specificity: 91.7%). TRIM59 could be a potential biomarker in the early detection, diagnosis, and treatment of benign colonic lesions and CRC.
Collapse
Affiliation(s)
- Marwa A Dahpy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Medical Biochemistry and Molecular Biology, Armed forces collage of Medicine (AFCM), Cairo, Egypt
| | - Ragaa H M Salama
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa A Kamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba E El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ali A AbdelMotaleb
- Department of Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer S Abd-El-Rehim
- Department of Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Elham A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Aya A Alsanory
- House Officer, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud M Saad
- House Officer, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maha Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Duan Y, Huang X, Qiao B, Ma R, Li J. Eugenol inhibits the biological activities of an oral squamous cell carcinoma cell line SCC9 via targeting MIF. Anticancer Agents Med Chem 2022; 22:2799-2806. [PMID: 35331101 DOI: 10.2174/1871520622666220324105435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a rampant cancer type in head and neck cancers with a poor prognosis and a high recurrence rate. Eugenol shows anticancer effect in a variety of cancers, but it has been rarely studied in oral squamous cell carcinoma (OSCC). OBJECTIVE Therefore, the purpose of this study was to explore the role of Eugenol in OSCC and the underlying mechanism. METHODS After different concentrations of Eugenol (0, 200, 400 and 800 μM) treatment, the viability, proliferation, migration and invasion of OSCC cell line SCC9 was measured by CCK-8, colony formation, wound-healing and transwell assays, respectively. TUNEL staining was employed to detect the apoptosis. Western blotting was used to evaluate gene expression at protein level. Molecular docking was used to identify the target of Eugenol. RESULTS Eugenol decreased the proliferation, reduced the abilities of invasion and migration along with the expression of matrix metalloproteinases (MMP) 2 and MMP9 in SCC9 cells. On the contrary, the ratio of apoptotic cells was increased by Eugenol. In addition, Eugenol down-regulated B cell lymphoma-2 (Bcl-2) expression, but up-regulated BCL-2 associated X (Bax), cleaved caspase 3 and cleaved poly-ADP ribose polymerase (PARP) expression. Meanwhile, Eugenol exerted its effect on SCC9 cells in a concentration-dependent manner. Eugenol could bind to macrophage migration inhibitory factor (MIF), the expression of which was down-regulated after Eugenol treatment. Besides, overexpression of MIF reversed all the effects of Eugenol on OSCC cells. CONCLUSION In summary, Eugenol suppressed the malignant processes of OSCC cells by targeting MIF, which could guide the clinical application of Eugenol in OSCC.
Collapse
Affiliation(s)
- Yao Duan
- Department of Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, China
| | - Xiaojin Huang
- Department of Traditional Chinese Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bo Qiao
- Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100101, China
| | - Rui Ma
- Department of Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, China
| | - Jialin Li
- Department of Traditional Chinese Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
18
|
Lucknuch T, Praihirunkit P. Evaluation of Age-associated DNA Methylation Markers in Colorectal Cancer of Thai Population. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2022. [DOI: 10.1016/j.fsir.2022.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Peng H, Liu G, Bao Y, Zhang X, Zhou L, Huang C, Song Z, Cao S, Dang S, Zhang J, Huang T, Wu Y, Xu M, Song L, Cao P. Prognostic Factors of Colorectal Cancer: A Comparative Study on Patients With or Without Liver Metastasis. Front Oncol 2021; 11:626190. [PMID: 34993129 PMCID: PMC8724310 DOI: 10.3389/fonc.2021.626190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Radical or palliative surgery with subsequent adjuvant therapy is the routine treatment for stage II/III colorectal cancer(CRC) and some stage IV CRC patients. This study aimed to clarify the prognostic clinicopathological and genetic factors for these patients. Methods Fifty-five stage II-IV CRC patients undergoing surgery and adjuvant therapy were recruited, including patients without liver metastasis(5 at stage II, 21 at stage III) and with liver metastasis(29 at stage IV). Genetic alterations of the primary cancer tissues were investigated by whole exome sequencing(WES). Patients were followed up to 1652 days(median at 788 days). Results The mutational landscape of primary CRC tissue of patients with or without liver metastasis was largely similar, although the mutational frequency of TRIM77 and TCF7L2 was significantly higher in patients with liver metastasis. Several main driver gene co-mutations, such as TP53-APC, APC-KRAS, APC-FRG1, and exclusive mutations, such as TP53-CREBBP, were found in patients with liver metastasis, but not in patients without liver metastasis. No significant difference was found between the two groups in aberrant pathways. If stage II-IV patients were studied altogether, relapse status, SUPT20HL1 mutations, Amp27_21q22.3 and Del8_10q23.2 were independent risk factors(P<0.05). If patients were divided into two groups by metastatic status, surgery types and Amp6_20q13.33 were independent risk factors for patients without liver metastasis(P<0.05), while TRIM77 mutations were the only independent risk factor for patients with liver metastasis(P<0.05). Conclusions Surgery types and Amp6_20q13.33 were independent risk factors for CRC patients without liver metastasis, and TRIM77 mutations were the independent risk factor for CRC patients with liver metastasis.
Collapse
Affiliation(s)
- Honghua Peng
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Guifeng Liu
- The Medical Division, HaploX Biotechnology, Shenzhen, China
| | - Ying Bao
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Lehong Zhou
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Chenghui Huang
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zewen Song
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Sudan Cao
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Shiying Dang
- The Medical Division, HaploX Biotechnology, Shenzhen, China
| | - Jing Zhang
- The Medical Division, HaploX Biotechnology, Shenzhen, China
| | - Tanxiao Huang
- The Medical Division, HaploX Biotechnology, Shenzhen, China
| | - Yuling Wu
- The Medical Division, HaploX Biotechnology, Shenzhen, China
| | - Mingyan Xu
- The Medical Division, HaploX Biotechnology, Shenzhen, China
| | - Lele Song
- The Medical Division, HaploX Biotechnology, Shenzhen, China
- Department of Radiotherapy, the Eighth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Peiguo Cao
- Department of Oncology, the Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Peiguo Cao, ; Lele Song,
| |
Collapse
|
20
|
Jin Z, Liu L, Yu Y, Li D, Zhu X, Yan D, Zhu Z. TRIM59: A potential diagnostic and prognostic biomarker in human tumors. PLoS One 2021; 16:e0257445. [PMID: 34534244 PMCID: PMC8448305 DOI: 10.1371/journal.pone.0257445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
TRIM59 is a protein that is highly expressed in a variety of tumors and promotes tumor development. However, the use of TRIM59 as tumor diagnosis and prognosis biomarker has not been fully explored. We collected datasets from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) to investigate its potential as a biomarker for diagnosis and prognosis. A total of 46 studies, including 11,558 patients were included in this study. Here, we showed that TRIM59 was significantly upregulated in 15 type of human solid tumors in comparison to their adjacent tissues. Receiver operating characteristic curve (ROC) results provided further evidence for the use of TRIM59 as a potential tumor diagnosis biomarker. Overall survival (OS) was compared between TRIM59 high expression and low expression groups. High expression of TRIM59 indicated a poor prognosis in multiple solid tumors. Taken together, these analyses showed that TRIM59 was upregulated in various types of tumors and had the potential to be used as a diagnostic and prognostic biomarker in human solid tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Youran Yu
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
- * E-mail: (DY); (ZZ)
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
- * E-mail: (DY); (ZZ)
| |
Collapse
|
21
|
Guo J, Min K, Deng L. Potential value of tripartite motif-containing 59 as a biomarker for predicting the prognosis of patients with lung cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26868. [PMID: 34397900 PMCID: PMC8360424 DOI: 10.1097/md.0000000000026868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In recent years, related studies have revealed that tripartite motif-containing 59 (TRIM59) is related to the prognosis of lung cancer. However, these results have not been proved by any evidence. Therefore, this study evaluated the relationship between TRIM59 and the prognosis of lung cancer by carrying out meta-analysis. In addition, we explored the mechanism and related pathways of TRIM59 in lung cancer through bioinformatics analysis. METHODS Comprehensive literature search was performed in China National Knowledge Infrastructure, Chinese Biomedical literature Database, Chinese Scientific and Journal Database, Wan Fang, Web of Science, PubMed, and EMBASE databases, and eligible studies were obtained based on the inclusion and exclusion criteria. The pooled hazard ratios and odds ratios were applied to assess the clinical value of TRIM59 expression for overall survival and clinicopathological features. Meanwhile, meta-analysis was conducted on the Stata 16.0. The mRNA expression level of TRIM59 in lung cancer was analyzed using Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) database. Gene Set Enrichment Analysis (GSEA) was used to predict the signaling pathways that TRIM59 might be involved in. The correlation between the expression level of TRIM59 in lung cancer and the abundance of immune cell invasion was analyzed by TIMER database. The survival analysis was verified by Kaplan-Meier Plotter database. RESULTS The results of this meta-analysis would be submitted to peer-reviewed journals for publication. CONCLUSION In this study, the application of meta-analysis and bioinformatics analysis will provide evidence support for the study on the prognosis and mechanism of TRIM59 in lung cancer.
Collapse
Affiliation(s)
- Jianfei Guo
- Department of Thoracic Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei Province, China
| | - Ke Min
- Department of Cardiothoracic Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi Province, China
| | - Lichun Deng
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, Jiangsu Province, China
| |
Collapse
|
22
|
Jin Z, Zhu Z, Zhang W, Liu L, Tang M, Li D, Yan D, Zhu X. Effects of TRIM59 on RAW264.7 macrophage gene expression and function. Immunobiology 2021; 226:152109. [PMID: 34252840 DOI: 10.1016/j.imbio.2021.152109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/12/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Macrophages have a variety of functions, such as secreting cytokines, phagocytosis, et al. Tripartite motif containing 59 (TRIM59) protein is highly expressed in tumor cells. It can regulate proliferation of tumor cells and promote tumor progression. Recent studies shown that the expression of TRIM59 was different in macrophages when stimulated by different stimuli, however, the effects of TRIM59 on macrophage gene expression profiles and functions are still unknown. In our study, we constructed RAW264.7 macrophages with high and low expression of TRIM59, and used next generation sequencing to explore the effects of TRIM59 on macrophage gene expression profiles. Results showed that TRIM59 affected an abundant number of genes, and may affect phagocytosis and cell cycles. We also examined the expression of surface molecules, secretion of cytokines, phagocytosis, proliferation, and apoptosis of macrophages, and confirmed that TRIM59 increased the expression of FcγRs CD16/32, CD64 and the secretion of TNF-α and IL-10, promoted phagocytosis and proliferation of RAW264.7 cells, inhibited the expression of complement receptor CD11b and antigen presentation related receptors (MHCII, CD80), but TRIM59 had no significant effect on apoptosis. Our study explored the effect of TRIM59 on the gene expression and function of macrophages comprehensively.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, West of Zhongshan Avenue 183#, Guangzhou, Guangdong Province, China
| | - Wenxin Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
23
|
McCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo PL, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai PC, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué PA, Durda P, Elliott HR, Gieger C, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, Smith JA, Taylor JA, van Meurs JBJ, Vineis P, Waldenberger M, Deary IJ, Relton CL, Horvath S, Marioni RE. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol 2021; 22:194. [PMID: 34187551 PMCID: PMC8243879 DOI: 10.1186/s13059-021-02398-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.
Collapse
Affiliation(s)
- Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Josine L Min
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeesun Jung
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pei-Lun Kuo
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Matthijs D van der Zee
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Xiaochuan Wang
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zongli Xu
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05446, USA
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jacob K Kresovich
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Minnesota, Minneapolis, MN, 55404, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Joanne M Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Polidoro
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Elina Sillanpää
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Therese Tillin
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - David J Van Den Berg
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Donna Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, UK
| | | | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Luigi Ferrucci
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Rd. South, Edinburgh, EH4 2XU, UK
| | - Marguerite Irvin
- Dept of Epidemiology, University of Alabama at Birmingham, Birmingham, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Falk W Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
24
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
25
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
26
|
Hu J, Ding X, Tian S, Chu Y, Liu Z, Li Y, Li X, Wang G, Wang L, Wang Z. TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 2021; 12:391. [PMID: 33846303 PMCID: PMC8041807 DOI: 10.1038/s41419-021-03670-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
The biological function of TRIM39, a member of TRIM family, remains largely unexplored in cancer, especially in colorectal cancer (CRC). In this study, we show that TRIM39 is upregulated in tumor tissues compared to adjacent normal tissues and associated with poor prognosis in CRC. Functional studies demonstrate that TRIM39 deficiency restrains CRC progression in vitro and in vivo. Our results further find that TRIM39 is a positive regulator of autophagosome–lysosome fusion. Mechanistically, TRIM39 interacts with Rab7 and promotes its activity via inhibiting its ubiquitination at lysine 191 residue. Depletion of TRIM39 inhibits CRC progression and autophagic flux in a Rab7 activity-dependent manner. Moreover, TRIM39 deficiency suppresses CRC progression through inhibiting autophagic degradation of p53. Thus, our findings uncover the roles as well as the relevant mechanisms of TRIM39 in CRC and establish a functional relationship between autophagy and CRC progression, which may provide promising approaches for the treatment of CRC.
Collapse
Affiliation(s)
- Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xueliang Ding
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaobo Tian
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yanan Chu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhibo Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuqin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaoqiong Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
27
|
Marzano F, Caratozzolo MF, Pesole G, Sbisà E, Tullo A. TRIM Proteins in Colorectal Cancer: TRIM8 as a Promising Therapeutic Target in Chemo Resistance. Biomedicines 2021; 9:biomedicines9030241. [PMID: 33673719 PMCID: PMC7997459 DOI: 10.3390/biomedicines9030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient’s premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.
Collapse
Affiliation(s)
- Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Mariano Francesco Caratozzolo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, “Aldo Moro”, 70125 Bari, Italy
| | - Elisabetta Sbisà
- Institute for Biomedical Technologies, National Research Council, CNR, 70126 Bari, Italy;
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Correspondence:
| |
Collapse
|
28
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
29
|
Chen R, Huang Y, Wang L, Zhou J, Tan Y, Peng C, Yang P, Peng W, Li J, Gu Q, Sheng Y, Wang Y, Shao G, Zhang Q, Sun Y. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater Sci 2021; 9:2279-2294. [PMID: 33538278 DOI: 10.1039/d0bm01904f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-functionalized targeted nanocarriers to deliver chemotherapeutics have been widely explored. However, it remains highly desirable to understand and apply the antitumor potential of antibodies integrated in hybrid composite nanoplatforms. Herein, mesoporous silica nanoparticles, a supported lipid bilayer and cetuximab were integrated to fabricate a hybrid nanoplatform for effectively encapsulating and selectively delivering 5-fluorouracil (5-FU) against colorectal cancer (CRC) cells. The specially designed nanoplatform exhibited superior properties, such as satisfying size distribution, dispersity and stability, drug encapsulation, controlled release, and cellular uptake. Interestingly, the modification of cetuximab onto nanoplatforms without drug loading can significantly inhibit the migration and invasion of CRC cells through suppressing the epidermal growth factor receptor (EGFR)-associated signaling pathway. Furthermore, delivery of 5-FU by using this nanoplatform can remarkably induce cytotoxicity, cell cycle arrest, and cell apoptosis for CRC cells with high EGFR expression. Overall, this nanostructured platform can dramatically improve the tumor killing effects of encapsulated chemotherapeutics and present antimigration effects derived from the antibody modified on it. Moreover, in vivo biodistribution experiments demonstrated the superior tumor targeting ability of the targeted nanoparticles. Thus, this targeted nanoplatform has substantial potential in combinational therapy of antibodies and chemotherapy agents against colorectal cancer.
Collapse
Affiliation(s)
- Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu C, Shang XQ, You ZP, Jin QF, Zhang YL, Zhou Y, Zhang YZ, Shi K. TRIM59 Promotes Retinoblastoma Progression by Activating the p38-MAPK Signaling Pathway. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32744597 PMCID: PMC7441337 DOI: 10.1167/iovs.61.10.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Retinoblastoma is a malignant tumor of the developing retina that mostly occurs in children. Our study aimed to investigate the effect of tripartite motif-containing protein 59 (TRIM59) on retinoblastoma growth and the underlying mechanisms. Methods We performed bioinformatic analysis of three datasets (GSE24673, GSE97508, and GSE110811) from the Gene Expression Omnibus database. Quantitative reverse-transcription PCR and immunoblotting of three retinoblastoma cell lines were conducted to verify TRIM59 as a differentially expressed gene. Specific siRNAs were used to inhibit TRIM59 expression in the HXO-Rb44 cell line. A lentiviral vector was transfected into the Y79 cell line to overexpress TRIM59. The effects of TRIM59 on retinoblastoma cell proliferation, cell cycling, and apoptosis were explored in vitro using the abovementioned cell lines. The effect of TRIM59 expression on retinoblastoma cell proliferation was evaluated in a mouse xenograft tumor model. Results TRIM59 expression in three retinoblastoma cell lines was remarkably elevated compared with normal control. Knocking down TRIM59 expression remarkably suppressed cell proliferation and growth and promoted cell apoptosis in HXO-Rb44 cells, whereas TRIM59 overexpression promoted tumor progression in Y79 cells. Silencing TRIM59 also markedly inhibited in vivo tumor growth in the xenograft model. Mechanistic studies revealed that TRIM59 upregulated phosphorylated p38, p-JNK1/2, p-ERK1/2, and p-c-JUN expression in retinoblastoma cells. Notably, the p38 inhibitor SB203580 attenuated the effects of TRIM59 on cell proliferation, apoptosis, and the G1/S phase transition. Conclusions TRIM59 plays an oncogenic role in retinoblastoma and exerts its tumor-promotive function by activating the p38-mitogen-activated protein kinase pathway.
Collapse
|
31
|
Wu HT, Lin J, Liu YE, Chen HF, Hsu KW, Lin SH, Peng KY, Lin KJ, Hsieh CC, Chen DR. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153437. [PMID: 33352494 DOI: 10.1016/j.phymed.2020.153437] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents up to 20% of all breast cancers. This cancer lacks the expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The current therapeutic strategy for patients with this subtype is the use of cytotoxic chemotherapy and surgery. Luteolin is a natural herbal flavonoid and a potential therapeutic candidate for multiple diseases. The use of a treatment that combines Chinese herbal medicine and western medicine is rising in Asia. PURPOSE The present study evaluates the effects and molecular mechanisms involved with luteolin treatment and evaluates whether this herb affects androgen receptor-positive breast cancer cell proliferation or metastasis. STUDY DESIGN In vitro evaluation of the effect of luteolin on androgen receptor-positive TNBC cell proliferation and metastasis METHODS: Cell viability analysis was used for the cytotoxicity test. Colony formation and Bromodeoxyuridine (BrdU) staining-based proliferation experiments were used for cell proliferation. Wound healing and transwell assays were used for in vitro migration/invasion. The RT-qPCR analysis was used for gene expression. Furthermore, ChIP-qPCR analysis was used for epigenetic modification of gene promoters. RESULTS Luteolin significantly inhibited the proliferation and metastasis of androgen receptor-positive TNBC. Furthermore, luteolin inactivated the AKT/mTOR signaling pathway and reversed the epithelial-mesenchymal transition (EMT). The combination of luteolin and inhibitors of AKT/mTOR synergistically repressed an androgen receptor-positive TNBC cell proliferation and metastasis. Luteolin also downregulated MMP9 expression by decreasing the levels of the AKT/mTOR promoting H3K27Ac and H3K56A on the MMP9 promoter region. CONCLUSION Our findings indicate that luteolin inhibited the proliferation and metastasis of androgen receptor-positive TNBC by regulating MMP9 expression through a reduction in the levels of AKT/mTOR-inducing H3K27Ac and H3K56Ac.
Collapse
Affiliation(s)
- Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Joseph Lin
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500, Taiwan; Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
| | - Yi-En Liu
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsiao-Fan Chen
- Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan
| | | | | | - Kuo-Juei Lin
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 824, Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan.
| | - Dar-Ren Chen
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan; Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500, Taiwan; Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
32
|
Eberhardt W, Haeussler K, Nasrullah U, Pfeilschifter J. Multifaceted Roles of TRIM Proteins in Colorectal Carcinoma. Int J Mol Sci 2020; 21:ijms21207532. [PMID: 33066016 PMCID: PMC7590211 DOI: 10.3390/ijms21207532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed tumor in humans and one of the most common causes of cancer-related death worldwide. The pathogenesis of CRC follows a multistage process which together with somatic gene mutations is mainly attributed to the dysregulation of signaling pathways critically involved in the maintenance of homeostasis of epithelial integrity in the intestine. A growing number of studies has highlighted the critical impact of members of the tripartite motif (TRIM) protein family on most types of human malignancies including CRC. In accordance, abundant expression of many TRIM proteins has been observed in CRC tissues and is frequently correlating with poor survival of patients. Notably, some TRIM members can act as tumor suppressors depending on the context and the type of cancer which has been assessed. Mechanistically, most cancer-related TRIMs have a critical impact on cell cycle control, apoptosis, epithelial–mesenchymal transition (EMT), metastasis, and inflammation mainly through directly interfering with diverse oncogenic signaling pathways. In addition, some recent publications have emphasized the emerging role of some TRIM members to act as transcription factors and RNA-stabilizing factors thus adding a further level of complexity to the pleiotropic biological activities of TRIM proteins. The current review focuses on oncogenic signaling processes targeted by different TRIMs and their particular role in the development of CRC. A better understanding of the crosstalk of TRIMs with these signaling pathways relevant for CRC development is an important prerequisite for the validation of TRIM proteins as novel biomarkers and as potential targets of future therapies for CRC.
Collapse
|
33
|
Gong LP, Chen JN, Dong M, Xiao ZD, Feng ZY, Pan YH, Zhang Y, Du Y, Zhang JY, Bi YH, Huang JT, Liang J, Shao CK. Epstein-Barr virus-derived circular RNA LMP2A induces stemness in EBV-associated gastric cancer. EMBO Rep 2020; 21:e49689. [PMID: 32790025 DOI: 10.15252/embr.201949689] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are cancer-initiating cells that are not only a source of tumorigenesis but also the cause of tumour progression, metastasis and therapy resistance. EBV-associated gastric cancer (EBVaGC) is a distinct subtype of gastric cancer with unique clinicopathological and molecular features. However, whether CSCs exist in EBVaGC, and the tumorigenic mechanism of EBV, remains unclear. Here, NOD/SCID mice were injected subcutaneously with the EBVaGC cell line SNU719 and treated with 5-fluorouracil weekly. Successive generations of xenografts yielded a highly malignant EBVaGC cell line, SNU-4th, which displays properties of CSCs and mainly consists of CD44+ CD24- cells. In SNU-4th cells, an EBV-encoded circRNA, ebv-circLMP2A, expression increased and plays crucial roles in inducing and maintaining stemness phenotypes through targeting miR-3908/TRIM59/p53 axis. Additionally, high expression of ebv-circLMP2A is significantly associated with metastasis and poor prognosis in patients with EBVaGC. These findings not only provide evidence for the existence of CSCs in EBVaGC and elucidate the pathogenic mechanism of ebv-circLMP2A in EBVaGC, but also provide a promising therapeutic target for EBVaGC.
Collapse
Affiliation(s)
- Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ying Feng
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Hang Pan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Yue Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Hua Bi
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Yuan P, Zheng A, Tang Q. Tripartite motif protein 25 is associated with epirubicin resistance in hepatocellular carcinoma cells via regulating PTEN/AKT pathway. Cell Biol Int 2020; 44:1503-1513. [PMID: 32196840 DOI: 10.1002/cbin.11346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Yuan
- Department of Interventional TherapyThe People's Hospital of JianhuJianhu 224700 Jiangsu P. R. China
| | - Aidong Zheng
- Department of Intensive MedicineThe People's Hospital of JianhuJianhu 224700 Jiangsu P. R. China
| | - Qing Tang
- Department of OncologyThe People's Hospital of Funing County in Yancheng CityYancheng 224400 Jiangsu P. R. China
| |
Collapse
|
35
|
Jin Z, Zhu Z, Liu S, Hou Y, Tang M, Zhu P, Tian Y, Li D, Yan D, Zhu X. TRIM59 Protects Mice From Sepsis by Regulating Inflammation and Phagocytosis in Macrophages. Front Immunol 2020; 11:263. [PMID: 32133014 PMCID: PMC7041419 DOI: 10.3389/fimmu.2020.00263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 01/23/2023] Open
Abstract
Sepsis is associated with bacterial invasion and inflammation and has a high mortality rate. Previous studies have demonstrated that tripartite motif 59 (TRIM59) was involved in NF-κB signaling and could promote phagocytosis of macrophages, but the role of TRIM59 in sepsis is still unknown. In our study, we found that TRIM59 was downregulated in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs). In the cecal ligation and puncture (CLP) sepsis mice model, the mortality of Trim59flox/floxLyz-Cre (Trim59-cKO) mice was higher, the immune cell infiltration and damage of liver and lung were more severe, and bacteria burden was increased. We also found that TRIM59 altered the production of pro-inflammation cytokines, as well as macrophage phagocytosis ability. Further analysis indicated that NF-κB signal pathway and Fcγ receptors might be involved in these regulations. Our study demonstrated for the first time that TRIM59 protects mice from sepsis by regulating inflammation and phagocytosis in macrophages.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
36
|
Tong X, Mu P, Zhang Y, Zhao J, Wang X. TRIM59, amplified in ovarian cancer, promotes tumorigenesis through the MKP3/ERK pathway. J Cell Physiol 2020; 235:8236-8245. [PMID: 31951023 DOI: 10.1002/jcp.29478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
Tripartite motif containing 59 (TRIM59) functions as an oncoprotein in various human cancers including ovarian cancer. In this study, we found that TRIM59 gene amplification was prevalent in ovarian cancer tissues, and its amplification was significantly correlated with poorer overall survival. Moreover, knockdown of TRIM59 in SKOV3 and OVCAR3 cells, which had relatively high level of TRIM59, suppressed glucose uptake and lactate production. TRIM59 knockdown also decreased the expression of c-Myc and lactate dehydrogenase A, and the phosphorylation of extracellular signal-regulated kinase (ERK). TRIM59 overexpression in A2780 cells, which expressed low level of TRIM59, showed reverse effects. Notably, treatment with an ERK inhibitor (PD98059) completely abolished the oncogenic effects of TRIM59 overexpression. Interestingly, TRIM59 increased the ubiquitination of MAP kinase phosphatase 3 (MKP3), which may dephosphorylate and inactivate ERK. Ectopic expression of MKP3 inhibited the promoting effects of TRIM59 on glycolysis and the phosphorylation of ERK. TRIM59 protein expression was negatively correlated with MKP3 protein expression in ovarian cancer tissues. Finally, TRIM59 amplification potently affected the anticancer effect of 3-bromopyruvate, an inhibitor of glycolysis, in ovarian cancer cells and patient-derived xenograft. In conclusion, these results suggest that TRIM59 may regulate glycolysis in ovarian cancer via the MKP3/ERK pathway.
Collapse
Affiliation(s)
- Xiaojing Tong
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Peng Mu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yuhua Zhang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jiao Zhao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xiaobin Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
37
|
Ying H, Ji L, Xu Z, Fan X, Tong Y, Liu H, Zhao J, Cai X. TRIM59 promotes tumor growth in hepatocellular carcinoma and regulates the cell cycle by degradation of protein phosphatase 1B. Cancer Lett 2019; 473:13-24. [PMID: 31875525 DOI: 10.1016/j.canlet.2019.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/28/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Tripartite motif 59 (TRIM59) is a member of Tripartite motif protein family, which is frequently increased in many human cancers. However, the molecular mechanism of TRIM59 in hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we report that TRIM59 plays an essential role in growth of HCC. We analyzed RNA sequencing data to explore abnormally expressed TRIM59 in HCC. The effects of TRIM59 on HCC were investigated through in vitro and in vivo assays (i.e., CCK-8 assay, colony formation assay, flow cytometry assay, xenograft model, immunohistochemistry, immunofluorescence and western blot). The mechanism of TRIM59 action was explored through co-immunoprecipitation, immunofluorescence, mass spectrometry and bioinformatics. TRIM59 expression is up-regulated in HCC tissues. A high level of TRIM59 expression is correlated with poor overall and disease-free survival of HCC patients. Knockdown of TRIM59 attenuated proliferation, induced cells arrested at G1/S phase and reduced tumor growth in the mouse xenograft model. Ectopic expression of TRIM59 had the opposite results. Mechanistically, TRIM59 promoted growth and regulated cell cycle. Further studies indicated that TRIM59 might interacted physically with PPM1B, which has been reported to negatively regulate CDKs phosphorylation. We also discovered that TRIM59 increased degradation of PPM1B. TRIM59 overexpression in HCC patients correlated with reduced expression of PPM1B and increased CDKs phosphorylation and cell cycle proteins. Our findings demonstrate that TRIM59 promotes growth by PPM1B/CDKs signaling pathway, indicating a new prognostic biomarker candidate and a potential antitumor target for HCC.
Collapse
Affiliation(s)
- Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyao Xu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Liu
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhao
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Lou M, Gao Z, Zhu T, Mao X, Wang Y, Yuan K, Tong J. TRIM59 as a novel molecular biomarker to predict the prognosis of patients with NSCLC. Oncol Lett 2019; 19:1400-1408. [PMID: 31966070 PMCID: PMC6956412 DOI: 10.3892/ol.2019.11199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
As a member of the tripartite motif family, tripartite motif-containing protein 59 (TRIM59) serves as an E3 ubiquitin ligase in various cellular processes, including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy and carcinogenesis. The present study aimed to investigate the expression and prognostic value of TRIM59 in patients with non-small cell lung cancer (NSCLC). Expression of TRIM59 in patients with NSCLC was measured by immunohistochemistry in tissue microarrays. Datasets from The Cancer Genome Atlas (TCGA) were used to further verify the expression level of TRIM59 in NSCLC, lung adenocarcinoma and lung squamous cell carcinoma (LUSC). The prognostic value of TRIM59 in NSCLC was also analyzed. Immunohistochemistry revealed that TRIM59 was primarily located in the cytoplasm of tumor cells. Analysis of TCGA datasets revealed that TRIM59 was more highly expressed in tumor tissues than in normal tissues (P<0.0001). Furthermore, the TRIM59 expression level was associated with tumor differentiation (P=0.012), while no association was observed between TRIM59 expression and any other clinicopathological parameters. However, the average overall survival rate of patients with NSCLC in the high TRIM59 expression group was significantly lower than that in the low expression group (P=0.014), especially in patients with LUSC (P=0.016) and patients with poor differentiation (P=0.033). The multivariate analysis indicated that high TRIM59 expression is an independent prognostic factor in patients with NSCLC (P=0.018) and was associated with poor prognosis in patients with NSCLC. Therefore, TRIM59 may serve as a novel molecular biomarker to predict the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Ming Lou
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China.,Department of Heart and Lung Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhaojia Gao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Tao Zhu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoliang Mao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Yeming Wang
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Kai Yuan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China.,Department of Heart and Lung Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jichun Tong
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
39
|
Ma L, Yao N, Chen P, Zhuang Z. TRIM27 promotes the development of esophagus cancer via regulating PTEN/AKT signaling pathway. Cancer Cell Int 2019; 19:283. [PMID: 31719796 PMCID: PMC6839104 DOI: 10.1186/s12935-019-0998-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Tripartite motif‑containing 27 (TRIM27) belongs to the TRIM protein family, which is closely related to the progression of some certain human cancers. Nevertheless, the biological function of TRIM27 in esophageal squamous cell carcinoma (ESCC) is still not clear. The aim of present research is to examine the function of TRIM27 in ESCC cells. Methods In the present study, RNA interference (RNAi) and lentiviral vector were used to knockdown and overexpression of TRIM27 in ESCC cells respectively. qRT-PCR and western blot were used to examine the expression of TRIM27 in ESCC cells. Cell counting kit-8 (CCK-8) assay was performed to determine the proliferation of cells. Results Our analyses indicated that TRIM27 was a pro-proliferation factor in ESCC cells. Moreover, overexpression of TRIM27 deeply suppressed the apoptosis of ESCC cells and accelerated its glucose uptake. In addition, an AKT inhibitor LY294002 was used to determine the connection between TRIM27 and AKT in ESCC cells. Our results demonstrated that TRIM27 has involved in the PI3/AKT signaling pathway. Moreover, TRIM27 interacted with PTEN and mediated its poly-ubiquitination in ESCC cells. Importantly, the glycolysis inhibitor 3-BrPA also inhibited the effect of TRIM27 on ESCC cells. Hence, TRIM27 also participated in the regulation of energy metabolism in ESCC cells. Conclusions This research not only gained a deep insight into the biological function of TRIM27 but also elucidated its potential target and signaling pathway in human ESCC cells.
Collapse
Affiliation(s)
- Liang Ma
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China.,Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Ninghua Yao
- 3Departments of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Zhixiang Zhuang
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China
| |
Collapse
|
40
|
Li R, Weng L, Liu B, Zhu L, Zhang X, Tian G, Hu L, Li Q, Jiang S, Shang M. TRIM59 predicts poor prognosis and promotes pancreatic cancer progression via the PI3K/AKT/mTOR-glycolysis signaling axis. J Cell Biochem 2019; 121:1986-1997. [PMID: 31693252 DOI: 10.1002/jcb.29433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA-mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.
Collapse
Affiliation(s)
- Rongkun Li
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Wang M, Chao C, Luo G, Wang B, Zhan X, Di D, Qian Y, Zhang X. Prognostic significance of TRIM59 for cancer patient survival: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e18024. [PMID: 31770215 PMCID: PMC6890323 DOI: 10.1097/md.0000000000018024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The family of tripartite motif (TRIM) proteins, which includes 80 known TRIM protein genes in humans, play a key role in cellular processes. TRIM59, a member of the TRIM family of proteins, has been reported to be involved in the carcinogenesis of multiple types of tumors. However, the prognostic value of TRIM59 in the survival of tumor patients remains controversial. We therefore conducted a meta-analysis to assess the prognostic significance of TRIM59 in cancer patients. MATERIALS AND METHODS PubMed, Embase, VIP, CNKI and Wanfang Data were searched for eligible reports published before September 30, 2018. The hazard ratio (HR) and 95% confidence intervals (CIs) were adopted to estimate the association between TRIM59 and overall survival (OS). RESULTS Six studies with 1584 patients were included to assess the effect. The results showed that high levels of TRIM59 were significantly associated with poor OS in cancer patients (HR = 1.43, 95%CI: 1.24-1.66, P < .001), indicating that higher TRIM59 expression could be an independent prognostic factor for poor survival in cancer patients. CONCLUSION Our meta-analysis suggests that higher TRIM59 expression predicts poor prognosis in cancer patients, and it may therefore serve as a promising prognostic factor.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiothoracic Surgery
| | - Ce Chao
- Department of Cardiothoracic Surgery
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Department of Cardiothoracic Surgery
| | | | | | | | | |
Collapse
|
42
|
TRIM59 inhibits porcine reproductive and respiratory syndrome virus (PRRSV)-2 replication in vitro. Res Vet Sci 2019; 127:105-112. [PMID: 31683196 DOI: 10.1016/j.rvsc.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV), has ranked among the major economically significant pathogen in the global swine industry. The PRRSV nonstructural protein (nsp)11 possesses nidovirus endoribonuclease (NendoU) activity, which is important for virus replication and suppression of the host innate immunity system. Recent proteomic study found that TRIM59 (tripartite motif-containing 59) interacted with the nsp11, albeit the exact role it plays in PRRSV infection remains enigmatic. Herein, we first confirmed the interaction between nsp11 and TRIM59 in co-transfected HEK293T cells and PRRSV-infected pulmonary alveolar macrophages (PAMs). The interacting domains between TRIM59 and nsp11 were further determined to be the N-terminal RING domain in TRIM59 and the C-terminal NendoU domain in nsp11, respectively. Moreover, we reported that overexpression of TRIM59 inhibited PRRSV infection in Marc-145 cells. Conversely, small interfering RNA (siRNA) depletion of TRIM59 resulted in enhanced production of PRRSV in PAMs. Together, these data add TRIM59 as a crucial antiviral component against PRRSV and provide new insights for development of new compounds to reduce PRRSV infection.
Collapse
|
43
|
Nordgaard C, Doll S, Matos ALDSA, Høeberg M, Kazi JU, Friis S, Stenvang J, Rönnstrand L, Mann M, Manuel Afonso Moreira J. Metallopeptidase inhibitor 1 (TIMP-1) promotes receptor tyrosine kinase c-Kit signaling in colorectal cancer. Mol Oncol 2019; 13:2646-2662. [PMID: 31545548 PMCID: PMC6887592 DOI: 10.1002/1878-0261.12575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer worldwide causing an estimated 700 000 deaths annually. Different types of treatment are available for patients with advanced metastatic colorectal cancer, including targeted biological agents, such as cetuximab, a monoclonal antibody that targets EGFR. We have previously reported a study indicating multiple levels of interaction between metallopeptidase inhibitor 1 (TIMP‐1) and the epidermal growth factor (EGF) signaling axis, which could explain how TIMP‐1 levels can affect the antitumor effects of EGFR inhibitors. We also reported an association between TIMP‐1‐mediated cell invasive behavior and KRAS status. To gain insight into the molecular mechanisms underlying the effects of TIMP‐1 in CRC, we examined by transcriptomics, proteomics, and kinase activity profiling a matched pair of isogenic human CRC isogenic DLD‐1 CRC cell clones, bearing either an hemizygous KRAS wild‐type allele or KRAS G13D mutant allele, exposed, or not, to TIMP‐1. Omics analysis of the two cell lines identified the receptor tyrosine kinase c‐Kit, a proto‐oncogene that can modulate cell proliferation and invasion in CRC, as a target for TIMP‐1. We found that exposure of DLD‐1 CRC cells to exogenously added TIMP‐1 promoted phosphorylation of c‐Kit, indicative of a stimulatory effect of TIMP‐1 on the c‐Kit signaling axis. In addition, TIMP‐1 inhibited c‐Kit shedding in CRC cells grown in the presence of exogenous TIMP‐1. Given the regulatory roles that c‐Kit plays in cell proliferation and migration, and the realization that c‐Kit is an important oncogene in CRC, it is likely that some of the biological effects of TIMP‐1 overexpression in CRC may be exerted through its effect on c‐Kit signaling.
Collapse
Affiliation(s)
- Cathrine Nordgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | - Mikkel Høeberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Julhash Uddin Kazi
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Sweden
| | - Stine Friis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jan Stenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Sweden.,Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - José Manuel Afonso Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
44
|
Shi JW, Huang Y. Screen and classify genes on bladder cancer associated with metastasis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
He T, Cui J, Wu Y, Sun X, Chen N. Knockdown of TRIM66 inhibits cell proliferation, migration and invasion in colorectal cancer through JAK2/STAT3 pathway. Life Sci 2019; 235:116799. [PMID: 31472144 DOI: 10.1016/j.lfs.2019.116799] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 01/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Emerging evidence has shown that dysregulation of tripartite motif (TRIM) family proteins is strongly correlated with the tumorigenesis of CRC. Here, we evaluated the biological roles of TRIM66, a member of TRIM family, in the progression of CRC. The results demonstrated that TRIM66 was markedly up-regulated in both CRC tissues and cell lines. To further investigate the functions of TRIM66 in CRC, CRC cells were infected with lentivirus expressing anti-TRIM66 shRNA (sh-TRIM66) or control lentivirus (sh-con). We found that knockdown of TRIM66 significantly inhibited cell proliferation, migration, invasion of CRC cells. TRIM66 knockdown also suppressed epithelial-mesenchymal transition (EMT), as proved by the increased E-cadherin expression and decreased expressions of N-cadherin and vimentin. Furthermore, TRIM66 knockdown markedly inhibited tumor growth in a mouse xenograft model. Knockdown of TRIM66 reduced the activation of JAK2/STAT3 signaling pathway in CRC cells. Treatment with AG490, an inhibitor of JAK2/STAT3 signaling pathway, enhanced the inhibitory effects of TRIM66 knockdown on cell proliferation, migration and invasion. These findings suggested that knockdown of TRIM66 exhibited anti-tumor activity through inhibiting the JAK2/STAT3 signaling pathway in CRC cells.
Collapse
Affiliation(s)
- Tao He
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Cui
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yunhua Wu
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuejun Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Nanzheng Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
46
|
Narayanankutty A. PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence. Curr Drug Targets 2019; 20:1217-1226. [DOI: 10.2174/1389450120666190618123846] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Background:
Phosphoinositide 3-kinase (PI3Ks) is a member of intracellular lipid kinases
and involved in the regulation of cellular proliferation, differentiation and survival. Overexpression of
the PI3K/Akt/mTOR signalling has been reported in various forms of cancers, especially in colorectal
cancers (CRC). Due to their significant roles in the initiation and progression events of colorectal cancer,
they are recognized as a striking therapeutic target.
Objective:
The present review is aimed to provide a detailed outline on the role of PI3K/Akt/mTOR
pathway in the initiation and progression events of colorectal cancers as well as its function in drug
resistance. Further, the role of PI3K/Akt/mTOR inhibitors alone and in combination with other chemotherapeutic
drugs, in alleviating colorectal cancer is also discussed. The review contains preclinical
and clinical evidence as well as patent literature of the pathway inhibitors which are natural
and synthetic in origin.
Methods:
The data were obtained from PubMed/Medline databases, Scopus and Google patent literature.
Results:
PI3K/Akt/mTOR signalling is an important event in colorectal carcinogenesis. In addition, it
plays significant roles in acquiring drug resistance as well as metastatic initiation events of CRCs.
Several small molecules of natural and synthetic origin have been found to be potent inhibitors of
CRCs by effectively downregulating the pathway. Data from various clinical studies also support
these pathway inhibitors and several among them are patented.
Conclusion:
Inhibitors of the PI3K/mTOR pathway have been successful for the treatment of primary
and metastatic colorectal cancers, rendering the pathway as a promising clinical cancer therapeutic target.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Post Graduate & Research Department of Zoologyid1, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, 673008, India
| |
Collapse
|
47
|
E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis. Cells 2019; 8:cells8050510. [PMID: 31137886 PMCID: PMC6562728 DOI: 10.3390/cells8050510] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
Collapse
|
48
|
Cui Z, Liu Z, Zeng J, Chen L, Wu Q, Mo J, Zhang G, Song L, Xu W, Zhang S, Guo X. Eugenol inhibits non‐small cell lung cancer by repressing expression of NF‐κB‐regulated TRIM59. Phytother Res 2019; 33:1562-1569. [PMID: 30932261 DOI: 10.1002/ptr.6352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zhilei Cui
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhen Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Junxiang Zeng
- Department of Laboratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lei Chen
- Department of PathologyXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiong Wu
- Respiratory Medicine DepartmentKongJiang Hospital, YangPu District Shanghai China
| | - Jiahang Mo
- Clinical Medical DepartmentZheJiang Chinese Medical University Hangzhou China
| | - Guorui Zhang
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lin Song
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weiguo Xu
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shulin Zhang
- Department of Immunology and MicrobiologyShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xuejun Guo
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
49
|
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z, Ru X, Qin X. TRIM52 promotes colorectal cancer cell proliferation through the STAT3 signaling. Cancer Cell Int 2019; 19:57. [PMID: 30918473 PMCID: PMC6419475 DOI: 10.1186/s12935-019-0775-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/08/2019] [Indexed: 01/05/2023] Open
Abstract
Background The tripartite motif (TRIM) family proteins are implicated in the pathogenesis of various human malignancies. The up-regulation and oncogenic roles of TRIM52 have been reported in hepatocellular carcinoma. In the current study, we aimed to examine its expression and possible function in colorectal cancer (CRC). Method Immunohistochemical staining or immunoblotting analysis was carried out to detect protein expression. Cell proliferation and apoptosis was evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry assay, respectively. Results TRIM52 expression was increased in 67.5% of CRC tissues (54/80) compared to matched normal colonic mucosa. TRIM52 expression was closely related with tumor size (p = 0.0376), tumor stage (p = 0.0227) and overall survival (p = 0.0177). Short hairpin RNAs (shRNAs) targeting TRIM52 had the potential anti-proliferative effects on CRC cell lines, SW480 and LoVo, by inducing cell apoptosis. In addition, an in vivo xenograft experiment confirmed the in vitro results. In addition, TRIM52 shRNAs decreased the phosphorylation of STAT3, but increased the protein expression of SHP2, a negative regulator of STAT3 phosphorylation. TRIM52 formed a complex with SHP2 and promoted the ubiquitination of SHP2. Furthermore, inhibition of the STAT3 signaling by AG490 in RKO cells significantly abolished the effects of TRIM52 overexpression on cell proliferation, apoptosis and STAT3 activation. Conclusions TRIM52 might exert oncogenic role in CRC via regulating the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shengli Pan
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Yingying Deng
- Department of Ophtalmology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Jun Fu
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Yuhao Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Zhijin Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Xiaokun Ru
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Xianju Qin
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| |
Collapse
|
50
|
Shen H, Zhang J, Zhang Y, Feng Q, Wang H, Li G, Jiang W, Li X. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway. Gene 2019; 698:50-60. [PMID: 30822475 DOI: 10.1016/j.gene.2019.02.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/30/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
AIM We analysed multiple microarray datasets in the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) DataSets for messenger RNAs (mRNAs) whose expression is apparently increased in human cholangiocarcinoma (CCA) samples, compared with that in the adjacent normal biliary epithelial tissue. The results revealed that the expression of tripartite motif-containing 59 (TRIM59) was significantly increased in the CCA tissue samples. TRIM59 is a member of the tripartite motif (TRIM) protein family, which contains a highly conserved N-terminal-an interesting new gene (RING) domain regulating transcriptional factors and tumorigenesis. In the present study, we investigated the effects of TRIM59 expression on tumour growth in CCA. MATERIALS AND METHODS After analyzing the microarray datasets from the TCGA database and GEO DataSets, we screened out 291 target genes, which are significantly overexpressed in CCA tissues, and TRIM59 was one of them. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were performed to determine the expression of TRIM59 in CCA tissues (n = 65) and cell lines. Kaplan-Meier survival analysis was conducted to assess the prognosis of TRIM59 in patients with CCA. A specific siRNA (siRNA-1008) was used to inhibit the expression of TRIM59 in HCCC9810 and HUCCT1 cell lines. The effects of TRIM59 silencing on cell proliferation were assessed by the CCK-8, colony-formation, and EDU incorporation assays. Furthermore, the effects of TRIM59 knockdown on cell apoptosis and cell cycle were determined by flow cytometry. The in vivo effects were evaluated using a mouse tumorigenic model. Western blotting was also performed to verify the relationship between knockdown of TRIM59 and activation of the PI3K/AKT/mTOR pathway. RESULTS TRIM59 was highly expressed in CCA tissues. The knockdown of TRIM59 obviously reduced the proliferation and colony formation abilities of CCA cells in vitro and in vivo. Furthermore, the cell apoptosis analysis results showed that TRIM59 silencing apparently promoted CCA cell apoptosis by the mitochondrial pathway. Our preliminary results indicate that the down-regulation of TRIM59 levels might restrict the PI3K/AKT/mTOR signalling pathway. CONCLUSIONS Our study revealed that TRIM59 is up-regulated in CCA tissues and cell lines and promoted CCA cell proliferation, possibly by affecting the PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Hao Shen
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jiawei Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Qinchao Feng
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Hongwei Wang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Gaochao Li
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|