1
|
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Anti-obesity and anti-diabetic effects of L-citrulline are sex-dependent. Life Sci 2024; 339:122432. [PMID: 38237764 DOI: 10.1016/j.lfs.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
AIMS Anti-diabetic and anti-obesity effects of L-citrulline (Cit) have been reported in male rats. This study determined sex differences in response to Cit in Wistar rats. MAIN METHODS Type 2 diabetes (T2D) was induced using a high-fat diet followed by low-dose of streptozotocin (30 mg/kg) injection. Male and female Wistar rats were divided into 4 groups (n = 6/group): Control, control+Cit, T2D, and T2D + Cit. Cit (4 g/L in drinking water) was administered for 8 weeks. Obesity indices were recorded, serum fasting glucose and lipid profile were measured, and glucose and pyruvate tolerance tests were performed during the Cit intervention. White (WAT) and brown (BAT) adipose tissues were weighted, and the adiposity index was calculated at the end of the study. KEY FINDINGS Cit was more effective in decreasing fasting glucose (18 % vs. 11 %, P = 0.0100), triglyceride (20 % vs. 14 %, P = 0.0173), and total cholesterol (16 % vs. 11 %, P = 0.0200) as well as decreasing gluconeogenesis and improving glucose tolerance, in females compared to male rats with T2D. Following Cit administration, decreases in WAT weight (16 % vs. 14 % for gonadal, 21 % vs. 16 % for inguinal, and 18 % vs. 13 % for retroperitoneal weight, all P < 0.0001) and increases in BAT weight (58 % vs. 19 %, for interscapular and 10 % vs. 7 % for axillary, all P < 0.0001) were higher in females than male rats with T2D. The decrease in adiposity index was also higher (11 % vs. 9 %, P = 0.0007) in females. SIGNIFICANCE The anti-obesity and anti-diabetic effects of Cit in rats are sex-dependent, with Cit being more effective in female than male rats.
Collapse
Affiliation(s)
- Fatemeh Bagheripour
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sirmakesyan S, Hajj A, Hamouda A, Cammisotto P, Campeau L. Synthesis and secretion of Nerve Growth Factor is regulated by Nitric Oxide in bladder cells in vitro under a hyperglycemic environment. Nitric Oxide 2023; 140-141:30-40. [PMID: 37699453 DOI: 10.1016/j.niox.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Urine samples of female patients with overactive bladder (OAB) are characterized by low levels of nerve growth factor (NGF) and elevated concentrations of nitric oxide (NO) compared to healthy controls. We therefore examined how NO might regulate NGF synthesis using rat bladder smooth muscle (SMCs) and urothelial (UROs) cells in culture. In UROs, incubation in hyperglycemic conditions to mimic insulin insensitivity present in the OAB cohort increased secretion of NO and concomitantly decreased NGF, except when the NO synthase inhibitor, l-NAME (1 mM) was present. Sodium nitroprusside (SNP) (300 μM, 24 h), a NO generator, decreased NGF levels and decreased cyclic GMP (cGMP) content, a process validated by the cGMP synthase inhibitor ODQ (100 μM). Alternatively, SNP increased mRNA of both NGF and matrix metalloproteinase-9 (MMP-9). MMP-9 knockout of UROs by Crispr-Cas9 potently decreased the effect of SNP on NGF, implying a dependent role of NO on MMP-9. On the other hand, matrix metalloproteinase-7 (MMP-7) activity was increased by SNP, which taken together with increase in NGF mRNA, suggests a compensatory mechanism. In SMCs, hyperglycemic conditions had the same effect on extracellular content of NO and NGF than in UROs. SNP also decreased NGF secretion but increased cGMP content. Stable permeable analogs of cGMP 8-(4-Chlorophenylthio)-cGMP (1 mM) and N2,2'-O-Dibutyryl-cGMP (3 mM) inhibited NGF release. NGF and MMP-9 mRNA expression was unchanged by SNP. Deletion of MMP-9 in SMCs by Crispr-Cas9 did not alter the effect of SNP. Finally, SNP decreased MMP-7 activity, diminishing the conversion of proNGF to NGF. These results demonstrate that enhanced NO secretion triggered by high glucose decreases NGF secretion through pathways unique for each cell type that involve cGMP and proteases MMP-7 and MMP-9. These results might help to explain our observations from the urine from patients with OAB associated with metabolic syndrome.
Collapse
Affiliation(s)
| | - Aya Hajj
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Aalya Hamouda
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | - Lysanne Campeau
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Urology Department, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21062218. [PMID: 32210089 PMCID: PMC7139394 DOI: 10.3390/ijms21062218] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The major clinical associations with the progression of diabetic kidney disease (DKD) are glycemic control and systemic hypertension. Recent studies have continued to emphasize vasoactive hormone pathways including aldosterone and endothelin which suggest a key role for vasoconstrictor pathways in promoting renal damage in diabetes. The role of glucose per se remains difficult to define in DKD but appears to involve key intermediates including reactive oxygen species (ROS) and dicarbonyls such as methylglyoxal which activate intracellular pathways to promote fibrosis and inflammation in the kidney. Recent studies have identified a novel molecular interaction between hemodynamic and metabolic pathways which could lead to new treatments for DKD. This should lead to a further improvement in the outlook of DKD building on positive results from RAAS blockade and more recently newer classes of glucose-lowering agents such as SGLT2 inhibitors and GLP1 receptor agonists.
Collapse
Affiliation(s)
- Devang M. Patel
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Correspondence: (D.M.P.); (M.E.C.)
| | - Madhura Bose
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
| | - Mark E. Cooper
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Correspondence: (D.M.P.); (M.E.C.)
| |
Collapse
|
4
|
Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark. Molecules 2019; 24:molecules24030605. [PMID: 30744084 PMCID: PMC6385046 DOI: 10.3390/molecules24030605] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/23/2023] Open
Abstract
The fruits of Canarium tramdenum are commonly used as foods and cooking ingredients in Vietnam, Laos, and the southeast region of China, whilst the leaves are traditionally used for treating diarrhea and rheumatism. This study was conducted to investigate the potential use of this plant bark as antioxidants, and α-amylase and α-glucosidase inhibitors. Five different extracts of C. tramdenum bark (TDB) consisting of the extract (TDBS) and factional extracts hexane (TDBH), ethyl acetate (TDBE), butanol (TDBB), and water (TDBW) were evaluated. The TDBS extract contained the highest amount of total phenolic (112.14 mg gallic acid equivalent per g dry weight), while the TDBB extract had the most effective antioxidant capacity compared to other extracts. Its IC50 values were 12.33, 47.87, 33.25, and 103.74 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (ABTS), reducing power (RP), and nitric oxide (NO) assays, respectively. Meanwhile, the lipid peroxidation inhibition of the four above extracts was proximate to that of butylated hydroxytoluene (BHT) as a standard antioxidant. The result of porcine pancreatic α-amylase inhibition showed that TDB extracts have promising effects which are in line with the commercial diabetic inhibitor acarbose. Interestingly, the inhibitory ability on α-glucosidase of all the extracts was higher than that of acarbose. Among the extracts, the TDBB extract expressed the strongest activity on the enzymatic reaction (IC50 = 18.93 µg/mL) followed by the TDBW extract (IC50 = 25.27 µg/mL), TDBS (IC50 = 28.17 µg/mL), and TDBE extract (IC50 = 141.37 µg/mL). The phytochemical constituents of the TDB extract were identified by gas chromatography–mass spectrometry (GC-MS). The principal constituents included nine phenolics, eight terpenoids, two steroids, and five compounds belonging to other chemical classes, which were the first reported in this plant. Among them, the presence of α- and β-amyrins were identified by GC-MS and appeared as the most dominant constituents in TDB extracts (1.52 mg/g). The results of this study revealed that C. tramdenum bark possessed rich phenolics and terpenoids, which might confer on reducing risks from diabetes. A high quantity of α- and β-amyrins highlighted the potentials of anti-inflammatory, anti-ulcer, anti-hyperlipidemic, anti-tumor, and hepatoprotective properties of C. tramdenum bark.
Collapse
|
5
|
Elbassuoni EA, Aziz NM, El-Tahawy NF. Protective effect of C-peptide on experimentally induced diabetic nephropathy and the possible link between C-peptide and nitric oxide. Appl Physiol Nutr Metab 2018; 43:617-624. [DOI: 10.1139/apnm-2017-0617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy one of the major microvascular diabetic complications. Besides hyperglycemia, other factors contribute to the development of diabetic complications as the proinsulin connecting peptide, C-peptide. We described the role of C-peptide replacement therapy on experimentally induced diabetic nephropathy, and its potential mechanisms of action by studying the role of nitric oxide (NO) as a mediator of C-peptide effects by in vivo modulating its production by NG-nitro-l-arginine methyl ester (L-NAME). Renal injury markers measured were serum urea, creatinine, tumor necrosis factor alpha, and angiotensin II, and malondialdehyde, total antioxidant, Bcl-2, and NO in renal tissue. In conclusion, diabetic induction resulted in islet degenerations and decreased insulin secretion with its metabolic consequences and subsequent renal complications. C-Peptide deficiencies in diabetes might have contributed to the metabolic and renal error, since C-peptide treatment to the diabetic rats completely corrected these errors. The beneficial effects of C-peptide are partially antagonized by L-NAME coadministration, indicating that NO partially mediates C-peptide effects.
Collapse
Affiliation(s)
- Eman A. Elbassuoni
- Physiology Department, Minia University Faculty of Medicine, Minia 61111, Egypt
| | - Neven M. Aziz
- Physiology Department, Minia University Faculty of Medicine, Minia 61111, Egypt
| | - Nashwa F. El-Tahawy
- Histology and Cell Biology Department, Minia University Faculty of Medicine, Minia 61111, Egypt
| |
Collapse
|
6
|
Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med 2018; 116:50-63. [PMID: 29305106 DOI: 10.1016/j.freeradbiomed.2017.12.040] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of diabetic nephropathy. Studies in experimental animal models of diabetes strongly implicate oxidant species as a major determinant in the pathophysiology of diabetic kidney disease. The translation, in the clinical setting, of these concepts have been quite disappointing, and new theories have challenged the concepts that oxidative stress per se plays a role in the pathophysiology of diabetic kidney disease. The concept of mitochondrial hormesis has been introduced to explain this apparent disconnect. Hormesis is intended as any cellular process that exhibits a biphasic response to exposure to increasing amounts of a substance or condition: specifically, in diabetic kidney disease, oxidant species may represent, at determined concentration, an essential and potentially protective factor. It could be postulated that excessive production or inhibition of oxidant species formation might result in an adverse phenotype. This review discusses the evidence underlying these two apparent contradicting concepts, with the aim to propose and speculate on potential mechanisms underlying the role of oxidant species in the pathophysiology of diabetic nephropathy and possibly open future more efficient therapies to be tested in the clinical settings.
Collapse
Affiliation(s)
- Manpreet K Sagoo
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
7
|
Abdelaziz DHA, Ali SA, Mostafa MMA. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2015; 53:792-799. [PMID: 25612778 DOI: 10.3109/13880209.2014.942790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT In Arabic folk medicine, the seeds of Phoenix dactylifera L. (Arecaceae) have been used to manage diabetes for many years. Few studies have reported the antidiabetic effect of P. dactylifera seeds; however, their effect on diabetic complications is still unexplored. OBJECTIVE The present study investigates the protective effect of P. dactylifera seeds against diabetic complications in rats. MATERIAL AND METHODS The aqueous suspension of P. dactylifera seeds (aqPDS) (1 g/kg/d) was orally administered to streptozotocin-induced diabetic rats for 4 weeks. The serum biochemical parameters were assessed spectrophotometrically. Furthermore, oxidative stress was examined in both liver and kidney tissues by assessment of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), reduced glutathione, superoxide dismutase (SOD), glutathione S-transferase, and catalase. RESULTS Oral administration of aqPDS significantly ameliorated the elevated levels of glucose (248 ± 42 versus 508 ± 60 mg/dl), urea (32 ± 3.3 versus 48.3 ± 5.6 mg/dl), creatinine (2.2 ± 0.35 versus 3.8 ± 0.37 mg/dl), ALT (29.6 ± 3.9 versus 46.4 ± 5.9 IU/l), and AST (73.3 ± 13 versus 127.8 ± 18.7 IU/l) compared with the untreated diabetic rats. In addition to significant augmentation in the activities of antioxidant enzymes, there was reduction in TBARS and NO levels and improvement of histopathological architecture of the liver and kidney of diabetic rats. DISCUSSION AND CONCLUSION The aqPDS showed potential protective effects against early diabetic complications of both liver and kidney. This effect may be explained by the antioxidant and free radical scavenging capabilities of P. dactylifera seeds.
Collapse
Affiliation(s)
- Dalia H A Abdelaziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University , Cairo , Egypt and
| | | | | |
Collapse
|
8
|
Kasacka I, Piotrowska Z, Janiuk I, Zbucki R. Dynamics of cocaine- and amphetamine-regulated transcript containing cell changes in the adrenal glands of two kidney, one clip rats. Exp Biol Med (Maywood) 2014; 239:1292-9. [PMID: 24939825 DOI: 10.1177/1535370214538593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Taking into consideration the homeostatic disorders resulting from renal hypertension and the essential role of cocaine- and amphetamine-regulated transcript (CART) in maintaining homeostasis by regulating many functions of the body, the question arises as to what extent the renovascular hypertension affects the morphology and dynamics of changes of CART-containing cells in the adrenal glands. The aim of the present study was to examine the distribution, morphology, and dynamics of changes of CART-containing cells in the adrenal glands of "two kidney, one clip" (2K1C) renovascular hypertension model in rats. The studies were carried out on the adrenal glands of rats after 3, 14, 28, 42, and 91 days from the renal artery clipping procedure. To identify neuroendocrine cells, immunohistochemical reaction was performed with the use of a specific antibody against CART. It was revealed that renovascular hypertension causes changes in the endocrine cells containing CART in the adrenal glands of rats. The changes observed in the endocrine cells depend on the time when the rats with experimentally induced hypertension were examined. In the first period of hypertension, the number and immunoreactivity of CART-containing cells were decreased, while from the 28-day test, it significantly increased, as compared to the control rats. CART is relevant to the regulation of homeostasis in the cardiovascular system and seems to be involved in renovascular hypertension. The results of the present work open the possibility of new therapeutic perspectives for the treatment of arterial hypertension, since CART function is involved in their pathophysiology.
Collapse
Affiliation(s)
- Irena Kasacka
- Department of Histology and Cytophysiology, Medical University, 15-222 Bialystok, Poland
| | - Zaneta Piotrowska
- Department of Histology and Cytophysiology, Medical University, 15-222 Bialystok, Poland
| | - Izabela Janiuk
- Department of Nutrition and Food Assessment, Institute of Health Sciences, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Robert Zbucki
- 1 Clinical Department of General and Endocrine Surgery, University Clinical Hospital, 15-264 Bialystok, Poland
| |
Collapse
|
9
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
10
|
Li L, Garikepati RM, Tsukerman S, Tiwari S, Ecelbarger CM. Salt sensitivity of nitric oxide generation and blood pressure in mice with targeted knockout of the insulin receptor from the renal tubule. Am J Physiol Regul Integr Comp Physiol 2012; 303:R505-12. [PMID: 22814664 DOI: 10.1152/ajpregu.00033.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To elucidate the role of the insulin receptor (IR) on kidney nitric oxide generation and blood pressure (BP) control, we generated mice with targeted deletion of renal tubule IR using loxP recombination driven by a Ksp-cadherin promoter. Male knockout (KO) and wild-type (WT) littermates (~4 mo old) were transitioned through three 1-wk treatments: 1) low-NaCl diet (0.085%); 2) high-NaCl diet (HS; 5%); and 3) HS diet plus 3 mM tempol, a superoxide dismutase mimetic, in the drinking water. Mice were then switched to medium-NaCl (0.5%) diet for 5 days and kidneys harvested under pentobarbital anesthesia. Twenty-four-hour urinary nitrates plus nitrites were significantly higher in the WT mice under HS (2,067 ± 280 vs. 1,550 ± 230 nmol/day in WT and KO, respectively, P < 0.05). Tempol attenuated genotype differences in urinary nitrates plus nitrites. A rise in BP with HS was observed only in KO mice and not affected by tempol (mean arterial pressure, dark period, HS, 106 ± 5 vs. 119 ± 4 mmHg, for WT and KO, respectively, P < 0.05). Renal outer medullary protein levels of nitric oxide synthase (NOS) isoforms by Western blot (NOS1-3 and phosphorylated-S1177-NOS3) revealed significantly lower band density for NOS1 (130-kDa isoform) in the KO mice. A second study, when mice were euthanized under HS conditions, confirmed significantly lower NOS1 (130 kDa) in the KO, with an even more substantial (>50%) reduction of the 160-kDa NOS1 isoform. These studies suggest that the loss of renal IR signaling impairs renal nitric oxide production. This may be important in BP control, especially in insulin-resistant states, such as the metabolic syndrome.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medicine, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
11
|
Cipriani P, Kim SL, Klein JD, Sim JH, von Bergen TN, Blount MA. The role of nitric oxide in the dysregulation of the urine concentration mechanism in diabetes mellitus. Front Physiol 2012; 3:176. [PMID: 22685437 PMCID: PMC3368392 DOI: 10.3389/fphys.2012.00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/14/2012] [Indexed: 11/13/2022] Open
Abstract
Uncontrolled diabetes mellitus results in osmotic diuresis. Diabetic patients have lowered nitric oxide (NO) which may exacerbate polyuria. We examined how lack of NO affects the transporters involved in urine concentration in diabetic animals. Diabetes was induced in rats by streptozotocin. Control and diabetic rats were given L-NAME for 3 weeks. Urine osmolality, urine output, and expression of urea and water transporters and the Na-K-2Cl cotransporter were examined. Predictably, diabetic rats presented with polyuria (increased urine volume and decreased urine osmolality). Although metabolic parameters of control rats were unaffected by L-NAME, treated diabetic rats produced 30% less urine and osmolality was restored. UT-A1 and UT-A3 were significantly increased in diabetic rat inner medulla. While L-NAME treatment alone did not alter UT-A1 or UT-A3 abundance, absence of NO prevented the upregulation of both transporters in diabetic rats. Similarly, AQP2 and NKCC2 abundance was increased in diabetic animals however, expression of these transporters were unchanged by L-NAME treatment of diabetes. Increased expression of the concentrating transporters observed in diabetic rats provides a compensatory mechanism to decrease solute loss despite persistent glycosuria. Our studies found that although diabetic-induced glycosylation remained increased, total protein expression was decreased to control levels in diabetic rats treated with L-NAME. While the role of NO in urine concentration remains unclear, lowered NO associated with diabetes may be deleterious to the transporters’ response to the subsequent osmotic diuresis.
Collapse
Affiliation(s)
- Penelope Cipriani
- Renal Division, Department of Medicine, Emory University Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy.
Collapse
|
13
|
Restrepo B, García M, López C, Martín M, San Román L, Morán A. The Cyclooxygenase and Nitric Oxide Synthesis/Pathways Mediate the Inhibitory Serotonergic Response to the Pressor Effect Elicited by Sympathetic Stimulation in Long-Term Diabetic Pithed Rats. Pharmacology 2012; 90:169-76. [DOI: 10.1159/000341911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
|
14
|
Mehrab-Mohseni M, Tabatabaei-Malazy O, Hasani-Ranjbar S, Amiri P, Kouroshnia A, Bazzaz JT, Farahani-Shrhabi M, Larijani B, Amoli MM. Endothelial nitric oxide synthase VNTR (intron 4 a/b) polymorphism association with type 2 diabetes and its chronic complications. Diabetes Res Clin Pract 2011; 91:348-52. [PMID: 21256614 DOI: 10.1016/j.diabres.2010.12.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/18/2010] [Accepted: 12/21/2010] [Indexed: 11/15/2022]
Abstract
UNLABELLED SUBJECT AND AIMS: Endothelial derived nitric oxide (eNOS) is involved in several functions playing important role in development of type 2 diabetes and insulin resistance. The aim of this study was to examine the association between eNOS intron 4 VNTR polymorphism and type 2 diabetes in an Iranian population. METHODS A total of 220 patients with type 2 diabetes and 96 healthy control subjects were recruited from the same area. Genotyping was performed using PCR. RESULTS A significant difference was found in genotype frequencies of eNOS polymorphism between patients and controls (aa+ab vs. bb p=0.02, OR 2.0 95% CI; 1.05-3.96). Also allele a frequency was significantly increased in patients with diabetes compared with controls (p=0.007, OR 2.1 95% CI; 1.19-4.08). We found that in patients with diabetic neuropathy the frequency of 'a' allele was significantly increased compared to the controls p=0.03, OR=1.8 95% CI (1.00-3.7). Both genotype and allele frequencies were significantly different between patients who were complication free compared to the controls [aa+ab vs. bb p=0.007, OR=2.6 95% CI (1.2-5.8) and p=0.001, OR=2.8 95% CI (1.4-5.9)] respectively with the a allele conferring the risk. CONCLUSION The association between eNOS VNTR polymorphism and T2DM seems to be stronger in patients without diabetic complications indicating diverse effect of eNOS polymorphism on diabetes and diabetic microvascular complications.
Collapse
|
15
|
Siddiqui S, Rashid Khan M, Siddiqui WA. Comparative hypoglycemic and nephroprotective effects of tocotrienol rich fraction (TRF) from palm oil and rice bran oil against hyperglycemia induced nephropathy in type 1 diabetic rats. Chem Biol Interact 2010; 188:651-8. [DOI: 10.1016/j.cbi.2010.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/21/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
16
|
Bazzaz JT, Amoli MM, Pravica V, Chandrasecaran R, Boulton AJ, Larijani B, Hutchinson IV. eNOS gene polymorphism association with retinopathy in type 1 diabetes. Ophthalmic Genet 2010; 31:103-7. [PMID: 20565248 DOI: 10.3109/13816810.2010.482553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Nitric oxide (NO) is a major mediator in vascular biology, regulating blood pressure and regional blood flow. NO and the enzymes required for its production may contribute to the aetiology of vascular pathologies. In diabetes, over-production of NO might play a role in the development of diabetic nephropathy, while reduced NO production may be related to the development of diabetic retinopathy and neuropathy, where VEGF (vascular endothelial growth factor) levels are increased in a counter regulatory manner. Among the three nitric oxide synthase (NOS) enzymes most attention has focussed on endothelial NOS (eNOS) because of its relevance to angiopathies. METHODS In this study the influence of a single nucleotide polymorphism at position -786 in the eNOS gene, where there is a C/T base substitution, on development of type 1 diabetes mellitus (T1DM) and its microvascular complications was studied in 249 British Caucasian type 1 diabetics using a case-control association design. Genotyping was carried out using PCR-RFLP technique. RESULTS There was a significant association between the polymorphism -786*C/T and both T1DM and diabetic retinopathy. The distribution of eNOS gene polymorphism genotype frequencies showed a significant difference observed between diabetic patients and healthy controls [CC+CT vs. TT p = 0.05, OR = 1.5 95%CI(0.9-2.5)]. The genotype frequencies for eNOS gene polymorphism was also significantly different between diabetic retinopaths and healthy controls [CC+CT vs. TT p = 0.0000 OR = 3.4 95%CI(1.9-6.1) No significant differences for eNOS allele and genotype frequencies were found in other groups compared to the controls. CONCLUSION Therefore, eNOS gene variation may be a factor in the genetic propensity to T1DM and diabetic retinopathy that may have a prognostic value or may suggest interventional approaches to regulate eNOS in patients with diabetes.
Collapse
Affiliation(s)
- Javad Tavakkoly Bazzaz
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bell TD, DiBona GF, Biemiller R, Brands MW. Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked. Am J Physiol Renal Physiol 2008; 295:F1449-56. [PMID: 18753304 PMCID: PMC2584904 DOI: 10.1152/ajprenal.00004.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 08/20/2008] [Indexed: 01/11/2023] Open
Abstract
This study used 16 h/day measurement of renal blood flow (RBF) and arterial pressure (AP) to determine the role of nitric oxide (NO) in mediating the renal vasodilation caused by onset of type 1 diabetes. The AP and RBF power spectra were used to determine the autoregulatory efficiency of the renal vasculature. Rats were instrumented with artery and vein catheters and a Transonic flow probe on the left renal artery and were divided randomly into four groups: control (C), diabetes (D), control plus nitro-L-arginine methyl ester (L-NAME; CL), and diabetes plus L-NAME (DL). Mean AP averaged 90 +/- 1 and 121 +/- 1 mmHg in the D and DL groups, respectively, during the control period, and RBF averaged 5.9 +/- 1.2 and 5.7 +/- 0.7 ml/min, respectively. Respective C and CL groups were not different. Onset of diabetes (streptozotocin 40 mg/kg iv) in D rats increased RBF gradually, but it averaged 55% above control by day 14. In DL rats, on the other hand, RBF remained essentially constant, tracking with RBF in the nondiabetic C and CL groups for the 2-wk period. Diabetes did not change mean AP in any group. Transfer function analysis revealed impaired dynamic autoregulation of RBF overall, including the frequency range of tubuloglomerular feedback (TGF), and L-NAME completely prevented those changes as well. These data strongly support a role for NO in causing renal vasodilation in diabetes and suggest that an effect of NO to blunt RBF autoregulation may play an important role.
Collapse
Affiliation(s)
- Tracy D Bell
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912-3000, USA
| | | | | | | |
Collapse
|
18
|
Brands MW, Labazi H. Role of glomerular filtration rate in controlling blood pressure early in diabetes. Hypertension 2008; 52:188-94. [PMID: 18606911 DOI: 10.1161/hypertensionaha.107.090647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael W Brands
- Department of Physiology, CA-3098, Medical College of Georgia, Augusta, GA 30912-3000, USA.
| | | |
Collapse
|
19
|
Abstract
It is postulated that localized tissue oxidative stress is a key component in the development of diabetic nephropathy. There remains controversy, however, as to whether this is an early link between hyperglycemia and renal disease or develops as a consequence of other primary pathogenic mechanisms. In the kidney, a number of pathways that generate reactive oxygen species (ROS) such as glycolysis, specific defects in the polyol pathway, uncoupling of nitric oxide synthase, xanthine oxidase, NAD(P)H oxidase, and advanced glycation have been identified as potentially major contributors to the pathogenesis of diabetic kidney disease. In addition, a unifying hypothesis has been proposed whereby mitochondrial production of ROS in response to chronic hyperglycemia may be the key initiator for each of these pathogenic pathways. This postulate emphasizes the importance of mitochondrial dysfunction in the progression and development of diabetes complications including nephropathy. A mystery remains, however, as to why antioxidants per se have demonstrated minimal renoprotection in humans despite positive preclinical research findings. It is likely that the utility of current study approaches, such as vitamin use, may not be the ideal antioxidant strategy in human diabetic nephropathy. There is now an increasing body of data to suggest that strategies involving a more targeted antioxidant approach, using agents that penetrate specific cellular compartments, may be the elusive additive therapy required to further optimize renoprotection in diabetes.
Collapse
Affiliation(s)
- Josephine M Forbes
- Juvenile Diabetes Research Foundation Albert Einstein Centre for Diabetes Complications, Division of Diabetes and Metabolism, Baker Heart Research Institute, Melbourne, Australia
| | | | | |
Collapse
|
20
|
Bell TD, DiBona GF, Wang Y, Brands MW. Mechanisms for Renal Blood Flow Control Early in Diabetes as Revealed by Chronic Flow Measurement and Transfer Function Analysis. J Am Soc Nephrol 2006; 17:2184-92. [PMID: 16807404 DOI: 10.1681/asn.2006030216] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The purpose of this study was to establish the roles of the myogenic response and the TGF mechanism in renal blood flow (RBF) control at the very earliest stages of diabetes. Mean arterial pressure (MAP) and RBF were measured continuously, 18 h/d, in uninephrectomized control and diabetic rats, and transfer function analysis was used to determine the dynamic autoregulatory efficiency of the renal vasculature. During the control period, MAP averaged 91 +/- 0.5 and 89 +/- 0.4 mmHg, and RBF averaged 8.0 +/- 0.1 and 7.8 +/- 0.1 ml/min in the control and diabetic groups, respectively. Induction of diabetes with streptozotocin caused a marked and progressive increase in RBF in the diabetic rats, averaging 10 +/- 6% above control on day 1 of diabetes and 22 +/- 3 and 34 +/- 1% above control by the end of diabetes weeks 1 and 2. MAP increased approximately 9 mmHg during the 2 wk in the diabetic rats, and renal vascular resistance decreased. Transfer function analysis revealed significant increases in gain to positive values over the frequency ranges of both the TGF and myogenic mechanisms, beginning on day 1 of diabetes and continuing through day 14. These very rapid increases in RBF and transfer function gain suggest that autoregulation is impaired at the very onset of hyperglycemia in streptozotocin-induced type 1 diabetes and may play an important role in the increase in RBF and GFR in diabetes. Together with previous reports of decreases in chronically measured cardiac output and hindquarter blood flow, this suggests that there may be differential effects of diabetes on RBF versus nonrenal BF control.
Collapse
Affiliation(s)
- Tracy D Bell
- Department of Physiology, Medical College of Georgia, Augusta State University, Augusta, GA 30912-3000, USA
| | | | | | | |
Collapse
|
21
|
Kamijo H, Higuchi M, Hora K. Chronic inhibition of nitric oxide production aggravates diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty rats. Nephron Clin Pract 2006; 104:p12-22. [PMID: 16691035 DOI: 10.1159/000093276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 02/03/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is known to play a role in diabetic nephropathy, but the molecular basis for this effect remains unclear. METHOD Otsuka Long-Evans Tokushima Fatty spontaneous diabetic rat models were used along with Long-Evans Tokushima Otuska rat models as age-matched controls. Either L-arginine (a NO precursor) or L-NAME (a nitric oxide synthase inhibitor) was administered from the age of 22 weeks. Clinical parameters and serum and urinary NO2+NO3 levels were measured, in addition to renal histological findings and ED-1-positive cell counts in glomeruli. RESULTS There were no significant differences in creatinine clearance between any of the groups at any point. The levels of urinary NO2+NO3 in the diabetic group were significantly lower than those in the control groups after 40 weeks; that in the L-NAME diabetic group was significantly lower than in the other diabetic groups at 52 weeks. Compared with the other diabetic groups, the L-NAME diabetic group had significantly higher urinary protein excretion levels, histological scores, and numbers of ED-1-positive cells in glomeruli. Diabetic rats administered L-arginine excreted more urinary protein than the diabetic controls. CONCLUSION Diabetic nephropathy was exacerbated drastically by a nitric oxide synthase inhibitor and mildly by a NO precursor. These data suggested that NO may modify type 2 diabetic nephropathy in Otuska Long-Evans Tokushima Fatty rats through factors other than hemodynamics.
Collapse
Affiliation(s)
- Hiroshi Kamijo
- Second Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | |
Collapse
|
22
|
Chang HK, Jang MH, Lim BV, Lee TH, Shin MC, Shin MS, Kim H, Kim YP, Kim EH, Kim CJ. Administration of Ginseng radix decreases nitric oxide synthase expression in the hippocampus of streptozotocin-induced diabetic rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2005; 32:497-507. [PMID: 15481640 DOI: 10.1142/s0192415x04002144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine by nitric oxide synthase (NOS). Alternation of NOS expression is implicated in the pathogenesis of numerous secondary complications of diabetes. Aqueous extract of Ginseng radix has traditionally been used for the various disorders including diabetes. In this study, the effect of Ginseng radix on the NOS expression in the hippocampus of streptozotocin (STZ)-induced diabetic rats was investigated via nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. Enhanced NOS expression was detected in the hippocampus of diabetic rats and administration of Ginseng radix suppressed NOS expression. Ginseng radix may aid the treatment of central nervous system complications in diabetes.
Collapse
Affiliation(s)
- Hyun-Kyung Chang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gunduz Z, Canoz O, Per H, Dusunsel R, Poyrazoglu MH, Tez C, Saraymen R. The effects of pentoxifylline on diabetic renal changes in streptozotocin-induced diabetes mellitus. Ren Fail 2005; 26:597-605. [PMID: 15600249 DOI: 10.1081/jdi-200038329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The aim of the study was to investigate the effects of pentoxifylline on the renal growth, the epidermal growth factor receptor expression, and renal total nitric oxide content in streptozotocin-induced diabetic rats. Adult male Wistar albino rats were randomly divided into three groups: normal control (the N group), diabetic nephropathy (the DN group), and diabetic nephropathy treated with pentoxifylline at the dosage of 20 mg x kg(-1) x d(-1), intraperitoneally (the group DNP). Diabetes was induced by injection of streptozotocin intraperitoneally. The kidney wet weight (KWW) and dry weight (KDW), fractional kidney weight (FKW), glomerular volume (VG), renal tissue protein (RTP) contents, and renal tissue total nitric oxide (NO) production were determined after the rats were sacrificed on 10th day. There was a significant increase in KWW and KWD in the DNP and DN groups when compared to the N group (p=0.000 for the DNP group, p = 0.000 and p < 0.01 for the DN group). In the DN group, FKW was increased for both wet and dry kidney weight (p<0.05 and p=0.001, respectively) while in the DNP group there was increase in FKW only for dry kidney weight. VG was increased in both two diabetic groups (p<0.05), but this increase was less prominent in the rats treated with pentoxifylline. RTP was significantly decreased in the DNP group when compared with the values in the DN group (p < 0.05). Immunohistochemically epidermal growth factor receptor expression was increased in diabetic rats, and it was not affected by pentoxifylline treatment. In diabetic rats renal content of total NO was decreased (p<0.05 for the DNP group, p<0.01 for the DN group). In conclusion, the results provide that pentoxifylline may have some beneficial effects on renal changes in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Zubeyde Gunduz
- Department of Pediatrics, Pathology and Biochemistry, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Nagase S, Koyama A. Stimulatory effect of IGF-I and VEGF on eNOS message, protein expression, eNOS phosphorylation and nitric oxide production in rat glomeruli, and the involvement of PI3-K signaling pathway. Nitric Oxide 2005; 10:25-35. [PMID: 15050532 DOI: 10.1016/j.niox.2004.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 01/26/2004] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is reported to be involved in the pathogenesis of renal hyperfiltration in the early stage of diabetic nephropathy. We set out to determine whether IGF-I and/or VEGF165 directly stimulate NO production in rat glomeruli and whether the expression of NO synthase (NOS) isoforms as well as eNOS phosphorylation contribute to NO generation by IGF-I and VEGF. Long-term exposure to IGF-I and/or VEGF165 augments NO production through increased eNOS mRNA, protein expression and phosphatidylinositol 3-kinase (PI3-K) signaling pathway plays a major role in this process; short-term exposure to IGF-I and/or VEGF(165) activates eNOS activity via phosphorylation by a PI3-K/Akt dependent pathway. Our data suggest the great possibility that increased endogenous IGF-I and VEGF may be responsible for the up-regulation of eNOS expression and NO production which contributes to glomerular hyperfiltration in early diabetic kidneys. IGF-I is a newly described growth factor that up-regulates eNOS expression and PI3-K plays a major role in this process.
Collapse
Affiliation(s)
- Ying Wang
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
25
|
Lee DL, Sasser JM, Hobbs JL, Boriskie A, Pollock DM, Carmines PK, Pollock JS. Posttranslational regulation of NO synthase activity in the renal medulla of diabetic rats. Am J Physiol Renal Physiol 2004; 288:F82-90. [PMID: 15383397 PMCID: PMC2570967 DOI: 10.1152/ajprenal.00127.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Shear stress increases nitric oxide (NO) production by endothelial cells, inner medullary collecting duct cells, and thick ascending limb. We postulated that the osmotic diuresis accompanying type 1 diabetes is associated with increased NO synthase (NOS) activity and/or expression in the renal medulla. Diabetes was induced by injection of streptozotocin, with insulin provided to maintain moderate hyperglycemia (Hyp) or euglycemia (Eug) for 3 wk. Sham rats received vehicle treatments. A separate group of rats (Phz) received phlorizin to produce a glucose-dependent osmotic diuresis. Renal medullary NOS1 and NOS2 activities did not differ between groups, whereas NOS3 activity was significantly increased in Hyp. Neither NOS1 nor NOS3 protein levels differed significantly between groups. Reduced phosphorylation of NOS3 at Thr(495) and Ser(633) was evident in medullary homogenates from Hyp rats, with no difference apparent at Ser(1177). Immunohistochemical analysis indicated prominent expression of pThr(495)NOS3 in the thick ascending limb and collecting duct of Sham and Phz rats. Hyp rats displayed staining in the collecting duct but minimal thick ascending limb staining. Immunostaining with anti-pSer(1177)NOS3 was evident only in the thick ascending limb, with no apparent differences between groups. In summary, glucose-dependent osmotic diuresis alone did not alter NOS activity or expression in the renal medulla. Diabetic hyperglycemia increased medullary NOS3 activity without a concomitant increase in NOS3 protein levels; however, NOS3 phosphorylation was reduced at Thr(495) and Ser(633). Thus changes in the phosphorylation of NOS at known regulatory sites might represent the primary mechanism underlying increased renal medullary NOS activity in diabetic hyperglycemia.
Collapse
Affiliation(s)
- Dexter L. Lee
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912
| | - Jennifer M. Sasser
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta, GA 30912
| | - Janet L. Hobbs
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912
| | - Amy Boriskie
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912
| | - David M. Pollock
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912
- Department of Surgery, Medical College of Georgia, Augusta, GA 30912
| | - Pamela K. Carmines
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198−5850
| | - Jennifer S. Pollock
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
26
|
Apakkan Aksun S, Ozmen B, Ozmen D, Parildar Z, Senol B, Habif S, Mutaf I, Turgan N, Bayindir O. Serum and urinary nitric oxide in Type 2 diabetes with or without microalbuminuria: relation to glomerular hyperfiltration. J Diabetes Complications 2003; 17:343-8. [PMID: 14583179 DOI: 10.1016/s1056-8727(02)00196-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Glomerular hyperfiltration is considered as one of the pathophysiological mechanisms for the development of diabetic nephropathy. Oxidative stress is enhanced in patients with diabetes mellitus. Reportedly, nitric oxide (NO) might be involved in the pathogenesis of hyperfiltration. We investigated the relationship between hyperfiltration and NO system, and malondialdehyde (MDA) levels in Type 2 diabetics with/without microalbuminuria. METHODS In 39 microalbuminuric, 29 normoalbuminuric Type 2 diabetic patients and 32 healthy controls, serum creatinine, nitrite, nitrate, urinary microalbumin, nitrite, nitrate, plasma MDA and estimated glomerular filtration rate (EGFR) values, calculated according to the Cockcroft and Gault formula, were recorded. RESULTS Serum and urine NO levels were higher in both microalbuminurics and normoalbuminurics than controls. There were no significant differences in EGFR between groups. However, hyperfiltration was determined in 31% of normoalbuminurics and 20% of microalbuminurics. Serum and urine NO levels were higher in patients with hyperfiltration. Plasma MDA levels were significantly elevated in both microalbuminurics and normoalbuminurics when compared with controls. Serum glucose and microalbuminuria were positively correlated in microalbuminuric diabetics. Serum NO levels were also positively correlated with EGFR in both normoalbuminurics and microalbuminurics. HbA1c levels were positively correlated with both urinary albumin excretion and plasma MDA levels in normoalbuminuric diabetics. CONCLUSIONS Hyperglycemia is associated with an increased NO biosynthesis and lipid peroxidation. Increased oxidative stress may contribute to the high NO levels in Type 2 diabetes. Furthermore, the high NO levels may lead to hyperfiltration and hyperperfusion, which in turn leads to an increase in urinary albumin excretion and thus causes progression of nephropathy in early Type 2 diabetes.
Collapse
Affiliation(s)
- Saliha Apakkan Aksun
- Department of Clinical Biochemistry, Ege University Faculty of Medicine, Bornova, 35100, Izmir, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Seven A, Güzel S, Seymen O, Civelek S, Bolayirli M, Yiğit G, Burçak G. Nitric oxide synthase inhibition by L-NAME in streptozotocin induced diabetic rats: impacts on oxidative stress. TOHOKU J EXP MED 2003; 199:205-10. [PMID: 12857060 DOI: 10.1620/tjem.199.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of nitric oxide synthase (NOS) inhibition by Nw-nitro-L-arginine methyl ester (L-NAME) administration on oxidative stress parameters were investigated in streptozotocin (STZ) induced diabetic rats. Lipid peroxidation as reflected by thiobarbituric acid reactive substances (TBARS) was insignificantly higher in diabetic rats. Plasma NO2+NO3 values (p < 0.05) and erythrocyte CuZn superoxide dismutase (CuZn SOD) and glutathione peroxidase (GSH Px) activities were significantly higher (p < 0.01, p < 0.001, respectively) in diabetic rats. L-NAME administration to diabetic rats caused significantly lower CuZn SOD and GSH Px activities (p < 0.01) and NO2+NO3 values (p < 0.001), whereas a significantly higher GSH level (p < 0.01). TBARS/GSH ratio was significantly higher in diabetic rats than controls (p < 0.05) and significantly lower in L-NAME administered diabetic rats than diabetic rats (p < 0.05). This experimental study highlightens the importance of NOS inhibition by L-NAME in the attenuation of oxidative stress in STZ diabetic rats.
Collapse
Affiliation(s)
- Arzu Seven
- Department of Biochemistry, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
28
|
Erley CM, Heyne N, Friedrich B, Schmidt T, Strobel U, Wehrmann M, Osswald H. Differential renal response to Nomega-nitro-L-arginine methyl ester and L-arginine in rats with hypertensive or diabetic nephropathy. J Cardiovasc Pharmacol 2002; 40:780-8. [PMID: 12409987 DOI: 10.1097/00005344-200211000-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present experiments were designed to assess the renal functional response to alterations in nitric oxide formation in animals with different forms of nephropathy. To address this issue, the effects of Nomega-nitro-L-arginine methyl ester (L-NAME) or L-arginine were assessed in animal models exhibiting arterial hypertension due to chronic nitric oxide inhibition (L-NAME, 50 mg/l in drinking water for 12 weeks) or diabetes mellitus (streptozotocin, 60 mg/kg IP). Vehicle-treated, age-matched animals served as controls. Following 12 weeks of pretreatment, mean arterial pressure (MAP), renal hemodynamics, urinary albumin, and electrolyte excretion were determined in standard clearance experiments prior to and following infusion of L-NAME (50 microg/kg/min), l-arginine (5 mg/kg/min), or saline vehicle. In control animals, L-NAME resulted in an increase in MAP and renal vascular resistance and a decline in glomerular filtration rate and renal plasma flow, as expected. L-arginine had no effect on renal hemodynamics. In nitric oxide-depleted hypertensive animals, L-NAME had no additional effect on MAP or renal hemodynamics. Infusion of L-arginine reduced elevated MAP but did not reverse changes in renal hemodynamics. Diabetic rats demonstrated glomerular hyperfiltration and proteinuria. No significant changes in MAP or renal hemodynamics were observed following infusion of L-NAME or L-arginine, respectively. However, L-NAME increased urinary albumin excretion in the absence of hemodynamic changes. The effects of nitric oxide on vascular tone were shown to be dependent on the vascular bed and the underlying disease. Variations in local nitric oxide formation and susceptibility may account for the differential response of the systemic and renal vasculature and contribute to the degree of renal functional impairment observed in different systemic diseases.
Collapse
Affiliation(s)
- Christiane Martina Erley
- Department of Internal Medicine, Section of Nephrology and Hypertension, University of Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Miranda FJ, Alabadí JA, Lloréns S, Ruiz de Apodaca RF, Centeno JM, Alborch E. Experimental diabetes induces hyperreactivity of rabbit renal artery to 5-hydroxytryptamine. Eur J Pharmacol 2002; 439:121-7. [PMID: 11937101 DOI: 10.1016/s0014-2999(02)01438-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The influence of diabetes on the response of isolated rabbit renal arteries to 5-hydroxytryptamine (5-HT) was examined. 5-HT induced a concentration-related contraction that was higher in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal did not significantly modify 5-HT contractions in arteries from control rabbits but enhanced the response to 5-HT in arteries from diabetic rabbits. Incubation with N(G)-nitro-L-arginine (L-NA) enhanced contractions to 5-HT in arteries from control and diabetic rabbits. In arteries with endothelium, this L-NA enhancement was lower in diabetic rabbits than in control rabbits. In arteries without endothelium, incubation with L-NA enhanced the maximal contractions to 5-HT in control rabbits but did not in diabetic rabbits. Indomethacin inhibited 5-HT-induced contraction of arteries from control rabbits and enhanced the maximal contraction to 5-HT of arteries from diabetic rabbits. In summary, diabetes enhances contractile response of rabbit renal artery to 5-HT. In control animals, this response is regulated by both endothelial and non-endothelial (neuronal) nitric oxide (NO) and by a vasoconstrictor prostanoid. Diabetes impairs the release of non-endothelial NO and the vasoconstrictor prostanoid.
Collapse
Affiliation(s)
- Francisco J Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Prabhakar SS. Tetrahydrobiopterin reverses the inhibition of nitric oxide by high glucose in cultured murine mesangial cells. Am J Physiol Renal Physiol 2001; 281:F179-88. [PMID: 11399659 DOI: 10.1152/ajprenal.2001.281.1.f179] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alterations of intrarenal nitric oxide (NO) synthesis play an important role in the pathogenesis and progression of diabetic nephropathy. We tested the hypothesis that hyperglycemia modulates intrarenal NO synthesis, which might mediate the mesangial cell proliferation and matrix production. Murine mesangial cells were grown in media containing varying glucose concentrations, and cytokine-induced NO synthesis was assayed by chemiluminescence using an NO analyzer. High media glucose (25 mM) inhibited NO synthesis in a time-dependent fashion. This inhibition was posttranslational as revealed by analysis of inducible nitric oxide synthase (iNOS) gene and protein expression. L-Arginine supplementation partially reversed the inhibition whereas addition of tetrahydrobiopterin (BH4), a cofactor for NOS, restored the inducibility of NO synthesis. The in vitro [3H]citrulline assay for iNOS activity indicated that high glucose decreased BH4 availability whereas examination of the BH4 synthetic pathway suggested decreased BH4 stability rather than synthesis, a defect that was corrected by ascorbic acid. We conclude that hyperglycemia inhibits NO synthesis in mesangial cells by a posttranslational defect that might involve the stability and hence availability of BH4.
Collapse
Affiliation(s)
- S S Prabhakar
- Division of Nephrology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
31
|
Alabadí JA, Miranda FJ, Lloréns S, Ruiz de Apodaca RF, Centeno JM, Alborch E. Diabetes potentiates acetylcholine-induced relaxation in rabbit renal arteries. Eur J Pharmacol 2001; 415:225-32. [PMID: 11275003 DOI: 10.1016/s0014-2999(01)00832-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The response of rabbit renal arteries to acetylcholine and its endothelial modulation in diabetes were investigated. Acetylcholine induced concentration-related endothelium-dependent relaxation of renal arteries that was significantly more potent in diabetic rabbits than in control rabbits. Pretreatment with N(G)-nitro-L-arginine (L-NOArg), indomethacin, or L-NOArg plus indomethacin induced partial inhibition of acetylcholine-induced relaxation. Inhibition induced by L-NOArg plus indomethacin was significantly higher in arteries from diabetic rabbits than in arteries from control rabbits. In renal arteries depolarised with KCl 30 mM and incubated with L-NOArg plus indomethacin, acetylcholine-induced relaxation was almost abolished in both groups of rabbits and this response was not different from that obtained in arteries without endothelium. Sodium nitroprusside induced concentration-dependent relaxation of renal arteries from control and diabetic rabbits without significant differences between the two groups of animals. These results suggest that diabetes potentiates the acetylcholine-induced relaxation in rabbit renal arteries. Increased release of nitric oxide and prostacyclin could be responsible for the enhanced relaxant potency of acetylcholine in diabetes.
Collapse
Affiliation(s)
- J A Alabadí
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s.n., Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Miranda FJ, Alabadí JA, Lloréns S, Ruiz de Apodaca RF, Centeno JM, Alborch E. Diabetes-induced changes in endothelial mechanisms implicated in rabbit carotid arterial response to 5-hydroxytryptamine. Eur J Pharmacol 2000; 401:397-402. [PMID: 10936499 DOI: 10.1016/s0014-2999(00)00469-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The influence of diabetes on endothelial mechanisms implicated in the response of isolated rabbit carotid arteries to 5-hydroxytryptamine (5-HT) was studied. 5-HT induced a concentration-dependent contraction that was potentiated in arteries from diabetic rabbits with respect to that in arteries from control rabbits. Endothelium removal potentiated 5-HT contractions in arteries from both control and diabetic rabbits but increased the maximum effect only in arteries from diabetic rabbits. Incubation of arterial segments with N(G)-nitro-L-arginine (L-NA) enhanced the contractile response to 5-HT. This L-NA enhancement was greater in arteries from diabetic rabbits than in arteries from control rabbits. Aminoguanidine did not modify the 5-HT contraction in arteries from control and diabetic rabbits. Indomethacin inhibited the 5-HT-induced response, and this inhibition was higher in arteries from control rabbits than in arteries from diabetic rabbits. In summary, diabetes enhances the sensitivity of the rabbit carotid artery to 5-HT. In control animals, the endothelium modulated the arterial response to 5-HT by the release of both nitric oxide (NO) and a vasoconstrictor prostanoid. Diabetes enhances endothelial constitutive NO activity and impairs the production of the endothelial vasoconstrictor.
Collapse
Affiliation(s)
- F J Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Veelken R, Hilgers KF, Hartner A, Haas A, Böhmer KP, Sterzel RB. Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy. J Am Soc Nephrol 2000; 11:71-79. [PMID: 10616842 DOI: 10.1681/asn.v11171] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study tested the hypothesis that nitric oxide (NO)-mediated renal vasodilation due to the activity of the inducible nitric oxide synthase (iNOS) contributes to glomerular hyperfiltration in diabetic rats. Two weeks after induction of diabetes mellitus by streptozotocin, mean arterial BP (MAP), GFR (inulin clearance), and renal plasma flow (RPF) (para-aminohippurate clearance) were measured in conscious instrumented rats. Diabetic rats had elevated GFR (3129 +/- 309 microl/min versus 2297 +/- 264 microl/min in untreated control rats, P < 0.05) and RPF (10526 +/- 679 microl/min versus 8005 +/- 534 microl/min), which was prevented by chronic insulin treatment. Intravenous administration of 0.1 and 1 mg of L-imino-ethyl-lysine (L-NIL), an inhibitor of iNOS, did not affect MAP, GFR, or RPF, either in diabetic or control rats. A higher L-NIL dose (10 mg) increased MAP and decreased RPF in diabetic rats significantly (n = 6, P < 0.05), but not in controls (n = 6). In addition, 0.1 mg of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective blocker of NOS isoforms, decreased GFR (2389 +/- 478 microl/min) and RPF (7691 +/- 402 microl/min) in diabetic animals to control levels, while renal hemodynamics in normoglycemic rats were not altered. Higher L-NAME doses (1 and 10 mg) reduced GFR and RPF in diabetic and control rats to identical levels. In glomeruli isolated from diabetic and control rats, neither iNOS mRNA nor iNOS protein expression was detected. In contrast, increased protein levels of endothelial constitutive NOS (ecNOS) were found in glomeruli of diabetic rats compared with controls. By immunohistochemistry, ecNOS but not iNOS staining was observed in the endothelium of preglomerular vessels and in diabetic glomeruli. These results support the notion that increased NO availability due to greater abundance of ecNOS contributes to the pathogenesis of glomerular hyperfiltration in early experimental diabetic nephropathy. In contrast, we found no functional or molecular evidence for increased glomerular expression and activity of iNOS in diabetic rats.
Collapse
Affiliation(s)
- Roland Veelken
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Germany
| | - Karl F Hilgers
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Germany
| | - Andrea Hartner
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Germany
| | - Alexander Haas
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Germany
| | | | - R Bernd Sterzel
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
34
|
Pugliese G, Pricci F, Romeo G, Leto G, Amadio L, Iacobini C, Di Mario U. Autocrine and paracrine mechanisms in the early stages of diabetic nephropathy. J Endocrinol Invest 1999; 22:708-35. [PMID: 10595837 DOI: 10.1007/bf03343635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G Pugliese
- Dipartimento di Scienze Cliniche, Endocrinologia III, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|