1
|
Ding Q, Xu Q, Hong Y, Zhou H, He X, Niu C, Tian Z, Li H, Zeng P, Liu J. Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis. Front Immunol 2024; 15:1399856. [PMID: 38962008 PMCID: PMC11219584 DOI: 10.3389/fimmu.2024.1399856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy. Methods scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features. Results By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients. Conclusion Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.
Collapse
Affiliation(s)
- Qiang Ding
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Qingyuan Xu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Yini Hong
- Gynecology Department, The First People’s Hospital of Guangzhou, Guangzhou, China
| | - Honghai Zhou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyu He
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Chicheng Niu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Zhao Tian
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Hao Li
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Ping Zeng
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Jinfu Liu
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| |
Collapse
|
2
|
Fey RM, Nichols RA, Tran TT, Vandenbark AA, Kulkarni RP. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers (Basel) 2024; 16:1773. [PMID: 38730725 PMCID: PMC11082995 DOI: 10.3390/cancers16091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy is used to treat a wide range of cancers; however, some patients are at risk of developing treatment resistance and/or immune-related adverse events (irAEs). Thus, there is a great need for the identification of reliable predictive biomarkers for response and toxicity. The cytokine MIF (macrophage migration inhibitory factor) and its cognate receptor CD74 are intimately connected with cancer progression and have previously been proposed as prognostic biomarkers for patient outcome in various cancers, including solid tumors such as malignant melanoma. Here, we assess their potential as predictive biomarkers for response to ICB therapy and irAE development. We provide a brief overview of their function and roles in the context of cancer and autoimmune disease. We also review the evidence showing that MIF and CD74 may be of use as predictive biomarkers of patient response to ICB therapy and irAE development. We also highlight that careful consideration is required when assessing the potential of serum MIF levels as a biomarker due to its reported circadian expression in human plasma. Finally, we suggest future directions for the establishment of MIF and CD74 as predictive biomarkers for ICB therapy and irAE development to guide further research in this field.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Rebecca A. Nichols
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Thuy T. Tran
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
3
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
4
|
ZHANG L, ZHONG Y, LU W, SHANG Y, GUO Y, LUO X, CHEN Y, LUO K, HU D, YU H, ZHOU H. Moxibustion of Zusanli (ST36) and Shenshu (BL23) alleviates the inflammation of rheumatoid arthritis in rats through regulating macrophage migration inhibitory factor/glucocorticoids signaling. J TRADIT CHIN MED 2024; 44:353-361. [PMID: 38504541 PMCID: PMC10927400 DOI: 10.19852/j.cnki.jtcm.20220602.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/22/2022] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To test the hypothesis that moxibustion may inhibit rheumatoid arthritis (RA) synovial inflammation by regulating the expression of macrophage migration inhibitory factor (MIF)/glucocorticoids (GCs). METHODS Fifty male Sprague-Dawley rats were randomly divided into five groups (n = 10 each): blank Control (CON) group, RA Model (RA) group, Moxibustion (MOX) group, MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) group, and Moxibustion + MIF inhibitor ISO-1 (MOX + ISO-1) group. Rats in the ISO-1 group and ISO-1 + MOX group were intraperitoneally injected with the inhibitor ISO-1. The rats in the RA group, ISO-1 group, MOX group, and ISO-1 + MOX group were injected with Freund's complete adjuvant (FCA) in the right hind footpad to establish an experimental RA rat model. In the MOX group and MOX + ISO-1 group, rats were treated with Moxa. The thickness of the footpads of the rats in each group was measured at three-time points before, after modeling and after moxibustion treatment. The contents of serum MIF, corticosterone (CORT), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected by enzyme-linked immunosorbent assay; and the contents of synovial MIF were detected by Western blot. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes of synovial tissue under a section light microscope, and pathological scoring was performed according to the grading standard of the degree of synovial tissue disease. RESULTS Moxibustion was found to reduce the level of MIF and alleviate inflammation in RA rats in this study. In addition, after inhibiting the expression of MIF, the level of CORT increased, and the level of TNF-α decreased. Treating RA rats with inhibited MIF by moxibustion, the level of CORT was almost unchanged, but the level of TNF-α further decreased. The correlation analysis data suggested that MIF was positively related to the expression of TNF-α and negatively correlated with the expression of CORT. CONCLUSION Reducing MIF to increase CORT and decrease TNF-α by moxibustion treatment in RA. MIF may be a factor for moxibustion to regulate the expression of CORT, but the expression of TNF-α is due to the incomplete regulation of the MIF. This study added to the body of evidence pointing to moxibustion's anti-inflammatory mechanism in the treatment of RA.
Collapse
Affiliation(s)
- Linlin ZHANG
- 1 Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yumei ZHONG
- 2 Department of Painology, First People's Hospital of Chengdu, Chengdu 610095, China
| | - Wenting LU
- 5 External treatment center, First People's Hospital of Chengdu, Chengdu 610095, China
| | - Yanan SHANG
- 1 Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanding GUO
- 1 Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochao LUO
- 3 Chinese Evidence-Based Medicine Centre, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Yang CHEN
- 4 Traditional Chinese Medicine College, Chongqing Medical University, Chongqing 400016, China
| | - Kun LUO
- 1 Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Danhui HU
- 1 Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Huiling YU
- 1 Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haiyan ZHOU
- 1 Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
5
|
Philippon EML, van Rooijen LJE, Khodadust F, van Hamburg JP, van der Laken CJ, Tas SW. A novel 3D spheroid model of rheumatoid arthritis synovial tissue incorporating fibroblasts, endothelial cells, and macrophages. Front Immunol 2023; 14:1188835. [PMID: 37545512 PMCID: PMC10402919 DOI: 10.3389/fimmu.2023.1188835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective Rheumatoid Arthritis (RA) is a progressive and systemic autoimmune disorder associated with chronic and destructive joint inflammation. The hallmarks of joint synovial inflammation are cellular proliferation, extensive neoangiogenesis and infiltration of immune cells, including macrophages. In vitro approaches simulating RA synovial tissue are crucial in preclinical and translational research to evaluate novel diagnostic and/or therapeutic markers. Two-dimensional (2D) settings present very limited in vivo physiological proximity as they cannot recapitulate cell-cell and cell-matrix interactions occurring in the three-dimensional (3D) tissue compartment. Here, we present the engineering of a spheroid-based model of RA synovial tissue which mimics 3D interactions between cells and pro-inflammatory mediators present in the inflamed synovium. Methods Spheroids were generated by culturing RA fibroblast-like-synoviocytes (RAFLS), human umbilical vein endothelial cells (ECs) and monocyte-derived macrophages in a collagen-based 3D scaffold. The spheroids were cultured in the presence or absence of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (bFGF) or RA synovial fluid (SF). Spheroid expansion and cell migration were quantified for all conditions using confocal microscopy and digital image analysis. Results A novel approach using machine learning was developed to quantify spheroid outgrowth and used to reexamine the existing spheroid-based model of RA synovial angiogenesis consisting of ECs and RAFLS. A 2-fold increase in the spheroid outgrowth ratio was demonstrated upon VEGF/bFGF stimulation (p<0.05). The addition of macrophages within the spheroid structure (3.75x104 RAFLS, 7.5x104 ECs and 3.0x104 macrophages) resulted in good incorporation of the new cell type. The addition of VEGF/bFGF significantly induced spheroid outgrowth (p<0.05) in the new system. SF stimulation enhanced containment of macrophages within the spheroids. Conclusion We present a novel spheroid based model consisting of RAFLS, ECs and macrophages that reflects the RA synovial tissue microenvironment. This model may be used to dissect the role of specific cell types in inflammatory responses in RA, to study specific signaling pathways involved in the disease pathogenesis and examine the effects of novel diagnostic (molecular imaging) and therapeutic compounds, including small molecule inhibitors and biologics.
Collapse
Affiliation(s)
- Eva M. L. Philippon
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lisanne J. E. van Rooijen
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Fatemeh Khodadust
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Conny J. van der Laken
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
ZHOU H, ZHONG Y, GAO X, WU F, JIA M, YANG X. Efficacy of Moxa-burning heat stimulating Zusanli (ST36) and Shenshu (BL23) on expressions of macrophage migration inhibitory factor and macrophage apoptosis in rabbits with adjuvant-induced arthritis. J TRADIT CHIN MED 2022; 42:980-987. [PMID: 36378057 PMCID: PMC9924787 DOI: 10.19852/j.cnki.jtcm.20220817.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate the effects of moxa-burning heat stimulating acupoints Zusanli (ST36) and Shenshu (BL23) on macrophage migration inhibitory factor (MIF) and its related molecules which can provide scientific experimental basis for the clinical application of moxibustion treatment of rheumatoid arthritis (RA). METHODS Thirty rabbits were randomly assigned to control group, RA model (established by injecting Freund's Complete Adjuvant) group (RA group) and RA model with moxibustion group [Moxa group, Zusanli (ST36) and Shenshu (BL23), 5 moxa pillars/day, 6 d × 3]. The expressions of MIF mRNA were evaluated with reverse transcription polymerase chain reaction; the apoptosis rates of macrophages were detected by erminal deoxynucleotidyl transferase-mediated dTUP nick end labeling; the expressions of related signal molecules were detected with immunohistochemical S-P method and the levels of IL-2 were detected with enzyme-linked immunosorbent assay. RESULTS The expressions of MIF mRNA, extracellular regulated protein kinases 2, p38 mitogen-activated protein kinase and nuclear factor-κ-gene binding p65 in synovial tissue of RA group were significantly increased when compared with control group, which were lower remarkably in moxa group than those in RA group. The apoptosis rates of macrophages in RA group were significantly down-regulated as compared with the control group, which were up-regulated in moxa group compared with the RA group. The levels of IL-2 in synovial fluid from the RA group were elevated significantly as compared with that from control group, but those of the moxa group were reduced when compared with those from RA group. CONCLUSIONS Moxibustion may simultaneously regulate the expressions of MIF and its related signaling pathways molecules, the apoptosis rate of macrophages in synovial tissue, as well as the level of inflammatory factors in synovial fluid. The results suggest that the anti-inflammatory effect of moxibustion on RA may be related to inhibit the expression of MIF in synovial tissue, the molecules of some related signaling pathways and promote the apoptosis of macrophage.
Collapse
Affiliation(s)
- Haiyan ZHOU
- 1 School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 2 Pain Department, Chengdu First People's Hospital/ Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610095, China
- 3 Centre of Preventive Treatment of Disease, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 4 Foreign Languages School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 5 Acupuncture Department, Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
- 6 Health Rehabilitation School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yumei ZHONG
- 2 Pain Department, Chengdu First People's Hospital/ Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610095, China
| | - Xiuhua GAO
- 3 Centre of Preventive Treatment of Disease, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fei WU
- 4 Foreign Languages School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Min JIA
- 5 Acupuncture Department, Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| | - Xin YANG
- 6 Health Rehabilitation School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
7
|
Li RL, Duan HX, Liang Q, Huang YL, Wang LY, Zhang Q, Wu CJ, Liu SQ, Peng W. Targeting matrix metalloproteases: A promising strategy for herbal medicines to treat rheumatoid arthritis. Front Immunol 2022; 13:1046810. [PMID: 36439173 PMCID: PMC9682071 DOI: 10.3389/fimmu.2022.1046810] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
As a type of metalloproteinase, matrix metalloproteinases (MMPs) can be divided into collagenase, gelatinase, stromelysins, membrane-type (MT)-MMPs and heterogeneous subgroups according to their structure and function. MMP contents in the human body are strictly regulated, and their synthesis, activation and inhibition processes should be kept in a certain balance; otherwise, this would result in the occurrence of various diseases. Rheumatoid arthritis (RA) is a known immune-mediated systemic inflammatory disease that is affected by a variety of endogenous and exogenous factors. In RA development, MMPs act as important mediators of inflammation and participate in the degradation of extracellular matrix substrates and digestion of fibrillar collagens, leading to the destruction of joint structures. Interestingly, increasing evidence has suggested that herbal medicines have many advantages in RA due to their multitarget properties. In this paper, literature was obtained through electronic databases, including the Web of Science, PubMed, Google Scholar, Springer, and CNKI (Chinese). After classification and analysis, herbal medicines were found to inhibit the inflammatory process of RA by regulating MMPs and protecting joint structures. However, further preclinical and clinical studies are needed to support this view before these herbal medicines can be developed into drugs with actual application to the disease.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Liang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Qin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Ailioaie LM, Ailioaie C, Litscher G. Implications of SARS-CoV-2 Infection in Systemic Juvenile Idiopathic Arthritis. Int J Mol Sci 2022; 23:ijms23084268. [PMID: 35457086 PMCID: PMC9029451 DOI: 10.3390/ijms23084268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is a serious multifactorial autoinflammatory disease with a significant mortality rate due to macrophage activation syndrome (MAS). Recent research has deepened the knowledge about the pathophysiological mechanisms of sJIA-MAS, facilitating new targeted treatments, and biological disease-modifying antirheumatic drugs (bDMARDs), which significantly changed the course of the disease and prognosis. This review highlights that children are less likely to suffer severe COVID-19 infection, but at approximately 2–4 weeks, some cases of multisystem inflammatory syndrome in children (MIS-C) have been reported, with a fulminant course. Previous established treatments for cytokine storm syndrome (CSS) have guided COVID-19 therapeutics. sJIA-MAS is different from severe cases of COVID-19, a unique immune process in which a huge release of cytokines will especially flood the lungs. In this context, MIS-C should be reinterpreted as a special MAS, and long-term protection against SARS-CoV-2 infection can only be provided by the vaccine, but we do not yet have sufficient data. COVID-19 does not appear to have a substantial impact on rheumatic and musculoskeletal diseases (RMDs) activity in children treated with bDMARDs, but the clinical features, severity and outcome in these patients under various drugs are not yet easy to predict. Multicenter randomized controlled trials are still needed to determine when and by what means immunoregulatory products should be administered to patients with sJIA-MAS with a negative corticosteroid response or contraindications, to optimize their health and safety in the COVID era.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
9
|
Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022; 11:pathogens11020258. [PMID: 35215200 PMCID: PMC8877345 DOI: 10.3390/pathogens11020258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
One of the adaptations of nematodes, which allows long-term survival in the host, is the production of proteins with immunomodulatory properties. The parasites secrete numerous homologs of human immune mediators, such as macrophage migration inhibitory factor (MIF), which is a substantial regulator of the inflammatory immune response. Homologs of mammalian MIF have been recognized in many species of nematode parasites, but their role has not been fully understood. The application of molecular biology and genetic engineering methods, including the production of recombinant proteins, has enabled better characterization of their structure and properties. This review provides insight into the current state of knowledge on MIF homologs produced by nematodes, as well as their structure, enzymatic activity, tissue expression pattern, impact on the host immune system, and potential use in the treatment of parasitic, inflammatory, and autoimmune diseases.
Collapse
|
10
|
Sánchez-Zuno GA, Bucala R, Hernández-Bello J, Román-Fernández IV, García-Chagollán M, Nicoletti F, Matuz-Flores MG, García-Arellano S, Esparza-Michel JA, Cerpa-Cruz S, Pérez-Guerrero EE, Muñoz-Valle JF. Canonical (CD74/CD44) and Non-Canonical (CXCR2, 4 and 7) MIF Receptors Are Differentially Expressed in Rheumatoid Arthritis Patients Evaluated by DAS28-ESR. J Clin Med 2021; 11:jcm11010120. [PMID: 35011861 PMCID: PMC8745239 DOI: 10.3390/jcm11010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) significantly contributes to rheumatoid arthritis (RA) pathogenesis. We aimed to evaluate the canonical (CD74/CD44) and non-canonical MIF receptors (CXCR2,4 and 7) expression and sCD74 to establish their association with RA clinical activity according to DAS28-ESR. METHODOLOGY 101 RA patients with different clinical activities (remission (n = 27), low (n = 16), moderate (n = 35) and high (n = 23)) and 9 control subjects (CS) were included. Expression was evaluated by flow cytometry and levels of soluble CD74 (sCD74) by ELISA. Data analysis was performed with FlowJov10.0, STATAv12.0, and GraphPad Prism v7.0. RESULTS According to disease activity, CXCR7 expression (percentage of expression and mean fluorescence intensity (MFI)) was higher in granulocytes from patients in remission, while the expression of CXCR4 was higher in patients with high disease activity (p < 0.05). The expression of CD74 was higher in B cells (p < 0.05) and monocytes (p < 0.01) from patients in remission. Regarding sCD74 levels these were higher in patients with high disease activity when compared to those in remission (p <0.05). CONCLUSIONS The results support the need for further study of the role of sCD74 as a soluble MIF decoy receptor, sequestering it to negatively regulate MIF signaling though its membrane receptors. The expression patterns of CXCR4 and CXCR7 show that the latter is a scavenger-type receptor that prevents endocytosis and even degradation of CXCR4 under inflammatory conditions.
Collapse
Affiliation(s)
- Gabriela Athziri Sánchez-Zuno
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - Richard Bucala
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - Ilce Valeria Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - Mariel García-Chagollán
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - Judith Alejandra Esparza-Michel
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - Sergio Cerpa-Cruz
- Servicio de Reumatología, O.P.D. Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Jalisco 44280, Mexico;
| | - Edsaúl Emilio Pérez-Guerrero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico; (G.A.S.-Z.); (J.H.-B.); (I.V.R.-F.); (M.G.-C.); (M.G.M.-F.); (S.G.-A.); (J.A.E.-M.); (E.E.P.-G.)
- Correspondence: ; Tel.: +52-(33)-1058-5200 (ext. 33603)
| |
Collapse
|
11
|
Zhao J, Guo S, Schrodi SJ, He D. Molecular and Cellular Heterogeneity in Rheumatoid Arthritis: Mechanisms and Clinical Implications. Front Immunol 2021; 12:790122. [PMID: 34899757 PMCID: PMC8660630 DOI: 10.3389/fimmu.2021.790122] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease that exhibits significant clinical heterogeneity. There are various treatments for rheumatoid arthritis, including disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and inflammatory cytokine inhibitors (ICI), typically associated with differentiated clinical effects and characteristics. Personalized responsiveness is observed to the standard treatment due to the pathophysiological heterogeneity in rheumatoid arthritis, resulting in an overall poor prognosis. Understanding the role of individual variation in cellular and molecular mechanisms related to rheumatoid arthritis will considerably improve clinical care and patient outcomes. In this review, we discuss the source of pathophysiological heterogeneity derived from genetic, molecular, and cellular heterogeneity and their possible impact on precision medicine and personalized treatment of rheumatoid arthritis. We provide emphasized description of the heterogeneity derived from mast cells, monocyte cell, macrophage fibroblast-like synoviocytes and, interactions within immune cells and with inflammatory cytokines, as well as the potential as a new therapeutic target to develop a novel treatment approach. Finally, we summarize the latest clinical trials of treatment options for rheumatoid arthritis and provide a suggestive framework for implementing preclinical and clinical experimental results into clinical practice.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
12
|
García-Arellano S, Hernández-Palma LA, Cerpa-Cruz S, Sánchez-Zuno GA, Herrera-Godina MG, Muñoz-Valle JF. The Novel Role of MIF in the Secretion of IL-25, IL-31, and IL-33 from PBMC of Patients with Rheumatoid Arthritis. Molecules 2021; 26:4968. [PMID: 34443554 PMCID: PMC8398282 DOI: 10.3390/molecules26164968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease with complex pathogenesis associated with cytokine dysregulation. Macrophage migration inhibitory factor (MIF) plays a role in systemic inflammation and joint destruction in RA and could be associated with the secretion of other immune-modulatory cytokines such as IL-25, IL-31, and IL-33. For the above, our main aim was to evaluate the IL-25, IL-31, and IL-33 secretion from recombinant human MIF (rhMIF)-stimulated peripheral blood mononuclear cells (PBMC) of RA patients. The rhMIF and lipopolysaccharide (LPS) plus rhMIF stimuli promote the secretion of IL-25, IL-31, and IL-33 (p < 0.05) from PBMC of RA patients. The study groups, the different stimuli, and the interaction between both showed a statistically significant effect on the secretion of IL-25 (p < 0.05) and IL-31 (p < 0.01). The study of the effect of the RA patient treatments and their interaction with the effect of stimuli did not show an interaction between them. In conclusion, our study generates new evidence for the role of MIF in the secretion of IL-25, IL-31, and IL-33 and its immunomodulatory effect on RA.
Collapse
Affiliation(s)
- Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (S.G.-A.); (L.A.H.-P.); (G.A.S.-Z.); (M.G.H.-G.)
| | - Luis Alexis Hernández-Palma
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (S.G.-A.); (L.A.H.-P.); (G.A.S.-Z.); (M.G.H.-G.)
| | - Sergio Cerpa-Cruz
- Departamento de Reumatología, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico;
| | - Gabriela Athziri Sánchez-Zuno
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (S.G.-A.); (L.A.H.-P.); (G.A.S.-Z.); (M.G.H.-G.)
| | - Melva Guadalupe Herrera-Godina
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (S.G.-A.); (L.A.H.-P.); (G.A.S.-Z.); (M.G.H.-G.)
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (S.G.-A.); (L.A.H.-P.); (G.A.S.-Z.); (M.G.H.-G.)
| |
Collapse
|
13
|
Sun S, Du Y, Li S, Gao B, Xia R, Cao W, Zhang C, Zhu E. Anti-inflammatory activity of different isolated sites of Chloranthus serratus in complete Freund's adjuvant-induced arthritic rats. Exp Ther Med 2021; 22:848. [PMID: 34149894 PMCID: PMC8210295 DOI: 10.3892/etm.2021.10280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Chloranthus serratus is a traditional Chinese medicine for treating arthritis and bruises. The aim of the present study was to investigate the anti-arthritic activities and possible associated mechanisms of different isolated sites of Chloranthus serratus (DISC) in adjuvant-induced arthritis (AA) rats. The therapeutic effects of the extracts were assessed through changes in body weights, swelling rates, arthritis indexes (AI) and organ indexes. The levels of nitric oxide (NO), malondialdehyde and superoxide dismutase were determined using one-step method, TBA method and hydroxylamine method, respectively; the levels of TNF-α, IL-1β, IL-6, prostaglandin E2, macrophage inhibitor factor-1, VEGF, immunoglobulin (Ig) G, IgM and IFN-γ in serum were determined using ELISA. Pathological changes and positive expression of VEGF in the ankle joints were investigated using hematoxylin-eosin staining and immunohistochemical staining, respectively. DISC treatment increased the weight gains and thymus indexes, and decreased the swelling rates, spleen indexes and AI in AA rats. The water isolated site (WA) and ethyl acetate isolated site (EA) significantly reversed complete Freund's adjuvant (CFA)-induced changes in the levels of NO, IL-6, TNF-α, IgG and IFN-γ, while the n-butanol isolated site (NB) only reversed the changes in IL-6 and IgG contents. Some changes in the chloroform isolated site group showed the same trend as those in the model group. The extracts relieved synovial hyperplasia, inflammatory cell infiltration and articular surface defects, and reduced the positive expression rate of VEGF in the synovial tissues of the AA rats to varying degrees. The WA exhibited the most marked effects, followed by the EA and NB, indicating that WA had optimal therapeutic effects on CFA-induced arthritic rats, which may be mediated by the oxidative stress and inhibition of inflammatory factors. C. serratus may serve as a potential candidate for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Shuping Sun
- Pharmacy Teaching and Research Department, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Institute of Natural Daily Chemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yunyan Du
- Pharmacy Teaching and Research Department, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Shengli Li
- The Third Orthopedics Department, The Fifth People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Bianbian Gao
- Pharmacy Teaching and Research Department, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Rongping Xia
- Pharmacy Teaching and Research Department, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Wenjing Cao
- Pharmacy Teaching and Research Department, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Chao Zhang
- Pharmacy Teaching and Research Department, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Enze Zhu
- Pharmacy Teaching and Research Department, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
14
|
Deng R, Bu Y, Li F, Wu H, Wang Y, Wei W. The interplay between fibroblast-like synovial and vascular endothelial cells leads to angiogenesis via the sphingosine-1-phosphate-induced RhoA-F-Actin and Ras-Erk1/2 pathways and the intervention of geniposide. Phytother Res 2021; 35:5305-5317. [PMID: 34327764 DOI: 10.1002/ptr.7211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
The changes of fibroblast-like synoviocytes (FLSs) and vascular endothelial cells (VECs) biological functions are closely related to angiogenesis in rheumatoid arthritis (RA). Nevertheless, how the crosstalk between FLSs and VECs interferes with RA is far from being clarified. Herein, we studied the effect of the reciprocal interactions between FLSs and VECs on angiogenesis and mechanism of geniposide (GE). After administration of GE, improvement of synovial hyperplasia in adjuvant arthritis rats was accompanied by downregulation of SphK1 and p-Erk1/2. The dynamic interaction between FLSs and VECs triggers the release of S1P by activating p-Erk1/2 and SphK1, then activating RhoA-F-actin and Ras-Erk1/2 pathways. When exposed to the inflammatory microenvironment mediated by FLSs-VECs crosstalk, proliferation, migration, and permeability of VECs were enhanced, the angiogenic factors were imbalanced. Meanwhile, the proliferation and secretory ability of FLSs increased. Interestingly, depletion of S1P or blocking of the activation of SphK1 by GE and PF-543 prevented the changes. In conclusion, S1P released during FLSs-VECs crosstalk changed their biological functions by activating RhoA-F-actin and Ras-Erk1/2 pathways. GE acted on p-Erk1/2 and SphK1, inhibited the secretion of S1P, and blocked the interplay between FLSs and VECs. These results provide new insights into the mechanism of angiogenesis in RA.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Wei
- Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Institute of Clinical Pharmacology, Antiinflammatory Immune Drugs Collaborative Innovation Center, Hefei, China
| |
Collapse
|
15
|
Fukushima K, Furuya M, Kamimura T, Takimoto-Kamimura M. Structure of macrophage migration inhibitory factor in complex with methotrexate. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:293-299. [PMID: 33645533 DOI: 10.1107/s2059798321000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Methotrexate (MTX) is an anticancer and anti-rheumatoid arthritis drug that is considered to block nucleotide synthesis and the cell cycle mainly by inhibiting the activity of dihydrofolate reductase (DHFR). Using affinity-matrix technology and X-ray analysis, the present study shows that MTX also interacts with macrophage migration inhibitory factor (MIF). Fragment molecular-orbital calculations quantified the interaction between MTX and MIF based on the structure of the complex and revealed the amino acids that are effective in the interaction of MTX and MIF. It should be possible to design new small-molecule compounds that have strong inhibitory activity towards both MIF and DHFR by structure-based drug discovery.
Collapse
Affiliation(s)
- Kei Fukushima
- Pharmaceutical Discovery Research Laboratories, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Minoru Furuya
- Pharmaceutical Discovery Research Laboratories, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takashi Kamimura
- Veritas In Silico Inc., 1-11-1 Nishigotanda, Shinagawa, Tokyo 141-0031, Japan
| | - Midori Takimoto-Kamimura
- Pharmaceutical Discovery Research Laboratories, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| |
Collapse
|
16
|
Alban TJ, Bayik D, Otvos B, Rabljenovic A, Leng L, Jia-Shiun L, Roversi G, Lauko A, Momin AA, Mohammadi AM, Peereboom DM, Ahluwalia MS, Matsuda K, Yun K, Bucala R, Vogelbaum MA, Lathia JD. Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression. Front Immunol 2020; 11:1191. [PMID: 32625208 PMCID: PMC7315581 DOI: 10.3389/fimmu.2020.01191] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The application of tumor immunotherapy to glioblastoma (GBM) is limited by an unprecedented degree of immune suppression due to factors that include high numbers of immune suppressive myeloid cells, the blood brain barrier, and T cell sequestration to the bone marrow. We previously identified an increase in immune suppressive myeloid-derived suppressor cells (MDSCs) in GBM patients, which correlated with poor prognosis and was dependent on macrophage migration inhibitory factor (MIF). Here we examine the MIF signaling axis in detail in murine MDSC models, GBM-educated MDSCs and human GBM. We found that the monocytic subset of MDSCs (M-MDSCs) expressed high levels of the MIF cognate receptor CD74 and was localized in the tumor microenvironment. In contrast, granulocytic MDSCs (G-MDSCs) expressed high levels of the MIF non-cognate receptor CXCR2 and showed minimal accumulation in the tumor microenvironment. Furthermore, targeting M-MDSCs with Ibudilast, a brain penetrant MIF-CD74 interaction inhibitor, reduced MDSC function and enhanced CD8 T cell activity in the tumor microenvironment. These findings demonstrate the MDSC subsets differentially express MIF receptors and may be leveraged for specific MDSC targeting.
Collapse
Affiliation(s)
- Tyler J. Alban
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Defne Bayik
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Balint Otvos
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic, Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - Anja Rabljenovic
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Lin Leng
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Leu Jia-Shiun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Gustavo Roversi
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Adam Lauko
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Arbaz A. Momin
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Alireza M. Mohammadi
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| | - David M. Peereboom
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| | - Manmeet S. Ahluwalia
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| | | | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, United States
| | - Richard Bucala
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | | | - Justin D. Lathia
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
17
|
Increased serum soluble programmed death ligand 1(sPD-L1) is associated with the presence of interstitial lung disease in rheumatoid arthritis: A monocentric cross-sectional study. Respir Med 2020; 166:105948. [DOI: 10.1016/j.rmed.2020.105948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/08/2020] [Accepted: 03/26/2020] [Indexed: 01/17/2023]
|
18
|
Ghayour-Mobarhan M, Ferns GA, Moghbeli M. Genetic and molecular determinants of prostate cancer among Iranian patients: An update. Crit Rev Clin Lab Sci 2020; 57:37-53. [PMID: 31895010 DOI: 10.1080/10408363.2019.1657061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common age-related cancers among men. Various environmental and genetic factors are involved in the development and progression of PCa. In most cases, the primary symptoms of disease are not severe. Therefore, it is common for patients to be referred with severe clinical manifestations at advanced stages of disease. Since this malignancy is age related and Iran will face a significant increase in the number of seniors, it is expected that the prevalence of PCa among Iranian men will rise. PCa progression has been observed to be associated with genetic and ethnic factors. It may therefore be clinically useful to determine a panel of genetic markers, in addition to routine diagnostic methods, to detect tumors in the early stages. In the present review, we have summarized the reported genetic markers in PCa Iranian patients to pave the way for the determination of an ethnic specific genetic marker panel for the early detection of PCa. To understand the genetic and molecular biology of PCa among Iranians, we have categorized these genetic markers based on their cellular functions.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Zhu WY, Jin X, Ma YC, Liu ZB. Correlations of MIF polymorphism and serum levels of MIF with glucocorticoid sensitivity of sudden sensorineural hearing loss. J Int Med Res 2019; 48:300060519893870. [PMID: 31889466 PMCID: PMC7607528 DOI: 10.1177/0300060519893870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective This study explored the relationship between macrophage migration inhibitory
factor (MIF) gene polymorphism (−173G/C) and glucocorticoid sensitivity in
sudden sensorineural hearing loss (SSNHL). Methods A total of 120 patients with SSNHL were divided into a
glucocorticoid-sensitive group and a glucocorticoid-resistant group. A group
of 93 healthy individuals served as the control group. Serum MIF levels of
the participants were measured and MIF genotyping was
performed. Results The frequency of the MIF −173C allele was significantly
higher in glucocorticoid-sensitive patients than in glucocorticoid-resistant
patients. Serum MIF levels were significantly higher in SSNHL patients than
in healthy controls, and higher in the glucocorticoid-sensitive group than
in the glucocorticoid-resistant group of SSNHL patients, which was
unexpected. Compared with patients with the GG genotype, patients with the
−173C allele (GC and CC genotypes) had significantly higher levels of serum
MIF and superoxide dismutase activity and lower levels of tumor necrosis
factor-α and malondialdehyde. Conclusion The MIF −173G/C polymorphism is associated with
glucocorticoid sensitivity in SSNHL patients. The C allele can result in
higher MIF production, reduced oxidative stress, and greater glucocorticoid
sensitivity.
Collapse
Affiliation(s)
- Wen-Yan Zhu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| | - Xin Jin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| | - Yong-Chi Ma
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| | - Zhi-Biao Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| |
Collapse
|
20
|
Kim KW, Kim BM, Won JY, Lee KA, Kim HR, Lee SH. Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis. J Biochem 2019; 166:259-270. [PMID: 31086948 DOI: 10.1093/jb/mvz033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the regulatory role of toll-like receptor 7 (TLR7) in receptor activator of nuclear factor kappa-B ligand (RANKL) production and osteoclast differentiation in rheumatoid arthritis (RA). In confocal microscopy, the co-expression of TLR7, CD55 and RANKL was determined in RA synovial fibroblasts. After RA synovial fibroblasts were treated with imiquimod, the RANKL gene expression and protein production were determined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis from peripheral blood CD14+ monocytes which were cultured with imiquimod was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. The signal pathways mediating the TLR7-induced RANKL expression and osteoclastogenesis were analysed after inhibition of intracellular signal molecules and their phosphorylation. Imiquimod stimulated the expression of TLR7 and RANKL and production of RANKL in RA synovial fibroblasts, increasing the phosphorylation of TRAF6, IRF7, mitogen-activated protein kinases (MAPK), c-Jun and NFATc1. When CD14+ monocytes were cultured with imiquimod or co-cultured with imiquimod-pre-treated RA synovial fibroblasts, they were differentiated into TRAP+ multinucleated osteoclasts in the absence of RANKL. TLR7 activation-induced osteoclastogenesis in RA through direct induction of osteoclast differentiation from its precursors and up-regulation of RANKL production in RA synovial fibroblasts. Thus, the blockage of TLR7 pathway could be a promising therapeutic strategy for preventing bone destruction in RA.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium in Immunologic Disease, Seoul St. Mary's Hospital College of Medicine, The Catholic University, 222 Banpo-daero, Seocho-gu, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium in Immunologic Disease, Seoul St. Mary's Hospital College of Medicine, The Catholic University, 222 Banpo-daero, Seocho-gu, Seoul, Korea
| | - Ji-Yeon Won
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| | - Kyung-Ann Lee
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| | - Hae-Rim Kim
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| | - Sang-Heon Lee
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| |
Collapse
|
21
|
Li S, Nie K, Zhang Q, Guo M, Qiu Y, Li Y, Gao Y, Wang L. Macrophage Migration Inhibitory Factor Mediates Neuroprotective Effects by Regulating Inflammation, Apoptosis and Autophagy in Parkinson's Disease. Neuroscience 2019; 416:50-62. [DOI: 10.1016/j.neuroscience.2019.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/15/2023]
|
22
|
Zheng L, Gao J, Jin K, Chen Z, Yu W, Zhu K, Huang W, Liu F, Mei L, Lou C, He D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. FASEB J 2019; 33:7667-7683. [PMID: 30893559 DOI: 10.1096/fj.201802364rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current pharmacological intervention for the treatment of osteolytic bone diseases such as osteoporosis focuses on the prevention of excessive osteoclastic bone resorption but does not enhance osteoblast-mediated bone formation. In our study, we have shown that 4-iodo-6-phenylpyrimidine (4-IPP), an irreversible inhibitor of macrophage migration inhibitory factor (MIF), can inhibit receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and potentiate osteoblast-mediated mineralization and bone nodule formation in vitro. Mechanistically, 4-IPP inhibited RANKL-induced p65 phosphorylation and nuclear translocation by preventing the interaction of MIF with thioredoxin-interacting protein-p65 complexes. This led to the suppression of late osteoclast marker genes such as nuclear factor of activated T cells cytoplasmic 1, resulting in impaired osteoclast formation. In contrast, 4-IPP potentiated osteoblast differentiation and mineralization also through the inhibition of the p65/NF-κB signaling cascade. In the murine model of pathologic osteolysis induced by titanium particles, 4-IPP protected against calvarial bone destruction. Similarly, in the murine model of ovariectomy-induced osteoporosis, 4-IPP treatment ameliorated the bone loss associated with estrogen deficiency by reducing osteoclastic activities and enhancing osteoblastic bone formation. Collectively, these findings provide evidence for the pharmacological targeting of MIF for the treatment of osteolytic bone disorders.-Zheng, L., Gao, J., Jin, K., Chen, Z., Yu, W., Zhu, K., Huang, W., Liu, F., Mei, L., Lou, C., He, D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kangtao Jin
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Weiyang Yu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kejun Zhu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Wenjun Huang
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Feijun Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Liangwei Mei
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| |
Collapse
|
23
|
Xu F, Shi YH, Chen J. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:947-955. [PMID: 30586634 DOI: 10.1016/j.fsi.2018.12.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine playing critical roles in inflammatory and immune responses. However, its functions have not been well studied in fish. In this study, we identified a MIF molecule from Japanese sea bass (Lateolabrax japonicus; LjMIF). Multiple sequence alignment showed that LjMIF has the typical structural features of MIFs. Phylogenetic tree analysis revealed that LjMIF is most closely related to the yellowfin tuna (Thunnus albacares), large yellow croaker (Larimichthys crocea), and red drum (Sciaenops ocellatus) homologs. Constitutive mRNA expression of LjMIF was detected in all tested tissues, with the highest level in the liver. Upon Vibro harveyi infection, LjMIF transcripts were altered in the tested tissues, including the liver, spleen, and head kidney. Subsequently, we prepared recombinant LjMIF (rLjMIF) and the corresponding antibody (anti-LjMIF). The in vitro study showed that rLjMIF inhibited the trafficking of Japanese sea bass monocytes/macrophages (MO/MΦ) and lymphocytes, but not of neutrophils, while anti-LjMIF had the opposite effect. rLjMIF also enhanced phagocytosis and intracellular killing of V. harveyi by MO/MΦ, while anti-LjMIF only inhibited phagocytosis by MO/MΦ. The in vivo study showed that rLjMIF aggravated the course of V. harveyi infection in Japanese sea bass, but anti-LjMIF increased the survival rate of the fish and decreased the bacterial burden. In conclusion, our observation revealed that LjMIF is closely involved in the immune responses of Japanese sea bass for combating V. harveyi infection.
Collapse
Affiliation(s)
- Feng Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
24
|
Howait M, Albassam A, Yamada C, Sasaki H, Bahammam L, Azuma MM, Cintra LTA, Satoskar AR, Yamada S, White R, Kawai T, Movila A. Elevated Expression of Macrophage Migration Inhibitory Factor Promotes Inflammatory Bone Resorption Induced in a Mouse Model of Periradicular Periodontitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2035-2043. [PMID: 30737274 DOI: 10.4049/jimmunol.1801161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/15/2019] [Indexed: 12/23/2022]
Abstract
Locally produced osteoclastogenic factor RANKL plays a critical role in the development of bone resorption in periradicular periodontitis. However, because RANKL is also required for healthy bone remodeling, it is plausible that a costimulatory molecule that upregulates RANKL production in inflammatory periradicular periodontitis may be involved in the pathogenic bone loss processes. We hypothesized that macrophage migration inhibitory factor (MIF) would play a role in upregulating the RANKL-mediated osteoclastogenesis in the periradicular lesion. In response to pulp exposure, the bone loss and level of MIF mRNA increased in the periradicular periodontitis, which peaked at 14 d, in conjunction with the upregulated expressions of mRNAs for RANKL, proinflammatory cytokines (TNF-α, IL-6, and IL-1β), chemokines (MCP-1 and SDF-1), and MIF's cognate receptors CXCR4 and CD74. Furthermore, expressions of those mRNAs were found significantly higher in wild-type mice compared with that of MIF-/- mice. In contrast, bacterial LPS elicited the production of MIF from ligament fibroblasts in vitro, which, in turn, enhanced their productions of RANKL and TNF-α. rMIF significantly upregulated the number of TRAP+ osteoclasts in vitro. Finally, periapical bone loss induced in wild-type mice were significantly diminished in MIF-/- mice. Altogether, the current study demonstrated that MIF appeared to function as a key costimulatory molecule to upregulate RANKL-mediated osteoclastogenesis, leading to the pathogenically augmented bone resorption in periradicular lesions. These data also suggest that the approach to neutralize MIF activity may lead to the development of a therapeutic regimen for the prevention of pathogenic bone loss in periradicular periodontitis.
Collapse
Affiliation(s)
- Mohammed Howait
- School of Dental Medicine, Harvard University, Boston, MA 02115.,Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,The Forsyth Institute, Cambridge, MA 02142
| | - Abdullah Albassam
- School of Dental Medicine, Harvard University, Boston, MA 02115.,Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,The Forsyth Institute, Cambridge, MA 02142
| | - Chiaki Yamada
- College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33324
| | - Hajime Sasaki
- School of Dental Medicine, Harvard University, Boston, MA 02115.,The Forsyth Institute, Cambridge, MA 02142.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | - Laila Bahammam
- Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mariane Maffei Azuma
- The Forsyth Institute, Cambridge, MA 02142.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Abhay R Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210; and
| | - Satoru Yamada
- Graduate School of Dentistry, Tohoku University, Tohoku, Sendai 980-8575, Japan
| | - Robert White
- School of Dental Medicine, Harvard University, Boston, MA 02115
| | - Toshihisa Kawai
- College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33324
| | - Alexandru Movila
- School of Dental Medicine, Harvard University, Boston, MA 02115; .,The Forsyth Institute, Cambridge, MA 02142.,College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33324
| |
Collapse
|
25
|
Kim HR, Kim BM, Won JY, Lee KA, Ko HM, Kang YS, Lee SH, Kim KW. Quercetin, a Plant Polyphenol, Has Potential for the Prevention of Bone Destruction in Rheumatoid Arthritis. J Med Food 2018; 22:152-161. [PMID: 30596535 DOI: 10.1089/jmf.2018.4259] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We investigated the immune-regulatory function of quercetin, in interleukin (IL)-17-produced osteoclastogenesis in rheumatoid arthritis (RA). RA fibroblasts-like synoviocytes (RA-FLS) were stimulated with IL-17, and the mRNA expression and secretion of receptor activator of nuclear factor kappa-B ligand (RANKL) were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. CD14+ monocytes (osteoclast precursors) were stimulated with IL-17, RANKL, with/without quercetin, and tartrate-resistant acid phosphatase activity was evaluated to assess osteoclast differentiation. Osteoclast differentiation was investigated after coculturing IL-17-stimulated RA-FLS and Th17 cells with monocytes. CD4+ T cells were cocultured with quercetin under Th17-inducing conditions, and their differentiation to Th17 cells and Treg cells was determined by flow cytometry analysis. We found that IL-17 stimulated RA-FLS to produce RANKL and quercetin decreased the IL-17-induced RANKL protein levels. Quercetin decreased the IL-17-produced activation of mammalian target of rapamycin, extracellular signal-regulated kinase and inhibitor of kappa B-alpha. When monocytes were stimulated with IL-17, macrophage colony-stimulating factor or RANKL, mature osteoclasts were formed, and quercetin decreased this osteoclastogenesis. When monocytes were cultured with IL-17-prestimulated RA-FLS or Th17 cells, osteoclasts were produced, and quercetin decreased this osteoclast differentiation. In Th17-differentiation conditions, quercetin suppressed Th17 cell and the production of IL-17, but quercetin did not affect Treg cells. Quercetin inhibits IL-17-stimulated RANKL production in RA-FLS and IL-17-stimulated osteoclast formation. Quercetin reduces Th17 differentiation. Quercetin could be an additional therapeutic option for bone destructive processes in RA.
Collapse
Affiliation(s)
- Hae-Rim Kim
- 1 Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Bo-Mi Kim
- 2 Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Yeon Won
- 1 Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Kyung-Ann Lee
- 1 Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Hyun Myung Ko
- 3 Department of Eco-Biological Science, College of Science and Technology, Woosuk University, Jincheon-eup, Chungcheongbuk-do, Korea
| | - Young Sun Kang
- 4 Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Seoul, Korea.,5 Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Sang-Heon Lee
- 1 Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung-Woon Kim
- 2 Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Shen D, Lang Y, Chu F, Wu X, Wang Y, Zheng X, Zhang HL, Zhu J, Liu K. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful? Expert Opin Ther Targets 2018; 22:567-577. [PMID: 29856236 DOI: 10.1080/14728222.2018.1484109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) plays an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN), which may offer an opportunity for the development of the novel therapeutic strategies for GBS. Areas covered: 'macrophage migration inhibitory factor' and 'Guillain-Barré syndrome' were used as keywords to search for related publications on Pub-Med, National Center for Biotechnology Information (NCBI), USA. MIF is involved in the etiology of various inflammatory and autoimmune disorders. However, the roles of MIF in GBS and EAN have not been summarized in the publications we identified. Therefore, in this review, we described and analyzed the major roles of MIF in GBS/EAN. Primarily, this molecule aggravates the inflammatory responses in this disorder. However, multiple studies indicated a protective role of MIF in GBS. The potential of MIF as a therapeutic target in GBS has been recently demonstrated in experimental and clinical studies, although clinical trials have been unavailable to date. Expert opinion: MIF plays a critical role in the initiation and progression of GBS and EAN, and it may represent a potential therapeutic target for GBS.
Collapse
Affiliation(s)
- Donghui Shen
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Yue Lang
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Fengna Chu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Xiujuan Wu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Ying Wang
- b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Xiangyu Zheng
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Hong-Liang Zhang
- c Department of Life Sciences , the National Natural Science Foundation of China , Beijing , China
| | - Jie Zhu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China.,b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Kangding Liu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| |
Collapse
|
27
|
Zhang Z, Zhang R, Li L, Zhu L, Gao S, Lu Q, Gu Y, Zhang Y, Yang H, Hou T, Zhen X, Zheng LT. Macrophage migration inhibitory factor (MIF) inhibitor, Z-590 suppresses cartilage destruction in adjuvant-induced arthritis via inhibition of macrophage inflammatory activation. Immunopharmacol Immunotoxicol 2018; 40:149-157. [PMID: 29447014 DOI: 10.1080/08923973.2018.1424896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory mediator that is involved in the progression of rheumatoid arthritis (RA). Previously, we demonstrated a small molecule compound 3-[(biphenyl-4-ylcarbonyl) carbamothioyl] amino benzoic acid (Z-590) could inhibit MIF activity with docking-based virtual screening and experimental evaluation. METHODS The LPS activated RAW264.7 macrophage cells were used to determine the anti-inflammatory effects of Z-590 in vitro. A rat adjuvant-induced arthritis (AIA) model was used to determine the anti-arthritic effects of Z-590 in vivo. RESULTS MIF inhibitor Z-590 significantly inhibited the production of NO, TNF-α and IL-6 in LPS-activated RAW 264.7 macrophage cells and markedly inhibited LPS-induced expression of TNF-α, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Z-590 also significantly reduced paw edema, serum level of TNF-α, IL-6 and spleen index in the adjuvant-induced arthritis (AIA) rat model. Furthermore, Z-590 markedly ameliorated joint inflammation and articular cartilage damage in AIA rat model. CONCLUSION MIF inhibitor Z-590 possesses potent anti-arthritic activity through suppression of macrophage activation, and could be a potential therapeutic treatment for RA.
Collapse
Affiliation(s)
- Zhiyu Zhang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Rong Zhang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Linlang Li
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Lijun Zhu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Shiyuan Gao
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Qiran Lu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Yihui Gu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Yu Zhang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Huicui Yang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Tingjun Hou
- b College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Xuechu Zhen
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Long Tai Zheng
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| |
Collapse
|
28
|
Livshits G, Kalinkovich A. Hierarchical, imbalanced pro-inflammatory cytokine networks govern the pathogenesis of chronic arthropathies. Osteoarthritis Cartilage 2018; 26:7-17. [PMID: 29074297 DOI: 10.1016/j.joca.2017.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic inflammatory arthropathies, such as rheumatoid arthritis (RA), spondyloarthritis, including psoriatic arthritis (PsA), ankylosing spondyloarthritis (AS), osteoarthritis (OA), and intervertebral disc degenerative disease (DDD) constitute major public health problems that are anticipated to grow significantly as the human population ages. However, many aspects concerning the molecular mechanisms underlying their onset and progression remain unclear. DESIGN This narrative review critically analyzes the molecular mechanisms underlying the inflammation-associated pathogenesis of the aforementioned joint diseases. This includes, in particular, the major role played by several key soluble factors (such as cytokines and the associated signaling pathways, designated as "fragile nodes") produced by local cells and recruited to the joints' immune cells, whose elimination by specific drugs has dramatically improved the diseases' symptomatology and outcome in human clinical trials or in rodent arthritis models. HYPOTHESIS AND THE AIM OF THIS REVIEW We hypothesize that the pathogenesis of chronic inflammatory arthropathies is governed by hierarchical, imbalanced pro-inflammatory cytokine networks (HIPICNs) (comprising a combination of fragile nodes) that are created during the development of both autoimmune (RA, PsA, and AS) and non-autoimmune (OA and DDD) disorders. The main aim of this review is to provide evidence that despite substantial pathobiological differences between these arthropathies, the HIPICNs created are quite common, thus justifying the merging of these disorders mechanistically and suggesting that these common mechanisms exist in the onset and progression of different joint diseases.
Collapse
Affiliation(s)
- G Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - A Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
The Role of High-Mobility Group Box-1 and Its Crosstalk with Microbiome in Rheumatoid Arthritis. Mediators Inflamm 2017; 2017:5230374. [PMID: 29200665 PMCID: PMC5672636 DOI: 10.1155/2017/5230374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/16/2017] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, definitely disabling, and potentially severe autoimmune disease. Although an increasing number of patients are affected, a key treatment for all patients has not been discovered. High-mobility group box-1 (HMGB1) is a nuclear protein passively and actively released by almost all cell types after several stimuli. HMGB1 is involved in RA pathogenesis, but a convincing explanation about its role and possible modulation in RA is still lacking. Microbiome and its homeostasis are altered in patients with RA, and the microbiota restoration has been proposed to patients with RA. The purpose of the present review is to analyze the available evidences regarding HMGB1 and microbiome roles in RA and the possible implications of the crosstalk between the nuclear protein and microbiome in understanding and possibly treating patients affected by this harmful condition.
Collapse
|
30
|
Nagashima H, Shinoda M, Honda K, Kamio N, Watanabe M, Suzuki T, Sugano N, Sato S, Iwata K. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice. Mol Pain 2017; 13:1744806916689269. [PMID: 28326928 PMCID: PMC5302178 DOI: 10.1177/1744806916689269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Periodontitis is an inflammatory disease accompanied by alveolar bone loss and progressive inflammation without pain. However, the potential contributors eliminating pain associated with gingival inflammation are unknown. Results we examined the involvement of CXC chemokine receptor type 4 (CXCR4) on the mechanical sensitivity of inflamed periodontal tissue, using a mouse model of periodontitis established by the ligation of the tooth cervix of a maxillary second molar and inoculation with Porphyromonas gingivalis (P. gingivalis). Infiltration of inflammatory cells into gingival tissue was not observed following the inoculation. Under light anesthesia, the mechanical head withdrawal threshold (MHWT) on the buccal gingiva was measured using an electronic von Frey anesthesiometer. No significant changes in MHWT were observed in the mice with P. gingivalis-induced periodontitis during the experimental period. Continuous administration of CXCR4 neutralizing antibody to the gingival tissue significantly decreased MHWT and increased the number of gingival CXCR4 immunoreactive macrophages in the periodontitis group. Nitric oxide metabolites in the gingival tissue were significantly increased after the inoculation of P. gingivalis and were reduced by gingival CXCR4 neutralization. Gingival L-arginine administration induced gingival mechanical allodynia in naive animals. Moreover, the decrease in MHWT after treatment with P. gingivalis and CXCR4 neutralization was partially reversed by nitric oxide synthase inhibition in the gingival tissue. Nuclear factor-kappa B was expressed in infiltrating macrophages after inoculation of P. gingivalis and administration of the nuclear factor-kappa B activator betulinic acid induced gingival mechanical allodynia in naive mice. Conclusions These findings suggest that CXCR4 signaling inhibits nitric oxide release from infiltrating macrophages and is involved in modulation of the mechanical sensitivity in the periodontal tissue in P. gingivalis-induced periodontitis.
Collapse
Affiliation(s)
- Hidekazu Nagashima
- 1 Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- 2 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kuniya Honda
- 2 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Noriaki Kamio
- 3 Department of Microbiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Masahiro Watanabe
- 1 Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Tatsuro Suzuki
- 1 Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Naoyuki Sugano
- 4 Department of Periodontology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Shuichi Sato
- 4 Department of Periodontology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- 2 Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
31
|
Chen YH, Cheng ZY, Shao LH, Shentu HS, Fu B. Macrophage migration inhibitory factor as a serum prognostic marker in patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2017; 473:60-64. [DOI: 10.1016/j.cca.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023]
|
32
|
Lan H, Wang N, Chen Y, Wang X, Gong Y, Qi X, Luo Y, Yao F. Macrophage migration inhibitory factor (MIF) promotes rat airway muscle cell proliferation and migration mediated by ERK1/2 and FAK signaling. Cell Biol Int 2017; 42:75-83. [PMID: 28851074 DOI: 10.1002/cbin.10863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/26/2017] [Indexed: 11/08/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory mediator that contributes to asthmatic airway remodeling; however, little is known regarding the effects of MIF on airway smooth muscle cells (ASMCs). In the present study, we found that an enhanced expression of MIF promoted ASMC proliferation, increased the population of cells in the S/G2 phase, downregulated P21 expression, and upregulated cyclin D1, cyclin D3, and Cdk6 expression. In addition, the apoptosis of ASMCs was significantly decreased in response to MIF overexpression, compared with the negative control. Moreover, MIF facilitated the migration of ASMCs by upregulating the expression of matrix metalloproteinase (MMP)-2. Finally, we showed that MIF increased the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 and focal adhesion kinase (FAK), which are associated with proliferation and migration. In conclusion, this study demonstrated that MIF overexpression promotes the proliferation and migration of ASMCs by upregulating the activity of the ERK1/2 and FAK signaling pathways in these cells, further indicating that inhibition of MIF may prove to be an effective strategy for treating asthma patients with airway remodeling.
Collapse
Affiliation(s)
- Haibing Lan
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nan Wang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue, Guangzhou 510515, China.,Department of Laboratory Medicine, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Yu Chen
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojing Wang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue, Guangzhou 510515, China
| | - Yuanqi Gong
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiefei Qi
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaling Luo
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Yao
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue, Guangzhou 510515, China
| |
Collapse
|
33
|
Urinary Macrophage Migration Inhibitory Factor as a Noninvasive Biomarker in Pediatric Henoch-Schönlein Purpura Nephritis. J Clin Rheumatol 2017; 23:258-261. [DOI: 10.1097/rhu.0000000000000570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Lin Q, Cai JY, Lu C, Sun J, Ba HJ, Chen MH, Chen XD, Dai JX, Lin JH. Macrophage migration inhibitory factor levels in serum from patients with acute intracerebral hemorrhage: Potential contribution to prognosis. Clin Chim Acta 2017; 472:58-63. [PMID: 28729134 DOI: 10.1016/j.cca.2017.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/24/2017] [Accepted: 07/16/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) pathophysiology involves inflammation. Macrophage migration inhibition factor (MIF), a pro-inflammatory cytokine, is related to prognosis of ischemic stroke. The aim of this study was to investigate whether serum MIF levels are associated with severity and outcomes in patients with acute ICH. METHODS We enrolled a total of 120 consecutive ICH patients and 120 healthy controls and sampled blood on admission and at study entry respectively. Enzyme-linked immunosorbent assay was used to quantify serum MIF levels. RESULTS Serum MIF levels were higher in patients compared with controls and correlated with hematoma volume, National Institutes of Health Stroke Scale (NIHSS) scores and plasma C-reactive protein levels. After adjusting for other significant outcome predictors, MIF in serum was an independent predictor of 6-month overall survival and unfavorable outcome (modified Rankin Scale score >2). Areas under receiver-operating characteristic curve (ROC) of serum MIF levels, hematoma volume and NIHSS scores were similar for 6-month unfavorable outcome. Moreover, serum MIF levels significantly improved areas under ROC of hematoma volume and NIHSS scores. CONCLUSIONS MIF in serum might be a potential biomarker for reflecting inflammation, severity and prognosis of ICH patients.
Collapse
Affiliation(s)
- Qun Lin
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jian-Yong Cai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Chuan Lu
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jun Sun
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Hua-Jun Ba
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Mao-Hua Chen
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Xian-Dong Chen
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jun-Xia Dai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jian-Hu Lin
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China.
| |
Collapse
|
35
|
Kim KW, Kim BM, Lee KA, Lee SH, Firestein GS, Kim HR. Histamine and Histamine H4 Receptor Promotes Osteoclastogenesis in Rheumatoid Arthritis. Sci Rep 2017; 7:1197. [PMID: 28446753 PMCID: PMC5430934 DOI: 10.1038/s41598-017-01101-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/22/2017] [Indexed: 01/08/2023] Open
Abstract
Histamine H4 receptor (H4R) has immune-modulatory and chemotaxic effects in various immune cells. This study aimed to determine the osteoclastogenic role of H4R in rheumatoid arthritis (RA). The concentration of histamine in synovial fluid (SF) and sera in patients with RA was measured using ELISA. After RA SF and peripheral blood (PB) CD14+ monocytes were treated with histamine, IL-17, IL-21 and IL-22, and a H4R antagonist (JNJ7777120), the gene expression H4R and RANKL was determined by real-time PCR. Osteoclastogenesis was assessed by counting TRAP–positive multinucleated cells in PB CD14+ monocytes cultured with histamine, Th17 cytokines and JNJ7777120. SF and serum concentration of histamine was higher in RA, compared with osteoarthritis and healthy controls. The expression of H4R was increased in PB monocytes in RA patients. Histamine, IL-6, IL-17, IL-21 and IL-22 induced the expression of H4R in monocytes. Histamine, IL-17, and IL-22 stimulated RANKL expression in RA monocytes and JNJ7777120 reduced the RANKL expression. Histamine and Th17 cytokines induced the osteoclast differentiation from monocytes and JNJ7777120 decreased the osteoclastogenesis. H4R mediates RANKL expression and osteoclast differentiation induced by histamine and Th17 cytokines. The blockage of H4R could be a new therapeutic modality for prevention of bone destruction in RA.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Ann Lee
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, California, United States of America
| | - Hae-Rim Kim
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Yang DB, Yu WH, Dong XQ, Zhang ZY, Du Q, Zhu Q, Che ZH, Wang H, Shen YF, Jiang L. Serum macrophage migration inhibitory factor concentrations correlate with prognosis of traumatic brain injury. Clin Chim Acta 2017; 469:99-104. [PMID: 28366792 DOI: 10.1016/j.cca.2017.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/05/2017] [Accepted: 03/29/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a well-known pro-inflammatory cytokine. Serum MIF concentrations are associated with the severity and prognosis of ischemic stroke. METHODS In this prospective, observational study, white blood cell (WBC) count and serum concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and MIF among 108 severe traumatic brain injury (TBI) patients and 108 controls were measured. We determined whether serum MIF concentrations are associated with inflammation, severity, in-hospital major adverse events (IMAEs) (i.e., in-hospital mortality, acute lung injury, acute traumatic coagulopathy, progressive hemorrhagic injury and posttraumatic cerebral infarction) and long-term clinical outcome (i.e., 6-month functional outcome) after TBI. RESULTS As compared to the controls, serum CRP, IL-6, TNF-α and MIF concentrations were significantly increased. MIF concentrations correlated with WBC count, CRP, IL-6 and TNF-α concentrations and Glasgow coma scale (GCS) scores. MIF in serum was independently associated with IMAEs and long-term clinical outcome. Area under receiver operating characteristic curve of MIF concentrations was similar to GCS scores'. Moreover, MIF concentrations markedly improved the predictive value of GCS scores for 6-month unfavorable outcome. CONCLUSION Increased serum MIF concentrations have close relation to inflammation, trauma severity and clinical outcomes, substantializing MIF as a good prognostic biomarker after TBI.
Collapse
Affiliation(s)
- Ding-Bo Yang
- Department of Neurosurgery, The Tumor Hospital of Hangzhou City, 34 Yanguan Lane, Hangzhou 310002, China
| | - Wen-Hua Yu
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Xiao-Qiao Dong
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China.
| | - Zu-Yong Zhang
- Department of Neurosurgery, The Hangzhou Hospital of Traditional Chinese Medicine, 453 Tiyuchang Road, Hangzhou 310007, China
| | - Quan Du
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Qiang Zhu
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Zhi-Hao Che
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Hao Wang
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Yong-Feng Shen
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Li Jiang
- Department of Neurosurgery, The Hangzhou First People's Hospital, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| |
Collapse
|
37
|
Sánchez-Zamora YI, Juarez-Avelar I, Vazquez-Mendoza A, Hiriart M, Rodriguez-Sosa M. Altered Macrophage and Dendritic Cell Response in Mif-/- Mice Reveals a Role of Mif for Inflammatory-Th1 Response in Type 1 Diabetes. J Diabetes Res 2016; 2016:7053963. [PMID: 27699180 PMCID: PMC5028830 DOI: 10.1155/2016/7053963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022] Open
Abstract
Macrophage migration inhibitory factor (Mif) is highly expressed in type 1 diabetes mellitus (T1DM). However, there is limited information about how Mif influences the activation of macrophages (Mφ) and dendritic cells (DC) in T1DM. To address this issue, we induced T1DM by administering multiple low doses of streptozotocin (STZ) to Mif-/- or wild-type (Wt) BALB/c mice. We found that Mif-/- mice treated with STZ (Mif-/-STZ) developed lower levels of hyperglycemia, inflammatory cytokines, and specific pancreatic islet antigen- (PIAg-) IgG and displayed reduced cellular infiltration into the pancreatic islets compared to Wt mice treated with STZ (WtSTZ). Moreover, Mφ and DC from Mif-/-STZ displayed lower expression of MHC-II, costimulatory molecules CD80, CD86, and CD40, Toll-like receptor- (TLR-) 2, and TLR-4 than WtSTZ. These changes were associated with a reduced capacity of Mφ and DC from Mif-/-STZ to induce proliferation in ovalbumin-specific T cells. All the deficiencies observed in Mif-/-STZ were recovered by exogenous administration of recombinant Mif. These findings suggest that Mif plays a role in the molecular mechanisms of Mφ and DC activation and drives T cell responses involved in the pathology of T1DM. Therefore, Mif is a potential therapeutic target to reduce the pathology of T1DM.
Collapse
Affiliation(s)
- Yuriko Itzel Sánchez-Zamora
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| | - Imelda Juarez-Avelar
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| | | | - Marcia Hiriart
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, 04510 Coyoacán, MEX, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
- *Miriam Rodriguez-Sosa:
| |
Collapse
|