1
|
Kandhol N, Singh VP, Pandey S, Sharma S, Zhao L, Corpas FJ, Chen ZH, White JC, Tripathi DK. Nanoscale materials and NO-ROS homeostasis in plants: trilateral dynamics. TRENDS IN PLANT SCIENCE 2024; 29:1310-1318. [PMID: 39379242 DOI: 10.1016/j.tplants.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 10/10/2024]
Abstract
Nanoparticles (NPs) have garnered increasing attention for their applications in agriculture and plant science, particularly for their interactions with reactive oxygen species (ROS) and nitric oxide (•NO). NPs, owing to their novel physicochemical properties, can be used to uniquely modulate ROS levels, enabling great control over redox homeostasis and signaling cascades. In addition, NPs may act as carriers for •NO donors, thus facilitating controlled and synchronized release and targeted delivery of •NO within plant systems. This opinion article provides insights into the current state of knowledge regarding NP interactions with ROS and •NO homeostasis in plants, highlighting key findings and knowledge gaps, as well as outlining future research directions in this rapidly expanding and potentially transformative field of research.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, Chaudhary Mahadeo Prasad (CMP) Degree College, A Constituent Post-Graduate College of the University of Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food, and Agriculture, Department of Stress, Development, and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India.
| |
Collapse
|
2
|
Tortella Fuentes G, Fincheira P, Rubilar O, Leiva S, Fernandez I, Schoebitz M, Pelegrino MT, Paganotti A, dos Reis RA, Seabra AB. Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities. Antibiotics (Basel) 2024; 13:1047. [PMID: 39596741 PMCID: PMC11591520 DOI: 10.3390/antibiotics13111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Nitric oxide (NO) is an antimicrobial and anti-biofilm agent with significant potential for combating biofilm-associated infections and antibiotic resistance. However, owing to its high reactivity due to the possession of a free radical and short half-life (1-5 s), the practical application of NO in clinical settings is challenging. Objectives: This review explores the development of NO-releasing nanoparticles that provide a controlled, targeted delivery system for NO, enhancing its antimicrobial efficacy while minimizing toxicity. The review discusses various NO donors, nanoparticle platforms, and how NO disrupts biofilm formation and eradicates pathogens. Additionally, we examine the highly encouraging and inspiring results of NO-releasing nanoparticles against multidrug-resistant strains and their applications in medical and environmental contexts. This review highlights the promising role of NO-based nanotechnologies in overcoming the challenges posed by increasing antibiotic resistance and biofilm-associated infections. Conclusions: Although NO donors and nanoparticle delivery systems show great potential for antimicrobial and anti-biofilm uses, addressing challenges related to controlled release, toxicity, biofilm penetration, resistance, and clinical application is crucial.
Collapse
Affiliation(s)
- Gonzalo Tortella Fuentes
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sebastian Leiva
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
| | - Ivette Fernandez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
- Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
| | | | - André Paganotti
- Departamento de Farmácia, Universidade Federal de São Paulo, Diadema 09972-270, SP, Brazil
| | - Roberta Albino dos Reis
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| | - Amedea B. Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| |
Collapse
|
3
|
Sharma G, Sharma N, Ohri P. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress. Nitric Oxide 2024; 144:1-10. [PMID: 38185242 DOI: 10.1016/j.niox.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
In the face of escalating salinity stress challenges in agricultural systems, this review article delves into the harmonious partnership between hydrogen sulfide (H2S) and nitric oxide (NO) as they collectively act as formidable defenders of plants. Once considered as harmful pollutants, H2S and NO have emerged as pivotal gaseous signal molecules that profoundly influence various facets of plant life. Their roles span from enhancing seed germination to promoting overall growth and development. Moreover, these molecules play a crucial role in bolstering stress tolerance mechanisms and maintaining essential plant homeostasis. This review navigates through the intricate signaling pathways associated with H2S and NO, elucidating their synergistic effects in combating salinity stress. We explore their potential to enhance crop productivity, thereby ensuring food security in saline-affected regions. In an era marked by pressing environmental challenges, the manipulation of H2S and NO presents promising avenues for sustainable agriculture, offering a beacon of hope for the future of global food production.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Chen ZJ, Huang J, Li S, Shao JF, Shen RF, Zhu XF. Salylic acid minimize cadmium accumulation in rice through regulating the fixation capacity of the cell wall to cadmium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111839. [PMID: 37643701 DOI: 10.1016/j.plantsci.2023.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Although salylic acid (SA) has been linked to how plants react to cadmium (Cd) stress, the exact mechanism is still unknown. The endogenous SA concentration in the rice (Oryza sativa L.) roots was enhanced by Cd stress in the current investigation, and exogenous SA reduced the hemicellulose content in root cell wall, which in turn inhibited its Cd binding capacity. What's more, exogenous SA also decreased the transcription level of genes such as Natural Resistance-Associated Macrophage Protein 5 (OsNRAMP5) and a major facilitator superfamily gene-OsCd1 that responsible for root Cd absorption. Finally, less Cd was accumulated in the rice as a result of the higher expression of Heavy Metal ATPase 3 (OsHMA3), Cation/Ca exchanger 2 (OsCCX2) and Pleiotropic Drug Resistance 9 (OsPDR9/OsABCG36) that were responsible for separating Cd into vacuole and getting Cd out of cells, respectively. In contrast, mutant with low SA level accumulated more Cd. Additionally, SA enhanced endogenous nitric oxide (NO) levels, and its alleviatory effects were mimicked by a NO donor, sodium nitroprusside (SNP). In conclusion, SA enhanced rice's Cd resistance through regulating the binding capacity of the cell wall to Cd, a pathway that might dependent on the NO accumulation.
Collapse
Affiliation(s)
- Zhi Jian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Feng Shao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Ul Haq A, Lateef Lone M, Farooq S, Parveen S, Altaf F, Tahir I, Ingo Hefft D, Ahmad A, Ahmad P. Nitric oxide effectively orchestrates postharvest flower senescence: a case study of Consolida ajacis. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:97-107. [PMID: 34794546 DOI: 10.1071/fp21241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide releasing compound sodium nitroprusside (SNP) is regarded as novel chemical to beat the daunting challenges of postharvest losses in cut flowers. In the recent years, it has yielded propitious results as postharvest vase preservative for cut flowers. Our study explicates the efficacy of SNP in mitigating postharvest senescence in Consolida ajacis (L.) Schur cut spikes. The freshly excised C. ajacis spikes were subjected to different SNP treatments viz , 20μM, 40μM, 60μM and 80μM. The control spikes were held in distilled water. The spikes held in test solutions showed a marked improvement in vase life and flower quality. Our results indicate a profound surge in sugars, phenols and soluble proteins in SNP-treated spikes over control. Moreover, the SNP treatments improved membrane stability as signposted by decreased lipoxygenase activity (LOX). The SNP treatments also upregulated different antioxidant enzymes viz , ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD). The current study recommends 40μM SNP as optimum concentration for preserving floral quality and extending display period of C. ajacis spikes. Together, these findings reveal that SNP at proper dosage can efficiently alleviate deteriorative postharvest changes by modulating physiological and biochemical mechanisms underlying senescence.
Collapse
Affiliation(s)
- Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Daniel Ingo Hefft
- University Centre Reaseheath, Food and Agricultural Sciences, Reaseheath College, Nantwich CW5 6DF, UK
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; and Department of Botany, GDC Pulwama, Pulwama, Jammu and Kashmir, India
| |
Collapse
|
6
|
Emamverdian A, Ding Y, Barker J, Liu G, Li Y, Mokhberdoran F. Sodium Nitroprusside Improves Bamboo Resistance under Mn and Cr Toxicity with Stimulation of Antioxidants Activity, Relative Water Content, and Metal Translocation and Accumulation. Int J Mol Sci 2023; 24:1942. [PMID: 36768266 PMCID: PMC9916771 DOI: 10.3390/ijms24031942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant's tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Farzad Mokhberdoran
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Role of Sodium Nitroprusside on Potential Mitigation of Salt Stress in Centaury ( Centaurium erythraea Rafn) Shoots Grown In Vitro. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010154. [PMID: 36676103 PMCID: PMC9866427 DOI: 10.3390/life13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Soil salinity is one of the most common abiotic stressors that affects plant growth and development. The aim of this work was to investigate the influence of sodium nitroprusside (SNP), a donor of nitric oxide (NO), on the physiological response of common centaury (Centaurium erythraea) shoots grown under stress conditions caused by sodium chloride (NaCl) in vitro. Centaury shoots were first grown on nutrient medium containing different SNP concentrations (50, 100 and 250 μM) during the pretreatment phase. After three weeks, the shoots were transferred to nutrient media supplemented with NaCl (150 mM) and/or SNP (50, 100 or 250 μM) for one week. The results showed that salinity decreased photosynthetic pigments, total phenolic content and DPPH (1,1-diphenyl-2-picrylhydrazyl radical) concentration. The activities of antioxidant enzymes, namely superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX), were also reduced under salt stress. However, MDA concentration was decreased, while H2O2 and proline content did not drastically change under the stress conditions caused by NaCl. Exogenous application of SNP altered the biochemical parameters of centaury shoots grown under salt stress. In this case, increased photosynthetic pigment content, total phenolics and proline content were noted, with reduced MDA, but not H2O2, concentration was observed. In addition, the exogenous application of SNP increased the degree of DPPH reduction as well as SOD, CAT and POX activities.
Collapse
|
8
|
Piršelová B, Galuščáková Ľ, Lengyelová L, Kubová V, Jandová V, Hegrová J. Assessment of the Hormetic Effect of Arsenic on Growth and Physiology of Two Cultivars of Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:3433. [PMID: 36559544 PMCID: PMC9781677 DOI: 10.3390/plants11243433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Although growth stimulation at low arsenic doses was observed in several plants, few studies have focused on this phenomenon in more detail. The effects of different concentrations of arsenic (0-50 mg kg-1 of soil: As0-As50) on the growth and selected physiological parameters of two maize cultivars (Zea mays L. cvs. Chapalu and MvNK 333) were tested. Cultivar MvNK 333 manifested a generally higher tolerance to As than cv. Chapalu, which may be related to the lower content of As in the tissues. The highest stimulatory effect of As was recorded at doses of As1 and As2 (cv. Chapalu), and at the As5 dose (MvNK 333), there was an increase in shoot elongation, biomass, and relative water content (RWC), as well as the content of photosynthetic pigments. The stimulatory effect of lower doses of As apparently represents an adaptation mechanism that is associated with water content regulation in the given conditions. The stomata of the studied cultivars were involved in this regulation in different ways. While cv. Chapalu exhibited increased numbers of stomata on both sides of leaves, cv. MvNK 333 instead responded to the given conditions with decreased stomata size. Although hormetic manifestations closely related to changes in stomatal number and size were observed, a typical stomatal hormetic response was not observed in the given range of As doses.
Collapse
Affiliation(s)
- Beáta Piršelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Ľudmila Galuščáková
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Libuša Lengyelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Veronika Kubová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Vilma Jandová
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| |
Collapse
|
9
|
Tyagi A, Sharma S, Ali S, Gaikwad K. Crosstalk between H 2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:576-586. [PMID: 34693601 DOI: 10.1111/plb.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
In legumes, waterlogging is a major detrimental factor leading to huge yield losses. Generally, legumes lack tolerance to submergence, and conventional breeding to develop tolerant varieties are limited due to the lack of tolerant germplasm and potential target genes. Moreover, our understanding of the various signalling cascades, their interactions and key pathways induced during waterlogging is limited. Here, we focus on the role of two important plant signalling molecules, viz. hydrogen sulphide (H2 S) and nitric oxide (NO), during waterlogging stress in legumes. Plants and soil microbes produce these signalling molecules both endogenously and exogenously under various stresses, including waterlogging. NO and H2 S are known to regulate key physiological pathways, such as stomatal closure, leaf senescence and regulation of numerous stress signalling pathways, while NO plays a pivotal role in adventitious root formation during waterlogging. The crosstalk between H2 S and NO is synergistic because of the resemblance of their physiological effects and proteomic functions, which mainly operate through cysteine-dependent post-translational modifications via S-nitrosation and persulfidation. Such knowledge has provided novel platforms for researchers to unravel the complexity associated with H2 S-NO signalling and interactions with plant stress hormones. This review provides an overall summary on H2 S and NO, including biosynthesis, biological importance, crosstalk, transporter regulation as well as understanding their role during waterlogging using 'multi-omics' approach. Understanding H2 S and NO signalling will help in deciphering the metabolic interactions and identifying key regulatory genes that could be used for developing waterlogging tolerance in legumes.
Collapse
Affiliation(s)
- A Tyagi
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - S Sharma
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - S Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, Republic of Korea
| | - K Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
10
|
Seabra AB, Silveira NM, Ribeiro RV, Pieretti JC, Barroso JB, Corpas FJ, Palma JM, Hancock JT, Petřivalský M, Gupta KJ, Wendehenne D, Loake GJ, Durner J, Lindermayr C, Molnár Á, Kolbert Z, Oliveira HC. Nitric oxide-releasing nanomaterials: from basic research to potential biotechnological applications in agriculture. THE NEW PHYTOLOGIST 2022; 234:1119-1125. [PMID: 35266146 DOI: 10.1111/nph.18073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels and to activate NO-related responses, but this strategy is often hindered by the relative instability of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to plants, as NO-releasing nanomaterials (e.g. S-nitrosothiol-containing chitosan nanoparticles) have many beneficial physicochemical and biochemical properties compared to non-encapsulated NO donors. Nano NO donors are effective in increasing tissue NO levels and enhancing NO effects both in animal and human systems. The authors believe, and would like to emphasize, that new trends and technologies are essential for advancing plant NO research and nanotechnology may represent a breakthrough in traditional agriculture and environmental science. Herein, we aim to draw the attention of the scientific community to the potential of NO-releasing nanomaterials in both basic and applied plant research as alternatives to conventional NO donors, providing a brief overview of the current knowledge and identifying future research directions. We also express our opinion about the challenges for the application of nano NO donors, such as the environmental footprint and stakeholder's acceptance of these materials.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, SP, 09210-580, Brazil
| | - Neidiquele M Silveira
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, 13075-630, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Joana C Pieretti
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, SP, 09210-580, Brazil
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Department of Experimental Biology, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, 23071, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada, 18008, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada, 18008, Spain
| | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Marek Petřivalský
- Faculty of Science, Department of Biochemistry, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Kapuganti J Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - David Wendehenne
- Agroécologie, CNRS, INRA, Institut Agro Dijon, Univ. Bourgogne Franche-Comté, Dijon, 21000, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Jorg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Szeged, 6726, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Szeged, 6726, Hungary
| | - Halley C Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), Londrina, PR, 86057-970, Brazil
| |
Collapse
|
11
|
Yang H, Yu H, Wu Y, Huang H, Zhang X, Ye D, Wang Y, Zheng Z, Li T. Nitric oxide amplifies cadmium binding in root cell wall of a high cadmium-accumulating rice (Oryza sativa L.) line by promoting hemicellulose synthesis and pectin demethylesterification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113404. [PMID: 35278988 DOI: 10.1016/j.ecoenv.2022.113404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is tightly associated with plant response against cadmium (Cd) stress in rice since NO impacts Cd accumulation via modulating cell wall components. In the present study, we investigated that whether and how NO regulates Cd accumulation in root in two rice lines with different Cd accumulation ability. The variation of polysaccharides in root cell wall (RCW) of a high Cd-accumulating rice line Lu527-8 and a normal rice line Lu527-4 in response to Cd stress when exogenous NO supplied by sodium nitroprusside (SNP, a NO donor) was studied. Appreciable amounts of Cd distributed in RCW, in which most Cd ions were bound to pectin for the two rice lines when exposed to Cd. Exogenous NO upregulated the expression of OsPME11 and OsPME12 that were involved in pectin demethylesterification, resulting in more low methyl-esterified pectin and therefore stronger pectin-Cd binding. Exogenous NO also enhanced the concentration of hemicellulose and the amount of Cd ions in it. These results demonstrate that NO-induced more Cd binding in RCW in the two rice lines through promoting pectin demethylesterification and increasing hemicellulose accumulation. Higher OsPMEs expression and more hemicellulose synthesis contributed to more Cd immobilization in RCW of the high Cd-accumulating rice line Lu527-8. The main findings of this study reveal the regulation of NO on cell wall polysaccharides modification under Cd stress and help to elucidate the physiological and molecular mechanism of NO participating in Cd responses of rice.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
12
|
Goyal V, Jhanghel D, Mehrotra S. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. PHYSIOLOGIA PLANTARUM 2021; 171:896-908. [PMID: 33665834 DOI: 10.1111/ppl.13380] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The agriculture sector is vulnerable to various environmental stresses, which significantly affect plant growth, performance, and development. Abiotic stresses, such as salinity and drought, cause severe losses in crop productivity worldwide. Soil salinity is a major stress suppressing plant development through osmotic stress accompanied by ion toxicity, nutritional imbalance, and oxidative stress. Various defense mechanisms like osmolytes accumulations, activation of stress-induced genes, and transcription factors, production of plant growth hormones, accumulation of antioxidants, and redox defense system in plants are responsible for combating salt stress. Nitric oxide (NO) and hydrogen sulphide (H2 S) have emerged as novel bioactive gaseous signaling molecules that positively impact seed germination, homeostasis, plant metabolism, growth, and development, and are involved in several plant acclimation responses to impart stress tolerance in plants. NO and H2 S trigger cell signaling by activating a cascade of biochemical events that result in plant tolerance to environmental stresses. NO- and H2 S-mediated signaling networks, interactions, and crosstalks facilitate stress tolerance in plants. Research on the roles and mechanisms of NO and H2 S as challengers of salinity is entering an exponential exploration era. The present review focuses on the current knowledge of the mechanisms of stress tolerance in plants and the role of NO and H2 S in adaptive plant responses to salt stress and provides an overview of the signaling mechanisms and interplay of NO and H2 S in the regulation of growth and development as well as modulation of defense responses in plants and their long term priming effects for imparting salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinod Goyal
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Dharmendra Jhanghel
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shweta Mehrotra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure. PLANTS 2021; 10:plants10040623. [PMID: 33805922 PMCID: PMC8064369 DOI: 10.3390/plants10040623] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Combating environmental stress related to the presence of toxic elements is one of the most important challenges in plant production. The majority of plant species suffer from developmental abnormalities caused by an exposure to toxic concentrations of metals and metalloids, mainly Al, As, Cd, Cu, Hg, Ni, Pb, and Zn. However, defense mechanisms are activated with diverse intensity and efficiency. Enhancement of defense potential can be achieved though exogenously applied treatments, resulting in a higher capability of surviving and developing under stress and become, at least temporarily, tolerant to stress factors. In this review, I present several already recognized as well as novel methods of the priming process called priming, resulting in the so-called “primed state” of the plant organism. Primed plants have a higher capability of surviving and developing under stress, and become, at least temporarily, tolerant to stress factors. In this review, several already recognized as well as novel methods of priming plants towards tolerance to metallic stress are discussed, with attention paid to similarities in priming mechanisms activated by the most versatile priming agents. This knowledge could contribute to the development of priming mixtures to counteract negative effects of multi-metallic and multi-abiotic stresses. Presentation of mechanisms is complemented with information on the genes regulated by priming towards metallic stress tolerance. Novel compounds and techniques that can be exploited in priming experiments are also summarized.
Collapse
|
14
|
Tortella GR, Rubilar O, Diez MC, Padrão J, Zille A, Pieretti JC, Seabra AB. Advanced Material Against Human (Including Covid-19) and Plant Viruses: Nanoparticles As a Feasible Strategy. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000049. [PMID: 33614127 PMCID: PMC7883180 DOI: 10.1002/gch2.202000049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 virus outbreak revealed that these nano-pathogens have the ability to rapidly change lives. Undoubtedly, SARS-CoV-2 as well as other viruses can cause important global impacts, affecting public health, as well as, socioeconomic development. But viruses are not only a public health concern, they are also a problem in agriculture. The current treatments are often ineffective, are prone to develop resistance, or cause considerable adverse side effects. The use of nanotechnology has played an important role to combat viral diseases. In this review three main aspects are in focus: first, the potential use of nanoparticles as carriers for drug delivery. Second, its use for treatments of some human viral diseases, and third, its application as antivirals in plants. With these three themes, the aim is to give to readers an overview of the progress in this promising area of biotechnology during the 2017-2020 period, and to provide a glance at how tangible is the effectiveness of nanotechnology against viruses. Future prospects are also discussed. It is hoped that this review can be a contribution to general knowledge for both specialized and non-specialized readers, allowing a better knowledge of this interesting topic.
Collapse
Affiliation(s)
- Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Joana C. Pieretti
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| | - Amedea B. Seabra
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| |
Collapse
|
15
|
Napieraj N, Reda MG, Janicka MG. The role of NO in plant response to salt stress: interactions with polyamines. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:865-879. [PMID: 32522331 DOI: 10.1071/fp19047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity is a major abiotic stress that limits plant growth and productivity. High concentrations of sodium chloride can cause osmotic and ionic effects. This stress minimises a plant's ability to uptake water and minerals, and increases Na+ accumulation in the cytosol, thereby disturbing metabolic processes. Prolonged plant exposure to salt stress can lead to oxidative stress and increased production of reactive oxygen species (ROS). Higher plants developed some strategies to cope with salt stress. Among these, mechanisms involving nitric oxide (NO) and polyamines (PAs) are particularly important. NO is a key signalling molecule that mediates a variety of physiological functions and defence responses against abiotic stresses in plants. Under salinity conditions, NO donors increase growth parameters, reduce Na+ toxicity, maintain ionic homeostasis, stimulate osmolyte accumulation and prevent damages caused by ROS. NO enhances salt tolerance of plants via post-translational protein modifications through S-nitrosylation of thiol groups, nitration of tyrosine residues and modulation of multiple gene expression. Several reviews have reported on the role of polyamines in modulating salt stress plant response and the capacity to enhance PA synthesis upon salt stress exposure, and it is known that NO and PAs interact under salinity. In this review, we focus on the role of NO in plant response to salt stress, paying particular attention to the interaction between NO and PAs.
Collapse
Affiliation(s)
- Natalia Napieraj
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ma Gorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ma Gorzata Janicka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; and Corresponding author.
| |
Collapse
|
16
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
17
|
Pelegrino MT, Kohatsu MY, Seabra AB, Monteiro LR, Gomes DG, Oliveira HC, Rolim WR, de Jesus TA, Batista BL, Lange CN. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:232. [PMID: 32166379 DOI: 10.1007/s10661-020-8188-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/24/2020] [Indexed: 05/04/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have been extensively explored for use in agriculture. Previous studies have indicated that application of CuO NPs might be promising for development and conservation of plants, pest control, and for the recovery of degraded soils. However, depending on the applied concentration copper can cause phytotoxic effects. In this work, biosynthesized CuO NPs (using green tea extract) were evaluated on their effects on lettuce (Lactuca sativa L.) seedling growth, which were exposed at concentrations ranged between 0.2 and 300 μg mL-1. From the biosynthesized were obtained ultra-small CuO NPs (~ 6.6 nm), with high stability in aqueous suspension. Toxicity bioassays have shown that at low concentrations (up to 40 μg mL-1), CuO NPs did not affect or even enhanced the seed germination. At higher concentrations (higher than 40 μg mL-1), inhibition of seed germination and radicle growth ranging from 35 to 75% was observed. With the increase of CuO NPs concentrations, nitrite and S-nitrosothiols levels in radicles increased, whereas superoxide dismutase and total antioxidant activities decreased. The nitrite and S-nitrosothiols levels in lettuce radicles showed a direct dose response to CuO NP application, which may indicate nitric oxide-dependent signaling pathways in the plant responses. Therefore, the results demonstrated that at low concentrations (≤ 20 μg mL-1) of CuO NPs, beneficial effects are obtained from seedlings, enhancing plant growth, and the involvement of nitric oxide signaling in the phytotoxic effects induced by high concentration of this formulation. Graphical abstract.
Collapse
Affiliation(s)
| | - Marcio Yukihiro Kohatsu
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), Santo Andre, SP, Brazil
| | - Amedea Barozzi Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo Andre, SP, Brazil
| | - Lucilena Rebelo Monteiro
- Centro de Química e Meio Ambiente, Ipen/CNEN-SP - Instituto de Pesquisas Energeticas e Nucleares/Comissão Nacional de Energia Nuclear, Sao Paulo, SP, Brazil
| | - Diego Genuário Gomes
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Wallace Rosado Rolim
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo Andre, SP, Brazil
| | - Tatiane Araújo de Jesus
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), Santo Andre, SP, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo Andre, SP, Brazil
| | - Camila Neves Lange
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo Andre, SP, Brazil.
| |
Collapse
|
18
|
Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery. Sci Rep 2019; 9:17371. [PMID: 31758079 PMCID: PMC6874562 DOI: 10.1038/s41598-019-54030-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
Polymeric nanoparticles have emerged as carrier systems for molecules that release nitric oxide (NO), a free radical involved in plant stress responses. However, to date, nanoencapsulated NO donors have not been applied to plants under realistic field conditions. Here, we verified the effects of free and nanoencapsulated NO donor, S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), on growth, physiological and biochemical parameters of neotropical tree seedlings kept under full sunlight in the nursery for acclimation. S-nitroso-MSA incorporation into chitosan nanoparticles partially protected the NO donor from thermal and photochemical degradation. The application of nanoencapsulated S-nitroso-MSA in the substrate favoured the growth of seedlings of Heliocarpus popayanensis, a shade-intolerant tree. In contrast, free S-nitroso-MSA or nanoparticles containing non-nitrosated mercaptosuccinic acid reduced photosynthesis and seedling growth. Seedlings of Cariniana estrellensis, a shade-tolerant tree, did not have their photosynthesis and growth affected by any formulations, despite the increase of foliar S-nitrosothiol levels mainly induced by S-nitroso-MSA-loaded nanoparticles. These results suggest that depending on the tree species, nanoencapsulated NO donors can be used to improve seedling acclimation in the nursery.
Collapse
|
19
|
Rolly NK, Lee SU, Imran QM, Hussain A, Mun BG, Kim KM, Yun BW. Nitrosative stress-mediated inhibition of OsDHODH1 gene expression suggests roots growth reduction in rice ( Oryza sativa L.). 3 Biotech 2019; 9:273. [PMID: 31245237 PMCID: PMC6581995 DOI: 10.1007/s13205-019-1800-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
This study monitored the transcriptional response of OsDHODH1 under nitrosative stress conditions relative to the transcripts accumulations for the core mitochondrial cytochrome c oxidase1 (CcOX1) subunit, nuclear CcOX subunits 5b and 5c, two rice nitrate reductases (OsNIA1 and OsNIA2), and nitric oxide excess 1 (OsNOE1) genes. Our findings reveal that short-term exposure of rice seedlings to 1 mM SNP (Nitric oxide donor) applied exogenously for 1 h resulted in significant down-regulation of OsDHODH1 expression in all rice cultivars. In addition, the transcriptional patterns for the CcOX subunits, which are known to have a high affinity for nitric oxide, showed that the core catalytic subunit (OsCcOX1) and the nuclear subunit (OsCcOX5b) were up-regulated, while the nuclear subunit (OsCcOX5c) gene expression was suppressed. OsGSNOR1 expression was enhanced or decreased concomitant with a decrease or increase in SNO accumulation, particularly at the basal level. Moreover, high OsNIA1 expression was consistent with impaired root development, whereas low transcript accumulation matched a balanced root-growth pattern. This suggests that OsNIA1 expression would prevail over OsNIA2 expression under nitrosative stress response in rice. The level of malondialdehyde (MDA) content increased with the increase in SNP concentration, translating enhanced oxidative damage to the cell. We also observed increased catalase activity in response to 5 mM SNP suggesting that potential cross-talk exist between nitrosative and oxidative stress. These results collectively suggest a possible role of OsDHODH1 and OsCcOX5b role in plant root growth during nitrosative stress responses.
Collapse
Affiliation(s)
- Nkulu Kabange Rolly
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
20
|
Aroca A, Gotor C, Romero LC. Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation. FRONTIERS IN PLANT SCIENCE 2018; 9:1369. [PMID: 30283480 PMCID: PMC6157319 DOI: 10.3389/fpls.2018.01369] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Hydrogen sulfide (H2S) has been largely referred as a toxic gas and environmental hazard, but recent years, it has emerged as an important gas-signaling molecule with effects on multiple physiological processes in both animal and plant systems. The regulatory functions of H2S in plants are involved in important processes such as the modulation of defense responses, plant growth and development, and the regulation of senescence and maturation. The main signaling pathway involving sulfide has been proven to be through protein persulfidation (alternatively called S-sulfhydration), in which the thiol group of cysteine (-SH) in proteins is modified into a persulfide group (-SSH). This modification may cause functional changes in protein activities, structures, and subcellular localizations of the target proteins. New shotgun proteomic approaches and bioinformatic analyses have revealed that persulfidated cysteines regulate important biological processes, highlighting their importance in cell signaling, since about one in 20 proteins in Arabidopsis is persulfidated. During oxidative stress, an increased persulfidation has been reported and speculated that persulfidation is the protective mechanism for protein oxidative damage. Nevertheless, cysteine residues are also oxidized to different post-translational modifications such S-nitrosylation or S-sulfenylation, which seems to be interconvertible. Thus, it must imply a tight cysteine redox regulation essential for cell survival. This review is aimed to focus on the current knowledge of protein persulfidation and addresses the regulation mechanisms that are disclosed based on the knowledge from other cysteine modifications.
Collapse
|