1
|
Low JJL, Tan BJW, Yi LX, Zhou ZD, Tan EK. Genetic susceptibility to caffeine intake and metabolism: a systematic review. J Transl Med 2024; 22:961. [PMID: 39438936 PMCID: PMC11515775 DOI: 10.1186/s12967-024-05737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Coffee and tea consumption account for most caffeine intake and 2-3 billion cups are taken daily around the world. Caffeine dependence is a widespread but under recognized problem. OBJECTIVES To conduct a systematic review on the genetic susceptibility factors affecting caffeine metabolism and caffeine reward and their association with caffeine intake. METHODOLOGY We conducted PubMed and Embase searches using the terms "caffeine", "reward", "gene", "polymorphism", "addiction", "dependence" and "habit" from inception till 2024. The demographics, genetic and clinical data from included studies were extracted and analyzed. Only case-control studies on habitual caffeine drinkers with at least 100 in each arm were included. RESULTS A total of 2552 studies were screened and 26 studies involving 1,851,428 individuals were included. Several genes that were involved with caffeine metabolism such as CYP1A2, ADORA2A, AHR, POR, ABCG2, CYP2A6, PDSS2 and HECTD4 rs2074356 (A allele specific to East Asians and monomorphic in Europeans, Africans and Americans) were associated with habitual caffeine consumption with effect size difference of 3% to 32% in number of cups of caffeinated drink per day per effect allele. In addition, ALDH2 was linked to the Japanese population. Genes associated with caffeine reward included BDNF, SLC6A4, GCKR, MLXIPL and dopaminergic genes such as DRD2 and DAT1 which had around 2-5% effect size difference in number of cups of caffeinated drink for each allele per day. CONCLUSION Several genes that were involved in caffeine metabolism and reward were associated with up to 30% effect size difference in number of cups of caffeinated drink per day, and some associations were specific to certain ethnicities. Identification of at-risk caffeine dependence individuals can lead to early diagnosis and stratification of at-risk vulnerable individuals such as pregnant women and children, and can potentially lead to development of drug targets for dependence to caffeine.
Collapse
Affiliation(s)
- Jazreel Ju-Li Low
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Brendan Jen-Wei Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
| | - Ling-Xiao Yi
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Zhi-Dong Zhou
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
2
|
Aborziza M, Amalia R, Zuhrotun A, Ikram NKK, Novitasari D, Muchtaridi M. Coffee Bean and Its Chemical Constituent Caffeine and Chlorogenic Acid as Promising Chemoprevention Agents: Updated Biological Studies against Cancer Cells. Molecules 2024; 29:3302. [PMID: 39064880 PMCID: PMC11279625 DOI: 10.3390/molecules29143302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a complicated and ever-evolving disease that remains a significant global cause of disease and mortality. Its complexity, which is evident at the genetic and phenotypic levels, contributes to its diversity and resistance to treatment. Numerous scientific investigations on human and animal models demonstrate the potential of phytochemicals in cancer prevention. Coffee has been shown to possess potent anti-carcinogenic properties, and studies have documented the consumption of coffee as a beverage reduces the risk of cancer occurrence. The major secondary metabolites of coffee, named caffeine and chlorogenic acid, have been linked to anti-inflammatory and antineoplastic effects through various signaling. In light of this, this review article provides a comprehensive analysis based on studies in anticancer effects of coffee, chlorogenic acid, and caffeine published between 2010 and 2023, sourced from Scopus, Pubmed, and Google Scholar databases. We summarize recent advances and scientific evidence on the association of phytochemicals found in coffee with a special emphasis on their biological activities against cancer and their molecular mechanism deemed potential to be used as a novel therapeutic target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Mohamed Aborziza
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (M.A.); (D.N.)
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Ade Zuhrotun
- Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (M.A.); (D.N.)
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (M.A.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Spineli H, dos Santos M, Almeida D, Gitaí D, Silva-Cavalcante M, Balikian P, Ataide-Silva T, Marinho A, Sousa F, de Araujo G. ACE gene polymorphisms (rs4340) II and DI are more responsive to the ergogenic effect of caffeine than DD on aerobic power, heart rate, and perceived exertion in a homogeneous Brazilian group of adolescent athletes. Braz J Med Biol Res 2024; 57:e13217. [PMID: 38896643 PMCID: PMC11186592 DOI: 10.1590/1414-431x2024e13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/15/2024] [Indexed: 06/21/2024] Open
Abstract
The purpose of this study was to verify the association between angiotensin-converting enzyme (ACE) genotypes DD, DI, and II and caffeine (CAF) ingestion on endurance performance, heart rate, ratio of perceived exertion (RPE), and habitual caffeine intake (HCI) of adolescent athletes. Seventy-four male adolescent athletes (age: DD=16±1.7; DI=16±2.0; II=15±1.7 years) ingested CAF (6 mg/kg) or placebo (PLA) one hour before performing the Yo-Yo Intermittent Recovery level 1 (Yo-Yo IR1) test. No difference was found among groups for HCI. However, CAF increased the maximal distance covered and VO2max in DI and II genotype carriers compared to PLA (DD: Δ=31 m and 0.3 mL·kg-1·min-1; DI: Δ=286 m and 1.1 mL·kg-1·min-1; II: Δ=160 m and 1.4 mL·kg-1·min-1). Heart rate of DI and II genotype carriers increased with CAF compared to PLA, while RPE was higher in the II and lower in the DD genotypes. The correlations between HCI and maximal distance covered or VO2max were significant in the II genotype carriers with CAF. CAF increased endurance capacity, heart rate, and RPE in adolescent athletes with allele I, while endurance performance and aerobic power had a positive correlation to HCI in the II genotype group. These findings suggested that DD genotype were less responsive to CAF and that genetic variations should be taken into account when using CAF supplementation to enhance exercise performance.
Collapse
Affiliation(s)
- H. Spineli
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - M. dos Santos
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - D. Almeida
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - D. Gitaí
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - M. Silva-Cavalcante
- Instituto Federal de Educação Ciência e Tecnologia de Alagoas, Maceió, AL, Brasil
| | - P. Balikian
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - T. Ataide-Silva
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - A. Marinho
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - F. Sousa
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - G. de Araujo
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL, Brasil
| |
Collapse
|
4
|
Giontella A, de La Harpe R, Cronje HT, Zagkos L, Woolf B, Larsson SC, Gill D. Caffeine Intake, Plasma Caffeine Level, and Kidney Function: A Mendelian Randomization Study. Nutrients 2023; 15:4422. [PMID: 37892497 PMCID: PMC10609900 DOI: 10.3390/nu15204422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Caffeine is a psychoactive substance widely consumed worldwide, mainly via sources such as coffee and tea. The effects of caffeine on kidney function remain unclear. We leveraged the genetic variants in the CYP1A2 and AHR genes via the two-sample Mendelian randomization (MR) framework to estimate the association of genetically predicted plasma caffeine and caffeine intake on kidney traits. Genetic association summary statistics on plasma caffeine levels and caffeine intake were taken from genome-wide association study (GWAS) meta-analyses of 9876 and of >47,000 European ancestry individuals, respectively. Genetically predicted plasma caffeine levels were associated with a decrease in estimated glomerular filtration rate (eGFR) measured using either creatinine or cystatin C. In contrast, genetically predicted caffeine intake was associated with an increase in eGFR and a low risk of chronic kidney disease. The discrepancy is likely attributable to faster metabolizers of caffeine consuming more caffeine-containing beverages to achieve the same pharmacological effect. Further research is needed to distinguish whether the observed effects on kidney function are driven by the harmful effects of higher plasma caffeine levels or the protective effects of greater intake of caffeine-containing beverages, particularly given the widespread use of drinks containing caffeine and the increasing burden of kidney disease.
Collapse
Affiliation(s)
- Alice Giontella
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms Gata 35 Malmö, 214 28 Malmo, Sweden;
| | - Roxane de La Harpe
- Unit of Internal Medicine, Department of Medicine, University Hospital of Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland;
| | - Héléne T. Cronje
- Department of Public Health, Section of Epidemiology, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK;
| | - Benjamin Woolf
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK;
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Department of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Susanna C. Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden;
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK;
| |
Collapse
|
5
|
Khil J, Kim S, Lee M, Gil H, Kang SS, Lee DH, Kwon Y, Keum N. AHR rs4410790 genotype and IgG levels: Effect modification by lifestyle factors. PLoS One 2023; 18:e0290700. [PMID: 37782632 PMCID: PMC10545101 DOI: 10.1371/journal.pone.0290700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
Inflammation is a multifaceted marker resulting from complex interactions between genetic and lifestyle factors. Emerging evidence suggests Aryl hydrocarbon receptor (AHR) protein may be implicated in the regulation of immune system and inflammatory responses. To investigate whether rs4410790 genotype (TT, TC, CC) near AHR gene is related to serum IgG levels, a marker of chronic inflammation, and whether lifestyle factors modifies the relationship, we conducted a cross-sectional study by recruiting 168 Korean adults. Participants responded to a lifestyle questionnaire and provided oral epithelial cells and blood samples for biomarker assessment. Among these participants, C allele was the minor allele, with the minor allele frequency of 40%. The rs4410790 TT genotype was significantly associated with elevated IgG levels compared with TC/CC genotypes, after adjusting for potential confounders (p = 0.04). The relationship varied significantly by levels of alcohol consumption (P interaction = 0.046) and overweight/obese status (P interaction = 0.02), but not by smoking status (P interaction = 0.64) and coffee consumption (P interaction = 0.55). Specifically, higher IgG levels associated with the TT genotype were evident in frequent drinkers and individuals with BMI≥23kg/m2, but not in their counterparts. Thus, rs4410790 genotype may be associated with IgG levels and the genetic predisposition to higher IgG levels may be mitigated by healthy lifestyle factors like infrequent drinking and healthy weight.
Collapse
Affiliation(s)
- Jaewon Khil
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Soyoun Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - Minhyeong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - Hyeonmin Gil
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Dong Hoon Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Sport Industry Studies, Yonsei University, Seoul, Republic of Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - NaNa Keum
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Zduńska A, Cegielska J, Zduński S, Domitrz I. Caffeine for Headaches: Helpful or Harmful? A Brief Review of the Literature. Nutrients 2023; 15:3170. [PMID: 37513588 PMCID: PMC10385675 DOI: 10.3390/nu15143170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Consumption of caffeine in the diet, both daily and occasional, has a significant biological effect on the nervous system. Caffeine, through various and not yet fully investigated mechanisms, affects headaches. This is especially noticeable in migraine. In other headaches such as hypnic headache, post-dural puncture headache and spontaneous intracranial hypotension, caffeine is an important therapeutic agent. In turn, abrupt discontinuation of chronically used caffeine can cause caffeine-withdrawal headache. Caffeine can both relieve and trigger headaches.
Collapse
Affiliation(s)
- Anna Zduńska
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, 01-809 Warsaw, Poland
| | - Joanna Cegielska
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, 01-809 Warsaw, Poland
| | - Sebastian Zduński
- Medical Rehabilitation Facility, The National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, 01-809 Warsaw, Poland
| |
Collapse
|
7
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Deng Y, Huang J, Wong MCS. Associations of alcohol and coffee with colorectal cancer risk in East Asian populations: a Mendelian randomization study. Eur J Nutr 2023; 62:749-756. [PMID: 36239790 DOI: 10.1007/s00394-022-03002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Previous observational studies have shown that alcohol and coffee were associated with colorectal cancer (CRC) risk, but the causal relationships have not been adequately explored. This study aimed to assess the potential causal associations of alcohol and coffee with CRC risk using Mendelian randomization (MR) analyses in an East Asian population. METHODS Publicly available summary-level genome-wide association studies data on ever/never alcohol drinker (n = 165,084), alcohol consumption (n = 58,610), coffee consumption (n = 152,634), and CRC (7062 cases and 195,745 controls) were obtained from the BioBank Japan (BBJ). Single-nucleotide polymorphisms (SNPs) that were significantly related to the exposures were identified as instrumental variables. Five, two, and six SNPs were used for ever/never alcohol drinkers, alcohol consumption, and coffee consumption, respectively. The inverse variance weighted method was used as the main MR method to calculate the odds ratios (ORs) and 95% confidence intervals (95% CIs) of CRC risk per one-unit change in exposures. RESULTS Genetically predicted ever/never alcohol drinkers (OR: 1.08; 95% CI 1.06, 1.11; P < 0.001) and alcohol consumption (OR: 1.39; 95% CI 1.21, 1.60; P < 0.001) were positively associated with CRC risk. Conversely, genetically predicted coffee consumption was inversely related to CRC risk, with an OR (95% CI) of 0.80 (0.64, 0.99) (P = 0.037). CONCLUSION Genetically predicted alcohol use and consumption were risk factors for CRC while genetically predicted coffee consumption was a protective factor. Our findings highlight the effectiveness of keeping healthy dietary habits to prevent CRC. Further studies with more valid SNPs and CRC cases are needed. Validation of our findings is also recommended.
Collapse
Affiliation(s)
- Yunyang Deng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Martin Chi Sang Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- School of Public Health, The Chinese Academy of Medical Sciences and the Peking Union Medical College, Beijing, 100000, China.
- School of Public Health, Peking University, Beijing, 100000, China.
| |
Collapse
|
9
|
Fleming M, Nelson F, Wallace I, Eskiw CH. Genome Tectonics: Linking Dynamic Genome Organization with Cellular Nutrients. Lifestyle Genom 2022; 16:21-34. [PMID: 36446341 DOI: 10.1159/000528011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/06/2022] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our daily intake of food provides nutrients for the maintenance of health, growth, and development. The field of nutrigenomics aims to link dietary intake/nutrients to changes in epigenetic status and gene expression. SUMMARY Although the relationship between our diet and our genes in under intense investigation, there is still a significant aspect of our genome that has received little attention with regard to this. In the past 15 years, the importance of genome organization has become increasingly evident, with research identifying small-scale local changes to large segments of the genome dynamically repositioning within the nucleus in response to/or mediating change in gene expression. The discovery of these dynamic processes and organization maybe as significant as dynamic plate tectonics is to geology, there is little information tying genome organization to specific nutrients or dietary intake. KEY MESSAGES Here, we detail key principles of genome organization and structure, with emphasis on genome folding and organization, and link how these contribute to our future understand of nutrigenomics.
Collapse
Affiliation(s)
- Morgan Fleming
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fina Nelson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- 21st Street Brewery Inc., Saskatoon, Saskatchewan, Canada
| | - Iain Wallace
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Proxima Research and Development, Saskatoon, Saskatchewan, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Tallis J, Guimaraes-Ferreira L, Clarke ND. Not Another Caffeine Effect on Sports Performance Study-Nothing New or More to Do? Nutrients 2022; 14:4696. [PMID: 36364958 PMCID: PMC9658326 DOI: 10.3390/nu14214696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The performance-enhancing potential of acute caffeine consumption is firmly established with benefits for many aspects of physical performance and cognitive function summarised in a number of meta-analyses. Despite this, there remains near exponential growth in research articles examining the ergogenic effects of caffeine. Many such studies are confirmatory of well-established ideas, and with a wealth of convincing evidence available, the value of further investigation may be questioned. However, several important knowledge gaps remain. As such, the purpose of this review is to summarise key knowledge gaps regarding the current understanding of the performance-enhancing effect of caffeine and justify their value for future investigation. The review will provide a particular focus on ten research priorities that will aid in the translation of caffeine's ergogenic potential to real-world sporting scenarios. The discussion presented here is therefore essential in guiding the design of future work that will aid in progressing the current understanding of the effects of caffeine as a performance enhancer.
Collapse
Affiliation(s)
- Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | | | | |
Collapse
|
11
|
Deng Y, Huang J, Wong MCS. Associations between six dietary habits and risk of hepatocellular carcinoma: A Mendelian randomization study. Hepatol Commun 2022; 6:2147-2154. [PMID: 35670026 PMCID: PMC9315115 DOI: 10.1002/hep4.1960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/08/2022] Open
Abstract
Diet is reported to be associated with hepatocellular carcinoma (HCC), but whether there is a causal relationship remains unclear. This study aimed to explore the potential causal associations between dietary habits and HCC risk using Mendelian randomization in an East Asian population. From the BioBank Japan, we obtained summary-level genome-wide association studies data for the following six dietary habits: ever/never drinker (n = 165,084), alcohol consumption (n = 58,610), coffee consumption (n = 152,634), tea consumption (n = 152,653), milk consumption (n = 152,965), and yoghurt consumption (n = 152,097). We also obtained data on HCC (1866 cases and 195,745 controls). Single-nucleotide polymorphisms (SNPs) that were associated with exposures (p < 5 × 10-8 ) were selected as instrumental variables (IVs). Five, two, and six SNPs were identified for ever/never drinkers, alcohol consumption, and coffee consumption. One SNP was used for consumption of tea, milk, and yoghurt. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by inverse variance weighted (for an IV with more than one SNP) or Wald ratio (for an IV with one SNP). Ever/never drinkers (OR, 1.11; 95% CI, 1.05-1.18; p < 0.001) and alcohol consumption (OR, 1.57; 95% CI, 1.32-1.86; p < 0.001) were positively associated with HCC risk. Conversely, coffee consumption was inversely related to HCC risk (OR, 0.69; 95% CI, 0.53-0.90; p = 0.007). Similar inverse associations were observed for consumption of tea, milk, and yoghurt, with ORs (95% CIs) of 0.11 (0.05-0.26), 0.18 (0.09-0.34), and 0.18 (0.09-0.34), respectively (all p < 0.001). Conclusion: There are potential causal associations between six dietary habits and HCC risk. Our findings inform clinical practice by providing evidence on the impact of dietary habits on HCC.
Collapse
Affiliation(s)
- Yunyang Deng
- The Jockey Club School of Public Health and Primary CareFaculty of MedicineChinese University of Hong KongHong Kong SARChina
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary CareFaculty of MedicineChinese University of Hong KongHong Kong SARChina
| | - Martin C S Wong
- The Jockey Club School of Public Health and Primary CareFaculty of MedicineChinese University of Hong KongHong Kong SARChina.,School of Public HealthChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina.,School of Public HealthPeking UniversityBeijingChina
| |
Collapse
|
12
|
Jacobson KA, Gao ZG, Matricon P, Eddy MT, Carlsson J. Adenosine A 2A receptor antagonists: from caffeine to selective non-xanthines. Br J Pharmacol 2022; 179:3496-3511. [PMID: 32424811 PMCID: PMC9251831 DOI: 10.1111/bph.15103] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
A long evolution of knowledge of the psychostimulant caffeine led in the 1960s to another purine natural product, adenosine and its A2A receptor. Adenosine is a short-lived autocrine/paracrine mediator that acts pharmacologically at four different adenosine receptors in a manner opposite to the pan-antagonist caffeine and serves as an endogenous allostatic regulator. Although detrimental in the developing brain, caffeine appears to be cerebroprotective in aging. Moderate caffeine consumption in adults, except in pregnancy, may also provide benefit in pain, diabetes, and kidney and liver disorders. Inhibition of A2A receptors is one of caffeine's principal effects and we now understand this interaction at the atomic level. The A2A receptor has become a prototypical example of utilizing high-resolution structures of GPCRs for the rational design of chemically diverse drug molecules. The previous focus on discovery of selective A2A receptor antagonists for neurodegenerative diseases has expanded to include immunotherapy for cancer, and clinical trials have ensued. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre Matricon
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jens Carlsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Lin YS, Weibel J, Landolt HP, Santini F, Garbazza C, Kistler J, Rehm S, Rentsch K, Borgwardt S, Cajochen C, Reichert CF. Time to Recover From Daily Caffeine Intake. Front Nutr 2022; 8:787225. [PMID: 35187019 PMCID: PMC8849224 DOI: 10.3389/fnut.2021.787225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
Caffeine elicits widespread effects in the central nervous system and is the most frequently consumed psychostimulant worldwide. First evidence indicates that, during daily intake, the elimination of caffeine may slow down, and the primary metabolite, paraxanthine, may accumulate. The neural impact of such adaptions is virtually unexplored. In this report, we leveraged the data of a laboratory study with N = 20 participants and three within-subject conditions: caffeine (150 mg caffeine × 3/day × 10 days), placebo (150 mg mannitol × 3/day × 10 days), and acute caffeine deprivation (caffeine × 9 days, afterward placebo × 1 day). On day 10, we determined the course of salivary caffeine and paraxanthine using liquid chromatography-mass spectrometry coupled with tandem mass spectrometry. We assessed gray matter (GM) intensity and cerebral blood flow (CBF) after acute caffeine deprivation as compared to changes in the caffeine condition from our previous report. The results indicated that levels of paraxanthine and caffeine remained high and were carried overnight during daily intake, and that the levels of paraxanthine remained elevated after 24 h of caffeine deprivation compared to placebo. After 36 h of caffeine deprivation, the previously reported caffeine-induced GM reduction was partially mitigated, while CBF was elevated compared to placebo. Our findings unveil that conventional daily caffeine intake does not provide sufficient time to clear up psychoactive compounds and restore cerebral responses, even after 36 h of abstinence. They also suggest investigating the consequences of a paraxanthine accumulation during daily caffeine intake.
Collapse
Affiliation(s)
- Yu-Shiuan Lin
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Neuropsychiatry and Brain Imaging, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Janine Weibel
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep and Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Corrado Garbazza
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Joshua Kistler
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sophia Rehm
- Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- *Correspondence: Christian Cajochen
| | - Carolin F. Reichert
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Sicova M, Guest NS, Tyrrell PN, El-Sohemy A. Caffeine, genetic variation and anaerobic performance in male athletes: a randomized controlled trial. Eur J Appl Physiol 2021; 121:3499-3513. [PMID: 34529114 DOI: 10.1007/s00421-021-04799-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The effect of caffeine on anaerobic performance is unclear and may differ depending on an individual's genetics. The goal of this study was to determine whether caffeine influences anaerobic performance in a 30 s Wingate test, and if 14 single nucleotide polymorphisms (SNPs) in nine genes, associated with caffeine metabolism or response, modify caffeine's effects. METHODS Competitive male athletes (N = 100; 25 ± 4 years) completed the Wingate under three conditions: 0, 2, or 4 mg of caffeine per kg of body mass (mg kg-1), using a double-blinded, placebo-controlled design. Using saliva samples, participants were genotyped for the 14 SNPs. The outcomes were peak power (Watts [W]), average power (Watts [W]), and fatigue index (%). RESULTS There was no main effect of caffeine on Wingate outcomes. One significant caffeine-gene interaction was observed for CYP1A2 (rs762551, p = 0.004) on average power. However, post hoc analysis showed no difference in caffeine's effects within CYP1A2 genotypes for average power performance. No significant caffeine-gene interactions were observed for the remaining SNPs on peak power, average power and fatigue index. CONCLUSION Caffeine had no effect on anaerobic performance and variations in several genes did not modify any effects of caffeine. TRIAL REGISTRATION This study was registered with clinicaltrials.gov (NCT02109783).
Collapse
Affiliation(s)
- Marc Sicova
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada
| | - Nanci S Guest
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada
| | - Pascal N Tyrrell
- Faculty of Arts and Science, Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Sciences, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
15
|
Thakkar D, Sicova M, Guest NS, Garcia-Bailo B, El-Sohemy A. HFE Genotype and Endurance Performance in Competitive Male Athletes. Med Sci Sports Exerc 2021; 53:1385-1390. [PMID: 33433155 DOI: 10.1249/mss.0000000000002595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hereditary hemochromatosis can cause individuals to absorb too much iron from their diet. Higher tissue iron content, below the threshold of toxicity, may enhance oxygen carrying capacity and offer a competitive advantage. Single nucleotide polymorphisms (SNP) in the homeostatic iron regulator (HFE) gene have been shown to modify iron metabolism and can be used to predict an individual's risk of hemochromatosis. Several studies have shown that HFE genotypes are associated with elite endurance athlete status; however, no studies have examined whether HFE genotypes are associated with endurance performance. PURPOSE The objectives of this study were to determine whether there was an association between HFE risk genotypes (rs1800562 and rs1799945) and endurance performance in a 10-km cycling time trial as well as maximal oxygen uptake (V˙O2peak), an indicator of aerobic capacity. METHODS Competitive male athletes (n = 100; age = 25 ± 4 yr) completed a 10-km cycling time trial. DNA was isolated from saliva and genotyped for the rs1800562 (C282Y) and rs1799945 (H63D) SNP in HFE. Athletes were classified as low risk (n = 88) or medium/high risk (n = 11) based on their HFE genotype for both SNP using an algorithm. ANCOVA was conducted to compare outcome variables between both groups. RESULTS Individuals with the medium- or high-risk genotype were ~8% (1.3 min) faster than those with the low-risk genotype (17.0 ± 0.8 vs 18.3 ± 0.3 min, P = 0.05). V˙O2peak was ~17% (7.9 mL·kg-1⋅min-1) higher in individuals with the medium- or high-risk genotype compared with those with the low-risk genotype (54.6 ± 3.2 vs 46.7 ± 1.0 mL·kg-1⋅min-1, P = 0.003). CONCLUSION Our findings show that HFE risk genotypes are associated with improved endurance performance and increased V˙O2peak in male athletes.
Collapse
Affiliation(s)
- Drishti Thakkar
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, CANADA
| | | | | | | | | |
Collapse
|
16
|
Nordestgaard AT. Causal relationship from coffee consumption to diseases and mortality: a review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases. Eur J Nutr 2021; 61:573-587. [PMID: 34319429 DOI: 10.1007/s00394-021-02650-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE High coffee consumption is associated with low risk of mortality and morbidity, but the causality remains unclear. This review aims to discuss findings from observational studies on coffee consumption in context of Mendelian randomization studies. METHODS The PubMed database was searched for all Mendelian randomization studies on coffee consumption and corresponding observational studies. RESULTS High coffee consumption is associated with low risk of all-cause and cardiovascular mortality in observational studies (HRs of 0.85-0.90 vs. no/low consumers), with no support of causality in Mendelian randomization studies. Moderate/high consumption is associated with low risk of cardiometabolic diseases, including ischemic heart disease (HRs of 0.85-0.90 vs. no/low consumption), stroke (HRs of approximately 0.80 vs. no/low consumption), type 2 diabetes (HRs of approximately 0.70 vs. no/low consumption) and obesity in observational studies, but not in Mendelian randomization studies. High consumption is associated with low risk of endometrial cancer and melanoma and high risk of lung cancer in observational studies, but with high risk of colorectal cancer in Mendelian randomization studies. In observational and Mendelian randomization studies, high coffee consumption is associated with low risk of gallstones (HRs of 0.55-0.70 for high vs. no/low self-reported and 0.81 (0.69-0.96) for highest vs. lowest genetic consumption). CONCLUSION High coffee consumption is associated with low risk of mortality, cardiometabolic diseases, some cancers and gallstones in observational studies, with no evidence to support causality from Mendelian randomization studies for most diseases except gallstones.
Collapse
Affiliation(s)
- Ask T Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
| |
Collapse
|
17
|
CYP1A2 Genotype Modifies the Effects of Caffeine Compared With Placebo on Muscle Strength in Competitive Male Athletes. Int J Sport Nutr Exerc Metab 2021; 31:420-426. [PMID: 34284351 DOI: 10.1123/ijsnem.2020-0395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Caffeine is commonly used to improve athletic performance across a variety of sports. Previously, the CYP1A2 gene has been shown to modify the effects of caffeine on endurance performance. The effect of caffeine on strength and power activities is unclear and may differ depending on an individual's CYP1A2 genotype. A randomized controlled trial was used to determine whether caffeine impacts strength and power, determined by the handgrip and vertical jump tests, respectively, and whether CYP1A2 genotype modifies any effects. Competitive male athletes (age = 25 ± 4 years) completed vertical jump (n = 97), and handgrip tests (n = 102) under three conditions: 0 (placebo), 2, or 4 mg of caffeine per kilogram of body mass (in milligrams per kilogram). CYP1A2 (rs762551) genotype was determined from saliva samples. No differences between caffeine doses and placebo were observed for strength or power; however, significant Caffeine × Gene interactions were observed for all exercise tests. Individuals with the CC genotype experienced a 12.8% decrease in handgrip strength with 4 mg/kg of caffeine compared with placebo (53 ± 11 kg vs. 61 ± 17 kg, p = .02). No differences were observed in those with the AC or AA genotypes. Despite observing a significant Caffeine × Gene interaction for vertical jump performance, no differences were observed between caffeine doses and placebo for all genotypes. In summary, caffeine (4 mg/kg) worsened handgrip strength performance in those with the CC genotype, but no differences were observed in those with the AC or AA genotypes. Athletes may want to consider their CYP1A2 genotype prior to using caffeine to improve muscle strength.
Collapse
|
18
|
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 2021; 18:1. [PMID: 33388079 PMCID: PMC7777221 DOI: 10.1186/s12970-020-00383-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | | | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, 10468, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52240, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Colombia, SC, 29208, USA
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Jeffrey R Stout
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica R Goldstein
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
19
|
He X, Qiu JC, Lu KY, Guo HL, Li L, Jia WW, Ni MM, Liu Y, Xu J, Chen F, Cheng R. Therapy for Apnoea of Prematurity: A Retrospective Study on Effects of Standard Dose and Genetic Variability on Clinical Response to Caffeine Citrate in Chinese Preterm Infants. Adv Ther 2021; 38:607-626. [PMID: 33180318 DOI: 10.1007/s12325-020-01544-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Apnoea of prematurity (AOP) is among the most common diagnoses in the neonatal intensive care unit. Caffeine treatment is a preferred treatment choice. However, neonatal caffeine therapy results in significant intersubject variability. This study aimed to determine the effects of plasma caffeine levels based on standard dose and genetic variability on clinical response to caffeine citrate in Chinese preterm infants. METHODS This single-center and retrospective study examined data from 112 preterm infants (< 35 weeks gestational age) between July 2017 and July 2018. Subjects were divided into apnoea-free (n = 48) and apnoeic (n = 64) groups, and their clinical outcomes were summarized. Liquid chromatography-tandem mass spectrometry was used to measure levels of caffeine and its primary metabolites. Eighty-eight single-nucleotide polymorphisms were chosen for genotyping by a MassARRAY system. RESULTS Preterm infants in the apnoea-free group were associated with a reduction in the incidence of bronchopulmonary dysplasia and a reduced requirement for patent ductus arteriosus ligation. No significant association was observed between plasma-trough-concentration-to-dose (C0/D) ratio and birth weight, gestational age, or postnatal age in either group. Polymorphisms in CYP1A2 and aryl hydrocarbon receptor (AHR) genes did not affect plasma caffeine levels. Polymorphisms in adenosine receptor genes ADORA1 (rs10920568 and rs12744240), ADORA2A (rs34923252 and rs5996696), and ADORA3 (rs10776727 and rs2298191), especially in AHR (rs4410790) and adenosine deaminase (rs521704), play critical roles in the interindividual response to caffeine therapy. CONCLUSIONS Genetic polymorphisms in caffeine's target receptors, but not the exposure levels based on the standard dosing, were associated with variable responses to caffeine therapy in preterm neonates. Future studies are needed to uncover how these genetic variants affect responses to caffeine therapy in this patient population.
Collapse
|
20
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Tennent R, Ali A, Wham C, Rutherfurd-Markwick K. Narrative Review: Impact of Genetic Variability of CYP1A2, ADORA2A, and AHR on Caffeine Consumption and Response. J Caffeine Adenosine Res 2020. [DOI: 10.1089/caff.2020.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Rebecca Tennent
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
| | - Carol Wham
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
| | - Kay Rutherfurd-Markwick
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
- School of Health Sciences, Massey University, North Shore City, New Zealand
| |
Collapse
|
22
|
Furukawa K, Igarashi M, Jia H, Nogawa S, Kawafune K, Hachiya T, Takahashi S, Saito K, Kato H. A Genome-Wide Association Study Identifies the Association between the 12q24 Locus and Black Tea Consumption in Japanese Populations. Nutrients 2020; 12:nu12103182. [PMID: 33080986 PMCID: PMC7603176 DOI: 10.3390/nu12103182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
Several genome-wide association studies (GWASs) have reported the association between genetic variants and the habitual consumption of foods and drinks; however, no association data are available regarding the consumption of black tea. The present study aimed to identify genetic variants associated with black tea consumption in 12,258 Japanese participants. Data on black tea consumption were collected by a self-administered questionnaire, and genotype data were obtained from a single nucleotide polymorphism array. In the discovery GWAS, two loci met suggestive significance (p < 1.0 × 10-6). Three genetic variants (rs2074356, rs144504271, and rs12231737) at 12q24 locus were also significantly associated with black tea consumption in the replication stage (p < 0.05) and during the meta-analysis (p < 5.0 × 10-8). The association of rs2074356 with black tea consumption was slightly attenuated by the additional adjustment for alcohol drinking frequency. In conclusion, genetic variants at the 12q24 locus were associated with black tea consumption in Japanese populations, and the association is at least partly mediated by alcohol drinking frequency.
Collapse
Affiliation(s)
- Kyohei Furukawa
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
| | - Maki Igarashi
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Correspondence: (H.J.); (H.K.); Tel./Fax: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| | - Shun Nogawa
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Kaoru Kawafune
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Tsuyoshi Hachiya
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
- Department of Genomic Data Analysis Service, Genome Analytics Japan Inc., 15-1-3205 Toyoshima-cho, Shinjuku-ku, Tokyo 162-0067, Japan
| | - Shoko Takahashi
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Research and Development Department, Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo 108-0014, Japan; (S.N.); (K.K.); (T.H.); (S.T.)
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.I.); (K.S.)
- Correspondence: (H.J.); (H.K.); Tel./Fax: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| |
Collapse
|
23
|
Guest NS, Corey P, Tyrrell PN, El-Sohemy A. Effect of Caffeine on Endurance Performance in Athletes May Depend on HTR2A and CYP1A2 Genotypes. J Strength Cond Res 2020; 36:2486-2492. [PMID: 32569126 DOI: 10.1519/jsc.0000000000003665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Guest, NS, Corey, P, Tyrrell, PN, and El-Sohemy, A. Effect of caffeine on endurance performance in athletes may depend on HTR2A and CYP1A2 genotypes. J Strength Cond Res XX(X): 000-000, 2020-This investigation determined whether variation in the HTR2A (serotonin receptor) gene modifies the ergogenic effects of caffeine on endurance and further modifies performance by the CYP1A2 genotype. Male athletes (n = 100; 25 ± 4 years) completed 10-km cycling time trials under 3 conditions as follows: 0, 2, or 4 mg of caffeine per kg body mass. Using a randomized, double-blinded, placebo-controlled design, data were analyzed using analysis of covariance to compare changes in cycling time between placebo (0 mg·kg) and each caffeine dose and adjusted for the placebo trial and order of treatment. A significance of ρ ≤ 0.05 was used. Subjects were genotyped for HTR2A (rs6313) and CYP1A2 (rs762551). A significant caffeine-HTR2A interaction (p = 0.003) was observed; however, after adjustment for placebo trials, the interaction was no longer significant (p = 0.37). Because of the strong caffeine-CYP1A2 interaction (p < 0.0001) previously reported in these subjects, where the 4-mg dose resulted in divergent effects (slower and faster) on the 10-km cycling time, we conducted a simplified model to examine these same factors by the HTR2A genotype. The post hoc analysis excluded HTR2A CT heterozygotes and 2-mg·kg caffeine trials. Among CYP1A2 fast metabolizers alone, a significant difference (1.7 minutes; p = 0.006) was observed when comparing (4- vs. 0-mg·kg caffeine trials) between the HTR2A CC (n = 16; 2.4 minutes) and TT (n = 7; 0.7 minutes) genotypes. Our results show that 4-mg·kg caffeine improves performance in individuals with the HTR2A CC genotype but only in those who are also CYP1A2 AA fast metabolizers. This study was registered with clinicaltrials.gov (NCT02109783).
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Corey
- Department of Statistical Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Pascal N Tyrrell
- Department of Statistical Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Horne J, Gilliland J, O'Connor C, Seabrook J, Madill J. Enhanced long-term dietary change and adherence in a nutrigenomics-guided lifestyle intervention compared to a population-based (GLB/DPP) lifestyle intervention for weight management: results from the NOW randomised controlled trial. BMJ Nutr Prev Health 2020; 3:49-59. [PMID: 33235971 PMCID: PMC7664486 DOI: 10.1136/bmjnph-2020-000073] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/30/2023] Open
Abstract
Background Adherence to nutritional guidelines for chronic disease prevention and management remains a challenge in clinical practice. Innovative strategies are needed to help optimise dietary behaviour change. Objective The objective of this study was to determine if a nutrigenomics-guided lifestyle intervention programme could be used to motivate greater dietary adherence and change in dietary intake short-term, moderate-term and long-term compared to the gold-standard population-based weight management intervention (Group Lifestyle Balance (GLB)/Diabetes Prevention Programme (DPP)). Design The Nutrigenomics, Overweight/Obesity, and Weight Management (NOW) randomised controlled trial is a pragmatic, parallel-group, superiority clinical trial (n=140), which was conducted at the East Elgin Family Health Team (EEFHT). GLB weight management groups were prerandomised 1:1 to receive either the standard GLB programme or a modified GLB+nutrigenomics (GLB+NGx) programme. Three 24-hour recalls were collected at baseline, 3, 6 and 12 months using the validated multiple pass method. Research assistants collecting the three 24-hour recalls were blinded to the participants’ group assignments. Statistical analyses included split plot analyses of variance (ANOVAs), two-way ANOVAs, binary logistic regression, χ2 and Fisher’s exact tests. Using the Theory of Planned Behaviour as guidance, key confounding factors of behaviour change were considered in the analyses. This study was registered with clinicaltrials.gov (NCT03015012). Results Only the GLB+NGx group significantly reduced their total fat intake from baseline to 12-month follow-up (from 36.0%±4.8% kcal to 30.2%±8.7% kcal, p=0.02). Long-term dietary adherence to total fat and saturated fat guidelines was also significantly (p<0.05) greater in the GLB+NGx group compared to the standard GLB group. Conclusions Weight management interventions guided by nutrigenomics can motivate long-term improvements in dietary fat intake above and beyond gold-standard population-based interventions.
Collapse
Affiliation(s)
- Justine Horne
- East Elgin Family Health Team, Aylmer, Ontario, Canada.,Health and Rehabilitation Sciences, Western University, London, Ontario, Canada
| | - Jason Gilliland
- Department of Paediatrics, Western University, London, Ontario, Canada.,School of Health Studies, Western University, London, Ontario, Canada.,Department of Geography, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Colleen O'Connor
- Lawson Health Research Institute, London, Ontario, Canada.,School of Food and Nutritional Sciences, Brescia University College (Western University), London, Ontario, Canada
| | - Jamie Seabrook
- Department of Paediatrics, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada.,School of Food and Nutritional Sciences, Brescia University College (Western University), London, Ontario, Canada
| | - Janet Madill
- Lawson Health Research Institute, London, Ontario, Canada.,School of Food and Nutritional Sciences, Brescia University College (Western University), London, Ontario, Canada
| |
Collapse
|
25
|
Abstract
Caffeine is a well-established ergogenic aid, demonstrated to enhance performance across a wide range of capacities through a variety of mechanisms. As such, it is frequently used by both athletes and non-athletes alike. As a result, caffeine ingestion is ubiquitous in modern society, with athletes typically being exposed to regular non-supplemental caffeine through a variety of sources. Previously, it has been suggested that regular caffeine use may lead to habituation and subsequently a reduction in the expected ergogenic effects, thereby blunting caffeine’s performance-enhancing impact during critical training and performance events. In order to mitigate this expected performance loss, some practitioners recommended a pre-competition withdrawal period to restore the optimal performance benefits of caffeine supplementation. However, at present the evidence base exploring both caffeine habituation and withdrawal strategies in athletes is surprisingly small. Accordingly, despite the prevalence of caffeine use within athletic populations, formulating evidence-led guidelines is difficult. Here, we review the available research regarding habitual caffeine use in athletes and seek to derive rational interpretations of what is currently known—and what else we need to know—regarding habitual caffeine use in athletes, and how athletes and performance staff may pragmatically approach these important, complex, and yet under-explored phenomena.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK.
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, UK.
| | - John Kiely
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
26
|
Zeisel SH. Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. Annu Rev Food Sci Technol 2020; 11:71-92. [DOI: 10.1146/annurev-food-032519-051736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
People differ in their requirements for and responses to nutrients and bioactive molecules in the diet. Many inputs contribute to metabolic heterogeneity (including variations in genetics, epigenetics, microbiome, lifestyle, diet intake, and environmental exposure). Precision nutrition is not about developing unique prescriptions for individual people but rather about stratifying people into different subgroups of the population on the basis of biomarkers of the above-listed sources of metabolic variation and then using this stratification to better estimate the different subgroups’ dietary requirements, thereby enabling better dietary recommendations and interventions. The hope is that we will be able to subcategorize people into ever-smaller groups that can be targeted in terms of recommendations, but we will never achieve this at the individual level, thus, the choice of precision nutrition rather than personalized nutrition to designate this new field. This review focuses mainly on genetically related sources of metabolic heterogeneity and identifies challenges that need to be overcome to achieve a full understanding of the complex interactions between the many sources of metabolic heterogeneity that make people differ from one another in their requirements for and responses to foods. It also discusses the commercial applications of precision nutrition.
Collapse
Affiliation(s)
- Steven H. Zeisel
- Nutrition Research Institute, Department of Nutrition, University of North Carolina, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
27
|
Ishii M, Ishii Y, Nakayama T, Takahashi Y, Asai S. 13C-caffeine breath test identifies single nucleotide polymorphisms associated with caffeine metabolism. Drug Metab Pharmacokinet 2020; 35:321-328. [PMID: 32303460 DOI: 10.1016/j.dmpk.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
Abstract
We performed a caffeine (N-3-methyl-13C) breath test (CafeBT) to determine whether it can be employed to identify caffeine metabolism-associated single nucleotide polymorphisms. The study included 130 healthy adults (mean age: 21.9 years). Saliva was collected using an Oragene®•DNA saliva collection kit. Breath samples were collected from the subjects. The subjects orally ingested 100 mg 13C-caffeine dissolved in distilled water. Subsequently, breath samples were collected in bags every 10 min for a total of 90 min. An analysis of 13CO2 in the expired breath was performed by infrared spectroscopy, and the sum of Δ13CO2 over 90 min (S90m) was calculated. DNA from saliva samples was genotyped using TaqMan® SNP Genotyping for the following genes: cytochrome P4501A2: rs762551, rs2472297, aryl-hydrocarbon receptor (rs4410790), and adenosine A2A receptor (rs5751876). All subjects had the genotype CC in rs2472297 alleles. No significant difference was observed in S90m among the genotypes of rs762551 and rs5751876; however, a significant difference was found in S90m among the genotypes of rs4410790 (C > T). Our findings suggest that the N-3 demethylation of caffeine is dependent on the rs4410790 allele and that CafeBT may be used to determine rs4410790 genotypes.
Collapse
Affiliation(s)
- Michiko Ishii
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Japan; Division of Research Planning and Development, Medical Research Support Center, Nihon University School of Medicine, Japan.
| | - Yukimoto Ishii
- Division of Research Planning and Development, Medical Research Support Center, Nihon University School of Medicine, Japan.
| | - Tomohiro Nakayama
- Division of Companion Diagnostics, Department of Pathology of Microbiology, Nihon University School of Medicine, Japan.
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Japan.
| | - Satoshi Asai
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Japan.
| |
Collapse
|
28
|
Jia H, Nogawa S, Kawafune K, Hachiya T, Takahashi S, Igarashi M, Saito K, Kato H. GWAS of habitual coffee consumption reveals a sex difference in the genetic effect of the 12q24 locus in the Japanese population. BMC Genet 2019; 20:61. [PMID: 31345160 PMCID: PMC6659273 DOI: 10.1186/s12863-019-0763-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/08/2019] [Indexed: 01/04/2023] Open
Abstract
Background Studies on genetic effects of coffee consumption are scarce for Asian populations. We conducted a genome-wide association study (GWAS) of habitual coffee consumption in Japan using a self-reporting online survey. Results Candidate genetic loci associated with habitual coffee consumption were searched within a discovery cohort (N = 6,264) and confirmed in a replication cohort (N = 5,975). Two loci achieved genome-wide significance (P < 5 × 10− 8) in a meta-analysis of the discovery and replication cohorts: an Asian population-specific 12q24 (rs79105258; P = 9.5 × 10− 15), which harbors CUX2, and 7p21 (rs10252701; P = 1.0 × 10− 14), in the upstream region of the aryl hydrocarbon receptor (AHR) gene, involved in caffeine metabolism. Subgroup analysis revealed a stronger genetic effect of the 12q24 locus in males (P for interaction = 8.2 × 10− 5). Further, rs79105258 at the 12q24 locus exerted pleiotropic effects on body mass index (P = 3.5 × 10− 4) and serum triglyceride levels (P = 8.7 × 10− 3). Conclusions Our results consolidate the association of habitual coffee consumption with the 12q24 and 7p21 loci. The different effects of the 12q24 locus between males and females are a novel finding that improves our understanding of genetic influences on habitual coffee consumption. Electronic supplementary material The online version of this article (10.1186/s12863-019-0763-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Shun Nogawa
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Kaoru Kawafune
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Tsuyoshi Hachiya
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan.,Genome Analytics Japan Inc., 15-1-3205, Tomihisa-cho, Shinjuku-ku, Tokyo, 162-0067, Japan
| | - Shoko Takahashi
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Maki Igarashi
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
29
|
Genetic Polymorphisms in ADORA2A and CYP1A2 Influence Caffeine's Effect on Postprandial Glycaemia. Sci Rep 2019; 9:10532. [PMID: 31324842 PMCID: PMC6642114 DOI: 10.1038/s41598-019-46931-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
The liver enzyme cytochrome P450 1A2 (CYP1A2) is responsible for 90% of caffeine metabolism, while caffeine exerts many of its effects via antagonist binding to adenosine A2a receptors (ADORA2A). This study aimed to examine whether functional single nucleotide polymorphisms (SNPs) in 1976T > C (ADORA2A; rs5751876) and −163C > A (CYP1A2; rs762551) influence the effect of caffeine on the postprandial glucose (GLU) response to a carbohydrate meal. We report that individuals with the 1976T > C CC, but not CT/TT genotypes display elevated GLU levels after consuming caffeine and carbohydrate (CHO + CAFF) versus carbohydrate only (CHO). The GLU area under the curve (AUC) was also greater during the CHO + CAFF condition compared to the CHO condition in CC, but not the CT/TT genotypes. The −163C > A AC/CC, but not AA, genotypes displayed greater GLU concentrations 60-min post meal during CHO + CAFF versus CHO. Our data suggest that caffeine-induced impairments in postprandial glycaemia are related to 1976T > C and −163C > A SNPs.
Collapse
|
30
|
Abstract
Regular coffee intake has been associated with reduced risk of developing serious chronic diseases. The hypothesis of this study is that coffee consumers present a particular pattern/trend of genotypes that ultimately will shed light on new gene targets to treat the diseases, from which regular coffee intake has preventive effects. Sixteen SNPs identified at genome-wide association studies (GWAS) on coffee and caffeine consumption were genotyped using real-time restriction-fragment length polymorphism-polymerase chain reaction (RT-PCR). The DNA samples were the same from a previous pilot study where 15 healthy volunteers donated two blood samples collected before and after drinking a standard cup of coffee and had caffeine plasma levels and CYP 1A2 genotype (rs762551) determined. The cross-examination of the data showed that six of the sixteen SNPs exhibited a negative allelic effect direction and nine of them showed a positive effect direction of which three of them had results confirmed by a recent GWAS. There is a need of a more in-depth study to understand the effects of the presence or absence of specific variant alleles as players to benefit the health of coffee consumers.
Collapse
|
31
|
Zeisel SH. A Conceptual Framework for Studying and Investing in Precision Nutrition. Front Genet 2019; 10:200. [PMID: 30936893 PMCID: PMC6431609 DOI: 10.3389/fgene.2019.00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nutrients and food-derived bioactive molecules must transit complex metabolic pathways, and these pathways vary between people. Metabolic heterogeneity is caused by genetic variation, epigenetic variation, differences in microbiome composition and function, lifestyle differences and by variation in environmental exposures. This review discusses a number of these sources of metabolic heterogeneity and presents some of the research investments that will be needed to make applications of precision nutrition practical.
Collapse
Affiliation(s)
- Steven H Zeisel
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
32
|
Identification of 22 novel loci associated with urinary biomarkers of albumin, sodium, and potassium excretion. Kidney Int 2019; 95:1197-1208. [PMID: 30910378 DOI: 10.1016/j.kint.2018.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/01/2023]
Abstract
Urine biomarkers reflecting kidney function and handling of dietary sodium and potassium are strongly associated with several common diseases including chronic kidney disease, cardiovascular disease, and diabetes mellitus. Knowledge about the genetic determinants of these biomarkers may shed light on pathophysiological mechanisms underlying the development of these diseases. We performed genome-wide association studies of urinary albumin: creatinine ratio (UACR), urinary potassium: creatinine ratio (UK/UCr), urinary sodium: creatinine ratio (UNa/UCr) and urinary sodium: potassium ratio (UNa/UK) in up to 218,450 (discovery) and 109,166 (replication) unrelated individuals of European ancestry from the UK Biobank. Further, we explored genetic correlations, tissue-specific gene expression, and possible genes implicated in the regulation of these biomarkers. After replication, we identified 19 genome-wide significant independent loci associated with UACR, 6 each with UK/UCr and UNa/UCr, and 4 with UNa/UK. In addition to 22 novel associations, we confirmed several established associations, including between the CUBN locus and microalbuminuria. We detected high pairwise genetic correlation across the urinary biomarkers, and between their levels and several physiological measurements. We highlight GIPR, a potential diabetes drug target, as possibly implicated in the genetic control of urinary potassium excretion, and NRBP1, a locus associated with gout, as plausibly involved in sodium and albumin excretion. Overall, we identified 22 novel genome-wide significant associations with urinary biomarkers and confirmed several previously established associations, providing new insights into the genetic basis of these traits and their connection to chronic diseases.
Collapse
|
33
|
Ong JS, Hwang LD, Cuellar-Partida G, Martin NG, Chenevix-Trench G, Quinn MCJ, Cornelis MC, Gharahkhani P, Webb PM, MacGregor S. Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 2019; 47:450-459. [PMID: 29186515 DOI: 10.1093/ije/dyx236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background Coffee consumption has been shown to be associated with various health outcomes in observational studies. However, evidence for its association with epithelial ovarian cancer (EOC) is inconsistent and it is unclear whether these associations are causal. Methods We used single nucleotide polymorphisms associated with (i) coffee and (ii) caffeine consumption to perform Mendelian randomization (MR) on EOC risk. We conducted a two-sample MR using genetic data on 44 062 individuals of European ancestry from the Ovarian Cancer Association Consortium (OCAC), and combined instrumental variable estimates using a Wald-type ratio estimator. Results For all EOC cases, the causal odds ratio (COR) for genetically predicted consumption of one additional cup of coffee per day was 0.92 [95% confidence interval (CI): 0.79, 1.06]. The COR was 0.90 (95% CI: 0.73, 1.10) for high-grade serous EOC. The COR for genetically predicted consumption of an additional 80 mg caffeine was 1.01 (95% CI: 0.92, 1.11) for all EOC cases and 0.90 (95% CI: 0.73, 1.10) for high-grade serous cases. Conclusions We found no evidence indicative of a strong association between EOC risk and genetically predicted coffee or caffeine levels. However, our estimates were not statistically inconsistent with earlier observational studies and we were unable to rule out small protective associations.
Collapse
Affiliation(s)
- Jue-Sheng Ong
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Liang-Dar Hwang
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Gabriel Cuellar-Partida
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas G Martin
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Georgia Chenevix-Trench
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Michael C J Quinn
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Marilyn C Cornelis
- Northwestern University Feinberg School of Medicine, Preventive Medicine, Chicago, IL, USA
| | - Puya Gharahkhani
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stuart MacGregor
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | |
Collapse
|
34
|
Fulton JL, Dinas PC, Carrillo AE, Edsall JR, Ryan EJ, Ryan EJ. Impact of Genetic Variability on Physiological Responses to Caffeine in Humans: A Systematic Review. Nutrients 2018; 10:nu10101373. [PMID: 30257492 PMCID: PMC6212886 DOI: 10.3390/nu10101373] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 01/21/2023] Open
Abstract
Emerging research has demonstrated that genetic variation may impact physiological responses to caffeine consumption. The purpose of the present review was to systematically recognize how select single nucleotide polymorphisms (SNPs) impact habitual use of caffeine as well as the ergogenic and anxiogenic consequences of caffeine. Two databases (PubMed and EBSCO) were independently searched using the same algorithm. Selected studies involved human participants and met at least one of the following inclusion criteria: (a) genetic analysis of individuals who habitually consume caffeine; (b) genetic analysis of individuals who underwent measurements of physical performance with the consumption of caffeine; (c) genetic analysis of individuals who underwent measurements of mood with the consumption of caffeine. We included 26 studies (10 randomized controlled trials, five controlled trials, seven cross-sectional studies, three single-group interventional studies and one case-control study). Single nucleotide polymorphisms in or near the cytochrome P450 (CYP1A2) and aryl hydrocarbon receptor (AHR) genes were consistently associated with caffeine consumption. Several studies demonstrated that the anxiogenic consequences of caffeine differed across adenosine 2a receptor (ADORA2A) genotypes, and the studies that investigated the effects of genetic variation on the ergogenic benefit of caffeine reported equivocal findings (CYP1A2) or warrant replication (ADORA2A).
Collapse
Affiliation(s)
- Jacob L Fulton
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| | - Petros C Dinas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece.
| | - Andres E Carrillo
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece.
| | - Jason R Edsall
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| | - Emily J Ryan
- Department of Exercise Physiology, West Virginia University School of Medicine, West Virginia University, Morganton, WV 26506, USA.
| | - Edward J Ryan
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| |
Collapse
|
35
|
GUEST NANCI, COREY PAUL, VESCOVI JASON, EL-SOHEMY AHMED. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med Sci Sports Exerc 2018; 50:1570-1578. [DOI: 10.1249/mss.0000000000001596] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Habitual coffee consumption and cognitive function: a Mendelian randomization meta-analysis in up to 415,530 participants. Sci Rep 2018; 8:7526. [PMID: 29760501 PMCID: PMC5951917 DOI: 10.1038/s41598-018-25919-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/24/2018] [Indexed: 01/11/2023] Open
Abstract
Coffee’s long-term effect on cognitive function remains unclear with studies suggesting both benefits and adverse effects. We used Mendelian randomization to investigate the causal relationship between habitual coffee consumption and cognitive function in mid- to later life. This included up to 415,530 participants and 300,760 coffee drinkers from 10 meta-analysed European ancestry cohorts. In each cohort, composite cognitive scores that capture global cognition and memory were computed using available tests. A genetic score derived using CYP1A1/2 (rs2472297) and AHR (rs6968865) was chosen as a proxy for habitual coffee consumption. Null associations were observed when examining the associations of the genetic score with global and memory cognition (β = −0.0007, 95% C.I. −0.009 to 0.008, P = 0.87; β = −0.001, 95% C.I. −0.005 to 0.002, P = 0.51, respectively), with high consistency between studies (Pheterogeneity > 0.4 for both). Domain specific analyses using available cognitive measures in the UK Biobank also did not support effects by habitual coffee intake for reaction time, pairs matching, reasoning or prospective memory (P ≥ 0.05 for all). Despite the power to detect very small effects, our meta-analysis provided no evidence for causal long-term effects of habitual coffee consumption on global cognition or memory.
Collapse
|
37
|
Nehlig A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol Rev 2018. [PMID: 29514871 DOI: 10.1124/pr.117.014407] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N-acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, Inserm U1129, Paris, France
| |
Collapse
|
38
|
Nakagawa-Senda H, Hachiya T, Shimizu A, Hosono S, Oze I, Watanabe M, Matsuo K, Ito H, Hara M, Nishida Y, Endoh K, Kuriki K, Katsuura-Kamano S, Arisawa K, Nindita Y, Ibusuki R, Suzuki S, Hosono A, Mikami H, Nakamura Y, Takashima N, Nakamura Y, Kuriyama N, Ozaki E, Furusyo N, Ikezaki H, Nakatochi M, Sasakabe T, Kawai S, Okada R, Hishida A, Naito M, Wakai K, Momozawa Y, Kubo M, Tanaka H. A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study. Sci Rep 2018; 8:1493. [PMID: 29367735 PMCID: PMC5784172 DOI: 10.1038/s41598-018-19914-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide, and its role in human health has received much attention. Although genome-wide association studies (GWASs) have investigated genetic variants associated with coffee consumption in European populations, no such study has yet been conducted in an Asian population. Here, we conducted a GWAS to identify common genetic variations that affected coffee consumption in a Japanese population of 11,261 participants recruited as a part of the Japan Multi-Institutional Collaborative Cohort (J-MICC) study. Coffee consumption was collected using a self-administered questionnaire, and converted from categories to cups/day. In the discovery stage (n = 6,312), we found 2 independent loci (12q24.12–13 and 5q33.3) that met suggestive significance (P < 1 × 10−6). In the replication stage (n = 4,949), the lead variant for the 12q24.12–13 locus (rs2074356) was significantly associated with habitual coffee consumption (P = 2.2 × 10−6), whereas the lead variant for the 5q33.3 locus (rs1957553) was not (P = 0.53). A meta-analysis of the discovery and replication populations, and the combined analysis using all subjects, revealed that rs2074356 achieved genome-wide significance (P = 2.2 × 10−16 for a meta-analysis). These findings indicate that the 12q24.12-13 locus is associated with coffee consumption among a Japanese population.
Collapse
Affiliation(s)
- Hiroko Nakagawa-Senda
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan. .,Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Morioka, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Morioka, Japan
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Miki Watanabe
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kaori Endoh
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yora Nindita
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiro Hosono
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haruo Mikami
- Division of Cancer Prevention and Epidemiology, Chiba Cancer Center, Chiba, Japan
| | - Yohko Nakamura
- Division of Cancer Prevention and Epidemiology, Chiba Cancer Center, Chiba, Japan
| | - Naoyuki Takashima
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Yasuyuki Nakamura
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Kyoto, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihiro Furusyo
- Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ikezaki
- Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Hideo Tanaka
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
39
|
Pickering C, Kiely J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med 2018; 48:7-16. [PMID: 28853006 PMCID: PMC5752738 DOI: 10.1007/s40279-017-0776-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Caffeine use is widespread in sport, with a strong evidence base demonstrating its ergogenic effect. Based on existing research, current guidelines recommend ingestion of 3-9 mg/kg approximately 60 min prior to exercise. However, the magnitude of performance enhancement following caffeine ingestion differs substantially between individuals, with the spectrum of responses ranging between highly ergogenic to ergolytic. These extensive inter-individual response distinctions are mediated by variation in individual genotype, environmental factors, and the legacy of prior experiences partially mediated via epigenetic mechanisms. Here, we briefly review the drivers of this inter-individual variation in caffeine response, focusing on the impact of common polymorphisms within two genes, CYP1A2 and ADORA2A. Contemporary evidence suggests current standardised guidelines are optimal for only a sub-set of the athlete population. Clearer understanding of the factors underpinning inter-individual variation potentially facilitates a more nuanced, and individually and context-specific customisation of caffeine ingestion guidelines, specific to an individual's biology, history, and competitive situation. Finally, we identify current knowledge deficits in this area, along with future associated research questions.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK.
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, UK.
| | - John Kiely
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
40
|
Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, Goldberger J, Lieberman HR, O'Brien C, Peck J, Tenenbein M, Weaver C, Harvey S, Urban J, Doepker C. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem Toxicol 2017; 109:585-648. [DOI: 10.1016/j.fct.2017.04.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
41
|
Manda VK, Avula B, Dale OR, Ali Z, Khan IA, Walker LA, Khan SI. PXR mediated induction of CYP3A4, CYP1A2, and P-gp byMitragyna speciosaand its alkaloids. Phytother Res 2017; 31:1935-1945. [DOI: 10.1002/ptr.5942] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Vamshi K. Manda
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Olivia R. Dale
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
- Department of Biomolecular Sciences, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Larry A. Walker
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
- Department of Biomolecular Sciences, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
- Department of Biomolecular Sciences, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| |
Collapse
|
42
|
Gonçalves LDS, Painelli VDS, Yamaguchi G, Oliveira LFD, Saunders B, da Silva RP, Maciel E, Artioli GG, Roschel H, Gualano B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol (1985) 2017; 123:213-220. [DOI: 10.1152/japplphysiol.00260.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 11/22/2022] Open
Abstract
This study investigates the influence of habitual caffeine intake on aerobic exercise-performance responses to acute caffeine supplementation. A double-blind, crossover, counterbalanced study was performed. Forty male endurance-trained cyclists were allocated into tertiles, according to their daily caffeine intake: low (58 ± 29 mg/d), moderate (143 ± 25 mg/d), and high (351 ± 139 mg/d) consumers. Participants completed three trials in which they performed simulated cycling time trials (TTs) in the fastest time possible following ingestion of the following: caffeine (CAF: 6 mg/kg body mass), placebo (PLA), and no supplement (CON). A mixed-model analysis revealed that TT performance was significantly improved in CAF compared with PLA and CON (29.92 ± 2.18 vs. 30.81 ± 2.67 and 31.14 ± 2.71 min, respectively; P = 0.0002). Analysis of covariance revealed no influence of habitual caffeine intake as a covariate on exercise performance ( P = 0.47). TT performance was not significantly different among tertiles ( P = 0.75). No correlation was observed between habitual caffeine intake and absolute changes (CAF − CON) in TT performance with caffeine ( P = 0.524). Individual analysis showed that eight, seven, and five individuals improved above the variation of the test in CAF in the low, moderate, and high tertiles, respectively. A Fisher’s exact test did not show any significant differences in the number of individuals who improved in CAF among the tertiles ( P > 0.05). Blood lactate and ratings of perceived exertion were not different between trials and tertiles ( P > 0.05). Performance effects of acute caffeine supplementation during an ~30-min cycling TT performance were not influenced by the level of habitual caffeine consumption. NEW & NOTEWORTHY There has been a long-standing paradigm that habitual caffeine intake may influence the ergogenicity of caffeine supplementation. Low, moderate, and high caffeine consumers showed similar absolute and relative improvements in cycling time-trial performance following acute supplementation of 6 mg/kg body mass caffeine. Performance effects of acute caffeine were not influenced by the level of habitual caffeine consumption, suggesting that high habitual caffeine intake does not negate the benefits of acute caffeine supplementation.
Collapse
Affiliation(s)
- Lívia de Souza Gonçalves
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| | | | - Guilherme Yamaguchi
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
| | | | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
| | | | - Erika Maciel
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| | - Guilherme Giannini Artioli
- Department of Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, University of São Paulo, Brazil
- Rheumatology Division, School of Medicine, University of São Paulo, Brazil; and
| |
Collapse
|
43
|
Kolahdouzan M, Hamadeh MJ. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther 2017; 23:272-290. [PMID: 28317317 PMCID: PMC6492672 DOI: 10.1111/cns.12684] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Caffeine is the most widely used psychostimulant in Western countries, with antioxidant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD), caffeine is beneficial in both men and women, in humans and animals. Similar effects of caffeine were observed in men with Parkinson's disease (PD); however, the effect of caffeine in female PD patients is controversial due to caffeine's competition with estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal models of amyotrophic lateral sclerosis (ALS) showed protective effects of A2A R antagonism. A study found caffeine to be associated with earlier age of onset of Huntington's disease (HD) at intakes >190 mg/d, but studies in animal models have found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to 3-5 mg/kg. However, further research is needed to investigate the effects of caffeine on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph disease need to be further investigated. Caffeine's most salient mechanisms of action relevant to neurodegenerative diseases need to be further explored.
Collapse
Affiliation(s)
- Mahshad Kolahdouzan
- School of Kinesiology and Health ScienceFaculty of HealthYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoONCanada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health ScienceFaculty of HealthYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoONCanada
| |
Collapse
|
44
|
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE. Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe 2016; 19:731-43. [PMID: 27173935 PMCID: PMC4915943 DOI: 10.1016/j.chom.2016.04.017] [Citation(s) in RCA: 665] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/27/2022]
Abstract
Studies in mice and humans have revealed intriguing associations between host genetics and the microbiome. Here we report a 16S rRNA-based analysis of the gut microbiome in 1,126 twin pairs, a subset of which was previously reported. Tripling the sample narrowed the confidence intervals around heritability estimates and uncovered additional heritable taxa, some of which are validated in other studies. Repeat sampling of subjects showed heritable taxa to be temporally stable. A candidate gene approach uncovered associations between heritable taxa and genes related to diet, metabolism, and olfaction. We replicate an association between Bifidobacterium and the lactase (LCT) gene locus and identify an association between the host gene ALDH1L1 and the bacteria SHA-98, suggesting a link between formate production and blood pressure. Additional genes detected are involved in barrier defense and self/non-self recognition. Our results indicate that diet-sensing, metabolism, and immune defense are important drivers of human-microbiome co-evolution.
Collapse
Affiliation(s)
- Julia K Goodrich
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Michelle Beaumont
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Matthew A Jackson
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA; Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Tang J, Ji H, Shi J, Wu L. Ephedra water decoction and cough tablets containing ephedra and liquorice induce CYP1A2 but not CYP2E1 hepatic enzymes in rats. Xenobiotica 2015; 46:141-6. [PMID: 26153439 DOI: 10.3109/00498254.2015.1060371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Ephedra water decoction (EWD) and cough tablets containing ephedra and liquorice (maxing cough tablets, MXCT) have been widely used in the treatment of asthma. In the clinic, EWD and MXCT may be prescribed with theophylline, one of the most popular antiasthmatic drugs. CYP1A2 and CYP2E1 are mainly involved in the oxidative metabolism of theophylline in human liver. Drug interactions involving the cytochrome P450 (CYP) isoforms generally are of two types: enzyme induction or enzyme inhibition. Enzyme inhibition reduces metabolism, whereas induction can increase it. 2. To evaluate the pretreatment effect of EWD and MXCT on CYP1A2 and CYP2E1, CYP1A2 and CYP2E1 activity, the protein expression and mRNA expression levels were determined. After pretreatment with EWD or MXCT, the enzyme activity, mRNA expression and protein expression of CYP1A2 were increased significantly (p < 0.05), but enzyme activity of CYP2E1 did not change compared with the control. 3. It was demonstrated that EWD or MXCT pretreatment obviously induced CYP1A2, therefore, in patients taking EWD or MXCT, possible CYP-induced drug interaction should be noted to decrease the risk of therapeutic failure or adverse effects resulting from the use of additional therapeutic agents.
Collapse
Affiliation(s)
- Jingling Tang
- a Department of Pharmaceutics , School of Pharmacy, Harbin Medical University , Harbin , P.R. China
| | - Hongyu Ji
- b Department of Pharmacy , The Second Affiliated Hospital, College of Heilongjiang Province, Harbin Medical University, Key Laboratory of Medications Research , Harbin , P.R. China , and
| | - Jing Shi
- a Department of Pharmaceutics , School of Pharmacy, Harbin Medical University , Harbin , P.R. China .,c Hulun Buir Institute for Food and Drug Control , Hulun Buir , P.R. China
| | - Linhua Wu
- a Department of Pharmaceutics , School of Pharmacy, Harbin Medical University , Harbin , P.R. China .,b Department of Pharmacy , The Second Affiliated Hospital, College of Heilongjiang Province, Harbin Medical University, Key Laboratory of Medications Research , Harbin , P.R. China , and
| |
Collapse
|
46
|
Association of 2 neurotrophic factor polymorphisms with efficacy of paroxetine in patients with major depressive disorder in a Chinese population. Ther Drug Monit 2015; 36:612-7. [PMID: 24577123 DOI: 10.1097/ftd.0000000000000062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND To evaluate the influence of the single nucleotide polymorphism (SNP) rs 6265 in the brain-derived neurotrophic factor (BDNF) gene and 21 SNPs of the glial cell line-derived neurotrophic factor (GDNF) gene on the efficacy of paroxetine in patients with major depressive disorder (MDD). METHODS Genotyping for BDNF and GDNF polymorphisms was performed in 298 patients with MDD who started 20 mg paroxetine per day and had their plasma concentrations measured after 6 weeks. The SNPs were selected from the HapMap Chinese ethnic group and literature reports. Changes in the severity of MDD were assessed with the Hamilton Depression Rating Scale (HAM-D) at baseline and at a 6-week follow-up. Paroxetine plasma concentration was measured using high-performance liquid chromatography with fluorescence detection. The Sequenom MassArray system was used for genotyping. RESULTS At the 6-week follow-up, 219 of the 298 patients (73.5%) were responders and 79 patients (26.5%) were nonresponders to paroxetine treatment. The lower threshold concentration of paroxetine for response was 50 ng/mL, and a linear relationship was found between paroxetine plasma concentration and clinical response. The allele types for the SNPs rs 6265 (P < 0.001), rs 2973049 (P = 0.005), and rs 2216711 (P = 0.006) demonstrated significant associations with paroxetine treatment remission at week 6. CONCLUSIONS Genetic variants in the BDNF and GDNF regions may be indicators of treatment response to paroxetine in patients with MDD.
Collapse
|
47
|
Shearer J. Methodological and metabolic considerations in the study of caffeine-containing energy drinks. Nutr Rev 2015; 72 Suppl 1:137-45. [PMID: 25293552 DOI: 10.1111/nure.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Caffeine-containing energy drinks are popular and widely available beverages. Despite large increases in consumption, studies documenting the nutritional, metabolic, and health implications of these beverages are limited. This review provides some important methodological considerations in the examination of these drinks and highlights their potential impact on the gastrointestinal system, liver, and metabolic health. The gastrointestinal system is important as it comes into contact with the highest concentration of energy drink ingredients and initiates a chain of events to communicate with peripheral tissues. Although energy drinks have diverse compositions, including taurine, ginseng, and carnitine, the most metabolically deleterious ingredients appear to be simple sugars (such as glucose and fructose) and caffeine. In combination, these last two ingredients have the greatest metabolic impact and potential influence on overall health.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
48
|
Shearer J, Graham TE. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal. Nutr Rev 2015; 72 Suppl 1:121-36. [PMID: 25293551 DOI: 10.1111/nure.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
49
|
Gurley BJ, Steelman SC, Thomas SL. Multi-ingredient, Caffeine-containing Dietary Supplements: History, Safety, and Efficacy. Clin Ther 2015; 37:275-301. [DOI: 10.1016/j.clinthera.2014.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/19/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
|
50
|
Hursel R, Janssens PLHR, Bouwman FG, Mariman EC, Westerterp-Plantenga MS. The role of catechol-O-methyl transferase Val(108/158)Met polymorphism (rs4680) in the effect of green tea on resting energy expenditure and fat oxidation: a pilot study. PLoS One 2014; 9:e106220. [PMID: 25238062 PMCID: PMC4169515 DOI: 10.1371/journal.pone.0106220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
Introduction Green tea(GT) is able to increase energy expenditure(EE) and fat oxidation(FATox) via inhibition of catechol-O-methyl transferase(COMT) by catechins. However, this does not always appear unanimously because of large inter-individual variability. This may be explained by different alleles of the functional COMT Val108/158Met polymorphism that are associated with COMT enzyme activity; high-activity enzyme, COMTH(Val/Val genotype), and low-activity COMTL(Met/Met genotype). Methods Fourteen Caucasian subjects (BMI: 22.2±2.3 kg/m2, age: 21.4±2.2 years) of whom 7 with the COMTH-genotype and 7 with the COMTL-genotype were included in a randomized, cross-over study in which EE and substrate oxidation were measured with a ventilated-hood system after decaffeinated GT and placebo(PL) consumption. Results At baseline, EE, RQ, FATox and carbohydrate oxidation(CHOox) did not differ between groups. Significant interactions were observed between COMT genotypes and treatment for RQ, FATox and CHOox (p<0.05). After GT vs. PL, EE(GT: 62.2 vs. PL: 35.4 kJ.3.5 hrs; p<0.01), RQ(GT: 0.80 vs. PL: 0.83; p<0.01), FATox(GT: 18.3 vs. PL: 15.3 g/d; p<0.001) and CHOox(GT: 18.5 vs. PL: 24.3 g/d; p<0.001) were significantly different for subjects carrying the COMTH genotype, but not for subjects carrying the COMTL genotype (EE, GT: 60.3 vs. PL: 51.7 kJ.3.5 hrs; NS), (RQ, GT: 0.81 vs. PL: 0.81; NS), (FATox, GT: 17.3 vs. PL: 17.0 g/d; NS), (CHOox, GT: 22.1 vs. PL: 21.4 g/d; NS). Conclusion Subjects carrying the COMTH genotype increased energy expenditure and fat-oxidation upon ingestion of green tea catechins vs, placebo, whereas COMTL genotype carriers reacted similarly to GT and PL ingestion. The differences in responses were due to the different responses on PL ingestion, but similar responses to GT ingestion, pointing to different mechanisms. The different alleles of the functional COMT Val108/158Met polymorphism appear to play a role in the inter-individual variability for EE and FATox after GT treatment. Trial Registration Nederlands Trial register NTR1918
Collapse
Affiliation(s)
- Rick Hursel
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Pilou L. H. R. Janssens
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Freek G. Bouwman
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Edwin C. Mariman
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Margriet S. Westerterp-Plantenga
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|