1
|
French CD, Arnold CD, Taha AY, Engle-Stone R, Schmidt RJ, Hertz-Picciotto I, Slupsky CM. Assessing Repeated Urinary Proline Betaine Measures as a Biomarker of Usual Citrus Intake during Pregnancy: Sources of Within-Person Variation and Correlation with Reported Intake. Metabolites 2023; 13:904. [PMID: 37623848 PMCID: PMC10456298 DOI: 10.3390/metabo13080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Proline betaine (Pro-B) has been identified as a biomarker of dietary citrus intake, yet gaps remain in its validation as a quantitative predictor of intake during various physiological states. This study quantified sources of within-individual variation (WIV) in urinary Pro-B concentration during pregnancy and assessed its correlation with the reported usual intake of citrus fruit and juice. Pro-B concentrations were determined by 1H-NMR spectroscopy in spot and 24-h urine specimens (n = 255) collected throughout pregnancy from women participating in the MARBLES cohort study. Adjusted linear or log mixed effects models quantified WIV and tested potential temporal predictors of continuous or elevated Pro-B concentration. Pearson or Spearman correlations assessed the relationship between averaged repeated biomarker measures and usual citrus intake reported by food frequency questionnaires. The proportion of variance in urinary Pro-B attributable to WIV ranged from 0.69 to 0.74 in unadjusted and adjusted models. Citrus season was a significant predictor of Pro-B in most analyses (e.g., adjusted β [95% CI]: 0.52 [0.16, 0.88] for non-normalized Pro-B), while gestational age predicted only non-normalized Pro-B (adjusted β [95% CI]: -0.093 [-0.18, -0.0038]). Moderate correlations (rs of 0.40 to 0.42) were found between reported usual citrus intake and averaged repeated biomarker measurements, which were stronger compared to using a single measurement. Given the high degree of WIV observed in urinary Pro-B, multiple samples per participant are likely needed to assess associations between citrus consumption and health outcomes.
Collapse
Affiliation(s)
- Caitlin D. French
- Department of Nutrition, University of California, Davis, CA 95616, USA; (C.D.F.); (C.D.A.); (R.E.-S.)
| | - Charles D. Arnold
- Department of Nutrition, University of California, Davis, CA 95616, USA; (C.D.F.); (C.D.A.); (R.E.-S.)
| | - Ameer Y. Taha
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA;
| | - Reina Engle-Stone
- Department of Nutrition, University of California, Davis, CA 95616, USA; (C.D.F.); (C.D.A.); (R.E.-S.)
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, CA 95616, USA; (C.D.F.); (C.D.A.); (R.E.-S.)
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA;
| |
Collapse
|
2
|
Finch JP, Wilson T, Lyons L, Phillips H, Beckmann M, Draper J. Spectral binning as an approach to post-acquisition processing of high resolution FIE-MS metabolome fingerprinting data. Metabolomics 2022; 18:64. [PMID: 35917032 PMCID: PMC9345815 DOI: 10.1007/s11306-022-01923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Flow infusion electrospray high resolution mass spectrometry (FIE-HRMS) fingerprinting produces complex, high dimensional data sets which require specialist in-silico software tools to process the data prior to analysis. OBJECTIVES Present spectral binning as a pragmatic approach to post-acquisition procession of FIE-HRMS metabolome fingerprinting data. METHODS A spectral binning approach was developed that included the elimination of single scan m/z events, the binning of spectra and the averaging of spectra across the infusion profile. The modal accurate m/z was then extracted for each bin. This approach was assessed using four different biological matrices and a mix of 31 known chemical standards analysed by FIE-HRMS using an Exactive Orbitrap. Bin purity and centrality metrics were developed to objectively assess the distribution and position of accurate m/z within an individual bin respectively. RESULTS The optimal spectral binning width was found to be 0.01 amu. 80.8% of the extracted accurate m/z matched to predicted ionisation products of the chemical standards mix were found to have an error of below 3 ppm. The open-source R package binneR was developed as a user friendly implementation of the approach. This was able to process 100 data files using 4 Central Processing Units (CPU) workers in only 55 seconds with a maximum memory usage of 1.36 GB. CONCLUSION Spectral binning is a fast and robust method for the post-acquisition processing of FIE-HRMS data. The open-source R package binneR allows users to efficiently process data from FIE-HRMS experiments with the resources available on a standard desktop computer.
Collapse
Affiliation(s)
- Jasen P Finch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.
| | - Thomas Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Laura Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| |
Collapse
|
3
|
Brachem C, Oluwagbemigun K, Langenau J, Weinhold L, Alexy U, Schmid M, Nöthlings U. Exploring the association between habitual food intake and the urine and blood metabolome in adolescents and young adults: a cohort study. Mol Nutr Food Res 2022; 66:e2200023. [PMID: 35785518 DOI: 10.1002/mnfr.202200023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Indexed: 11/07/2022]
Abstract
SCOPE Habitual diet may be reflected in metabolite profiles that can improve accurate assessment of dietary exposure and further enhance our understanding of their link to health conditions. We aimed to explore the relationship of habitual food intake with blood and urine metabolites in adolescents and young adults. METHODS The study population comprised 228 participants (94 male and 134 female) of the DONALD study. Dietary intake was assessed by yearly repeated 3d-food records. Habitual diet was estimated as the average consumption of 23 food groups in adolescence. Using an untargeted metabolomics approach, we quantified 2638 metabolites in plasma and 1407 metabolites in urine. In each sex, we determined unique diet-metabolite associations using orthogonal projection to latent structures (oPLS) and random forests (RF). RESULTS We observed 6 metabolites in agreement between oPLS and RF in urine, 1 in females (vanillylmandelate to processed/ other meat) and 5 in males (indole-3-acetamide, and N6-methyladenosine to eggs; hippurate, citraconate/glutaconate, and X - 12111 to vegetables). We observed no association in blood in agreement. CONCLUSION We observed a limited reflection of habitual food group intake by single metabolites in urine and not in blood. The explored biomarkers should be confirmed in additional studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian Brachem
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Julia Langenau
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Alexy
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany.,Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| |
Collapse
|
4
|
Xi M, La Barbera G, Eriksen JN, Prahm AP, Jeppesen PB, Dragsted LO. Discovery of urinary biomarkers of spinach consumption using untargeted LC-MS metabolomics in a human intervention trial. Mol Nutr Food Res 2022; 66:e2100260. [PMID: 35072987 DOI: 10.1002/mnfr.202100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/21/2021] [Indexed: 11/06/2022]
Abstract
SCOPE Biomarkers for intake of green leafy vegetables such as spinach could help investigate their health effects. However, only few potential intake markers have been reported in the literature so far. METHODS AND RESULTS Based on a cross-over study on whole leaf and minced spinach, we investigated changes in metabolites before and after spinach intake and differences between the two treatments and health status. Nineteen volunteers (12 healthy subjects and 7 short bowel patients) completed the study within 48 d. Urine samples (24 hr intervals before and after spinach intake) and serum samples (baseline, post 8 d, and post 15 d) were collected and analyzed by UHPLC-QTOF-MS. The acquired data was analyzed by multivariate and univariate analyses. Three candidate biomarkers were observed in urine only after the spinach intake, including des-amino arginine pentenol ester, D/L-malic acid ester of cis-p-coumarate, D/L-malic acid ester of trans-p-coumarate, and 69 metabolites were present before spinach intake but showing an altered level after treatment. These metabolites were related to dietary habits or meal structure, and some changes were possibly affected by spinach intake. The candidate biomarkers were independent of spinach pre-processing and healthy status. No markers were discovered in serum samples. CONCLUSION We propose structures for three candidate spinach intake biomarkers; these markers will need further validation in independent studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jane Nygaard Eriksen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - August Pilegaard Prahm
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Palle Bekker Jeppesen
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Beckmann M, Wilson T, Lloyd AJ, Torres D, Goios A, Willis ND, Lyons L, Phillips H, Mathers JC, Draper J. Challenges Associated With the Design and Deployment of Food Intake Urine Biomarker Technology for Assessment of Habitual Diet in Free-Living Individuals and Populations-A Perspective. Front Nutr 2020; 7:602515. [PMID: 33344495 PMCID: PMC7745244 DOI: 10.3389/fnut.2020.602515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Improvement of diet at the population level is a cornerstone of national and international strategies for reducing chronic disease burden. A critical challenge in generating robust data on habitual dietary intake is accurate exposure assessment. Self-reporting instruments (e.g., food frequency questionnaires, dietary recall) are subject to reporting bias and serving size perceptions, while weighed dietary assessments are unfeasible in large-scale studies. However, secondary metabolites derived from individual foods/food groups and present in urine provide an opportunity to develop potential biomarkers of food intake (BFIs). Habitual dietary intake assessment in population surveys using biomarkers presents several challenges, including the need to develop affordable biofluid collection methods, acceptable to participants that allow collection of informative samples. Monitoring diet comprehensively using biomarkers requires analytical methods to quantify the structurally diverse mixture of target biomarkers, at a range of concentrations within urine. The present article provides a perspective on the challenges associated with the development of urine biomarker technology for monitoring diet exposure in free-living individuals with a view to its future deployment in "real world" situations. An observational study (n = 95), as part of a national survey on eating habits, provided an opportunity to explore biomarker measurement in a free-living population. In a second food intervention study (n = 15), individuals consumed a wide range of foods as a series of menus designed specifically to achieve exposure reflecting a diversity of foods commonly consumed in the UK, emulating normal eating patterns. First Morning Void urines were shown to be suitable samples for biomarker measurement. Triple quadrupole mass spectrometry, coupled with liquid chromatography, was used to assess simultaneously the behavior of a panel of 54 potential BFIs. This panel of chemically diverse biomarkers, reporting intake of a wide range of commonly-consumed foods, can be extended successfully as new biomarker leads are discovered. Towards validation, we demonstrate excellent discrimination of eating patterns and quantitative relationships between biomarker concentrations in urine and the intake of several foods. In conclusion, we believe that the integration of information from BFI technology and dietary self-reporting tools will expedite research on the complex interactions between dietary choices and health.
Collapse
Affiliation(s)
- Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Thomas Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Amanda J. Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Duarte Torres
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Ana Goios
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Naomi D. Willis
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Laura Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John C. Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
6
|
Willis ND, Lloyd AJ, Xie L, Stiegler M, Tailliart K, Garcia-Perez I, Chambers ES, Beckmann M, Draper J, Mathers JC. Design and Characterisation of a Randomized Food Intervention That Mimics Exposure to a Typical UK Diet to Provide Urine Samples for Identification and Validation of Metabolite Biomarkers of Food Intake. Front Nutr 2020; 7:561010. [PMID: 33195362 PMCID: PMC7609501 DOI: 10.3389/fnut.2020.561010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Poor dietary choices are major risk factors for obesity and non-communicable diseases, which places an increasing burden on healthcare systems worldwide. To monitor the effectiveness of healthy eating guidelines and strategies, there is a need for objective measures of dietary intake in community settings. Metabolites derived from specific foods present in urine samples can provide objective biomarkers of food intake (BFIs). Whilst the majority of biomarker discovery/validation studies have investigated potential biomarkers for single foods only, this study considered the whole diet by using menus that delivered a wide range of foods in meals that emulated conventional UK eating patterns. Fifty-one healthy participants (range 19-77 years; 57% female) followed a uniquely designed, randomized controlled dietary intervention, and provided spot urine samples suitable for discovery of BFIs within a real-world context. Free-living participants prepared and consumed all foods and drinks in their own homes and were asked to follow the protocols for meal consumption and home urine sample collection. This study also assessed the robustness, and impact on data quality, of a minimally invasive urine collection protocol. Overall the study design was well-accepted by participants and concluded successfully without any drop outs. Compliance for urine collection, adherence to menu plans, and observance of recommended meal timings, was shown to be very high. Metabolome analysis using mass spectrometry coupled with data mining demonstrated that the study protocol was well-suited for BFI discovery and validation. Novel, putative biomarkers for an extended range of foods were identified including legumes, curry, strongly-heated products, and artificially sweetened, low calorie beverages. In conclusion, aspects of this study design would help to overcome several current challenges in the development of BFI technology. One specific attribute was the examination of BFI generalizability across related food groups and across different preparations and cooking methods of foods. Furthermore, the collection of urine samples at multiple time points helped to determine which spot sample was optimal for identification and validation of BFIs in free-living individuals. A further valuable design feature centered on the comprehensiveness of the menu design which allowed the testing of biomarker specificity within a biobank of urine samples.
Collapse
Affiliation(s)
- Naomi D. Willis
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Amanda J. Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Long Xie
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Martina Stiegler
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Kathleen Tailliart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Isabel Garcia-Perez
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Edward S. Chambers
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John C. Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
7
|
Beckmann M, Wilson T, Zubair H, Lloyd AJ, Lyons L, Phillips H, Tailliart K, Gregory N, Thatcher R, Garcia-Perez I, Frost G, Mathers JM, Draper J. A Standardized Strategy for Simultaneous Quantification of Urine Metabolites to Validate Development of a Biomarker Panel Allowing Comprehensive Assessment of Dietary Exposure. Mol Nutr Food Res 2020; 64:e2000517. [PMID: 32926540 DOI: 10.1002/mnfr.202000517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/02/2023]
Abstract
SCOPE Metabolites derived from individual foods found in human biofluids after consumption could provide objective measures of dietary intake. For comprehensive dietary assessment, quantification methods would need to manage the structurally diverse mixture of target metabolites present at wide concentration ranges. METHODS AND RESULTS A strategy for selection of candidate dietary exposure biomarkers is developed. An analytical method for 62 food biomarkers is validated by extensive analysis of chromatographic and ionization behavior characteristics using triple quadrupole mass spectrometry. Urine samples from two food intervention studies are used: a controlled, inpatient study (n = 19) and a free-living study where individuals (n = 15) are provided with food as a series of menu plans. As proof-of-principle, it is demonstrated that the biomarker panel could discriminate between menu plans by detecting distinctive changes in the concentration in urine of targeted metabolites. Quantitative relationships between four biomarker concentrations in urine and dietary intake are shown. CONCLUSION Design concepts for an analytical strategy are demonstrated, allowing simultaneous quantification of a comprehensive panel of chemically-diverse biomarkers of a wide range of commonly-consumed foods. It is proposed that integration of self-reported dietary recording tools with biomarker approaches will provide more robust assessment of dietary exposure.
Collapse
Affiliation(s)
- Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Thomas Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Hassan Zubair
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Amanda J Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Laura Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Kathleen Tailliart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Nicholas Gregory
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Rhys Thatcher
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Isabel Garcia-Perez
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Gary Frost
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - John M Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| |
Collapse
|
8
|
Clarke ED, Rollo ME, Pezdirc K, Collins CE, Haslam RL. Urinary biomarkers of dietary intake: a review. Nutr Rev 2020; 78:364-381. [PMID: 31670796 DOI: 10.1093/nutrit/nuz048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dietary intakes are commonly assessed by established methods including food frequency questionnaires, food records, or recalls. These self-report methods have limitations impacting validity and reliability. Dietary biomarkers provide objective verification of self-reported food intakes, and represent a rapidly evolving area. This review aims to summarize the urinary biomarkers of individual foods, food groups, dietary patterns, or nutritional supplements that have been evaluated to date. Six electronic databases were searched. Included studies involved healthy populations, were published from 2000, and compared measured dietary intake with urinary markers. The initial search identified 9985 studies; of these, 616 full texts were retrieved and 109 full texts were included. Of the included studies, 67 foods and food components were studied, and 347 unique urinary biomarkers were identified. The most reliable biomarkers identified were whole grains (alkylresorcinols), soy (isoflavones), and sugar (sucrose and fructose). While numerous novel urinary biomarkers have been identified, further validation studies are warranted to verify the accuracy of self-reported intakes and utility within practice.
Collapse
Affiliation(s)
- Erin D Clarke
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Megan E Rollo
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Kristine Pezdirc
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca L Haslam
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
9
|
Cuparencu C, Rinnan Å, Silvestre MP, Poppitt SD, Raben A, Dragsted LO. The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study. Eur J Nutr 2020; 60:179-192. [PMID: 32246262 DOI: 10.1007/s00394-020-02230-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Biomarkers of meat intake hold promise in clarifying the health effects of meat consumption, yet the differentiation between red and white meat remains a challenge. We measure meat intake objectively in a free-living population by applying a newly developed, three-step strategy for biomarker-based assessment of dietary intakes aimed to indicate if (1) any meat was consumed, (2) what type it was and (3) the quantity consumed. METHODS Twenty-four hour urine samples collected in a four-way crossover RCT and in a cross-sectional analysis of a longitudinal lifestyle intervention (the PREVIEW Study) were analyzed by untargeted LC-MS metabolomics. In the RCT, healthy volunteers consumed three test meals (beef, pork and chicken) and a control; in PREVIEW, overweight participants followed a diet with high or moderate protein levels. PLS-DA modeling of all possible combinations between six previously reported, partially validated, meat biomarkers was used to classify meat intake using samples from the RCT to predict consumption in PREVIEW. RESULTS Anserine best separated omnivores from vegetarians (AUROC 0.94-0.97), while the anserine to carnosine ratio best distinguished the consumption of red from white meat (AUROC 0.94). Carnosine showed a trend for dose-response between non-consumers, low consumers and high consumers for all meat categories, while in combination with other biomarkers the difference was significant. CONCLUSION It is possible to evaluate red meat intake by using combinations of existing biomarkers of white and general meat intake. Our results are novel and can be applied to assess qualitatively recent meat intake in nutritional studies. Further work to improve quantitation by biomarkers is needed.
Collapse
Affiliation(s)
- Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| | - Åsmund Rinnan
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Marta P Silvestre
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
10
|
Chatelan A, Bochud M, Frohlich KL. Precision nutrition: hype or hope for public health interventions to reduce obesity? Int J Epidemiol 2020; 48:332-342. [PMID: 30544190 PMCID: PMC6469305 DOI: 10.1093/ije/dyy274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2018] [Indexed: 12/27/2022] Open
Abstract
High-income countries are experiencing an obesity epidemic that follows a socioeconomic gradient, affecting groups of lower socioeconomic status disproportionately. Recent clinical findings have suggested new perspectives for the prevention and treatment of obesity, using personalized dietary approaches. Precision nutrition (PN), also called personalized nutrition, has been developed to deliver more preventive and practical dietary advice than ‘one-size-fits-all’ guidelines. With interventions becoming increasingly plausible at a large scale thanks to artificial intelligence and smartphone applications, some have begun to view PN as a novel way to deliver the right dietary intervention to the right population. We argue that large-scale PN, if taken alone, might be of limited interest from a public health perspective. Building on Geoffrey Rose’s theory regarding the differences in individual and population causes of disease, we show that large-scale PN can only address some individual causes of obesity (causes of cases). This individual-centred approach is likely to have a small impact on the distribution of obesity at a population level because it ignores the population causes of obesity (causes of incidence). The latter are embedded in the populations’ social, cultural, economic and political contexts that make environments obesogenic. Additionally, the most socially privileged groups in the population are the most likely to respond to large-scale PN interventions. This could have the undesirable effect of widening social inequalities in obesity. We caution public health actors that interventions based only on large-scale PN are unlikely, despite current expectations, to improve dietary intake or reduce obesity at a population level.
Collapse
Affiliation(s)
- Angeline Chatelan
- Institute of Social and Preventive Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Katherine L Frohlich
- Département de médecine sociale et préventive, Ecole de Santé Publique & Institut de recherche en santé publique de l'Université de Montréal, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
11
|
Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, Dodd D, Djoumbou-Feunang Y, Dorrestein PC, Dragsted LO, Draper J, Duffy LC, Dwyer JT, Emenaker NJ, Fiehn O, Gerszten RE, B Hu F, Karp RW, Klurfeld DM, Laughlin MR, Little AR, Lynch CJ, Moore SC, Nicastro HL, O'Brien DM, Ordovás JM, Osganian SK, Playdon M, Prentice R, Raftery D, Reisdorph N, Roche HM, Ross SA, Sang S, Scalbert A, Srinivas PR, Zeisel SH. Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with Omics Approaches. Adv Nutr 2020; 11:200-215. [PMID: 31386148 PMCID: PMC7442414 DOI: 10.1093/advances/nmz075] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research.
Collapse
Affiliation(s)
- Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dinesh Barupal
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Deirdra N Chester
- Division of Nutrition, Institute of Food Safety and Nutrition at the National Institute of Food and Agriculture, USDA, Washington, DC, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yannick Djoumbou-Feunang
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Lars O Dragsted
- Department of Nutrition, Exercise, and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - John Draper
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Linda C Duffy
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Johanna T Dwyer
- National Institutes of Health, Office of Dietary Supplements, Bethesda, MD, USA
| | - Nancy J Emenaker
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Departments of Nutrition; Epidemiology and Statistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert W Karp
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - David M Klurfeld
- Department of Nutrition, Food Safety/Quality, USDA—Agricultural Research Service, Beltsville, MD, USA
| | - Maren R Laughlin
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - A Roger Little
- National Institutes of Health, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Christopher J Lynch
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Steven C Moore
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Holly L Nicastro
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Diane M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer–USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Stavroula K Osganian
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Mary Playdon
- Department of Nutrition and Integrative Physiology, University of Utah and Division of Cancer Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ross Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Sharon A Ross
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Section, Biomarkers Group, Lyon, France
| | - Pothur R Srinivas
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
12
|
Cuparencu C, Praticó G, Hemeryck LY, Sri Harsha PSC, Noerman S, Rombouts C, Xi M, Vanhaecke L, Hanhineva K, Brennan L, Dragsted LO. Biomarkers of meat and seafood intake: an extensive literature review. GENES & NUTRITION 2019; 14:35. [PMID: 31908682 PMCID: PMC6937850 DOI: 10.1186/s12263-019-0656-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 01/16/2023]
Abstract
Meat, including fish and shellfish, represents a valuable constituent of most balanced diets. Consumption of different types of meat and fish has been associated with both beneficial and adverse health effects. While white meats and fish are generally associated with positive health outcomes, red and especially processed meats have been associated with colorectal cancer and other diseases. The contribution of these foods to the development or prevention of chronic diseases is still not fully elucidated. One of the main problems is the difficulty in properly evaluating meat intake, as the existing self-reporting tools for dietary assessment may be imprecise and therefore affected by systematic and random errors. Dietary biomarkers measured in biological fluids have been proposed as possible objective measurements of the actual intake of specific foods and as a support for classical assessment methods. Good biomarkers for meat intake should reflect total dietary intake of meat, independent of source or processing and should be able to differentiate meat consumption from that of other protein-rich foods; alternatively, meat intake biomarkers should be specific to each of the different meat sources (e.g., red vs. white; fish, bird, or mammal) and/or cooking methods. In this paper, we present a systematic investigation of the scientific literature while providing a comprehensive overview of the possible biomarker(s) for the intake of different types of meat, including fish and shellfish, and processed and heated meats according to published guidelines for biomarker reviews (BFIrev). The most promising biomarkers are further validated for their usefulness for dietary assessment by published validation criteria.
Collapse
Affiliation(s)
- Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Giulia Praticó
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Lieselot Y. Hemeryck
- Department of Veterinary Public Health & Food Safety, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Pedapati S. C. Sri Harsha
- School of Agriculture and Food Science, Institute of Food & Health, University College Dublin, Belfield 4, Dublin, Ireland
| | - Stefania Noerman
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Caroline Rombouts
- Department of Veterinary Public Health & Food Safety, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Lynn Vanhaecke
- Department of Veterinary Public Health & Food Safety, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food & Health, University College Dublin, Belfield 4, Dublin, Ireland
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| |
Collapse
|
13
|
Wilson T, Garcia-Perez I, Posma JM, Lloyd AJ, Chambers ES, Tailliart K, Zubair H, Beckmann M, Mathers JC, Holmes E, Frost G, Draper J. Spot and Cumulative Urine Samples Are Suitable Replacements for 24-Hour Urine Collections for Objective Measures of Dietary Exposure in Adults Using Metabolite Biomarkers. J Nutr 2019; 149:1692-1700. [PMID: 31240300 DOI: 10.1093/jn/nxz138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Accepted: 05/24/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Measurement of multiple food intake exposure biomarkers in urine may offer an objective method for monitoring diet. The potential of spot and cumulative urine samples that have reduced burden on participants as replacements for 24-h urine collections has not been evaluated. OBJECTIVE The aim of this study was to determine the utility of spot and cumulative urine samples for classifying the metabolic profiles of people according to dietary intake when compared with 24-h urine collections in a controlled dietary intervention study. METHODS Nineteen healthy individuals (10 male, 9 female, aged 21-65 y, BMI 20-35 kg/m2) each consumed 4 distinctly different diets, each for 1 wk. Spot urine samples were collected ∼2 h post meals on 3 intervention days/wk. Cumulative urine samples were collected daily over 3 separate temporal periods. A 24-h urine collection was created by combining the 3 cumulative urine samples. Urine samples were analyzed with metabolite fingerprinting by both high-resolution flow infusion electrospray mass spectrometry (FIE-HRMS) and proton nuclear magnetic resonance spectroscopy (1H-NMR). Concentrations of dietary intake biomarkers were measured with liquid chromatography triple quadrupole mass spectrometry and by integration of 1H-NMR data. RESULTS Cross-validation modeling with 1H-NMR and FIE-HRMS data demonstrated the power of spot and cumulative urine samples in predicting dietary patterns in 24-h urine collections. Particularly, there was no significant loss of information when post-dinner (PD) spot or overnight cumulative samples were substituted for 24-h urine collections (classification accuracies of 0.891 and 0.938, respectively). Quantitative analysis of urine samples also demonstrated the relation between PD spot samples and 24-h urines for dietary exposure biomarkers. CONCLUSIONS We conclude that PD spot urine samples are suitable replacements for 24-h urine collections. Alternatively, cumulative samples collected overnight predict similarly to 24-h urine samples and have a lower collection burden for participants.
Collapse
Affiliation(s)
- Thomas Wilson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Isabel Garcia-Perez
- Section of Biomolecular Medicine, Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joram M Posma
- Section of Biomolecular Medicine, Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Amanda J Lloyd
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Edward S Chambers
- Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Kathleen Tailliart
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Hassan Zubair
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Manfred Beckmann
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elaine Holmes
- Section of Biomolecular Medicine, Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - John Draper
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
14
|
Hernández-Alonso P, Papandreou C, Bulló M, Ruiz-Canela M, Dennis C, Deik A, Wang DD, Guasch-Ferré M, Yu E, Toledo E, Razquin C, Corella D, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Serra-Majem L, Liang L, Clish CB, Martínez-González MA, Hu FB, Salas-Salvadó J. Plasma Metabolites Associated with Frequent Red Wine Consumption: A Metabolomics Approach within the PREDIMED Study. Mol Nutr Food Res 2019; 63:e1900140. [PMID: 31291050 PMCID: PMC6771435 DOI: 10.1002/mnfr.201900140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/14/2019] [Indexed: 01/25/2023]
Abstract
SCOPE The relationship between red wine (RW) consumption and metabolism is poorly understood. It is aimed to assess the systemic metabolomic profiles in relation to frequent RW consumption as well as the ability of a set of metabolites to discriminate RW consumers. METHODS AND RESULTS A cross-sectional analysis of 1157 participants is carried out. Subjects are divided as non-RW consumers versus RW consumers (>1 glass per day RW [100 mL per day]). Plasma metabolomics analysis is performed using LC-MS. Associations between 386 identified metabolites and RW consumption are assessed using elastic net regression analysis taking into consideration baseline significant covariates. Ten-cross-validation (CV) is performed and receiver operating characteristic curves are constructed in each of the validation datasets based on weighted models. A subset of 13 metabolites is consistently selected and RW consumers versus nonconsumers are discriminated. Based on the multi-metabolite model weighted with the regression coefficients of metabolites, the area under the curve is 0.83 (95% CI: 0.80-0.86). These metabolites mainly consisted of lipid species, some organic acids, and alkaloids. CONCLUSIONS A multi-metabolite model identified in a Mediterranean population appears useful to discriminate between frequent RW consumers and nonconsumers. Further studies are needed to assess the contribution of these metabolites in health and disease.
Collapse
Affiliation(s)
- Pablo Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Christopher Papandreou
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ruiz-Canela
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
| | - Courtney Dennis
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Dong D. Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferré
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward Yu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Estefanía Toledo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
| | - Cristina Razquin
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Department of Endocrinology and Nutrition Institut d’Investigacions Biomèdiques August Pi Sunyer (IDI-BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition Institut d’Investigacions Biomèdiques August Pi Sunyer (IDI-BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Fernando Arós
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, University Hospital of Alava, Vitoria, Spain
| | - Miquel Fiol
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Health Sciences IUNICS, University of Balearic Islands and Hospital Son Espases, Palma de Mallorca, Spain
| | - Lluís Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences IUIBS, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Liming Liang
- Departments of Epidemiology and Statistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Miguel A Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Departments of Epidemiology and Statistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, MA, USA
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Lloyd AJ, Willis ND, Wilson T, Zubair H, Xie L, Chambers E, Garcia‐Perez I, Tailliart K, Beckmann M, Mathers JC, Draper J. Developing a Food Exposure and Urine Sampling Strategy for Dietary Exposure Biomarker Validation in Free-Living Individuals. Mol Nutr Food Res 2019; 63:e1900062. [PMID: 31157514 PMCID: PMC8629115 DOI: 10.1002/mnfr.201900062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Indexed: 12/30/2022]
Abstract
SCOPE Dietary choices modulate the risk of chronic diseases and improving diet is a central component of public health strategies. Food-derived metabolites present in urine could provide objective biomarkers of dietary exposure. To assist biomarker validation, this work aims to develop a food intervention strategy mimicking a typical annual diet over a short period of time and assesses urine sampling protocols potentially suitable for future deployment of biomarker technology in free-living populations. METHODS AND RESULTS Six different menu plans comprehensively represent a typical UK annual diet that is split into two dietary experimental periods. Free-living adult participants (n = 15 and n = 36, respectively) are provided with all their food, as a series of menu plans, over a period of three consecutive days. Multiple spot urine samples are collected and stored at home. CONCLUSION A successful food exposure strategy is established following a conventional UK eating pattern, which is suitable for biomarker validation in free-living individuals. The urine sampling procedure is acceptable for volunteers and delivered samples suitable for biomarker quantification. The study design provides scope for validation of existing biomarker candidates and potentially for discovery of new biomarker leads, and should help inform the future deployment of biomarker technology for habitual dietary exposure measurement.
Collapse
Affiliation(s)
- Amanda J. Lloyd
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3DAUK
| | - Naomi D. Willis
- Human Nutrition Research CentreInstitute of Cellular MedicineNewcastle UniversityNewcastle‐upon‐TyneNE2 4HHUK
| | - Thomas Wilson
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3DAUK
| | - Hassan Zubair
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3DAUK
| | - Long Xie
- Human Nutrition Research CentreInstitute of Cellular MedicineNewcastle UniversityNewcastle‐upon‐TyneNE2 4HHUK
| | - Edward Chambers
- Nutrition and Dietetic Research GroupDivision of DiabetesEndocrinology and MetabolismDepartment of MedicineHammersmith Hospital CampusImperial College LondonW12 0NNUK
| | - Isabel Garcia‐Perez
- Nutrition and Dietetic Research GroupDivision of DiabetesEndocrinology and MetabolismDepartment of MedicineHammersmith Hospital CampusImperial College LondonW12 0NNUK
| | - Kathleen Tailliart
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3DAUK
| | - Manfred Beckmann
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3DAUK
| | - John C. Mathers
- Human Nutrition Research CentreInstitute of Cellular MedicineNewcastle UniversityNewcastle‐upon‐TyneNE2 4HHUK
| | - John Draper
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3DAUK
| |
Collapse
|
16
|
Application of Urinary Polyphenol Biomarkers Measured by Liquid Chromatography Tandem Mass Spectrometry to Assess Polyphenol Intake and Their Association with Overweight and Obesity in Free-Living Healthy Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019. [DOI: 10.1155/2019/4809836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although some polyphenol biomarkers in serum or urine have been identified by untargeted metabolomics and proved to reflect dietary polyphenol intake, only a few of them have been validated in different studies and populations with simple and reliable targeted methods. In the present study, a targeted metabolomics method by LC/MS/MS for the measurement of twenty-two polyphenol biomarkers in urine samples was established and validated to effectively assess the habitual polyphenol intake in free-living healthy Chinese subjects. Multivariate logistic regression models were used to assess relationships of biomarkers with overweight and obesity after adjusting for potential confounders. The levels of urinary polyphenol biomarkers, especially gut microbial metabolites of polyphenols, were inversely associated with overweight and obesity, and this association was more pronounced in the inflammatory groups, suggesting that it is of great importance to maintain polyphenol biomarkers at high levels or intake-sufficient polyphenols in obesity with chronic inflammation than others. The measurement of these biomarkers may offer a valid alternative or complementary addition to self-reported survey for the evaluation of polyphenol intake and investigation into their relationships with chronic disease-related endpoints in large-scale clinical and epidemiologic studies.
Collapse
|
17
|
Cuparencu C, Rinnan Å, Dragsted LO. Combined Markers to Assess Meat Intake-Human Metabolomic Studies of Discovery and Validation. Mol Nutr Food Res 2019; 63:e1900106. [PMID: 31141834 DOI: 10.1002/mnfr.201900106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/05/2019] [Indexed: 01/01/2023]
Abstract
SCOPE Biomarkers of red meat may clarify the relationship between meat intake and health. This paper explores the discovery of biomarkers of intake for three types of meat with varying heme iron content. Candidate biomarkers for red and general meat are further evaluated based on defined validation criteria. METHODS AND RESULTS In a randomized cross-over meal study, healthy volunteers consume a randomized sequence of four test meals: chicken, pork, beef, and a control made of egg white and pea. Fasting and postprandial urine samples are collected to cover 48 h and profiled by untargeted LC-ESI-qTOF-MS metabolomics. The profiles following the meal challenges are explored by univariate and multivariate analyses. Nine red, four white, and eight general meat biomarkers are selected as putative biomarkers, originating from collagen degradation, flavour compounds, and amino acid metabolism. Heme-related metabolites are masked by the chlorophyll content of the control meal. The candidate biomarkers are confirmed in an independent meal study and validated for plausibility, robustness, time-response, and prediction performance. Combinations of biomarkers are more efficient than single markers in predicting meat intake. CONCLUSION New combinations of partially validated biomarkers are proposed to assess terrestrial meat intake and thus help disentangle the effects of meat consumption on human health.
Collapse
Affiliation(s)
- Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Åsmund Rinnan
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| |
Collapse
|
18
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
19
|
Tebani A, Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019; 6:41. [PMID: 31024923 PMCID: PMC6465639 DOI: 10.3389/fnut.2019.00041] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Nutrition is an interdisciplinary science that studies the interactions of nutrients with the body in relation to maintenance of health and well-being. Nutrition is highly complex due to the underlying various internal and external factors that could model it. Thus, hacking this complexity requires more holistic and network-based strategies that could unveil these dynamic system interactions at both time and space scales. The ongoing omics era with its high-throughput molecular data generation is paving the way to embrace this complexity and is deeply reshaping the whole field of nutrition. Understanding the future paths of nutrition science is of importance from both translational and clinical perspectives. Basic nutrients which might include metabolites are important in nutrition science. Moreover, metabolites are key biological communication channels and represent an appealing functional readout at the interface of different major influential factors that define health and disease. Metabolomics is the technology that enables holistic and systematic analyses of metabolites in a biological system. Hence, given its intrinsic functionality, its tight connection to metabolism and its high clinical actionability potential, metabolomics is a very appealing technology for nutrition science. The ultimate goal is to deliver a tailored and clinically relevant nutritional recommendations and interventions to achieve precision nutrition. This work intends to present an update on the applications of metabolomics to personalize nutrition in translational and clinical settings. It also discusses the current conceptual shifts that are remodeling clinical nutrition practices in this Precision Medicine era. Finally, perspectives of clinical nutrition in the ever-growing, data-driven healthcare landscape are presented.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France.,Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| |
Collapse
|
20
|
Shi L, Brunius C, Johansson I, Bergdahl IA, Lindahl B, Hanhineva K, Landberg R. Plasma metabolites associated with healthy Nordic dietary indexes and risk of type 2 diabetes-a nested case-control study in a Swedish population. Am J Clin Nutr 2018; 108:564-575. [PMID: 30060042 PMCID: PMC6288641 DOI: 10.1093/ajcn/nqy145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Background Epidemiologic evidence on the association of a healthy Nordic diet and future type 2 diabetes (T2D) is limited. Exploring metabolites as biomarkers of healthy Nordic dietary patterns may facilitate investigation of associations between such patterns and T2D. Objectives We aimed to identify metabolites related to a priori-defined healthy Nordic dietary indexes, the Baltic Sea Diet Score (BSDS) and Healthy Nordic Food Index (HNFI), and evaluate associations with the T2D risk in a case-control study nested in a Swedish population-based prospective cohort. Design Plasma samples from 421 case-control pairs at baseline and samples from a subset of 151 healthy controls at a 10-y follow-up were analyzed with the use of untargeted liquid chromatography-mass spectrometry metabolomics. Index-related metabolites were identified through the use of random forest modelling followed by partial correlation analysis adjustment for lifestyle confounders. Metabolite patterns were derived via principal component analysis (PCA). ORs of T2D were estimated via conditional logistic regression. Reproducibility of metabolites was assessed by intraclass correlation (ICC) in healthy controls. Associations were also assessed for 10 metabolites previously identified as linking a healthy Nordic diet with T2D. Results In total, 31 metabolites were associated with BSDS and/or HNFI (-0.19 ≤ r ≤ 0.21, 0.10 ≤ ICC ≤ 0.59). Two PCs were determined from index-related metabolites: PC1 strongly correlated to the indexes (r = 0.27 for BSDS, r = 0.25 for HNFI, ICC = 0.45) but showed no association with T2D risk. PC2 was weakly associated with the indexes, but more strongly with foods not part of the indexes, e.g., pizza, sausages, and hamburgers. PC2 was also significantly associated with T2D risk. Predefined metabolites were confirmed to be reflective of consumption of whole grains, fish, or vegetables, but not related to T2D risk. Conclusions Our study did not support an association between healthy Nordic dietary indexes and T2D. However, foods such as hamburger, sausage, and pizza not covered by the indexes appeared to be more important for T2D risk in the current population.
Collapse
Affiliation(s)
- Lin Shi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden,Address correspondence to LS (e-mail: ; )
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ingegerd Johansson
- Departments of Odontology, Section of Cariology, Biobank Research, Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Ingvar A Bergdahl
- Departments of Biobank Research, Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bernt Lindahl
- Departments of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kati Hanhineva
- LC-MS Metabolomics Center, Kuopio, Finland,Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Rikard Landberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
21
|
Rothwell JA, Madrid-Gambin F, Garcia-Aloy M, Andres-Lacueva C, Logue C, Gallagher AM, Mack C, Kulling SE, Gao Q, Praticò G, Dragsted LO, Scalbert A. Biomarkers of intake for coffee, tea, and sweetened beverages. GENES & NUTRITION 2018; 13:15. [PMID: 29997698 PMCID: PMC6030755 DOI: 10.1186/s12263-018-0607-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
Non-alcoholic beverages are important sources of nutrients and bioactive compounds that may influence human health and increase or decrease the risk of chronic diseases. A wide variety of beverage constituents are absorbed in the gut, found in the systemic circulation and excreted in urine. They may be used as compliance markers in intervention studies or as biomarkers of intake to improve measurements of beverage consumption in cohort studies and reveal new associations with disease outcomes that may have been overlooked when using dietary questionnaires. Here, biomarkers of intake of some major non-alcoholic beverages-coffee, tea, sugar-sweetened beverages, and low-calorie-sweetened beverages-are reviewed. Results from dietary intervention studies and observational studies are reviewed and analyzed, and respective strengths and weaknesses of the various identified biomarkers discussed. A variety of compounds derived from phenolic acids, alkaloids, and terpenes were shown to be associated with coffee intake and trigonelline and cyclo(isoleucylprolyl) showed a particularly high specificity for coffee intake. Epigallocatechin and 4'-O-methylepigallocatechin appear to be the most sensitive and specific biomarkers for green or black tea, while 4-O-methylgallic acid may be used to assess black tea consumption. Intake of sugar-sweetened beverages has been assessed through the measurement of carbon-13 enrichment of whole blood or of blood alanine in North America where sugar from sugarcane or corn is used as a main ingredient. The most useful biomarkers for low-calorie-sweetened beverages are the low-calorie sweeteners themselves. Further studies are needed to validate these biomarkers in larger and independent populations and to further evaluate their specificity, reproducibility over time, and fields of application.
Collapse
Affiliation(s)
- Joseph A. Rothwell
- International Agency for Research on Cancer (IARC), Nutrition and Metabolism Section, Biomarkers Group, 150 Cours Albert Thomas, F-69372 Lyon CEDEX 08, France
| | - Francisco Madrid-Gambin
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Caomhan Logue
- Nutrition Innovation Centre for Food and Health (NICHE), Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland
| | - Alison M. Gallagher
- Nutrition Innovation Centre for Food and Health (NICHE), Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland
| | - Carina Mack
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Sabine E. Kulling
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Qian Gao
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC), Nutrition and Metabolism Section, Biomarkers Group, 150 Cours Albert Thomas, F-69372 Lyon CEDEX 08, France
| |
Collapse
|
22
|
Wang DD, Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 2018; 6:416-426. [PMID: 29433995 DOI: 10.1016/s2213-8587(18)30037-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/02/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
Abstract
Precision nutrition aims to prevent and manage chronic diseases by tailoring dietary interventions or recommendations to one or a combination of an individual's genetic background, metabolic profile, and environmental exposures. Recent advances in genomics, metabolomics, and gut microbiome technologies have offered opportunities as well as challenges in the use of precision nutrition to prevent and manage type 2 diabetes. Nutrigenomics studies have identified genetic variants that influence intake and metabolism of specific nutrients and predict individuals' variability in response to dietary interventions. Metabolomics has revealed metabolomic fingerprints of food and nutrient consumption and uncovered new metabolic pathways that are potentially modified by diet. Dietary interventions have been successful in altering abundance, composition, and activity of gut microbiota that are relevant for food metabolism and glycaemic control. In addition, mobile apps and wearable devices facilitate real-time assessment of dietary intake and provide feedback which can improve glycaemic control and diabetes management. By integrating these technologies with big data analytics, precision nutrition has the potential to provide personalised nutrition guidance for more effective prevention and management of type 2 diabetes. Despite these technological advances, much research is needed before precision nutrition can be widely used in clinical and public health settings. Currently, the field of precision nutrition faces challenges including a lack of robust and reproducible results, the high cost of omics technologies, and methodological issues in study design as well as high-dimensional data analyses and interpretation. Evidence is needed to support the efficacy, cost-effectiveness, and additional benefits of precision nutrition beyond traditional nutrition intervention approaches. Therefore, we should manage unrealistically high expectations and balance the emerging field of precision nutrition with public health nutrition strategies to improve diet quality and prevent type 2 diabetes and its complications.
Collapse
Affiliation(s)
- Dong D Wang
- Department of Nutrition, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Harvard T H Chan School of Public Health, and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Gibbons H, Michielsen CJR, Rundle M, Frost G, McNulty BA, Nugent AP, Walton J, Flynn A, Gibney MJ, Brennan L. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Helena Gibbons
- School of Agriculture and Food Science; Institute of Food and Health; University College Dublin; Dublin Ireland
| | - Charlotte J. R. Michielsen
- School of Agriculture and Food Science; Institute of Food and Health; University College Dublin; Dublin Ireland
| | - Milena Rundle
- Nutrition and Dietetic Research Group; Division of Endocrinology and Metabolism; Imperial College London; London U.K
| | - Gary Frost
- Nutrition and Dietetic Research Group; Division of Endocrinology and Metabolism; Imperial College London; London U.K
| | - Breige A. McNulty
- School of Agriculture and Food Science; Institute of Food and Health; University College Dublin; Dublin Ireland
| | - Anne P. Nugent
- School of Agriculture and Food Science; Institute of Food and Health; University College Dublin; Dublin Ireland
| | - Janette Walton
- School of Food and Nutritional Sciences; University College Cork; Cork Ireland
| | - Albert Flynn
- School of Food and Nutritional Sciences; University College Cork; Cork Ireland
| | - Michael J. Gibney
- School of Agriculture and Food Science; Institute of Food and Health; University College Dublin; Dublin Ireland
| | - Lorraine Brennan
- School of Agriculture and Food Science; Institute of Food and Health; University College Dublin; Dublin Ireland
| |
Collapse
|
24
|
Almanza-Aguilera E, Urpi-Sarda M, Llorach R, Vázquez-Fresno R, Garcia-Aloy M, Carmona F, Sanchez A, Madrid-Gambin F, Estruch R, Corella D, Andres-Lacueva C. Microbial metabolites are associated with a high adherence to a Mediterranean dietary pattern using a 1H-NMR-based untargeted metabolomics approach. J Nutr Biochem 2017; 48:36-43. [PMID: 28692847 DOI: 10.1016/j.jnutbio.2017.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022]
Abstract
The study of biomarkers of dietary patterns including the Mediterranean diet (MedDiet) is scarce and could improve the assessment of these patterns. Moreover, it could provide a better understanding of health benefits of dietary patterns in nutritional epidemiology. We aimed to determine a robust and accurate biomarker associated with a high adherence to a MedDiet pattern that included dietary assessment and its biological effect. In this cross-sectional study, we included 56 and 63 individuals with high (H-MDA) and low (L-MDA) MedDiet adherence categories, respectively, all from the Prevención con Dieta Mediterránea trial. A 1H-NMR-based untargeted metabolomics approach was applied to urine samples. Multivariate statistical analyses were conducted to determine the metabolite differences between groups. A stepwise logistic regression and receiver operating characteristic curves were used to build and evaluate the prediction model for H-MDA. Thirty-four metabolites were identified as discriminant between H-MDA and L-MDA. The fingerprint associated with H-MDA included higher excretion of proline betaine and phenylacetylglutamine, among others, and decreased amounts of metabolites related to glucose metabolism. Three microbial metabolites - phenylacetylglutamine, p-cresol and 4-hydroxyphenylacetate - were included in the prediction model of H-MDA (95% specificity, 95% sensitivity and 97% area under the curve). The model composed of microbial metabolites was the biomarker that defined high adherence to a Mediterranean dietary pattern. The overall metabolite profiling identified reflects the metabolic modulation produced by H-MDA. The proposed biomarker may be a better tool for assessing and aiding nutritional epidemiology in future associations between H-MDA and the prevention or amelioration of chronic diseases.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain.
| | - Rafael Llorach
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain
| | - Rosa Vázquez-Fresno
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain
| | - Francesc Carmona
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Alex Sanchez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain; Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Francisco Madrid-Gambin
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28028, Spain; Department of Internal Medicine, Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28028, Spain; Department of Preventive Medicine, University of Valencia, Valencia 46010, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain.
| |
Collapse
|
25
|
Rådjursöga M, Karlsson GB, Lindqvist HM, Pedersen A, Persson C, Pinto RC, Ellegård L, Winkvist A. Metabolic profiles from two different breakfast meals characterized by 1H NMR-based metabolomics. Food Chem 2017; 231:267-274. [PMID: 28450006 DOI: 10.1016/j.foodchem.2017.03.142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/29/2016] [Accepted: 03/25/2017] [Indexed: 01/09/2023]
Abstract
It is challenging to measure dietary exposure with techniques that are both accurate and applicable to free-living individuals. We performed a cross-over intervention, with 24 healthy individuals, to capture the acute metabolic response of a cereal breakfast (CB) and an egg and ham breakfast (EHB). Fasting and postprandial urine samples were analyzed using 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis. Metabolic profiles were distinguished in relation to ingestion of either CB or EHB. Phosphocreatine/creatine and citrate were identified at higher concentrations after consumption of EHB. Beverage consumption (i.e., tea or coffee) could clearly be seen in the data. 2-furoylglycine and 5-hydroxymethyl-2-furoic acid - potential biomarkers for coffee consumption were identified at higher concentrations in coffee drinkers. Thus 1H NMR urine metabolomics is applicable in the characterization of acute metabolic fingerprints from meal consumption and in the identification of metabolites that may serve as potential biomarkers.
Collapse
Affiliation(s)
- Millie Rådjursöga
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Box 459, 405 30 Gothenburg, Sweden.
| | - Göran B Karlsson
- Swedish NMR Centre, University of Gothenburg, Box 465, 405 30 Gothenburg, Sweden.
| | - Helen M Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Box 459, 405 30 Gothenburg, Sweden.
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, Box 465, 405 30 Gothenburg, Sweden.
| | - Cecilia Persson
- Swedish NMR Centre, University of Gothenburg, Box 465, 405 30 Gothenburg, Sweden.
| | - Rui Climaco Pinto
- Computational Life Science Cluster, Department of Chemistry, Umeå University, 90187 Umeå, Sweden; Bioinformatics Infrastructure for Life Sciences (BILS), Linköping, Sweden.
| | - Lars Ellegård
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Box 459, 405 30 Gothenburg, Sweden.
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Box 459, 405 30 Gothenburg, Sweden.
| |
Collapse
|
26
|
Abstract
Traditional methods for the assessment of dietary intake are prone to error; in order to improve and enhance these methods increasing interest in the identification of dietary biomarkers has materialised. Metabolomics has emerged as a key tool in the area of dietary biomarker discovery and to date the use of metabolomics has identified a number of putative biomarkers. Applications to identify novel biomarkers of intake have in general taken three approaches: (1) specific acute intervention studies to identify specific biomarkers of intake; (2) searching for biomarkers in cohort studies by correlating to self-reported intake of a specific food/food group(s); (3) analysing dietary patterns in conjunction with metabolomic profiles to identify biomarkers and nutritypes. A number of analytical technologies are employed in metabolomics as currently there is no single technique capable of measuring the entire metabolome. These approaches each have their own advantages and disadvantages. The present review will provide an overview of current technologies and applications of metabolomics in the determination of new dietary biomarkers. In addition, it will address some of the current challenges in the field and future outlooks.
Collapse
|
27
|
|
28
|
Abstract
Current dietary assessment methods including FFQ, 24-h recalls and weighed food diaries are associated with many measurement errors. In an attempt to overcome some of these errors, dietary biomarkers have emerged as a complementary approach to these traditional methods. Metabolomics has developed as a key technology for the identification of new dietary biomarkers and to date, metabolomic-based approaches have led to the identification of a number of putative biomarkers. The three approaches generally employed when using metabolomics in dietary biomarker discovery are: (i) acute interventions where participants consume specific amounts of a test food, (ii) cohort studies where metabolic profiles are compared between consumers and non-consumers of a specific food and (iii) the analysis of dietary patterns and metabolic profiles to identify nutritypes and biomarkers. The present review critiques the current literature in terms of the approaches used for dietary biomarker discovery and gives a detailed overview of the currently proposed biomarkers, highlighting steps needed for their full validation. Furthermore, the present review also evaluates areas such as current databases and software tools, which are needed to advance the interpretation of results and therefore enhance the utility of dietary biomarkers in nutrition research.
Collapse
|
29
|
Edmands WM, Ferrari P, Rothwell JA, Rinaldi S, Slimani N, Barupal DK, Biessy C, Jenab M, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC, Katzke VA, Kühn T, Boeing H, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Grioni S, Tumino R, Vineis P, Mattiello A, Romieu I, Scalbert A. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr 2015; 102:905-13. [PMID: 26269369 DOI: 10.3945/ajcn.114.101881] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND An improved understanding of the contribution of the diet to health and disease risks requires accurate assessments of dietary exposure in nutritional epidemiologic studies. The use of dietary biomarkers may improve the accuracy of estimates. OBJECTIVE We applied a metabolomic approach in a large cohort study to identify novel biomarkers of intake for a selection of polyphenol-containing foods. The large chemical diversity of polyphenols and their wide distribution over many foods make them ideal biomarker candidates for such foods. DESIGN Metabolic profiles were measured with the use of high-resolution mass spectrometry in 24-h urine samples from 481 subjects from the large European Prospective Investigation on Cancer and Nutrition cohort. Peak intensities were correlated to acute and habitual dietary intakes of 6 polyphenol-rich foods (coffee, tea, red wine, citrus fruit, apples and pears, and chocolate products) measured with the use of 24-h dietary recalls and food-frequency questionnaires, respectively. RESULTS Correlation (r > 0.3, P < 0.01 after correction for multiple testing) and discriminant [pcorr (1) > 0.3, VIP > 1.5] analyses showed that >2000 mass spectral features from urine metabolic profiles were significantly associated with the consumption of the 6 selected foods. More than 80 polyphenol metabolites associated with the consumption of the selected foods could be identified, and large differences in their concentrations reflecting individual food intakes were observed within and between 4 European countries. Receiver operating characteristic curves showed that 5 polyphenol metabolites, which are characteristic of 5 of the 6 selected foods, had a high predicting ability of food intake. CONCLUSION Highly diverse food-derived metabolites (the so-called food metabolome) can be characterized in human biospecimens through this powerful metabolomic approach and screened to identify novel biomarkers for dietary exposures, which are ultimately essential to better understand the role of the diet in the cause of chronic diseases.
Collapse
Affiliation(s)
| | - Pietro Ferrari
- International Agency for Research on Cancer, Lyon, France
| | | | - Sabina Rinaldi
- International Agency for Research on Cancer, Lyon, France
| | - Nadia Slimani
- International Agency for Research on Cancer, Lyon, France
| | | | - Carine Biessy
- International Agency for Research on Cancer, Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer, Lyon, France
| | - Françoise Clavel-Chapelon
- French Institute of Health and Medical Research (Inserm), Centre for Research in Epidemiology and Population Health, U1018, Nutrition, Hormones and Women's Health Team, Villejuif, France; Université Paris Sud, UMRS 1018, Villejuif, France; Institut Gustave Roussy, Villejuif, France
| | - Guy Fagherazzi
- French Institute of Health and Medical Research (Inserm), Centre for Research in Epidemiology and Population Health, U1018, Nutrition, Hormones and Women's Health Team, Villejuif, France; Université Paris Sud, UMRS 1018, Villejuif, France; Institut Gustave Roussy, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- French Institute of Health and Medical Research (Inserm), Centre for Research in Epidemiology and Population Health, U1018, Nutrition, Hormones and Women's Health Team, Villejuif, France; Université Paris Sud, UMRS 1018, Villejuif, France; Institut Gustave Roussy, Villejuif, France
| | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece; Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece; Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece; Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece; Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Dimitrios Trichopoulos
- Hellenic Health Foundation, Athens, Greece; Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece; Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, Provincial Health Unit Ragusa, Italy
| | - Paolo Vineis
- Medical Research Council, Public Health England Center for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; HuGeF Foundation, Turin, Italy; and
| | - Amalia Mattiello
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | | |
Collapse
|
30
|
Heinzmann SS, Holmes E, Kochhar S, Nicholson JK, Schmitt-Kopplin P. 2-Furoylglycine as a Candidate Biomarker of Coffee Consumption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8615-8621. [PMID: 26357997 DOI: 10.1021/acs.jafc.5b03040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Specific and sensitive food biomarkers are necessary to support dietary intake assessment and link nutritional habits to potential impact on human health. A multistep nutritional intervention study was conducted to suggest novel biomarkers for coffee consumption. (1)H NMR metabolic profiling combined with multivariate data analysis resolved 2-furoylglycine (2-FG) as a novel putative biomarker for coffee consumption. We relatively quantified 2-FG in the urine of coffee drinkers and investigated its origin, metabolism, and excretion kinetics. When searching for its potential precursors, we found different furan derivatives in coffee products, which are known to get metabolized to 2-FG. Maximal urinary excretion of 2-FG occurred 2 h after consumption (p = 0.0002) and returned to baseline after 24 h (p = 0.74). The biomarker was not excreted after consumption of coffee substitutes such as tea and chicory coffee and might therefore be a promising acute biomarker for the detection of coffee consumption in human urine.
Collapse
Affiliation(s)
- Silke S Heinzmann
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry , 85764 Neuherberg, Germany
| | - Elaine Holmes
- Biomolecular Medicine, Section of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , South Kensington, London SW7 2AZ, U.K
| | - Sunil Kochhar
- Nestlé Research Center, Nestec, Vers-chez-les-Blancs, 1000 Lausanne 26, Switzerland
| | - Jeremy K Nicholson
- Biomolecular Medicine, Section of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , South Kensington, London SW7 2AZ, U.K
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry , 85764 Neuherberg, Germany
- Technische Universität München , Chair of Analytical Food Chemistry, 85354 Freising, Germany
| |
Collapse
|
31
|
Brennan L, Gibbons H, O’Gorman A. An Overview of the Role of Metabolomics in the Identification of Dietary Biomarkers. Curr Nutr Rep 2015. [DOI: 10.1007/s13668-015-0139-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Beckmann M, Joosen AM, Clarke MM, Mugridge O, Frost G, Engel B, Taillart K, Lloyd AJ, Draper J, Lodge JK. Changes in the human plasma and urinary metabolome associated with acute dietary exposure to sucrose and the identification of potential biomarkers of sucrose intake. Mol Nutr Food Res 2015; 60:444-57. [PMID: 26372606 DOI: 10.1002/mnfr.201500495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022]
Abstract
SCOPE The intake of sucrose is of public health concern but limited information is available on the metabolic effects of short-term exposure. Our aim was to use metabolomics to investigate the metabolic impact of acute sucrose exposure. METHODS AND RESULTS We performed a randomized, parallel, single-dose feeding study on healthy females (n = 90, aged 29.9 ± 4.7 years, BMI 23.3 ± 2.5 kg/m(2) ) consuming either 0, 50, or 100 g sucrose in 500 mL water. Blood and urine samples were taken before and 24 h post sucrose intake. Urine and plasma samples underwent detailed metabolite profiling analysis using established protocols. Flow-injection electrospray MS fingerprinting analysis showed that 3 h after intake was the most informative time point in urine and plasma and out of 120 explanatory signals, highlighted 16 major metabolite signals in urine and 25 metabolite signals in plasma that were discriminatory and correlated with sucrose intake over time. The main confirmed metabolites positively correlated with intake were sucrose, fructose, and erythronic acid, while those negatively correlating with intake included fatty acids and derivatives, acyl-carnitines, and ketone bodies. GC-TOF-MS profiling analysis confirmed the fingerprinting data. CONCLUSION Acute exposure to sucrose identified a number of metabolites correlated with sucrose intake and several compounds attributed to metabolic fasting.
Collapse
Affiliation(s)
- Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | | | | | | | - Gary Frost
- Department of Medicine, Imperial College, London, UK
| | - Barbara Engel
- Department of Nutrition and Metabolism, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Kathleen Taillart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Amanda J Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - John K Lodge
- Cranfield Health, Cranfield University, Bedfordshire, UK.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Hanhineva K, Brunius C, Andersson A, Marklund M, Juvonen R, Keski-Rahkonen P, Auriola S, Landberg R. Discovery of urinary biomarkers of whole grain rye intake in free-living subjects using nontargeted LC-MS metabolite profiling. Mol Nutr Food Res 2015; 59:2315-25. [DOI: 10.1002/mnfr.201500423] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Kati Hanhineva
- Department of Clinical Nutrition; Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Carl Brunius
- Department of Food Science; Uppsala BioCenter; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Agneta Andersson
- Department of Food; Nutrition and Dietetics; Uppsala University; Uppsala Sweden
| | - Matti Marklund
- Department of Public Health and Caring Sciences; Clinical Nutrition and Metabolism; Uppsala Univeristy; Uppsala Sweden
| | - Risto Juvonen
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| | | | - Seppo Auriola
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| | - Rikard Landberg
- Department of Food Science; Uppsala BioCenter; Swedish University of Agricultural Sciences; Uppsala Sweden
- Nutritional Epidemiology Unit; Institute of Environmental Medicine; Karolinska Insitutet; Stockholm Sweden
| |
Collapse
|
34
|
Monteiro JP, Kussmann M, Kaput J. The genomics of micronutrient requirements. GENES & NUTRITION 2015; 10:466. [PMID: 25981693 PMCID: PMC4434349 DOI: 10.1007/s12263-015-0466-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 01/04/2023]
Abstract
Healthy nutrition is accepted as a cornerstone of public health strategies for reducing the risk of noncommunicable conditions such as obesity, cardiovascular disease, and related morbidities. However, many research studies continue to focus on single or at most a few factors that may elicit a metabolic effect. These reductionist approaches resulted in: (1) exaggerated claims for nutrition as a cure or prevention of disease; (2) the wide use of empirically based dietary regimens, as if one fits all; and (3) frequent disappointment of consumers, patients, and healthcare providers about the real impact nutrition can make on medicine and health. Multiple factors including environment, host and microbiome genetics, social context, the chemical form of the nutrient, its (bio)availability, and chemical and metabolic interactions among nutrients all interact to result in nutrient requirement and in health outcomes. Advances in laboratory methodologies, especially in analytical and separation techniques, are making the chemical dissection of foods and their availability in physiological tissues possible in an unprecedented manner. These omics technologies have opened opportunities for extending knowledge of micronutrients and of their metabolic and endocrine roles. While these technologies are crucial, more holistic approaches to the analysis of physiology and environment, novel experimental designs, and more sophisticated computational methods are needed to advance our understanding of how nutrition influences health of individuals.
Collapse
Affiliation(s)
- Jacqueline Pontes Monteiro
- />Department of Pediatrics, Faculty of Medicine, Nutrition and Metabolism, University of São Paulo, Bandeirantes Avenue, HCFMRP Campus USP, 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Martin Kussmann
- />Nestlé Institute of Health Sciences, Innovation Square, EPFL Campus, 1015 Lausanne, Switzerland
- />Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Jim Kaput
- />Nestlé Institute of Health Sciences, Innovation Square, EPFL Campus, 1015 Lausanne, Switzerland
- />Service d’endorcrinologie, diabetologie et metabolosime du CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Misawa T, Date Y, Kikuchi J. Human Metabolic, Mineral, and Microbiota Fluctuations Across Daily Nutritional Intake Visualized by a Data-Driven Approach. J Proteome Res 2015; 14:1526-34. [DOI: 10.1021/pr501194k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takuma Misawa
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
- Biomass
Engineering Program, RIKEN Research Cluster for Innovation, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
36
|
Twin studies advance the understanding of gene–environment interplay in human nutrigenomics. Nutr Res Rev 2014; 27:242-51. [DOI: 10.1017/s095442241400016x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Investigations into the genetic architecture of diet–disease relationships are particularly relevant today with the global epidemic of obesity and chronic disease. Twin studies have demonstrated that genetic makeup plays a significant role in a multitude of dietary phenotypes such as energy and macronutrient intakes, dietary patterns, and specific food group intakes. Besides estimating heritability of dietary assessment, twins provide a naturally unique, case–control experiment. Due to their shared upbringing, matched genes and sex (in the case of monozygotic (MZ) twin pairs), and age, twins provide many advantages over classic epidemiological approaches. Future genetic epidemiological studies could benefit from the twin approach particularly where defining what is ‘normal’ is problematic due to the high inter-individual variability underlying metabolism. Here, we discuss the use of twins to generate heritability estimates of food intake phenotypes. We then highlight the value of discordant MZ pairs to further nutrition research through discovery and validation of biomarkers of intake and health status in collaboration with cutting-edge omics technologies.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To understand how the principles of foodomics could improve the assessment of the nutritional status and needs. RECENT FINDINGS The knowledge that metabolic pathways may be altered in individuals with genetic variants in the presence of certain dietary exposures offers great potential for personalized nutrition advice, and epigenetics and nutrigenetics have been used to assess the need and status of specific nutrients. MicroRNAs profiling and genome-wide association studies have also contributed. Since nutritional effects of complex diets emerge only if dietary assessments are validated, nutrimetabolomics offers the validation tools on the basis of food intake biomarkers. SUMMARY Apart from the provision, via a high-throughput approach, of objective measurable parameters to be used as biomarkers, a consensus must be reached on the definition of health and wellness. Health (and wellness) can be considered a position having specific coordinates in a multiple-dimension space, and many factors contribute to our movements in this space. Foodomics is the science aiming at studying, through the evaluation of different biomarkers, the entity and the direction of the movements across the healthy or unhealthy space, developing models that are able to explain how food components, food, diet and lifestyle can influence our trajectory toward the healthy condition. Only considering the 'health space' as a multidimensional one, we have the possibility of understanding the complex relationship linking nutrition and health, and of reaching healthier conditions by personalized balanced diets in a foodomics vision.
Collapse
Affiliation(s)
- Alessandra Bordoni
- Department of Agro-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | | |
Collapse
|
38
|
Guertin KA, Moore SC, Sampson JN, Huang WY, Xiao Q, Stolzenberg-Solomon RZ, Sinha R, Cross AJ. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr 2014; 100:208-17. [PMID: 24740205 PMCID: PMC4144099 DOI: 10.3945/ajcn.113.078758] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabolomics is an emerging field with the potential to advance nutritional epidemiology; however, it has not yet been applied to large cohort studies. OBJECTIVES Our first aim was to identify metabolites that are biomarkers of usual dietary intake. Second, among serum metabolites correlated with diet, we evaluated metabolite reproducibility and required sample sizes to determine the potential for metabolomics in epidemiologic studies. DESIGN Baseline serum from 502 participants in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial was analyzed by using ultra-high-performance liquid-phase chromatography with tandem mass spectrometry and gas chromatography-mass spectrometry. Usual intakes of 36 dietary groups were estimated by using a food-frequency questionnaire. Dietary biomarkers were identified by using partial Pearson's correlations with Bonferroni correction for multiple comparisons. Intraclass correlation coefficients (ICCs) between samples collected 1 y apart in a subset of 30 individuals were calculated to evaluate intraindividual metabolite variability. RESULTS We detected 412 known metabolites. Citrus, green vegetables, red meat, shellfish, fish, peanuts, rice, butter, coffee, beer, liquor, total alcohol, and multivitamins were each correlated with at least one metabolite (P < 1.093 × 10(-6); r = -0.312 to 0.398); in total, 39 dietary biomarkers were identified. Some correlations (citrus intake with stachydrine) replicated previous studies; others, such as peanuts and tryptophan betaine, were novel findings. Other strong associations included coffee (with trigonelline-N-methylnicotinate and quinate) and alcohol (with ethyl glucuronide). Intraindividual variability in metabolite levels (1-y ICCs) ranged from 0.27 to 0.89. Large, but attainable, sample sizes are required to detect associations between metabolites and disease in epidemiologic studies, further emphasizing the usefulness of metabolomics in nutritional epidemiology. CONCLUSIONS We identified dietary biomarkers by using metabolomics in an epidemiologic data set. Given the strength of the associations observed, we expect that some of these metabolites will be validated in future studies and later used as biomarkers in large cohorts to study diet-disease associations. The PLCO trial was registered at clinicaltrials.gov as NCT00002540.
Collapse
Affiliation(s)
- Kristin A Guertin
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Steven C Moore
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Joshua N Sampson
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Wen-Yi Huang
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Qian Xiao
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Rachael Z Stolzenberg-Solomon
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Rashmi Sinha
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Amanda J Cross
- From the Nutritional Epidemiology Branch (KAG, SCM, QX, RZS-S, RS, and AJC), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| |
Collapse
|
39
|
Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J, Rappaport SM, van der Hooft JJJ, Wishart DS. The food metabolome: a window over dietary exposure. Am J Clin Nutr 2014; 99:1286-308. [PMID: 24760973 DOI: 10.3945/ajcn.113.076133] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The food metabolome is defined as the part of the human metabolome directly derived from the digestion and biotransformation of foods and their constituents. With >25,000 compounds known in various foods, the food metabolome is extremely complex, with a composition varying widely according to the diet. By its very nature it represents a considerable and still largely unexploited source of novel dietary biomarkers that could be used to measure dietary exposures with a high level of detail and precision. Most dietary biomarkers currently have been identified on the basis of our knowledge of food compositions by using hypothesis-driven approaches. However, the rapid development of metabolomics resulting from the development of highly sensitive modern analytic instruments, the availability of metabolite databases, and progress in (bio)informatics has made agnostic approaches more attractive as shown by the recent identification of novel biomarkers of intakes for fruit, vegetables, beverages, meats, or complex diets. Moreover, examples also show how the scrutiny of the food metabolome can lead to the discovery of bioactive molecules and dietary factors associated with diseases. However, researchers still face hurdles, which slow progress and need to be resolved to bring this emerging field of research to maturity. These limits were discussed during the First International Workshop on the Food Metabolome held in Glasgow. Key recommendations made during the workshop included more coordination of efforts; development of new databases, software tools, and chemical libraries for the food metabolome; and shared repositories of metabolomic data. Once achieved, major progress can be expected toward a better understanding of the complex interactions between diet and human health.
Collapse
Affiliation(s)
- Augustin Scalbert
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - Lorraine Brennan
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - Claudine Manach
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - Cristina Andres-Lacueva
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - Lars O Dragsted
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - John Draper
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - Stephen M Rappaport
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - Justin J J van der Hooft
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| | - David S Wishart
- From the International Agency for Research on Cancer, Lyon, France (AS); University College Dublin, Dublin, Ireland (LB); the Institut National de la Recherche Agronomique, Clermont-Ferrand, France (CM); Clermont University, Clermont-Ferrand, France (CM); the University of Barcelona, Barcelona, Spain (CA-L); the University of Copenhagen, Frederiksberg, Denmark (LOD); Aberystwyth University, Aberystwyth, United Kingdom (JD); the University of California, Berkeley, CA (SMR); the University of Glasgow, Glasgow, United Kingdom (JJJvdH); and the University of Alberta, Edmonton, Canada (DSW)
| |
Collapse
|
40
|
Andersen MBS, Rinnan Å, Manach C, Poulsen SK, Pujos-Guillot E, Larsen TM, Astrup A, Dragsted LO. Untargeted Metabolomics as a Screening Tool for Estimating Compliance to a Dietary Pattern. J Proteome Res 2014; 13:1405-18. [DOI: 10.1021/pr400964s] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Claudine Manach
- INRA,
UMR1019, Human Nutrition Unit, University of Auvergne, Research Centre of Clermont-Ferrand-Theix, Clermont-Ferrand-Theix, F-63800, France
| | | | - Estelle Pujos-Guillot
- INRA,
UMR1019, Human Nutrition Unit, University of Auvergne, Research Centre of Clermont-Ferrand-Theix, Clermont-Ferrand-Theix, F-63800, France
| | | | | | | |
Collapse
|
41
|
Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Anal Bioanal Chem 2014; 406:1829-44. [DOI: 10.1007/s00216-013-7498-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023]
|
42
|
Scott IM, Lin W, Liakata M, Wood JE, Vermeer CP, Allaway D, Ward JL, Draper J, Beale MH, Corol DI, Baker JM, King RD. Merits of random forests emerge in evaluation of chemometric classifiers by external validation. Anal Chim Acta 2013; 801:22-33. [PMID: 24139571 DOI: 10.1016/j.aca.2013.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/06/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Real-world applications will inevitably entail divergence between samples on which chemometric classifiers are trained and the unknowns requiring classification. This has long been recognized, but there is a shortage of empirical studies on which classifiers perform best in 'external validation' (EV), where the unknown samples are subject to sources of variation relative to the population used to train the classifier. Survey of 286 classification studies in analytical chemistry found only 6.6% that stated elements of variance between training and test samples. Instead, most tested classifiers using hold-outs or resampling (usually cross-validation) from the same population used in training. The present study evaluated a wide range of classifiers on NMR and mass spectra of plant and food materials, from four projects with different data properties (e.g., different numbers and prevalence of classes) and classification objectives. Use of cross-validation was found to be optimistic relative to EV on samples of different provenance to the training set (e.g., different genotypes, different growth conditions, different seasons of crop harvest). For classifier evaluations across the diverse tasks, we used ranks-based non-parametric comparisons, and permutation-based significance tests. Although latent variable methods (e.g., PLSDA) were used in 64% of the surveyed papers, they were among the less successful classifiers in EV, and orthogonal signal correction was counterproductive. Instead, the best EV performances were obtained with machine learning schemes that coped with the high dimensionality (914-1898 features). Random forests confirmed their resilience to high dimensionality, as best overall performers on the full data, despite being used in only 4.5% of the surveyed papers. Most other machine learning classifiers were improved by a feature selection filter (ReliefF), but still did not out-perform random forests.
Collapse
Affiliation(s)
- I M Scott
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3FG, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Beckmann M, Lloyd AJ, Haldar S, Seal C, Brandt K, Draper J. Hydroxylated phenylacetamides derived from bioactive benzoxazinoids are bioavailable in humans after habitual consumption of whole grain sourdough rye bread. Mol Nutr Food Res 2013; 57:1859-73. [PMID: 23681766 DOI: 10.1002/mnfr.201200777] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/02/2023]
Abstract
SCOPE Understanding relationships between dietary whole grain and health is hindered by incomplete knowledge of potentially bioactive metabolites derived from these foods. We aimed to discover compounds in urine correlated with changes in amounts of whole grain rye consumption. METHODS AND RESULTS After a wash-out period, volunteers consumed 48-g whole grain rye foods per day for 4 wk and then doubled their intake for a further 4 wk. Samples of 24-h urines were analyzed by flow infusion electrospray MS followed by supervised multivariate data analysis. Urine samples from participants who reported high intakes of rye flakes, rye pasta, or total whole grain rye products could not be discriminated adequately from their wash-out samples. However, discrimination was seen in urine samples from participants who reported high whole grain sourdough rye bread consumption. Accurate mass analysis of explanatory signals followed by fragmentation identified conjugates of the benzoxazinoid lactam 2-hydroxy-1,4-benzoxazin-3-one and hydroxylated phenyl acetamide derivatives. Statistical validation showed sensitivities of 84-96% and specificities of 70-81% (p values < 0·05) for elevated concentrations of these signals after preferential whole grain sourdough rye bread consumption. CONCLUSION Several potentially bioactive alkaloids have been identified in humans consuming fermented whole grain sourdough rye bread.
Collapse
Affiliation(s)
- Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | | | | | | | | |
Collapse
|
44
|
Dietary exposure biomarker-lead discovery based on metabolomics analysis of urine samples. Proc Nutr Soc 2013; 72:352-61. [DOI: 10.1017/s0029665113001237] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although robust associations between dietary intake and population health are evident from conventional observational epidemiology, the outcomes of large-scale intervention studies testing the causality of those links have often proved inconclusive or have failed to demonstrate causality. This apparent conflict may be due to the well-recognised difficulty in measuring habitual food intake which may lead to confounding in observational epidemiology. Urine biomarkers indicative of exposure to specific foods offer information supplementary to the reliance on dietary intake self-assessment tools, such as FFQ, which are subject to individual bias. Biomarker discovery strategies using non-targeted metabolomics have been used recently to analyse urine from either short-term food intervention studies or from cohort studies in which participants consumed a freely-chosen diet. In the latter, the analysis of diet diary or FFQ information allowed classification of individuals in terms of the frequency of consumption of specific diet constituents. We review these approaches for biomarker discovery and illustrate both with particular reference to two studies carried out by the authors using approaches combining metabolite fingerprinting by MS with supervised multivariate data analysis. In both approaches, urine signals responsible for distinguishing between specific foods were identified and could be related to the chemical composition of the original foods. When using dietary data, both food distinctiveness and consumption frequency influenced whether differential dietary exposure could be discriminated adequately. We conclude that metabolomics methods for fingerprinting or profiling of overnight void urine, in particular, provide a robust strategy for dietary exposure biomarker-lead discovery.
Collapse
|
45
|
Abstract
The field of nutrigenomics shows tremendous promise for improved understanding of the effects of dietary intake on health. The knowledge that metabolic pathways may be altered in individuals with genetic variants in the presence of certain dietary exposures offers great potential for personalized nutrition advice. However, although considerable resources have gone into improving technology for measurement of the genome and biological systems, dietary intake assessment remains inadequate. Each of the methods currently used has limitations that may be exaggerated in the context of gene × nutrient interaction in large multiethnic studies. Because of the specificity of most gene × nutrient interactions, valid data are needed for nutrient intakes at the individual level. Most statistical adjustment efforts are designed to improve estimates of nutrient intake distributions in populations and are unlikely to solve this problem. An improved method of direct measurement of individual usual dietary intake that is unbiased across populations is urgently needed.
Collapse
Affiliation(s)
- Katherine L Tucker
- Department of Health Sciences, Northeastern University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
46
|
Astarita G, Langridge J. An Emerging Role for Metabolomics in Nutrition Science. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2013; 6:181-200. [DOI: 10.1159/000354403] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/12/2013] [Indexed: 12/15/2022]
|