1
|
Shen H, Zhou L, Zhang H, Yang Y, Jiang L, Wu D, Shu H, Zhang H, Xie L, Zhou K, Cheng C, Yang L, Jiang J, Wang S, Han Y, Zhu J, Xu L, Liu Z, Wang H, Yin S. Dietary fiber alleviates alcoholic liver injury via Bacteroides acidifaciens and subsequent ammonia detoxification. Cell Host Microbe 2024; 32:1331-1346.e6. [PMID: 38959900 DOI: 10.1016/j.chom.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hao Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yuanru Yang
- Department of Blood Transfusion, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Dongqing Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hang Shu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hejiao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Kaichen Zhou
- Institute for Immunology, School of Basic Medical Science, Tsinghua University, Beijing 100084, China
| | - Chen Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Lei Yang
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jiali Jiang
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Siya Wang
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230002, China; Anhui Key Laboratory of Geriatric Immunology and Nutrition Therapy, Hefei 230027, China
| | - Yiran Han
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei 230032, China
| | - Jiayi Zhu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei 230032, China
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Zhihua Liu
- Institute for Immunology, School of Basic Medical Science, Tsinghua University, Beijing 100084, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Shi Yin
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230002, China; Anhui Key Laboratory of Geriatric Immunology and Nutrition Therapy, Hefei 230027, China.
| |
Collapse
|
2
|
Rauch R, Nichols K, de Carvalho IPC, Daniel JB, Martín-Tereso J, Dijkstra J. Effects of partial or full replacement of soybean meal with urea or coated urea on intake, performance, and plasma urea concentrations in lactating dairy cows. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39138957 DOI: 10.1111/jpn.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
We expected mitigation of the hypophagic effects of urea (U) with a coated urea (CU) product that aimed to partially shift urea supply to the post-ruminal gastrointestinal tract. Ruminal release and post-ruminal digestibility of CU was evaluated in vitro, followed by a randomised complete block experiment (54 Holstein-Friesian cows; 177 ± 72 days in milk). Soybean meal (SBM) was partially (PR) or fully (FR) replaced on an isonitrogenous basis by beet pulp and U or CU. Urea sources were included at 12 (U-PR, CU-PR) and 19 (U-FR, CU-FR) g/kg dietary dry matter (DM). Hypophagic effects were similar for U-PR and CU-PR (-11% vs. -7%), and for U-FR and CU-FR (-13% vs. -12%) compared with SBM (average 25.8 kg DM intake/d). Compared with SBM, U-PR and CU-PR reduced yields of milk (-8%) and protein (-12%), U-PR reduced yield of fat (-9%) and fat- and protein-corrected-milk (FPCM; -9%), and CU-PR tended to reduce FPCM yield (-5%). Compared with SBM, U-FR and CU-FR respectively reduced yields of milk (-21%, -22%), protein (-25%, -26%), fat (both -14%), lactose (-20%, -21%), and FPCM (-17%, -19%), and lowered N (-15%, -12%) and feed (-8%, trend, -9%) efficiency. Human-edible protein efficiency approximately doubled with U-PR and CU-PR and approximately tripled with U-FR and CU-FR compared with SBM. Milk composition and plasma urea concentration were similar between U and CU, except for a trend for a greater plasma urea concentration with U-PR compared with CU-PR. Dry matter intake patterns differed for CU-PR compared with U-PR and for CU-FR compared with U-FR, suggesting effects of urea release rate or location on feeding behaviour. Overall, replacing SBM with U or CU reduced DM intake and milk production and affected nutrient efficiencies. Coated urea influenced DM intake pattern but did not affect total DM intake or milk production compared with U.
Collapse
Affiliation(s)
- Rainer Rauch
- Trouw Nutrition R&D, Amersfoort, The Netherlands
| | | | | | | | - Javier Martín-Tereso
- Trouw Nutrition R&D, Amersfoort, The Netherlands
- Animal Nutrition Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Holeček M. Origin and Roles of Alanine and Glutamine in Gluconeogenesis in the Liver, Kidneys, and Small Intestine under Physiological and Pathological Conditions. Int J Mol Sci 2024; 25:7037. [PMID: 39000145 PMCID: PMC11241752 DOI: 10.3390/ijms25137037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Alanine and glutamine are the principal glucogenic amino acids. Most originate from muscles, where branched-chain amino acids (valine, leucine, and isoleucine) are nitrogen donors and, under exceptional circumstances, a source of carbons for glutamate synthesis. Glutamate is a nitrogen source for alanine synthesis from pyruvate and a substrate for glutamine synthesis by glutamine synthetase. The following differences between alanine and glutamine, which can play a role in their use in gluconeogenesis, are shown: (i) glutamine appearance in circulation is higher than that of alanine; (ii) the conversion to oxaloacetate, the starting substance for glucose synthesis, is an ATP-consuming reaction for alanine, which is energetically beneficial for glutamine; (iii) most alanine carbons, but not glutamine carbons, originate from glucose; and (iv) glutamine acts a substrate for gluconeogenesis in the liver, kidneys, and intestine, whereas alanine does so only in the liver. Alanine plays a significant role during early starvation, exposure to high-fat and high-protein diets, and diabetes. Glutamine plays a dominant role in gluconeogenesis in prolonged starvation, acidosis, liver cirrhosis, and severe illnesses like sepsis and acts as a substrate for alanine synthesis in the small intestine. Interactions among muscles and the liver, kidneys, and intestine ensuring optimal alanine and glutamine supply for gluconeogenesis are suggested.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine, Charles University, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Zhou Y, Yu Y, Gong X, Tan Z, Guo M, Geng Q, Li F. Effects of perfluorooctanoic acid on the nutritional quality of Mytilus edulis. MARINE POLLUTION BULLETIN 2024; 203:116427. [PMID: 38735169 DOI: 10.1016/j.marpolbul.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Perfluorooctanoic acid (PFOA), which widely presents in marine environment, may produce some adverse effects to aquatic organism. Mytilus edulis are popular due to their high protein and low fat content in China. However, few studies have investigated the effects of PFOA on the quality of aquatic products. Here, PFOA effects on basic nutritional indices in M. edulis were measured, and possible mechanisms were explored. PFOA caused clear variation in physiological and biochemical indices of M. edulis. The contents of some important proteins, nutrients, and amino acids etc. dropped. Integrating metabolomics data, we speculate PFOA exposure triggered inflammation and oxidative stress in mussels, interfered with the metabolic pathways related to the quality and the transport and absorption pathways of metal ions, and affected the levels of some important elements and metabolites, thus decreasing the nutritional quality of M. edulis. The study provides new insights into PFOA adverse effects to marine organism, and may offer some references for some researchers to assess food quality and ecological risk to pollutants.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China; College of Fisheries and life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Yongxing Yu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Xiuqiong Gong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China; College of Fisheries and life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China.
| |
Collapse
|
5
|
Carvalho AM, Bansal R, Barrias CC, Sarmento B. The Material World of 3D-Bioprinted and Microfluidic-Chip Models of Human Liver Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307673. [PMID: 37961933 DOI: 10.1002/adma.202307673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis. At early stages, liver disease can be reverted, but as disease progresses, reversion is no longer possible, and there is no cure. Research for new therapies is hampered by the lack of adequate models that replicate the mechanical properties and biochemical stimuli present in the fibrotic liver. Fibrosis is associated with changes in the composition of the extracellular matrix that directly influence cell behavior. Biomaterials could play an essential role in better emulating the disease microenvironment. In this paper, the recent and cutting-edge biomaterials used for creating in vitro models of human liver fibrosis are revised, in combination with cells, bioprinting, and/or microfluidics. These technologies have been instrumental to replicate the intricate structure of the unhealthy tissue and promote medium perfusion that improves cell growth and function, respectively. A comprehensive analysis of the impact of material hints and cell-material interactions in a tridimensional context is provided.
Collapse
Affiliation(s)
- Ana Margarida Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
6
|
Nichols K, Rauch R, Lippens L, Seymour DJ, Martín-Tereso J. Dose response to postruminal urea in lactating dairy cattle. J Dairy Sci 2023; 106:8694-8709. [PMID: 37641248 DOI: 10.3168/jds.2023-23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 08/31/2023]
Abstract
Inclusion of urea in dairy cattle diets is often limited by negative effects of high levels of feed urea on dry matter intake (DMI) and efficiency of rumen N utilization. We hypothesized that supplying urea postruminally would mitigate these limitations and allow greater inclusion of urea in dairy cattle diets. Four rumen-fistulated Holstein-Friesian dairy cows (7 ± 2.1 lactations, 110 ± 30.8 d in milk; mean ± standard deviation) were randomly assigned to a 4 × 4 Latin square design to examine DMI, milk production and composition, digestibility, rumen fermentation, N balance, and plasma constituents in response to 4 levels of urea continuously infused into the abomasum (0, 163, 325, and 488 g/d). Urea doses were targeted to linearly increase the crude protein (CP) content of total DMI (diet plus infusion) by 0%, 2%, 4%, and 6% and equated to 0%, 0.7%, 1.4%, and 2.1% of expected DMI, respectively. Each 28-d infusion period consisted of a 7-d dose step-up period, 14 d of adaptation, and a 7-d measurement period. The diet was fed ad libitum as a total mixed ration [10.9% CP, 42.5% corn silage, 3.5% grass hay, 3.5% wheat straw, and 50.5% concentrate (dry matter basis)] and was formulated to meet 100%, 82%, and 53% of net energy, metabolizable protein, and rumen-degradable protein requirements, respectively. Linear, quadratic, and cubic effects of urea dose were assessed using polynomial regression assuming the fixed effect of treatment and random effects of period and cow. Dry matter intake and energy-corrected milk yield responded quadratically to urea dose, and milk urea content increased linearly with increasing urea dose. Apparent total-tract digestibility of CP increased linearly with increasing urea dose and ruminal NH3-N concentration responded quadratically to urea dose. Mean total VFA concentration was not affected by urea dose. The proportion of N intake excreted in feces decreased linearly and that excreted in urine increased linearly in response to increasing urea dose. The proportion of N intake excreted in milk increased linearly with increasing urea dose. Urinary urea excretion increased linearly with increasing urea dose. Microbial N flow responded cubically to urea dose, but the efficiency of microbial protein synthesis was not affected. Plasma urea concentration increased linearly with increasing urea dose. Regression analysis estimated that when supplemented on top of a low-CP diet, 179 g/d of postruminal urea would maximize DMI at 23.4 kg/d, corresponding to a dietary urea inclusion level of 0.8% of DMI, which is in line with the current recommendations for urea inclusion in dairy cattle diets. Overall, these results indicate that postruminal delivery of urea does not mitigate DMI depression as urea dose increases.
Collapse
Affiliation(s)
- K Nichols
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands.
| | - R Rauch
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - L Lippens
- Trouw Nutrition R&D, Puslinch, Ontario, N0B 2J0 Canada
| | - D J Seymour
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | | |
Collapse
|
7
|
Wang XP, Sun SP, Li YX, Wang L, Dong DJ, Wang JX, Zhao XF. 20-hydroxyecdysone reprograms amino acid metabolism to support the metamorphic development of Helicoverpa armigera. Cell Rep 2023; 42:112644. [PMID: 37310862 DOI: 10.1016/j.celrep.2023.112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/16/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
Amino acid metabolism is regulated according to nutrient conditions; however, the mechanism is not fully understood. Using the holometabolous insect cotton bollworm (Helicoverpa armigera) as a model, we report that hemolymph metabolites are greatly changed from the feeding larvae to the wandering larvae and to pupae. Arginine, alpha-ketoglutarate (α-KG), and glutamate (Glu) are identified as marker metabolites of feeding larvae, wandering larvae, and pupae, respectively. Arginine level is decreased by 20-hydroxyecdysone (20E) regulation via repression of argininosuccinate synthetase (Ass) expression and upregulation of arginase (Arg) expression during metamorphosis. α-KG is transformed from Glu by glutamate dehydrogenase (GDH) in larval midgut, which is repressed by 20E. The α-KG is then transformed to Glu by GDH-like in pupal fat body, which is upregulated by 20E. Thus, 20E reprogrammed amino acid metabolism during metamorphosis by regulating gene expression in a stage- and tissue-specific manner to support insect metamorphic development.
Collapse
Affiliation(s)
- Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Shu-Peng Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Li A, Li Y, Mei Y, Zhao J, Zhou Q, Li K, Zhao M, Xu J, Ge X, Xu Q. Associations of metals and metals mixture with lipid profiles: A repeated-measures study of older adults in Beijing. CHEMOSPHERE 2023; 319:137833. [PMID: 36693480 DOI: 10.1016/j.chemosphere.2023.137833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metals inevitably and easily enter into human bodies and can induce a series of pathophysiological changes, such as oxidative stress damage and lipid peroxidation, which then may further induce dyslipidemia. However, the effects of metals and metals mixture on the lipid profiles are still unclear, especially in older adults. A three-visits repeated measurement of 201 older adults in Beijing was conducted from November 2016 to January 2018. Linear Mixed Effects models and Bayesian kernel machine regression models were used to estimate associations of eight blood metals and metals mixture with lipid profiles, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), Castelli risk indexes I (CRI-1), Castelli risk indexes II (CRI-2), atherogenic coefficient (AC), and non-HDL cholesterol (NHC). Cesium (Cs) was positively associated with TG (βCs = 0.14; 95% CI: 0.02, 0.26) whereas copper (Cu) was inversely related to TG (βCu = -0.65; 95%CI: -1.14, -0.17) in adjusted models. Manganese (Mn) was mainly related to higher HDL-C (βMn = 0.14; 95% CI: 0.07, 0.21) whereas molybdenum showed opposite association. Metals mixture was marginally positive associated with HDL-C, among which Mn played a crucial role. Our findings suggest that the effects of single metal on lipid profiles may be counteracted in mixtures in the context of multiple metal exposures; however, future studies with large sample size are still needed to focus on the detrimental effects of single metals on lipid profiles as well as to identify key components.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
9
|
Magazzù G, Zampieri G, Angione C. Clinical stratification improves the diagnostic accuracy of small omics datasets within machine learning and genome-scale metabolic modelling methods. Comput Biol Med 2022; 151:106244. [PMID: 36343407 DOI: 10.1016/j.compbiomed.2022.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recently, multi-omic machine learning architectures have been proposed for the early detection of cancer. However, for rare cancers and their associated small datasets, it is still unclear how to use the available multi-omics data to achieve a mechanistic prediction of cancer onset and progression, due to the limited data available. Hepatoblastoma is the most frequent liver cancer in infancy and childhood, and whose incidence has been lately increasing in several developed countries. Even though some studies have been conducted to understand the causes of its onset and discover potential biomarkers, the role of metabolic rewiring has not been investigated in depth so far. METHODS Here, we propose and implement an interpretable multi-omics pipeline that combines mechanistic knowledge from genome-scale metabolic models with machine learning algorithms, and we use it to characterise the underlying mechanisms controlling hepatoblastoma. RESULTS AND CONCLUSIONS While the obtained machine learning models generally present a high diagnostic classification accuracy, our results show that the type of omics combinations used as input to the machine learning models strongly affects the detection of important genes, reactions and metabolic pathways linked to hepatoblastoma. Our method also suggests that, in the context of computer-aided diagnosis of cancer, optimal diagnostic accuracy can be achieved by adopting a combination of omics that depends on the patient's clinical characteristics.
Collapse
Affiliation(s)
- Giuseppe Magazzù
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, England, United Kingdom
| | - Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, England, United Kingdom; Department of Biology, University of Padova, Padova, Italy
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, England, United Kingdom; Centre for Digital Innovation, Teesside University, Middlesbrough, England, United Kingdom; National Horizons Centre, Teesside University, Darlington, England, United Kingdom.
| |
Collapse
|
10
|
Wang C, Zhao S, Xu Y, Sun W, Feng Y, Liang D, Guan Y. Integrated Microbiome and Metabolome Analysis Reveals Correlations Between Gut Microbiota Components and Metabolic Profiles in Mice with Methotrexate-Induced Hepatoxicity. Drug Des Devel Ther 2022; 16:3877-3891. [PMID: 36388083 PMCID: PMC9653027 DOI: 10.2147/dddt.s381667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose We designed this study to investigate the potential correlations between gut microbiota compositions and hepatic metabolomic disorders in mice with methotrexate (MTX)-induced hepatoxicity. Methods We used MTX to induce hepatoxicity in healthy Kunming mice, and we determined plasma ALT and AST levels and assessed the liver tissue histopathology. We applied an integrated gas chromatography-mass spectrometry (GC-MS) and 16S ribosomal RNA (rRNA) gene sequencing approach to evaluate the effects of MTX on the gut microbiota and hepatic metabolic profiles of mice. We uncovered correlations between the gut microbiota and hepatic metabolomic profiles by calculating the Spearman correlation coefficient. Results MTX caused ALT and AST level elevations and hepatoxicity in our mouse model. MTX disrupted amino acid metabolic pathways (including biosyntheses of valine, leucine, and isoleucine; and arginine; and, metabolism of alanine, aspartate, and glutamate; histidine; beta-alanine; and glycine, serine, and threonine); biosyntheses of aminoacyl-tRNA; and pantothenate, and CoA; and, metabolic pathways of energy, glutathione, and porphyrin; and chlorophyll. In addition, MTX increased the abundances of Staphylococcus, Enterococcus, Collinsella, Streptococcus, and Aerococcus, but decreased the amounts of Lactobacillus, Ruminococcus, norank_f_Muribaculaceae, unclassified_f_Lachnospiraceae, norank_f_Lachnospiraceae, A2, Eubacterium_xylanophilum_group, Phascolarctobacterium, Bifidobacterium, and Faecalibaculum. Our correlation analyses showed that different flora abundance changes including those of Phascolarctobacterium, Faecalibaculum, norank_f_Muribaculaceae, Streptococcus, Enterococcus, Staphylococcus, and Collinsella were associated with liver injury. Conclusion We present evidence supporting the notion that MTX causes hepatoxicity by altering the gut microbiota and hepatic metabolite profiles, our findings provide new venues for the management of MTX-induced hepatoxicity.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Shuzhen Zhao
- Children’s Rehabilitation Center, Jining Maternal and Child Health Family Planning Service Center, Jining, 272000, People’s Republic of China
| | - Yuan Xu
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Wenxue Sun
- Institute of Clinical Pharmacy and Pharmacology, Jining NO. 1 People’s Hospital, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Yuanyuan Feng
- Children’s Rehabilitation Center, Jining Maternal and Child Health Family Planning Service Center, Jining, 272000, People’s Republic of China
| | - Deshuai Liang
- Department of pharmacy, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Yun Guan
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
- Correspondence: Yun Guan; Deshuai Liang, Jining NO. 1 People’s Hospital, 6 Jiankang Road, Jining, Shandong, 272000, People’s Republic of China, Tel/Fax +86-0537 2087092, Email ;
| |
Collapse
|
11
|
Punicalagin Protects against the Development of Methotrexate-Induced Hepatotoxicity in Mice via Activating Nrf2 Signaling and Decreasing Oxidative Stress, Inflammation, and Cell Death. Int J Mol Sci 2022; 23:ijms232012334. [PMID: 36293191 PMCID: PMC9604463 DOI: 10.3390/ijms232012334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Despite its effectiveness in treating inflammatory diseases and various malignancies, methotrexate (MTX) is well known to cause hepatotoxicity, which involves increased oxidative stress and inflammation, limiting its clinical use. Herein, we looked into the effect of punicalagin (PU), a polyphenolic molecule having a variety of health-promoting attributes, on MTX-induced hepatotoxicity in mice. PU (25 and 50 mg/kg/day) was given orally to the mice for 10 days, while a single dose of MTX (20 mg/kg) was injected intraperitoneally (i.p.) at day 7. The MTX-induced liver damage was demonstrated by remarkably higher transaminases (ALT and AST), ALP, and LDH, as well as significant histological alterations in hepatic tissues. MTX-injected mice also demonstrated increases in hepatic oxidative stress markers, including malondialdehyde (MDA) and nitric oxide (NO), with a concordant drop in glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities. PU significantly attenuated the MTX-induced serum transaminases, ALP and LDH elevations, and hepatic oxidative stress measures and boosted antioxidant defenses in the liver. Moreover, the liver of MTX-treated mice showed increases in NF-κB p65 expression, pro-inflammatory cytokine (IL-6 and TNF-α) levels, and pro-apoptotic protein (caspase-3 and Bax) expression, whereas Bcl-2 and Nrf2 expressions were reduced, which were all attenuated by PU treatment. Collectively, PU inhibits oxidative damage, inflammation, and apoptosis and upregulates Nrf2 in the liver of MTX-induced mice. Thus, these findings suggest that PU may have great therapeutic potential for the prevention of MTX-induced hepatotoxicity, pending further exploration in upcoming studies.
Collapse
|
12
|
Wu B, Feng J, Guo J, Wang J, Xiu G, Xu J, Ning K, Ling B, Fu Q, Xu J. ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Res Ther 2022; 13:494. [PMID: 36195966 PMCID: PMC9531400 DOI: 10.1186/s13287-022-03049-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hepatic fibrosis is a common pathologic stage in chronic liver disease development, which might ultimately lead to liver cirrhosis. Accumulating evidence suggests that adipose-derived stromal cells (ADSCs)-based therapies show excellent therapeutic potential in liver injury disease owing to its superior properties, including tissue repair ability and immunomodulation effect. However, cell-based therapy still limits to several problems, such as engraftment efficiency and immunoreaction, which impede the ADSCs-based therapeutics development. So, ADSCs-derived extracellular vesicles (EVs), especially for exosomes (ADSC-EXO), emerge as a promise cell-free therapeutics to ameliorate liver fibrosis. The effect and underlying mechanisms of ADSC-EXO in liver fibrosis remains blurred. Methods Hepatic fibrosis murine model was established by intraperitoneal sequential injecting the diethylnitrosamine (DEN) for two weeks and then carbon tetrachloride (CCl4) for six weeks. Subsequently, hepatic fibrosis mice were administrated with ADSC-EXO (10 μg/g) or PBS through tail vein infusion for three times in two weeks. To evaluate the anti-fibrotic capacity of ADSC-EXO, we detected liver morphology by histopathological examination, ECM deposition by serology test and Sirius Red staining, profibrogenic markers by qRT-PCR assay. LX-2 cells treated with TGF-β (10 ng/ml) for 12 h were conducted for evaluating ADSC-EXO effect on activated hepatic stellate cells (HSCs). RNA-seq was performed for further analysis of the underlying regulatory mechanisms of ADSC-EXO in liver fibrosis. Results In this study, we obtained isolated ADSCs, collected and separated ADSCs-derived exosomes. We found that ADSC-EXO treatment could efficiently ameliorate DEN/CCl4-induced hepatic fibrosis by improving mice liver function and lessening hepatic ECM deposition. Moreover, ADSC-EXO intervention could reverse profibrogenic phenotypes both in vivo and in vitro, including HSCs activation depressed and profibrogenic markers inhibition. Additionally, RNA-seq analysis further determined that decreased glutamine synthetase (Glul) of perivenous hepatocytes in hepatic fibrosis mice could be dramatically up-regulated by ADSC-EXO treatment; meanwhile, glutamine and ammonia metabolism-associated key enzyme OAT was up-regulated and GLS2 was down-regulated by ADSC-EXO treatment in mice liver. In addition, glutamine synthetase inhibitor would erase ADSC-EXO therapeutic effect on hepatic fibrosis. Conclusions These findings demonstrated that ADSC-derived exosomes could efficiently alleviate hepatic fibrosis by suppressing HSCs activation and remodeling glutamine and ammonia metabolism mediated by hepatocellular glutamine synthetase, which might be a novel and promising anti-fibrotic therapeutics for hepatic fibrosis disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03049-x.
Collapse
Affiliation(s)
- Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jiuxing Feng
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China
| | - Jiaqi Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China.
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Viability assessment is one of the main indications for machine perfusion (MP) in liver transplantation. This review summarizes the rationale, evolution and limitations of proposed viability criteria and suggests a framework for future studies. RECENT FINDINGS Liver viability is most frequently assessed during normothermic MP by combining parameters relative to perfusate and bile composition, vascular flows and macroscopic aspect. Assessment protocols are largely heterogeneous and have significantly evolved over time, also within the same group, reflecting the ongoing evolution of the subject. Several recent preclinical studies using discarded human livers or animal models have explored other approaches to viability assessment. During hypothermic MP, perfusate flavin mononucleotide has emerged as a promising biomarker of mitochondrial injury and function. Most studies on the subject suffer from limitations, including low numbers, lack of multicenter validation, and subjective interpretation of some viability parameters. SUMMARY MP adds a further element of complexity in the process of assessing the quality of a liver graft. Understanding the physiology of the parameters included in the different assessment protocols is necessary for their correct interpretation. Despite the possibility of assessing liver viability during MP, the importance of donor-recipient matching and operational variables should not be disregarded.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U - Liver Transplant Unit. Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino - University of Turin, Turin
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Renato Romagnoli
- General Surgery 2U - Liver Transplant Unit. Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino - University of Turin, Turin
| |
Collapse
|
14
|
Wang Y, Zhu X, Wang K, Cai Y, Liu C, Pan J, Sun J, Liu T, Huang Y, Li Y, Lu Y. Cell Metabolomics Study on Synergistic anti-Hepatocellular Carcinoma Effect of Aidi Injection Combined with Doxorubicin. Biomed Chromatogr 2022; 36:e5451. [PMID: 35848595 DOI: 10.1002/bmc.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the second most common cause of cancer deaths. This study aimed to explore the inhibitory effect and mechanism of Aidi injection (ADI) combined with doxorubicin (DOX) in HCC treatment. The drug concentrations in combined threapy was determined by investigating the effect of various concentrations of ADI and DOX on the viability of H22 cells. The combination index (CI) was also calculated. A metabolomic strategy based on ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) platform was established to analyze the metabolites. As a result, the CI values were less than 1, indicating that the combination of ADI and DOX exerted a synergistic effect on HCC treatment. The combination of 40‰ ADI and 1 μmol/L DOX had the strongest inhibitory effect and was used for subsequent metabolomic analysis. A total of 19 metabolic markers were obtained in metabolomic analysis, including amino acids (L-glutamic acid, L-arginine, and L-tyrosine), organic acids (succinic acid and citric acid), adenosine, and hypoxanthine , etc. Compared with the treatment using DOX or ADI alone, the combined therapy further regulated the levels of metabolic markers in HCC, which may be the reason for the synergistic effect. Seven metabolic pathways were significantly enriched, including phenylalanine, tyrosine and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, and purine metabolism. These findings demonstrated that ADI combined with DOX can effectively inhibit the viability of H22 cells, which may exert a synergistic anti-tumor effect by balancing the metabolism of amino acids and energy-related substances.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaoqing Zhu
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Kailiang Wang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ying Cai
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Plasma Metabolomics and Machine Learning-Driven Novel Diagnostic Signature for Non-Alcoholic Steatohepatitis. Biomedicines 2022; 10:biomedicines10071669. [PMID: 35884973 PMCID: PMC9312563 DOI: 10.3390/biomedicines10071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
We performed targeted metabolomics with machine learning (ML)-based interpretation to identify metabolites that distinguish the progression of nonalcoholic fatty liver disease (NAFLD) in a cohort. Plasma metabolomics analysis was conducted in healthy control subjects (n = 25) and patients with NAFL (n = 42) and nonalcoholic steatohepatitis (NASH, n = 19) by gas chromatography-tandem mass spectrometry (MS/MS) and liquid chromatography-MS/MS as well as RNA sequencing (RNA-seq) analyses on liver tissues from patients with varying stages of NAFLD (n = 12). The resulting metabolomic data were subjected to routine statistical and ML-based analyses and multi-omics interpretation with RNA-seq data. We found 6 metabolites that were significantly altered in NAFLD among 79 detected metabolites. Random-forest and multinomial logistic regression analyses showed that eight metabolites (glutamic acid, cis-aconitic acid, aspartic acid, isocitric acid, α-ketoglutaric acid, oxaloacetic acid, myristoleic acid, and tyrosine) could distinguish the three groups. Then, the recursive partitioning and regression tree algorithm selected three metabolites (glutamic acid, isocitric acid, and aspartic acid) from these eight metabolites. With these three metabolites, we formulated an equation, the MetaNASH score that distinguished NASH with excellent performance. In addition, metabolic map construction and correlation assays integrating metabolomics data into the transcriptome datasets of the liver showed correlations between the concentration of plasma metabolites and the expression of enzymes governing metabolism and specific alterations of these correlations in NASH. Therefore, these findings will be useful for evaluation of altered metabolism in NASH and understanding of pathophysiologic implications from metabolite profiles in relation to NAFLD progression.
Collapse
|
16
|
Abhari AP, Etemadifar M, Yazdanpanah N, Rezaei N. N-Methyl-D-Aspartate (NMDA)-Type Glutamate Receptors and Demyelinating Disorders: A Neuroimmune Perspective. Mini Rev Med Chem 2022; 22:2624-2640. [PMID: 35507747 DOI: 10.2174/1389557522666220504135853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors, highly important in regulating substantial physiologic processes in the brain and the nervous system, and disturbance in their function could contribute to different pathologies. Overstimulation and hyperactivity of NMDARs, termed as glutamate toxicity, could promote cell death and apoptosis. Meanwhile, their blockade could lead to dysfunction of the brain and nervous system as well. A growing body of evidence has demonstrated the prominent role of NMDARs in demyelinating disorders and anti-NMDAR encephalitis. Herein, we provide an overview of the role of NMDARs' dysfunction in the physiopathology of demyelinating disorders such as multiple sclerosis and neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- Amir Parsa Abhari
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran.,School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Verstraeten L, Jochmans I. Sense and Sensibilities of Organ Perfusion as a Kidney and Liver Viability Assessment Platform. Transpl Int 2022; 35:10312. [PMID: 35356401 PMCID: PMC8958413 DOI: 10.3389/ti.2022.10312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Predicting organ viability before transplantation remains one of the most challenging and ambitious objectives in transplant surgery. Waitlist mortality is high while transplantable organs are discarded. Currently, around 20% of deceased donor kidneys and livers are discarded because of “poor organ quality”, Decisions to discard are still mainly a subjective judgement since there are only limited reliable tools predictive of outcome available. Organ perfusion technology has been posed as a platform for pre-transplant organ viability assessment. Markers of graft injury and function as well as perfusion parameters have been investigated as possible viability markers during ex-situ hypothermic and normothermic perfusion. We provide an overview of the available evidence for the use of kidney and liver perfusion as a tool to predict posttransplant outcomes. Although evidence shows post-transplant outcomes can be predicted by both injury markers and perfusion parameters during hypothermic kidney perfusion, the predictive accuracy is too low to warrant clinical decision making based upon these parameters alone. In liver, further evidence on the usefulness of hypothermic perfusion as a predictive tool is needed. Normothermic perfusion, during which the organ remains fully metabolically active, seems a more promising platform for true viability assessment. Although we do not yet fully understand “on-pump” organ behaviour at normothermia, initial data in kidney and liver are promising. Besides the need for well-designed (registry) studies to advance the field, the catch-22 of selection bias in clinical studies needs addressing.
Collapse
Affiliation(s)
- Laurence Verstraeten
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ina Jochmans
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Ina Jochmans,
| |
Collapse
|
18
|
Chiral resolution of plasma amino acids reveals enantiomer-selective associations with organ functions. Amino Acids 2022; 54:421-432. [PMID: 35226151 DOI: 10.1007/s00726-022-03140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Plasma amino acids reflect the dynamics of amino acids in organs and their levels have clinical significance. Amino acids as clinical indicators have been evaluated as a mixture of D- and L-amino acids because D-enantiomers are believed to be physiologically nonexistent. However, it has become clear that some D-amino acids are synthesized by endogenous enzymes and symbiotic bacteria. Here, using a two-dimensional HPLC system, we measured enantiomers of all proteinogenic amino acids in plasma and urine and analyzed for correlation with other biochemical parameters in humans who underwent health checkups at our institutional hospital. Four D-amino acids (D-asparagine, D-alanine, D-serine, and D-proline) were detected in the plasma, amounting to less than 1% of the quantities of L-amino acids, but in the urine at several tens of percent, showing that D-amino acids have much higher fractional excretion than their L-counterparts. Detected plasma D-amino acids and D-/L-amino acid ratios were well correlated with renal parameters, such as blood urea nitrogen, creatinine, and cystatin C. On the other hand, a set of plasma L-amino acids were associated with body mass index and correlated with metabolic parameters such as liver enzymes, lipids, blood glucose, and uric acid. Thus, chiral resolution of plasma amino acids revealed totally different associations of the enantiomers with organ functions, and warrants further investigation for clinical and laboratory usefulness.
Collapse
|
19
|
The Interplay between Pathophysiological Pathways in Early-Onset Severe Preeclampsia Unveiled by Metabolomics. Life (Basel) 2022; 12:life12010086. [PMID: 35054479 PMCID: PMC8780941 DOI: 10.3390/life12010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Preeclampsia is a multi-system disorder unique to pregnancy responsible for a great part of maternal and perinatal morbidity and mortality. The precise pathogenesis of this complex disorder is still unrevealed. METHODS We examined the pathophysiological pathways involved in early-onset preeclampsia, a specific subgroup representing its most severe presentation, using LC-MS/MS metabolomic analysis based on multi-level extraction of lipids and small metabolites from maternal blood samples, collected at the time of diagnosis from 14 preeclamptic and six matched healthy pregnancies. Statistical analysis comprised multivariate and univariate approaches with the application of over representation analysis to identify differential pathways. RESULTS A clear difference between preeclamptic and control pregnancies was observed in principal component analysis. Supervised multivariate analysis using orthogonal partial least square discriminant analysis provided a robust model with goodness of fit (R2X = 0.91, p = 0.002) and predictive ability (Q2Y = 0.72, p < 0.001). Finally, univariate analysis followed by 5% false discovery rate correction indicated 82 metabolites significantly altered, corresponding to six overrepresented pathways: (1) aminoacyl-tRNA biosynthesis; (2) arginine biosynthesis; (3) alanine, aspartate and glutamate metabolism; (4) D-glutamine and D-glutamate metabolism; (5) arginine and proline metabolism; and (6) histidine metabolism. CONCLUSION Metabolomic analysis focusing specifically on the early-onset severe form of preeclampsia reveals the interplay between pathophysiological pathways involved in this form. Future studies are required to explore new therapeutic approaches targeting these altered metabolic pathways in early-onset preeclampsia.
Collapse
|
20
|
García-Gaytán AC, Hernández-Abrego A, Díaz-Muñoz M, Méndez I. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Front Endocrinol (Lausanne) 2022; 13:1029210. [PMID: 36457557 PMCID: PMC9705578 DOI: 10.3389/fendo.2022.1029210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.
Collapse
|
21
|
Choi WM, Ryu T, Lee JH, Shim YR, Kim MH, Kim HH, Kim YE, Yang K, Kim K, Choi SE, Kim W, Kim SH, Eun HS, Jeong WI. Metabotropic Glutamate Receptor 5 in Natural Killer Cells Attenuates Liver Fibrosis by Exerting Cytotoxicity to Activated Stellate Cells. Hepatology 2021; 74:2170-2185. [PMID: 33932306 DOI: 10.1002/hep.31875] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The important roles of glutamate and metabotropic glutamate receptor 5 (mGluR5) in HSCs have recently been reported in various liver diseases; however, the mechanism linking the glutamine/glutamate metabolism and mGluR5 in liver fibrosis remains unclear. Here, we report that mGluR5 activation in natural killer (NK) cells attenuates liver fibrosis through increased cytotoxicity and interferon-γ (IFN-γ) production in both mice and humans. APPROACH AND RESULTS Following 2-week injection of carbon tetrachloride (CCl4 ) or 5-week methionine-deficient and choline-deficient diet, liver fibrosis was more aggravated in mGluR5 knockout mice with significantly decreased frequency of NK cells compared with wild-type mice. Consistently, NK cell-specific mGluR5 knockout mice had aggravated CCl4 -induced liver fibrosis with decreased production of IFN-γ. Conversely, in vitro activation of mGluR5 in NK cells significantly increased the expression of anti-fibrosis-related genes including Ifng, Prf1 (perforin), and Klrk1 (killer cell lectin like receptor K1) and the production of IFN-γ through the mitogen-activated extracellular signal-regulated kinase/extracellular signal-related kinase pathway, contributing to the increased cytotoxicity against activated HSCs. However, we found that the uptake of glutamate was increased in activated HSCs, resulting in shortage of extracellular glutamate and reduced stimulation of mGluR5 in NK cells. Consequently, this could enable HSCs to evade NK cell cytotoxicity in advanced liver fibrosis. In vivo, pharmacologic activation of mGluR5 accelerated CCl4 -induced liver fibrosis regression by restoring NK cell cytotoxicity. In humans, mGluR5 activation enhanced the cytotoxicity of NK cells isolated from healthy donors, but not from patients with cirrhosis with significantly reduced mGluR5 expression in NK cells. CONCLUSIONS mGluR5 plays important roles in attenuating liver fibrosis by augmenting NK cell cytotoxicity, which could be used as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Won-Mook Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.,Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jun-Hee Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Ye Eun Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Sung Eun Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.,Biomedical Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Zhao F, An R, Wang L, Shan J, Wang X. Specific Gut Microbiome and Serum Metabolome Changes in Lung Cancer Patients. Front Cell Infect Microbiol 2021; 11:725284. [PMID: 34527604 PMCID: PMC8435782 DOI: 10.3389/fcimb.2021.725284] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Background Lung cancer (LC) is one of the most aggressive, prevalent and fatal malignancies. Gut microbes and their associated metabolites are thought to cause and modulate LC development, albeit influenced by the host genetic make-up and environment. Herein, we identified and classified gut microbiota and serum metabolites associated with LC. Methods Stool samples were collected from 41 LC patients and 40 healthy volunteers. The gut microbiota was analyzed using 16S rRNA gene sequencing. Serum samples were collected from the same LC patients (n=30) and healthy volunteers (n=30) and serum metabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). Microbiome and metabolome data were analyzed separately and integrated for combined analysis using various bioinformatics methods. Results Serum metabolomics uncovered 870 metabolites regulated in 76 metabolic pathways in both groups. Microbial diversity analyses identified 15967 operational taxonomic units (OTUs) in groups. Of these, the abundance of 232 OTUs was significantly different between HC and LC groups. Also, serum levels of glycerophospholipids (LysoPE 18:3, LysoPC 14:0, LysoPC 18:3), Imidazopyrimidines (Hypoxanthine), AcylGlcADG 66:18; AcylGlcADG (22:6/22:6/22:6) and Acylcarnitine 11:0 were substantially different between HC and LC groups. Combined analysis correlated LC-associated microbes with metabolites, such as Erysipelotrichaceae_UCG_003, Clostridium and Synergistes with glycerophospholipids. Conclusions There is an intricate relationship between gut microbiome and levels of several metabolites such as glycerophospholipids and imidazopyrimidines. Microbial-associated metabolites are potential diagnostic biomarkers and therapeutic targets for LC.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Laboratory Medicine, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui An
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Laboratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqian Wang
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jikang Shan
- Department of Laboratory Medicine, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Wang
- Department of Laboratory Medicine, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Jahoor F, Hsu JW, Mehta PB, Keene KR, Gaba R, Mulukutla SN, Caducoy E, Peacock WF, Patel SG, Bennet R, Lernmark A, Balasubramanyam A. Metabolomics Profiling of Patients With A-β+ Ketosis-Prone Diabetes During Diabetic Ketoacidosis. Diabetes 2021; 70:1898-1909. [PMID: 34021044 PMCID: PMC8385613 DOI: 10.2337/db21-0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
When stable and near-normoglycemic, patients with "A-β+" ketosis-prone diabetes (KPD) manifest accelerated leucine catabolism and blunted ketone oxidation, which may underlie their proclivity to develop diabetic ketoacidosis (DKA). To understand metabolic derangements in A-β+ KPD patients during DKA, we compared serum metabolomics profiles of adults during acute hyperglycemic crises, without (n = 21) or with (n = 74) DKA, and healthy control subjects (n = 17). Based on 65 kDa GAD islet autoantibody status, C-peptide, and clinical features, 53 DKA patients were categorized as having KPD and 21 type 1 diabetes (T1D); 21 nonketotic patients were categorized as having type 2 diabetes (T2D). Patients with KPD and patients with T1D had higher counterregulatory hormones and lower insulin-to-glucagon ratio than patients with T2D and control subjects. Compared with patients withT2D and control subjects, patients with KPD and patients with T1D had lower free carnitine and higher long-chain acylcarnitines and acetylcarnitine (C2) but lower palmitoylcarnitine (C16)-to-C2 ratio; a positive relationship between C16 and C2 but negative relationship between carnitine and β-hydroxybutyrate (BOHB); higher branched-chain amino acids (BCAAs) and their ketoacids but lower ketoisocaproate (KIC)-to-Leu, ketomethylvalerate (KMV)-to-Ile, ketoisovalerate (KIV)-to-Val, isovalerylcarnitine-to-KIC+KMV, propionylcarnitine-to-KIV+KMV, KIC+KMV-to-C2, and KIC-to-BOHB ratios; and lower glutamate and 3-methylhistidine. These data suggest that during DKA, patients with KPD resemble patients with T1D in having impaired BCAA catabolism and accelerated fatty acid flux to ketones-a reversal of their distinctive BCAA metabolic defect when stable. The natural history of A-β+ KPD is marked by chronic but varying dysregulation of BCAA metabolism.
Collapse
Affiliation(s)
- Farook Jahoor
- Children's Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jean W Hsu
- Children's Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Paras B Mehta
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX
| | - Kelly R Keene
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX
- Ben Taub General Hospital, Harris Health System, Houston, TX
| | - Ruchi Gaba
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX
- Ben Taub General Hospital, Harris Health System, Houston, TX
| | | | - Eunice Caducoy
- Children's Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - W Frank Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX
- Ben Taub General Hospital, Harris Health System, Houston, TX
| | - Sanjeet G Patel
- Division of Cardiothoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rasmus Bennet
- Unit for Diabetes and Celiac Disease, Lund University, Malmo, Sweden
| | - Ake Lernmark
- Unit for Diabetes and Celiac Disease, Lund University, Malmo, Sweden
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX
- Ben Taub General Hospital, Harris Health System, Houston, TX
| |
Collapse
|
24
|
Yu J, Zhu C, Wang X, Kim K, Bartolome A, Dongiovanni P, Yates KP, Valenti L, Carrer M, Sadowski T, Qiang L, Tabas I, Lavine JE, Pajvani UB. Hepatocyte TLR4 triggers inter-hepatocyte Jagged1/Notch signaling to determine NASH-induced fibrosis. Sci Transl Med 2021; 13:eabe1692. [PMID: 34162749 PMCID: PMC8792974 DOI: 10.1126/scitranslmed.abe1692] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Aberrant hepatocyte Notch activity is critical to the development of nonalcoholic steatohepatitis (NASH)-induced liver fibrosis, but mechanisms underlying Notch reactivation in developed liver are unclear. Here, we identified that increased expression of the Notch ligand Jagged1 (JAG1) tracked with Notch activation and nonalcoholic fatty liver disease (NAFLD) activity score (NAS) in human liver biopsy specimens and mouse NASH models. The increase in Jag1 was mediated by hepatocyte Toll-like receptor 4 (TLR4)-nuclear factor κB (NF-κB) signaling in pericentral hepatocytes. Hepatocyte-specific Jag1 overexpression exacerbated fibrosis in mice fed a high-fat diet or a NASH-provoking diet rich in palmitate, cholesterol, and sucrose and reversed the protection afforded by hepatocyte-specific TLR4 deletion, whereas hepatocyte-specific Jag1 knockout mice were protected from NASH-induced liver fibrosis. To test therapeutic potential of this biology, we designed a Jag1-directed antisense oligonucleotide (ASO) and a hepatocyte-specific N-acetylgalactosamine (GalNAc)-modified siRNA, both of which reduced NASH diet-induced liver fibrosis in mice. Overall, these data demonstrate that increased hepatocyte Jagged1 is the proximal hit for Notch-induced liver fibrosis in mice and suggest translational potential of Jagged1 inhibitors in patients with NASH.
Collapse
Affiliation(s)
- Junjie Yu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alberto Bartolome
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Katherine P Yates
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan 20122, Italy
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | | | | | - Li Qiang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Department of Physiology, Columbia University, New York, NY 10032, USA
| | - Joel E Lavine
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
25
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
26
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Endogenous flux of nitric oxide: Citrulline is preferred to Arginine. Acta Physiol (Oxf) 2021; 231:e13572. [PMID: 33089645 DOI: 10.1111/apha.13572] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Both arginine (Arg) and its precursor citrulline (Cit) have received much interest in the past two decades because of their potential effects on whole-body nitric oxide (NO) production and augmentation of NO-dependent signalling pathways. However, the usefulness of Arg supplementation for NO production is questionable because of its high splanchnic first pass metabolism (FPM), which limits its systemic availability. Both hepatic- and extrahepatic arginases critically limit the availability of Arg for the NO synthase enzymes (NOSs) and therefore, a limited amount of oral Arg can reach the systemic circulation for NO synthesis. Arg also has some undesired effects including induction of arginase activity, an increase of urea levels, a decrease of cellular uptake of Cit and decrease of recycling of Arg from Cit. In contrast, Cit has more availability as an NO precursor because of its high intestinal absorption, low FPM and high renal reabsorption. At the cellular level, co-localization of Cit transport systems and the enzymes involved in the Cit-Arg-NO pathway facilitates channelling of Cit into NO. Furthermore, cells preferably use Cit rather than either intra- or extracellular Arg to improve NO output, especially in high-demand situations. In conclusion, available evidence strongly supports the concept that Cit leads to higher NO production and suggests that Cit may have a better therapeutic effect than Arg for NO-disrupted conditions.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical Sciences Tehran Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences Sophie Davis School of Biomedical Education City University of New York School of Medicine New York NY USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
27
|
Bone Marrow-Derived Mesenchymal Stem Cells Differentially Affect Glioblastoma Cell Proliferation, Migration, and Invasion: A 2D-DIGE Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4952876. [PMID: 33628783 PMCID: PMC7892224 DOI: 10.1155/2021/4952876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) display high tumor tropism and cause indirect effects through the cytokines they secrete. However, the effects of BM-MSCs on the biological behaviors of glioblastoma multiforme remain unclear. In this study, the conditioned medium from BM-MSCs significantly inhibited the proliferation of C6 cells (P < 0.05) but promoted their migration and invasion (P < 0.05). Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) proteomic analysis revealed 17 proteins differentially expressed in C6 cells exposed to the BM-MSC-conditioned medium including five upregulated proteins and 12 downregulated proteins. Among these, six differentially expressed proteins (Calr, Set, Oat, Npm1, Ddah1, and Tardbp) were closely related to cell proliferation and differentiation, and nine proteins (Pdia6, Sphk1, Anxa4, Vim, Tuba1c, Actr1b, Actn4, Rap2c, and Tpm2) were associated with motility and the cytoskeleton, which may modulate the invasion and migration of tumor cells. Above all, by identifying the differentially expressed proteins using proteomics and bioinformatics analysis, BM-MSCs could be genetically modified to specifically express tumor-suppressive factors when BM-MSCs are to be used as tumor-selective targeting carriers in the future.
Collapse
|
28
|
Jiménez-Torres C, El-Kehdy H, Hernández-Kelly LC, Sokal E, Ortega A, Najimi M. Acute Liver Toxicity Modifies Protein Expression of Glutamate Transporters in Liver and Cerebellar Tissue. Front Neurosci 2021; 14:613225. [PMID: 33488353 PMCID: PMC7815688 DOI: 10.3389/fnins.2020.613225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Glutamate is the main excitatory amino acid acting at the level of pre and postsynaptic neurons, as well as in glial cells. It is involved in the coordinated modulation of energy metabolism, glutamine synthesis, and ammonia detoxification. The relationship between the functional status of liver and brain has been known for many years. The most widely recognized aspect of this relation is the brain dysfunction caused by acute liver injury that manifests a wide spectrum of neurologic and psychiatric abnormalities. Inflammation, circulating neurotoxins, and impaired neurotransmission have been reported in this pathophysiology. In the present contribution, we report the effect of a hepatotoxic compound like CCl4 on the expression of key proteins involved in glutamate uptake and metabolism as glutamate transporters and glutamine synthetase in mice liver, brain, and cerebellum. Our findings highlight a differential expression pattern of glutamate transporters in cerebellum. A significant Purkinje cells loss, in parallel to an up-regulation of glutamine synthetase, and astrogliosis in the brain have also been noticed. In the intoxicated liver, glutamate transporter 1 expression is up-regulated, in contrast to glutamine synthetase which is reduced in a time-dependent manner. Taken together our results demonstrate that the exposure to an acute CCl4 insult, leads to the disruption of glutamate transporters expression in the liver-brain axis and therefore a severe alteration in glutamate-mediated neurotransmission might be present in the central nervous system.
Collapse
Affiliation(s)
- Catya Jiménez-Torres
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Hoda El-Kehdy
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| |
Collapse
|
29
|
Cavino K, Sung B, Su Q, Na E, Kim J, Cheng X, Gromada J, Okamoto H. Glucagon Receptor Inhibition Reduces Hyperammonemia and Lethality in Male Mice with Urea Cycle Disorder. Endocrinology 2021; 162:5988952. [PMID: 33206168 DOI: 10.1210/endocr/bqaa211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/14/2022]
Abstract
The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.
Collapse
Affiliation(s)
- Katie Cavino
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Biin Sung
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Erqian Na
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | | | | |
Collapse
|
30
|
Roques S, Deborde C, Richard N, Marchand Y, Larroquet L, Prigent S, Skiba-Cassy S, Moing A, Fauconneau B. Proton-NMR Metabolomics of Rainbow Trout Fed a Plant-Based Diet Supplemented with Graded Levels of a Protein-Rich Yeast Fraction Reveal Several Metabolic Processes Involved in Growth. J Nutr 2020; 150:2268-2277. [PMID: 32805000 DOI: 10.1093/jn/nxaa206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Plant raw materials are commonly used in aquafeeds, as marine resources are unsustainable. However, full plant-based diets lead to poorer fish growth performance. OBJECTIVE We aimed to understand the metabolic effects of a yeast fraction as a protein supplement in a plant-based diet and to integrate such effects with phenotypic traits as a new approach to assess the interest of this raw material. METHODS Juvenile (49 g) rainbow trout (Oncorhynchus mykiss) were fed graded levels of a yeast protein-rich fraction (5% YST05, 10% YST10, 15% YST15) in a plant-based diet (PB) for 84 d. Final body weight, feed conversion ratio, and hepatosomatic and viscerosomatic indexes were measured. Plasma, liver, and muscle 1H-NMR fingerprints were analyzed with principal component analyses, and their metabolite patterns were clustered according to the yeast level to identify concomitant metabolic effects. A regression modeling approach was used to predict tissue metabolite changes from plasma fingerprints. RESULTS In tissues, the patterns of metabolite changes followed either linear trends with the gradual inclusion of a yeast fraction (2 patterns out of 6 in muscle, 1 in liver) or quadratic trends (4 patterns in muscle, 5 in liver). Muscle aspartate and glucose (395 and 138% maximum increase in relative content compared with PB, respectively) revealing modification in energy metabolism, as well as modification of liver betaine (163% maximum increase) and muscle histidine (57% maximum decrease) related functions, indicates that the yeast fraction could improve growth in several ways. The highest correlation between measured and predicted metabolite intensities in a tissue based on plasma fingerprints was observed for betaine in liver (r = 0.80). CONCLUSIONS These findings herald a new approach to assess the plurality of metabolic effects induced by diets and establish the optimal level of raw materials. They open the way for using plasma as a noninvasive matrix in trout nutrition studies.
Collapse
Affiliation(s)
- Simon Roques
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France.,Phileo by Lesaffre, Marcq-en-Baroeul, France.,PMB-Metabolome, INRAE, 2018, Bordeaux Metabolome Facility (doi: 10.15454/1.5572412770331912E12), MetaboHUB, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Catherine Deborde
- PMB-Metabolome, INRAE, 2018, Bordeaux Metabolome Facility (doi: 10.15454/1.5572412770331912E12), MetaboHUB, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France.,INRAE, Univ Bordeaux, UMR Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | | | | | - Laurence Larroquet
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Sylvain Prigent
- INRAE, Univ Bordeaux, UMR Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Sandrine Skiba-Cassy
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Annick Moing
- PMB-Metabolome, INRAE, 2018, Bordeaux Metabolome Facility (doi: 10.15454/1.5572412770331912E12), MetaboHUB, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France.,INRAE, Univ Bordeaux, UMR Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Benoit Fauconneau
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| |
Collapse
|
31
|
Cooper L, Ball RO, Pencharz PB, Sakai R, Elango R. Dispensable Amino Acids, except Glutamine and Proline, Are Ideal Nitrogen Sources for Protein Synthesis in the Presence of Adequate Indispensable Amino Acids in Adult Men. J Nutr 2020; 150:2398-2404. [PMID: 32879983 DOI: 10.1093/jn/nxaa180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nutritionally, there is a dietary requirement for indispensable amino acids (IAAs) but also a requirement for nitrogen (N) intake for the de novo synthesis of the dispensable amino acids (DAAs). It has been suggested that there might be a dietary requirement for specific DAAs. OBJECTIVES Experiment 1 tested whether 9 of the DAAs (Ala, Arg, Asn, Asp, Gln, Glu, Gly, Pro, Ser) are ideal N sources using the indicator amino acid oxidation (IAAO) technique. Experiment 2 examined whether there is a dietary requirement for Glu in adult men. METHODS Seven healthy men (aged 20-24 y) participated in 11 or 2 test diet intakes, in experiment 1 and 2, respectively, in a repeated measures design. In experiment 1, a base diet consisting of the IAA provided at the RDA was compared with test intakes with the base diet plus addition of individual DAAs to meet a 50:50 ratio of IAA:DAA on an N basis. In experiment 2, the diets corresponded to the amino acid pattern present in egg protein, in which all Glu and Gln was present as Glu, or removed, with Ser used to make the diets isonitrogenous. On each study day the IAAO protocol with l-[1-13C]phenylalanine was used to measure whole-body protein synthesis. RESULTS In experiment 1, repeated measures ANOVA with post hoc multiple comparisons showed that 7 of the 9 DAAs (Ala, Arg, Asn, Asp, Glu, Gly, Ser) decreased IAAO significantly (P < 0.05) compared with base IAA diet, the exceptions being Gln and Pro. In experiment 2, a paired t test did not find significant (P > 0.05) differences in the IAAO in response to removal and replacement of Glu intake. CONCLUSIONS The results suggest that in healthy men most DAAs are ideal N sources for protein synthesis, in the presence of adequate IAAs, and that endogenous synthesis of Glu is sufficient.Registered clinicaltrials.gov identifier: NCT02009917.
Collapse
Affiliation(s)
- Leah Cooper
- BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada.,Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronald O Ball
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryosei Sakai
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., Kawasaki-Shi, Japan
| | - Rajavel Elango
- BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
33
|
Substitution of high-dose sucrose with fructose in high-fat diets resulted in higher plasma concentrations of aspartic acid, cystine, glutamic acid, ornithine and phenylalanine, and higher urine concentrations of arginine and citrulline. Nutr Res 2020; 79:100-110. [PMID: 32653771 DOI: 10.1016/j.nutres.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
High fructose intake has been shown to increase circulating alanine transaminase in humans, which could reflect damage to the liver by fructose but could also be linked to higher level of transamination of amino acids in liver. Therefore, we hypothesized that a diet with high content of fructose would affect the amino acid composition in rat plasma and urine differently from a diet with high sucrose content. Because high intake of sucrose and fructose is often accompanied with high intake of saturated fat in the Western-style diet, we wanted to compare the effects of high fructose/sucrose in diets with normal or high content of coconut oil on individual free amino acids plasma and urine. Male Wistar rats were fed diets with normal (10 wt%) or high (40 wt%) content of sucrose or fructose, with normal or high fat content (7 or 22 wt%) and 20 wt% protein (casein). Rats fed high-fructose high-fat diet had higher plasma concentrations of aspartic acid, cystine, glutamic acid, ornithine, and phenylalanine and higher urine concentrations of arginine and citrulline when compared to rats fed high-sucrose high-fat diet. Substituting normal content of sucrose with fructose in the diets had little impact on amino acids in plasma and urine. Serum concentrations of alanine transaminase, aspartate transaminase, and creatinine, and urine cystatin C and T cell immunoglobulin mucin-1 concentrations were comparable between the groups and within normal ranges. To conclude, substituting high-dose sucrose with high-dose fructose in high-fat diets affected amino acid compositions in plasma and urine.
Collapse
|
34
|
Jiménez-Torres C, Hernández-Kelly LC, Najimi M, Ortega A. Bisphenol A exposure disrupts aspartate transport in HepG2 cells. J Biochem Mol Toxicol 2020; 34:e22516. [PMID: 32363662 DOI: 10.1002/jbt.22516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
The liver is the organ responsible for bisphenol A (BPA) metabolism, an environmental chemical agent. Exposure to this toxin is associated with liver abnormalities and dysfunction. An important role played by excitatory amino acid transporters (EAATs) of the slc1 gene family has been reported in liver injuries. To gain insight into a plausible effect of BPA exposure in the liver glutamate/aspartate transport, using the human hepatoblastoma cell line HepG2, we report a BPA-dependent dynamic regulation of SLC1A3 and SLC1A2. Through the use of radioactive [3 H]- d-aspartate uptake experiments and immunochemical approaches, we characterized time and dose-dependent regulation of the protein levels and function of these transporters after acute exposure to BPA. An increase in nuclear Yin Yang 1 was found. These results suggest an important involvement of the EAATs in liver physiology and its disruption after acute BPA exposure.
Collapse
Affiliation(s)
- Catya Jiménez-Torres
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Mustapha Najimi
- Hepato-Gastroenterolgy Research Pole, Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université́ Catholique de Louvain, Brussels, Belgium
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
35
|
Wang L, Qiao K, Duan W, Zhang Y, Xiao J, Huang Y. Comparison of taste components in stewed beef broth under different conditions by means of chemical analyzed. Food Sci Nutr 2020; 8:955-964. [PMID: 32148804 PMCID: PMC7020296 DOI: 10.1002/fsn3.1376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
The aims of this study were to investigate the effect of stewing process on the content of taste compounds in stewing beef broth. The amino acids, 5'-nucleotides, and organic acids in stewing beef broth were determined by HPLC. The results showed that the contents of four 5'-nucleotides in raw beef were significantly lower than that in stewed beef broth. The addition of spices, salt, and sucrose was beneficial to promote the release of amino acid in beef broth. The highest contents of umami, sweet amino acid, and total amino acid were 907.67, 2930.11, and 5088.76 μg/g in stewed beef broth with salt addition, and 1085.10, 3367.48, and 5595.20 μg/g with sucrose addition. The contents of those in the stewed beef optimal group (s-b-o) were 7008.53, 34007.67, and 49282.82 μg/g, respectively, which was far higher than that with salt addition and sucrose addition. The content of total amino acid and total organic acid was significantly higher in s-b-o-o than in s-b-o. The proper amount of blend oil was beneficial to the release of flavor substances in stewed beef broth. The EUC value of the stewed beef blank group (s-b-b) was 3.50 g MSG/100 g. The addition of spices could significantly increase the EUC of stewed beef broth. The TAVs of 8 compounds were more than 1 in the sample of s-b-o-o, including Asp, Glu, Pro, Ala, Val, Met, Arg, and tartaric acid. These 8 compounds contribute more to the taste of stewed beef broth.
Collapse
Affiliation(s)
- Linhan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU)BeijingChina
| | - Kaina Qiao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU)BeijingChina
| | - Wen Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU)BeijingChina
| | - Yuyu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU)BeijingChina
| | - Junfei Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU)BeijingChina
| | - Yan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU)BeijingChina
| |
Collapse
|
36
|
Schultz J, Uddin Z, Singh G, Howlader MMR. Glutamate sensing in biofluids: recent advances and research challenges of electrochemical sensors. Analyst 2020; 145:321-347. [DOI: 10.1039/c9an01609k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical sensing guidelines for glutamate in biofluids, associated with different diseases, providing knowledge translation among science, engineering, and medical professionals.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Electrical and Computer Engineering
- McMaster University
- Hamilton
- Canada
| | - Zakir Uddin
- School of Rehabilitation Science
- McMaster University
- Hamilton
- Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | | |
Collapse
|
37
|
Du K, Chitneni SK, Suzuki A, Wang Y, Henao R, Hyun J, Premont RT, Naggie S, Moylan CA, Bashir MR, Abdelmalek MF, Diehl AM. Increased Glutaminolysis Marks Active Scarring in Nonalcoholic Steatohepatitis Progression. Cell Mol Gastroenterol Hepatol 2019; 10:1-21. [PMID: 31881361 PMCID: PMC7215180 DOI: 10.1016/j.jcmgh.2019.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) occurs in the context of aberrant metabolism. Glutaminolysis is required for metabolic reprograming of hepatic stellate cells (HSCs) and liver fibrogenesis in mice. However, it is unclear how changes in HSC glutamine metabolism contribute to net changes in hepatic glutaminolytic activity during fibrosis progression, or whether this could be used to track fibrogenic activity in NASH. We postulated that increased HSC glutaminolysis marks active scarring in NASH. METHODS Glutaminolysis was assessed in mouse NASH fibrosis models and in NASH patients. Serum and liver levels of glutamine and glutamate and hepatic expression of glutamine transporter/metabolic enzymes were correlated with each other and with fibrosis severity. Glutaminolysis was disrupted in HSCs to examine if this directly influenced fibrogenesis. 18F-fluoroglutamine positron emission tomography was used to determine how liver glutamine assimilation tracked with hepatic fibrogenic activity in situ. RESULTS The serum glutamate/glutamine ratio increased and correlated with its hepatic ratio, myofibroblast content, and fibrosis severity. Healthy livers almost exclusively expressed liver-type glutaminase (Gls2); Gls2 protein localized in zone 1 hepatocytes, whereas glutamine synthase was restricted to zone 3 hepatocytes. In fibrotic livers, Gls2 levels reduced and glutamine synthase zonality was lost, but both Slc1a5 (glutamine transporter) and kidney-type Gls1 were up-regulated; Gls1 protein was restricted to stromal cells and accumulated in fibrotic septa. Hepatocytes did not compensate for decreased Gls2 by inducing Gls1. Limiting glutamine or directly inhibiting GLS1 inhibited growth and fibrogenic activity in cultured human HSCs. Compared with healthy livers, fibrotic livers were 18F-fluoroglutamine-avid by positron emission tomography, suggesting that glutamine-addicted myofibroblasts drive increased hepatic utilization of glutamine as fibrosis progresses. CONCLUSIONS Glutaminolysis is a potential diagnostic marker and therapeutic target during NASH fibrosis progression.
Collapse
Affiliation(s)
- Kuo Du
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | | | - Ayako Suzuki
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - Ying Wang
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - Ricardo Henao
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Jeongeun Hyun
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - Richard T Premont
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - Susanna Naggie
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - Mustafa R Bashir
- Division of Gastroenterology, Duke University, Durham, North Carolina; Department of Radiology, Duke University, Durham, North Carolina; Center for Advanced Magnetic Resonance Development, Duke University, Durham, North Carolina
| | | | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, North Carolina.
| |
Collapse
|
38
|
Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett 2019; 467:29-39. [DOI: 10.1016/j.canlet.2019.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
39
|
Glutamine/glutamate metabolism rewiring in reprogrammed human hepatocyte-like cells. Sci Rep 2019; 9:17978. [PMID: 31784643 PMCID: PMC6884617 DOI: 10.1038/s41598-019-54357-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Human dermal fibroblasts can be reprogrammed into hepatocyte-like (HEP-L) cells by the expression of a set of transcription factors. Yet, the metabolic rewiring suffered by reprogrammed fibroblasts remains largely unknown. Here we report, using stable isotope-resolved metabolic analysis in combination with metabolomic-lipidomic approaches that HEP-L cells mirrors glutamine/glutamate metabolism in primary cultured human hepatocytes that is very different from parental human fibroblasts. HEP-L cells diverge glutamine from multiple metabolic pathways into deamidation and glutamate secretion, just like periportal hepatocytes do. Exceptionally, glutamine contribution to lipogenic acetyl-CoA through reductive carboxylation is increased in HEP-L cells, recapitulating that of primary cultured human hepatocytes. These changes can be explained by transcriptomic rearrangements of genes involved in glutamine/glutamate metabolism. Although metabolic changes in HEP-L cells are in line with reprogramming towards the hepatocyte lineage, our conclusions are limited by the fact that HEP-L cells generated do not display a complete mature phenotype. Nevertheless, our findings are the first to characterize metabolic adaptation in HEP-L cells that could ultimately be targeted to improve fibroblasts direct reprogramming to HEP-L cells.
Collapse
|
40
|
Kim DJ, Cho EJ, Yu KS, Jang IJ, Yoon JH, Park T, Cho JY. Comprehensive Metabolomic Search for Biomarkers to Differentiate Early Stage Hepatocellular Carcinoma from Cirrhosis. Cancers (Basel) 2019; 11:E1497. [PMID: 31590436 PMCID: PMC6826937 DOI: 10.3390/cancers11101497] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
The established biomarker for hepatocellular carcinoma (HCC), serum α-fetoprotein (AFP), has suboptimal performance in early disease stages. This study aimed to develop a metabolite panel to differentiate early-stage HCC from cirrhosis. Cross-sectional metabolomic analyses of serum samples were performed for 53 and 47 patients with early HCC and cirrhosis, respectively, and 50 matched healthy controls. Results were validated in 82 and 80 patients with early HCC and cirrhosis, respectively. To retain a broad spectrum of metabolites, technically distinct analyses (global metabolomic profiling using gas chromatography time-of-flight mass spectrometry and targeted analyses using liquid chromatography with tandem mass spectrometry) were employed. Multivariate analyses classified distinct metabolites; logistic regression was employed to construct a prediction model for HCC diagnosis. Five metabolites (methionine, proline, ornithine, pimelylcarnitine, and octanoylcarnitine) were selected in a panel. The panel distinguished HCC from cirrhosis and normal controls, with an area under the receiver operating curve (AUC) of 0.82; this was significantly better than that of AFP (AUC: 0.75). During validation, the panel demonstrated significantly better predictability (AUC: 0.94) than did AFP (AUC: 0.78). Defects in ammonia recycling, the urea cycle, and amino acid metabolism, demonstrated on enrichment pathway analysis, may reliably distinguish HCC from cirrhosis. Compared with AFP alone, the metabolite panel substantially improved early-stage HCC detection.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul 08826, Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.
| |
Collapse
|
41
|
Mak KM, Png CYM. The Hepatic Central Vein: Structure, Fibrosis, and Role in Liver Biology. Anat Rec (Hoboken) 2019; 303:1747-1767. [PMID: 31581357 DOI: 10.1002/ar.24273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The hepatic central vein is a primary source of Wnt2, Wnt9b, and R-spondin3. These angiocrines activate ß-catenin signaling to regulate hepatic metabolic zonation and perivenous gene expression in mice. Little is known about the central vein ultrastructure. Here, we describe the morphological-functional correlates of the central vein and its draining and branching patterns. Central vein fibrosis occurs in liver disease and is often accompanied by perivenous perisinusoidal fibrosis, which may affect perivenous gene expression. We review the biological properties of perivenous hepatocytes and glutamine synthetase that serve as a biomarker of perivenous hepatocytes. Glutamine synthetase and P4502E1 are indicators of ß-catenin activity in centrilobular liver injury and regeneration. The Wnt/ß-catenin pathway is the master regulator of hepatic metabolic zonation and perivenous gene expression and is modulated by the R-spondin-LGR4/5-ZNRF3/RNF43 module. We examined the structures of the molecules of these pathways and their involvements in liver biology. Central vein-derived Wnts and R-spondin3 participate in the cellular-molecular circuitry of the Wnt/ß-catenin and R-spondin-LGR4/5-ZNRF3/RNF43 module. The transport and secretion of lipidated Wnts in Wnt-producing cells require Wntless protein. Secreted Wnts are carried on exosomes in the extracellular matrix to responder cells. The modes of release of Wnts and R-spondin3 from central veins and their transit in the venular wall toward perivenous hepatocytes are unknown. We hypothesize that central vein fibrosis may impact perivenous gene expression. The proposal that the central vein constitutes an anatomical niche of perivenous stem cells that subserve homeostatic hepatic renewal still needs studies using additional mouse models for validation. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1747-1767, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - C Y Maximilian Png
- Division of Vascular Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
42
|
Meier M, Knudsen AR, Andersen KJ, Ludvigsen M, Eriksen PL, Pedersen AKN, Honoré B, Mortensen FV. Perturbations of urea cycle enzymes during posthepatectomy rat liver failure. Am J Physiol Gastrointest Liver Physiol 2019; 317:G429-G440. [PMID: 31373508 DOI: 10.1152/ajpgi.00293.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posthepatectomy liver failure (PHLF) may occur after extended partial hepatectomy (PH). If malignancy is widespread in the liver, the size of PH and hence the size of the future liver remnant (FLR) may limit curability. We aimed to characterize differences in protein expression between different sizes of FLRs and identify proteins specific to the regenerative process of minimal-size FLR (MSFLR), with special focus on postoperative day (POD) 1 when PHLF is present. A total of 104 male Wistar rats were subjected to 30, 70, or 90% PH (MSFLR in rats), sham operation, or no operation. Blood and liver tissue were harvested at POD1, 3, and 5 (n = 8 per group). Protein expression was assessed by proteomic profiling by unsupervised two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by supervised selected reaction monitoring (SRM)-MS/MS. In all, 1,035 protein spots were detected, 54 of which were significantly differentially expressed between groups and identifiable. During PHLF after PH(90%) at POD1, urea cycle and related proteins showed significant perturbations, including the urea cycle flux-regulating enzyme of carbamoyl phosphate synthase-1, ornithine transcarbamylase, and arginase-1, as well as the ornithine aminotransferase and propionyl-CoA carboxylase alpha chain. Plasma-ammonia increased significantly at POD1 after PH(90%), followed by a prompt decrease. At the protein level, we found perturbations of urea cycle and related enzymes in the MSFLR during PHLF. Our results suggest that these perturbations may augment urea cycle function, which may be pivotal for increased ammonia elimination after extensive PHs and potential PHLF.NEW & NOTEWORTHY Posthepatectomy liver failure (PHLF) is associated with high mortality. In a rat model of 90% hepatectomy, PHLF is present. Our results on liver tissue proteomics suggest that the ability of the liver remnant to sufficiently eliminate ammonia may be brought about by perturbation related to urea cycle proteins and that enhancing the urea cycle capacity may play a key role in surviving PHLF.
Collapse
Affiliation(s)
- Michelle Meier
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Riegels Knudsen
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Jarlhelt Andersen
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Frank Viborg Mortensen
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
43
|
Griffin JWD, Bradshaw PC. Effects of a high protein diet and liver disease in an in silico model of human ammonia metabolism. Theor Biol Med Model 2019; 16:11. [PMID: 31366360 PMCID: PMC6670211 DOI: 10.1186/s12976-019-0109-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND After proteolysis, the majority of released amino acids from dietary protein are transported to the liver for gluconeogenesis or to peripheral tissues where they are used for protein synthesis and eventually catabolized, producing ammonia as a byproduct. High ammonia levels in the brain are a major contributor to the decreased neural function that occurs in several pathological conditions such as hepatic encephalopathy when liver urea cycle function is compromised. Therefore, it is important to gain a deeper understanding of human ammonia metabolism. The objective of this study was to predict changes in blood ammonia levels resulting from alterations in dietary protein intake, from liver disease, or from partial loss of urea cycle function. METHODS A simple mathematical model was created using MATLAB SimBiology and data from published studies. Simulations were performed and results analyzed to determine steady state changes in ammonia levels resulting from varying dietary protein intake and varying liver enzyme activity levels to simulate liver disease. As a toxicity reference, viability was measured in SH-SY5Y neuroblastoma cells following differentiation and ammonium chloride treatment. RESULTS Results from control simulations yielded steady state blood ammonia levels within normal physiological limits. Increasing dietary protein intake by 72% resulted in a 59% increase in blood ammonia levels. Simulations of liver cirrhosis increased blood ammonia levels by 41 to 130% depending upon the level of dietary protein intake. Simulations of heterozygous individuals carrying a loss of function allele of the urea cycle carbamoyl phosphate synthetase I (CPS1) gene resulted in more than a tripling of blood ammonia levels (from roughly 18 to 60 μM depending on dietary protein intake). The viability of differentiated SH-SY5Y cells was decreased by 14% by the addition of a slightly higher amount of ammonium chloride (90 μM). CONCLUSIONS Data from the model suggest decreasing protein consumption may be one simple strategy to decrease blood ammonia levels and minimize the risk of developing hepatic encephalopathy for many liver disease patients. In addition, the model suggests subjects who are known carriers of disease-causing CPS1 alleles may benefit from monitoring blood ammonia levels and limiting the level of protein intake if ammonia levels are high.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
44
|
Lee DY, Kim EH. Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. J Cancer Prev 2019; 24:72-78. [PMID: 31360687 PMCID: PMC6619856 DOI: 10.15430/jcp.2019.24.2.72] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver and the third most common cause of cancer-related death worldwide. HCC is caused by infection of hepatitis B/C virus and liver dysfunctions, such as alcoholic liver disease, nonalcoholic fatty liver disease, and cirrhosis. Amino acids are organic substances containing amine and carboxylic acid functional groups. There are over 700 kinds of amino acids in nature, but only about 20 of them are used to synthesize proteins in cells. Liver is an important organ for protein synthesis, degradation and detoxification as well as amino acid metabolism. In the liver, there are abundant non-essential amino acids, such as alanine, aspartate, glutamate, glycine, and serine and essential amino acids, such as histidine and threonine. These amino acids are involved in various cellular metabolisms, the synthesis of lipids and nucleotides as well as detoxification reactions. Understanding the role of amino acids in the pathogenesis of liver and the effects of amino acid intake on liver disease can be a promising strategy for the prevention and treatment of liver disease. In this review, we describe the biochemical properties and functions of amino acids and to review how they have been applied to treatment of liver diseases.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| |
Collapse
|
45
|
Moschitto MJ, Doubleday PF, Catlin DS, Kelleher NL, Liu D, Silverman RB. Mechanism of Inactivation of Ornithine Aminotransferase by (1 S,3 S)-3-Amino-4-(hexafluoropropan-2-ylidenyl)cyclopentane-1-carboxylic Acid. J Am Chem Soc 2019; 141:10711-10721. [PMID: 31251613 DOI: 10.1021/jacs.9b03254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inhibition of ornithine aminotransferase (OAT), a pyridoxal 5'-phosphate-dependent enzyme, has been implicated as a treatment for hepatocellular carcinoma (HCC), the most common form of liver cancer, for which there is no effective treatment. From a previous evaluation of our aminotransferase inhibitors, (1S,3S)-3-amino-4-(perfluoropropan-2-ylidene)cyclopentane-1-carboxylic acid hydrochloride (1) was found to be a selective and potent inactivator of human OAT (hOAT), which inhibited the growth of HCC in athymic mice implanted with human-derived HCC, even at a dose of 0.1 mg/kg. Currently, investigational new drug (IND)-enabling studies with 1 are underway. The inactivation mechanism of 1, however, has proved to be elusive. Here we propose three possible mechanisms, based on mechanisms of known aminotransferase inactivators: Michael addition, enamine addition, and fluoride ion elimination followed by conjugate addition. On the basis of crystallography and intact protein mass spectrometry, it was determined that 1 inactivates hOAT through fluoride ion elimination to an activated 1,1'-difluoroolefin, followed by conjugate addition and hydrolysis. This result was confirmed with additional studies, including the detection of the cofactor structure by mass spectrometry and through the identification of turnover metabolites. On the basis of this inactivation mechanism and to provide further evidence for the mechanism, analogues of 1 (19, 20) were designed, synthesized, and demonstrated to have the predicted selective inactivation mechanism. These analogues highlight the importance of the trifluoromethyl group and provide a basis for future inactivator design.
Collapse
Affiliation(s)
| | | | - Daniel S Catlin
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | | | - Dali Liu
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | | |
Collapse
|
46
|
Ziarrusta H, Ribbenstedt A, Mijangos L, Picart-Armada S, Perera-Lluna A, Prieto A, Izagirre U, Benskin JP, Olivares M, Zuloaga O, Etxebarria N. Amitriptyline at an Environmentally Relevant Concentration Alters the Profile of Metabolites Beyond Monoamines in Gilt-Head Bream. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:965-977. [PMID: 30702171 DOI: 10.1002/etc.4381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The antidepressant amitriptyline is a widely used selective serotonin reuptake inhibitor that is found in the aquatic environment. The present study investigates alterations in the brain and the liver metabolome of gilt-head bream (Sparus aurata) after exposure at an environmentally relevant concentration (0.2 µg/L) of amitriptyline for 7 d. Analysis of variance-simultaneous component analysis is used to identify metabolites that distinguish exposed from control animals. Overall, alterations in lipid metabolism suggest the occurrence of oxidative stress in both the brain and the liver-a common adverse effect of xenobiotics. However, alterations in the amino acid arginine are also observed. These are likely related to the nitric oxide system that is known to be associated with the mechanism of action of antidepressants. In addition, changes in asparagine and methionine levels in the brain and pantothenate, uric acid, and formylisoglutamine/N-formimino-L-glutamate levels in the liver could indicate variation of amino acid metabolism in both tissues; and the perturbation of glutamate in the liver implies that the energy metabolism is also affected. These results reveal that environmentally relevant concentrations of amitriptyline perturb a fraction of the metabolome that is not typically associated with antidepressant exposure in fish. Environ Toxicol Chem 2019;00:1-13. © 2019 SETAC.
Collapse
Affiliation(s)
- Haizea Ziarrusta
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Anton Ribbenstedt
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Leire Mijangos
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Sergio Picart-Armada
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alex Perera-Lluna
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
47
|
Abnormal Liver Enzymes. Gastroenterol Nurs 2019; 41:497-507. [PMID: 30418344 DOI: 10.1097/sga.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Abnormal liver enzymes are frequently encountered in primary care offices and hospitals and may be caused by a wide variety of conditions, from mild and nonspecific to well-defined and life-threatening. Terms such as "abnormal liver chemistries" or "abnormal liver enzymes," also referred to as transaminitis, should be reserved to describe inflammatory processes characterized by elevated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Although interchangeably used with abnormal liver enzymes, abnormal liver function tests specifically denote a loss of synthetic functions usually evaluated by serum albumin and prothrombin time. We discuss the entities that most commonly cause abnormal liver enzymes, specific patterns of enzyme abnormalities, diagnostic modalities, and the clinical scenarios that warrant referral to a hepatologist.
Collapse
|
48
|
Vernone A, Ricca C, Merlo D, Pescarmona G, Silvagno F. The analysis of glutamate and glutamine frequencies in human proteins as marker of tissue oxygenation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181891. [PMID: 31183125 PMCID: PMC6502398 DOI: 10.1098/rsos.181891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, we investigated whether the relative abundance of glutamate and glutamine in human proteins reflects the availability of these amino acids (AAs) dictated by the cellular context. In particular, because hypoxia increases the conversion of glutamate to glutamine, we hypothesized that the ratio glutamate/glutamine could be related to tissue oxygenation. By histological, biochemical and genetic evaluation, we identified proteins expressed selectively by distinct cellular populations that are exposed in the same tissue to high or low oxygenation, or proteins codified by different chromosomal loci. Our biochemical assessment was implemented by software tools that calculated the absolute and the relative frequencies of all AAs contained in the proteins. Moreover, an agglomerative hierarchical cluster analysis was performed. In the skin model that has a strictly local metabolism, we demonstrated that the ratio glutamate/glutamine of the selected proteins was directly proportional to oxygenation. Accordingly, the proteins codified by the epidermal differentiation complex in the region 1q21.3 and by the lipase clustering region 10q23.31 showed a significantly lower ratio glutamate/glutamine compared with the nearby regions of the same chromosome. Overall, our results demonstrate that the estimation of glutamate/glutamine ratio can give information on tissue oxygenation and could be exploited as marker of hypoxia, a condition common to several pathologies.
Collapse
Affiliation(s)
- Annamaria Vernone
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Chiara Ricca
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gianpiero Pescarmona
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| |
Collapse
|
49
|
Egnatchik RA, Leamy AK, Sacco SA, Cheah YE, Shiota M, Young JD. Glutamate-oxaloacetate transaminase activity promotes palmitate lipotoxicity in rat hepatocytes by enhancing anaplerosis and citric acid cycle flux. J Biol Chem 2018; 294:3081-3090. [PMID: 30563841 DOI: 10.1074/jbc.ra118.004869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte lipotoxicity is characterized by aberrant mitochondrial metabolism, which predisposes cells to oxidative stress and apoptosis. Previously, we reported that translocation of calcium from the endoplasmic reticulum to mitochondria of palmitate-treated hepatocytes activates anaplerotic flux from glutamine to α-ketoglutarate (αKG), which subsequently enters the citric acid cycle (CAC) for oxidation. We hypothesized that increased glutamine anaplerosis fuels elevations in CAC flux and oxidative stress following palmitate treatment. To test this hypothesis, primary rat hepatocytes or immortalized H4IIEC3 rat hepatoma cells were treated with lipotoxic levels of palmitate while modulating anaplerotic pathways leading to αKG. We found that culture media supplemented with glutamine, glutamate, or dimethyl-αKG increased palmitate lipotoxicity compared with media that lacked these anaplerotic substrates. Knockdown of glutamate-oxaloacetate transaminase activity significantly reduced the lipotoxic effects of palmitate, whereas knockdown of glutamate dehydrogenase (Glud1) had no effect on palmitate lipotoxicity. 13C flux analysis of H4IIEC3 cells co-treated with palmitate and the pan-transaminase inhibitor aminooxyacetic acid confirmed that reductions in lipotoxic markers were associated with decreases in anaplerosis, CAC flux, and oxygen consumption. Taken together, these results demonstrate that lipotoxic palmitate treatments enhance anaplerosis in cultured rat hepatocytes, causing a shift to aberrant transaminase metabolism that fuels CAC dysregulation and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Masakazu Shiota
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235
| | - Jamey D Young
- From Chemical and Biomolecular Engineering and .,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
50
|
Sawai A, Tsuzuki K, Yamauchi M, Kimura N, Tsushima T, Sugiyama K, Ota Y, Sawai S, Tochikubo O. The effects of estrogen and progesterone on plasma amino acids levels: evidence from change plasma amino acids levels during the menstrual cycle in women. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1526496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asuka Sawai
- Department of Applied Bioscience, Faculty of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Japan
| | - Kayoko Tsuzuki
- Faculty of Home Economics, Aichi Gakusen University, Okazaki, Japan
| | | | - Noriko Kimura
- Faculty of Home Economics, Aichi Gakusen University, Okazaki, Japan
| | - Toshiki Tsushima
- Department of Applied Bioscience, Faculty of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Japan
| | - Kana Sugiyama
- Department of Applied Bioscience, Faculty of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yumiko Ota
- Faculty of Home Economics, Aichi Gakusen University, Okazaki, Japan
| | - Shinya Sawai
- Department of Applied Physics, National Defense Academy, Yokosuka, Japan
| | - Osamu Tochikubo
- Department of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|