1
|
Montoya-Arroyo A, Brand V, Kröpfl A, Vetter W, Frank J. Metabolism of 11'-α- and 11'-γ-Tocomonoenols in HepG2 Cells Favors the γ-Congener and Results Predominantly in Carboxymethylbutyl-Hydroxychromans. Mol Nutr Food Res 2024; 68:e2300657. [PMID: 38698718 DOI: 10.1002/mnfr.202300657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/22/2024] [Indexed: 05/05/2024]
Abstract
SCOPE Tocomonoenols (T1) are little-known vitamin E derivatives naturally occurring in foods. Limited knowledge exists regarding the cellular uptake and metabolism of α-tocomonoenol (αT1) and none about that of γ-tocomonoenol (γT1). METHODS AND RESULTS The study investigates the cytotoxicity, uptake, and metabolism of αT1 and γT1 in HepG2 cells compared to the α- and γ-tocopherols (T) and -tocotrienols (T3). None of the studied tocochromanols are cytotoxic up to 100 µmol L-1. The uptake of the γ-congeners is significantly higher than that of the corresponding α-forms, whereas no significant differences are observed based on the degree of saturation of the sidechain. Carboxymethylbutyl-hydroxychromans (CMBHC) are the predominant short-chain metabolites of all tocochromanols and conversion is higher for γT1 than αT1 as well as for the γ-congeners of T and T3. The rate of metabolism increases with the number of double bonds in the sidechain. The rate of metabolic conversion of the T1 is more similar to tocopherols than to that of the tocotrienols. CONCLUSION This is the first evidence that both αT1 and γT1 follow the same sidechain degradation pathway and exert similar rates of metabolism than tocopherols. Therefore, investigation into the biological activities of tocomonoenols is warranted.
Collapse
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Viola Brand
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Alexander Kröpfl
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| |
Collapse
|
2
|
Traber MG. Human Vitamin E deficiency, and what is and is not Vitamin E? Free Radic Biol Med 2024; 213:285-292. [PMID: 38242248 PMCID: PMC10923111 DOI: 10.1016/j.freeradbiomed.2024.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
3
|
Mohamad NV. Strategies to Enhance the Solubility and Bioavailability of Tocotrienols Using Self-Emulsifying Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:1403. [PMID: 37895874 PMCID: PMC10610013 DOI: 10.3390/ph16101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Tocotrienols have higher medicinal value, with multiple sources of evidence showing their biological properties as antioxidant, anti-inflammatory, and osteoprotective compounds. However, tocotrienol bioavailability presents an ongoing challenge in its translation into viable products. This is because tocotrienol oil is known to be a poorly water-soluble compound, making it difficult to be absorbed into the body and resulting in less effectiveness. With the potential and benefits of tocotrienol, new strategies to increase the bioavailability and efficacy of poorly absorbed tocotrienol are required when administered orally. One of the proposed formulation techniques was self-emulsification, which has proven its capacity to improve oral drug delivery of poorly water-soluble drugs by advancing the solubility and bioavailability of these active compounds. This review discusses the updated evidence on the bioavailability of tocotrienols formulated with self-emulsifying drug delivery systems (SEDDSs) from in vivo and human studies. In short, SEDDSs formulation enhances the solubility and passive permeability of tocotrienol, thus improving its oral bioavailability and biological actions. This increases its medicinal and commercial value. Furthermore, the self-emulsifying formulation presents a useful dosage form that is absorbed in vivo independent of dietary fats with consistent and enhanced levels of tocotrienol isomers. Therefore, a lipid-based formulation technique can provide an additional detailed understanding of the oral bioavailability of tocotrienols.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
4
|
Khallouki F, Saber S, Bouddine T, Hajji L, Elbouhali B, Silvente-Poirot S, Poirot M. In vitro and In vivo oxidation and cleavage products of tocols: From chemical tuners to “VitaminEome” therapeutics. A narrative review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Jiang Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med 2022; 179:375-387. [PMID: 34785321 PMCID: PMC9018116 DOI: 10.1016/j.freeradbiomed.2021.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Natural forms of vitamin E comprise four tocopherols and four tocotrienols. During the last twenty years, there have been breakthroughs in our understanding of vitamin E metabolism and biological activities of vitamin E metabolites. Research has established that tocopherols and tocotrienols are metabolized via ω-hydroxylase (CYP4F2)-initiated side chain oxidation to form 13'-hydroxychromanol and 13'-carobyxychromanol (13'-COOH). 13'-COOHs are further metabolized via β-oxidation and sulfation to intermediate carboxychromanols, terminal metabolite carboxyethyl-hydroxychroman (CEHC), and sulfated analogs. Animal and human studies show that γ-, δ-tocopherol and tocotrienols are more extensively metabolized than α-tocopherol (αT), as indicated by higher formation of CEHCs and 13'-COOHs from non-αT forms than those from αT. 13'-COOHs are shown to be inhibitors of cyclooxygenase-1/-2 and 5-lipoxygenase and much stronger than CEHCs for these activities. 13'-COOHs inhibit cancer cell growth, modulate cellular lipids and activate peroxisome proliferator-activated receptor-γ and pregnane X receptor. Consistent with mechanistic findings, αT-13'-COOH or δTE-13'-COOH, respective metabolites of αT or δ-tocotrienol, show anti-inflammatory and cancer-preventive effects, modulates the gut microbiota and prevents β-amyloid formation in mice. Therefore, 13'-COOHs are a new class of bioactive compounds with anti-inflammatory and anti-cancer activities and potentially capable of modulating lipid and drug metabolism. Based on the existing evidence, this author proposes that metabolites may contribute to disease-preventing effects of γ-, δ-tocopherol and tocotrienols. The role of metabolites in αT's actions may be somewhat limited considering controlled metabolism of αT because of its association with tocopherol-transport protein and less catabolism by CYP4F2 than other vitamin E forms.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| |
Collapse
|
6
|
Shen CL, Mo H, Dunn DM, Watkins BA. Tocotrienol Supplementation Led to Higher Serum Levels of Lysophospholipids but Lower Acylcarnitines in Postmenopausal Women: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Front Nutr 2022; 8:766711. [PMID: 35004805 PMCID: PMC8740329 DOI: 10.3389/fnut.2021.766711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a major health problem in postmenopausal women. Herein we evaluated the effects of 12-week tocotrienols (TT) supplementation on serum metabolites in postmenopausal, osteopenic women. Eighty-nine participants (59.7 ± 6.8 yr, BMI 28.7 ± 5.7 kg/m2) were assigned to 3 treatments: placebo (860 mg olive oil/day), 300mg TT (300 mg TT/day), and 600mg TT (600 mg TT/day) for 12 weeks. TT consisted of 90% δ-TT and 10% γ-TT. In this metabolomic study, we evaluated the placebo and 600mgTT at baseline and 12 weeks. As expected, TT and its metabolite levels were higher in the supplemented group after 12 weeks. At baseline, there were no differences in demographic parameters or comprehensive metabolic panels (CMP). Metabolomics analysis of serum samples revealed that 48 biochemicals were higher and 65 were lower in the 600mg TT group at 12 weeks, compared to baseline. The results confirmed higher serum levels of tocotrienols and lysophospholipids, but lower acylcarnitines and catabolites of tryptophan and steroids in subjects given 600mg TT. In summary, 12-week TT supplementation altered many serum metabolite levels in postmenopausal women. The present study supports our previous findings that TT supplementation helps reduce bone loss in postmenopausal osteopenic women by suppressing inflammation and oxidative stress. Furthermore, the body incorporates TT which restructures biomembranes and modifies phospholipid metabolism, a response potentially linked to reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Huanbiao Mo
- Nutrition, Georgia State University, Atlanta, GA, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Jiang Q, Im S, Wagner JG, Hernandez ML, Peden DB. Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radic Biol Med 2022; 178:347-359. [PMID: 34896589 PMCID: PMC8826491 DOI: 10.1016/j.freeradbiomed.2021.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
γ-Tocopherol (γT) is a major form of vitamin E in the US diet and the second most abundant vitamin E in the blood and tissues, while α-tocopherol (αT) is the predominant vitamin E in tissues. During the last >25 years, research has revealed that γT has unique antioxidant and anti-inflammatory activities relevant to disease prevention compared to αT. While both compounds are potent lipophilic antioxidants, γT but not αT can trap reactive nitrogen species by forming 5-nitro-γT, and appears to show superior protection of mitochondrial function. γT inhibits ionophore-stimulated leukotrienes by blocking 5-lipoxygenase (5-LOX) translocation in leukocytes, decreases cyclooxygenase-2 (COX-2)-catalyzed prostaglandins in macrophages and blocks the growth of cancer cells but not healthy cells. For these activities, γT is stronger than αT. Moreover, γT is more extensively metabolized than αT via cytochrome P-450 (CYP4F2)-initiated side-chain oxidation, which leads to formation of metabolites including 13'-carboxychromanol (13'-COOH) and carboxyethyl-hydroxychroman (γ-CEHC). 13'-COOH and γ-CEHC are shown to be the predominant metabolites found in feces and urine, respectively. Interestingly, γ-CEHC has natriuretic activity and 13'-COOH inhibits both COX-1/-2 and 5-LOX activity. Consistent with these mechanistic findings of γT and metabolites, studies show that supplementation of γT mitigates inflammation and disease symptoms in animal models with induced inflammation, asthma and cancer. In addition, supplementation of γT decreased inflammation markers in patients with kidney diseases and mild asthma. These observations support that γT may be useful against inflammation-associated diseases.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| | - Suji Im
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, USA
| | - Michelle L Hernandez
- Division of Allergy & Immunology, University of North Carolina School of Medicine, USA
| | - David B Peden
- Division of Allergy & Immunology, University of North Carolina School of Medicine, USA
| |
Collapse
|
8
|
Montoya-Arroyo A, Wagner T, Sus N, Müller M, Kröpfl A, Vetter W, Frank J. Cytotoxicity, cellular uptake, and metabolism to short-chain metabolites of 11'-α-tocomonoenol is similar to RRR-α-tocopherol in HepG2 cells. Free Radic Biol Med 2021; 177:24-30. [PMID: 34666150 DOI: 10.1016/j.freeradbiomed.2021.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Contrary to the major vitamin E congener α-tocopherol, which carries a saturated sidechain, and α-tocotrienol, with a threefold unsaturated sidechain, little is known about the intracellular fate of α-tocomonoenol, a minor vitamin E derivative with a single double bond in C11'-position of the sidechain. We hypothesized that, due to structural similarities, the uptake and metabolism of α-tocomonoenol will resemble that of α-tocopherol. Cytotoxicity, cellular uptake of α-tocomonoenol, α-tocopherol and α-tocotrienol and conversion into the short-chain metabolites αCEHC and αCMBHC were studied in HepG2 cells. α-Tocomonoenol did not show significant effects on cell viability and its uptake was similar to that observed for α-tocopherol and significantly lower than for α-tocotrienol. α-Tocomonoenol was mainly metabolized to αCMBHC in liver cells, but to a lower extent than α-tocotrienol, while α-tocopherol was not metabolized in quantifiable amounts at all. In summary, the similarities in the cytotoxicity, uptake and metabolism of α-tocomonoenol and α-tocopherol suggest that this minor vitamin E congener deserves more attention in future research with regard to its potential vitamin E activity.
Collapse
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Tanja Wagner
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Nadine Sus
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Marco Müller
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Alexander Kröpfl
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599, Stuttgart, Germany. http://www.nutrition.red
| |
Collapse
|
9
|
Wallert M, Kluge S, Schubert M, Koeberle A, Werz O, Birringer M, Lorkowski S. Diversity of Chromanol and Chromenol Structures and Functions: An Emerging Class of Anti-Inflammatory and Anti-Carcinogenic Agents. Front Pharmacol 2020; 11:362. [PMID: 32372948 PMCID: PMC7187200 DOI: 10.3389/fphar.2020.00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Natural chromanols and chromenols comprise a family of molecules with enormous structural diversity and biological activities of pharmacological interest. A recently published systematic review described more than 230 structures that are derived from a chromanol ortpd chromenol core. For many of these compounds structure-activity relationships have been described with mostly anti-inflammatory as well as anti-carcinogenic activities. To extend the knowledge on the biological activity and the therapeutic potential of these promising class of natural compounds, we here present a report on selected chromanols and chromenols based on the availability of data on signaling pathways involved in inflammation, apoptosis, cell proliferation, and carcinogenesis. The chromanol and chromenol derivatives seem to bind or to interfere with several molecular targets and pathways, including 5-lipoxygenase, nuclear receptors, and the nuclear-factor "kappa-light-chain-enhancer" of activated B-cells (NFκB) pathway. Interestingly, available data suggest that the chromanols and chromenols are promiscuitively acting molecules that inhibit enzyme activities, bind to cellular receptors, and modulate mitochondrial function as well as gene expression. It is also noteworthy that the molecular modes of actions by which the chromanols and chromenols exert their effects strongly depend on the concentrations of the compounds. Thereby, low- and high-affinity molecular targets can be classified. This review summarizes the available knowledge on the biological activity of selected chromanols and chromenols which may represent interesting lead structures for the development of therapeutic anti-inflammatory and chemopreventive approaches.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
- Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
10
|
Liu KY, Jiang Q. Tocopherols and Tocotrienols Are Bioavailable in Rats and Primarily Excreted in Feces as the Intact Forms and 13'-Carboxychromanol Metabolites. J Nutr 2020; 150:222-230. [PMID: 31495894 PMCID: PMC7373819 DOI: 10.1093/jn/nxz217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vitamin E α-, γ-, or δ-tocopherol (αT, γT, δT) and γ- or δ-tocotrienol (γTE, δTE) are metabolized to hydroxychromanols and carboxychromanols including 13'-carboxychromanol (13'-COOH), 11'-COOH, and carboxyethyl hydroxychroman (CEHC), some of which have unique bioactivities compared with the vitamers. However, the bioavailability of these metabolites has not been well characterized. OBJECTIVE We investigated the pharmacokinetics (PK) of vitamin E forms and metabolites in rats. METHODS Six-week-old male Wistar rats received 1-time gavage of γT-rich tocopherols (50 mg/kg) containing γT/δT/αT (57.7%, 21.9%, and 10.9%, respectively) or δTE-rich tocotrienols (35 mg/kg) containing δTE/γTE (8:1). We quantified the time course of vitamin E forms and metabolites in the plasma and their 24-h excretion to the urine and feces. The general linear model repeated measure was used for analyses of the PK data. RESULTS In the rats' plasma, Cmax of γT or δTE was 25.6 ± 9.1 μM (Tmax = 4 h) or 16.0 ± 2.3 μM (Tmax = 2 h), respectively, and sulfated CEHCs and sulfated 11'-COOHs were the predominant metabolites with Cmax of 0.4-0.5 μM (Tmax ∼5-7 h) or ∼0.3 μM (Tmax at 4.7 h), respectively. In 24-h urine, 2.7% of γT and 0.7% of δTE were excreted as conjugated CEHCs. In the feces, 17-45% of supplemented vitamers were excreted as unmetabolized forms and 4.9-9.2% as unconjugated carboxychromanols, among which 13'-COOHs constituted ∼50% of total metabolites and the amount of δTE-derived 13'-COOHs was double that of 13'-COOH derived from γT. CONCLUSIONS PK data of vitamin E forms in rats reveal that γT, δT, γTE, and δTE are bioavailable in the plasma and are mainly excreted as unmetabolized forms and long-chain metabolites including 13'-COOHs in feces, with more metabolites from tocotrienols than from tocopherols.
Collapse
Affiliation(s)
- Kilia Y Liu
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Qing Jiang
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA,Address correspondence to QJ (e-mail: )
| |
Collapse
|
11
|
Pang KL, Chin KY. The Role of Tocotrienol in Protecting Against Metabolic Diseases. Molecules 2019; 24:E923. [PMID: 30845769 PMCID: PMC6429133 DOI: 10.3390/molecules24050923] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major risk factor for diabetes, and these two metabolic conditions cause significant healthcare burden worldwide. Chronic inflammation and increased oxidative stress due to exposure of cells to excess nutrients in obesity may trigger insulin resistance and pancreatic β-cell dysfunction. Tocotrienol, as a functional food component with anti-inflammatory, antioxidant, and cell signaling-mediating effects, may be a potential agent to complement the current management of obesity and diabetes. The review aimed to summarize the current evidence on the anti-obesity and antidiabetic effects of tocotrienol. Previous studies showed that tocotrienol could suppress adipogenesis and, subsequently, reduce body weight and fat mass in animals. This was achieved by regulating pathways of lipid metabolism and fatty acid biosynthesis. It could also reduce the expression of transcription factors regulating adipogenesis and increase apoptosis of adipocytes. In diabetic models, tocotrienol was shown to improve glucose homeostasis. Activation of peroxisome proliferator-activated receptors was suggested to be responsible for these effects. Tocotrienol also prevented multiple systemic complications due to obesity and diabetes in animal models through suppression of inflammation and oxidative stress. Several clinical trials have been conducted to validate the antidiabetic of tocotrienol, but the results were heterogeneous. There is no evidence showing the anti-obesity effects of tocotrienol in humans. Considering the limitations of the current studies, tocotrienol has the potential to be a functional food component to aid in the management of patients with obesity and diabetes.
Collapse
Affiliation(s)
- Kok-Lun Pang
- School of Pharmacy, University of Reading Malaysia, Iskandar Puteri Johor 79200, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Birringer M, Lorkowski S. Vitamin E: Regulatory role of metabolites. IUBMB Life 2018; 71:479-486. [PMID: 30578664 DOI: 10.1002/iub.1988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
Vitamin E plays an important role as a lipophilic antioxidant in cellular redox homeostasis. Besides this function, numerous non-antioxidant properties of this vitamin have been discovered in the past. DNA microarray technology revealed a complex regulatory network influenced by the different vitamin E forms (Rimbach et al., Molecules, 15, 1746 (2010); Galli et al., Free Radic. Biol. Med., 102, 16 (2017)); however, little is known about the biological activity of vitamin E metabolites. A new chapter of vitamin E research was been opened when endogenous long-chain tocopherol metabolites were identified and their high biological activity in vitro and in vivo was recognized (Schmölz et al., World J. Biol. Chem., 7, 14 (2016); Torquato et al., J. Pharm. Biomed. Anal., 124, 399 (2016)). Just recently, it was shown that an endogenous metabolite of vitamin E inhibits 5-lipoxygenase at nanomolar concentrations, thereby limiting inflammation (Pein et al., Nat. Commun., 9, 3834 (2018)). Furthermore, long-chain vitamin E metabolites (LCM) exhibit hormone-like activities similar to the lipid soluble vitamins A and D (Galli et al., Free Radic. Biol. Med., 102, 16 (2017); Schubert et al., Antioxidants, 7 (2018)). This review aims at summarizing recent findings on the regulatory activities of vitamin E metabolites, especially of LCMs. © 2018 IUBMB Life, 71(4):479-486, 2019.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
13
|
Jiang Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life 2018; 71:495-506. [PMID: 30548200 DOI: 10.1002/iub.1978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 12/25/2022]
Abstract
The disappointing results from large clinical studies of α-tocopherol (αT), the major form of vitamin E in tissues, for prevention of chronic diseases including cancer have cast doubt on not only αT but also other forms of vitamin E regarding their role in preventing carcinogenesis. However, basic research has shown that specific forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE) and δ-tocotrienol (δTE) can inhibit the growth and induce death of many types of cancer cells, and are capable of suppressing cancer development in preclinical cancer models. For these activities, these vitamin E forms are much stronger than αT. Further, recent research revealed novel anti-inflammatory and anticancer effects of vitamin E metabolites including 13'-carboxychromanols. This review focuses on anti-proliferation and induction of death in cancer cells by vitamin E forms and metabolites, and discuss mechanisms underlying these anticancer activities. The existing in vitro and in vivo evidence indicates that γT, δT, tocotrienols and 13'-carboxychromanols have anti-cancer activities via modulating key signaling or mediators that regulate cell death and tumor progression, such as eicosanoids, NF-κB, STAT3, PI3K, and sphingolipid metabolism. These results provide useful scientific rationales and mechanistic understanding for further translation of basic discoveries to the clinic with respect to potential use of these vitamin E forms and metabolites for cancer prevention and therapy. © 2018 IUBMB Life, 71(4):495-506, 2019.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
14
|
Pein H, Ville A, Pace S, Temml V, Garscha U, Raasch M, Alsabil K, Viault G, Dinh CP, Guilet D, Troisi F, Neukirch K, König S, Bilancia R, Waltenberger B, Stuppner H, Wallert M, Lorkowski S, Weinigel C, Rummler S, Birringer M, Roviezzo F, Sautebin L, Helesbeux JJ, Séraphin D, Mosig AS, Schuster D, Rossi A, Richomme P, Werz O, Koeberle A. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun 2018; 9:3834. [PMID: 30237488 PMCID: PMC6148290 DOI: 10.1038/s41467-018-06158-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Systemic vitamin E metabolites have been proposed as signaling molecules, but their physiological role is unknown. Here we show, by library screening of potential human vitamin E metabolites, that long-chain ω-carboxylates are potent allosteric inhibitors of 5-lipoxygenase, a key enzyme in the biosynthesis of chemoattractant and vasoactive leukotrienes. 13-((2R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-2,6,10-trimethyltridecanoic acid (α-T-13'-COOH) can be synthesized from α-tocopherol in a human liver-on-chip, and is detected in human and mouse plasma at concentrations (8-49 nM) that inhibit 5-lipoxygenase in human leukocytes. α-T-13'-COOH accumulates in immune cells and inflamed murine exudates, selectively inhibits the biosynthesis of 5-lipoxygenase-derived lipid mediators in vitro and in vivo, and efficiently suppresses inflammation and bronchial hyper-reactivity in mouse models of peritonitis and asthma. Together, our data suggest that the immune regulatory and anti-inflammatory functions of α-tocopherol depend on its endogenous metabolite α-T-13'-COOH, potentially through inhibiting 5-lipoxygenase in immune cells.
Collapse
Affiliation(s)
- Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Alexia Ville
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Simona Pace
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Martin Raasch
- Institute of Biochemistry II and Center for Sepsis Control and Care, University Hospital Jena, 07743, Jena, Germany
| | - Khaled Alsabil
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Guillaume Viault
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Chau-Phi Dinh
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - David Guilet
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Fabiana Troisi
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Konstantin Neukirch
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Stefanie König
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Maria Wallert
- Chair of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Stefan Lorkowski
- Chair of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743, Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle, Jena and Leipzig, Jena, 07743, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, 36037, Fulda, Germany
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Denis Séraphin
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Alexander S Mosig
- Institute of Biochemistry II and Center for Sepsis Control and Care, University Hospital Jena, 07743, Jena, Germany
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Pascal Richomme
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| |
Collapse
|
15
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
16
|
Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res 2018; 49:23-36. [DOI: 10.1016/j.nutres.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 12/21/2022]
|
17
|
Lee MJ, Feng W, Yang L, Chen YK, Chi E, Liu A, Yang CS. Methods for efficient analysis of tocopherols, tocotrienols and their metabolites in animal samples with HPLC-EC. J Food Drug Anal 2018; 26:318-329. [PMID: 29389570 PMCID: PMC9332665 DOI: 10.1016/j.jfda.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
Tocopherols and tocotrienols, collectively known as vitamin E, have received a great deal of attention because of their interesting biological activities. In the present study, we reexamined and improved previous methods of sample preparation and the conditions of high-performance liquid chromatography for more accurate quantification of tocopherols, tocotrienols and their major chain-degradation metabolites. For the analysis of serum tocopherols/tocotrienols, we reconfirmed our method of mixing serum with ethanol followed by hexane extraction. For the analysis of tissue samples, we improved our methods by extracting tocopherols/tocotrienols directly from tissue homogenate with hexane. For the analysis of total amounts (conjugated and unconjugated forms) of side-chain degradation metabolites, the samples need to be deconjugated by incubating with β-glucuronidase and sulfatase; serum samples can be directly used for the incubation, whereas for tissue homogenates a pre-deproteination step is needed. The present methods are sensitive, convenient and are suitable for the determination of different forms of vitamin E and their metabolites in animal and human studies. Results from the analysis of serum, liver, kidney, lung and urine samples from mice that had been treated with mixtures of tocotrienols and tocopherols are presented as examples.
Collapse
|
18
|
Abstract
Initial research on vitamin E and cancer has focused on α-tocopherol (αT), but recent clinical studies on cancer-preventive effects of αT supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE), and δ-tocotrienol (δTE), have far superior cancer-preventive activities than does αT. These vitamin E forms are much stronger than αT in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)- and 5-lipoxygenase (5-LOX)-catalyzed eicosanoids, and transcription factors such as nuclear transcription factor κB (NF-κB) and signal transducer and activator of transcription factor 3 (STAT3). These vitamin E forms, but not αT, cause pro-death or antiproliferation effects in cancer cells via modulating various signaling pathways, including sphingolipid metabolism. Unlike αT, these vitamin E forms are quickly metabolized to various carboxychromanols including 13'-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors. Consistent with mechanistic findings, γT, δT, γTE, and δTE, but not αT, have been shown to be effective for preventing the progression of various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of γT, δT, γTE, and δTE in cells and preclinical models and discusses current progress in clinical trials. The existing evidence strongly indicates that these lesser-known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
19
|
Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int J Mol Sci 2016; 17:ijms17101605. [PMID: 27669218 PMCID: PMC5085638 DOI: 10.3390/ijms17101605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.
Collapse
|
20
|
Jang Y, Park NY, Rostgaard-Hansen AL, Huang J, Jiang Q. Vitamin E metabolite 13'-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice. Free Radic Biol Med 2016; 95:190-9. [PMID: 27016075 PMCID: PMC4867259 DOI: 10.1016/j.freeradbiomed.2016.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/29/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Vitamin E forms are substantially metabolized to various carboxychromanols including 13'-carboxychromanols (13'-COOHs) that are found at high levels in feces. However, there is limited knowledge about functions of these metabolites. Here we studied δT-13'-COOH and δTE-13'-COOH, which are metabolites of δ-tocopherol and δ-tocotrienol, respectively. δTE-13'-COOH is also a natural constituent of a traditional medicine Garcinia Kola. Both 13'-COOHs are much stronger than tocopherols in inhibition of pro-inflammatory and cancer promoting cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), and in induction of apoptosis and autophagy in colon cancer cells. The anticancer effects by 13'-COOHs appeared to be partially independent of inhibition of COX-2/5-LOX. Using liquid chromatography tandem mass spectrometry, we found that 13'-COOHs increased intracellular dihydrosphingosine and dihydroceramides after short-time incubation in HCT-116 cells, and enhanced ceramides while decreased sphingomyelins during prolonged treatment. Modulation of sphingolipids by 13'-COOHs was observed prior to or coinciding with biochemical manifestation of cell death. Pharmaceutically blocking the increase of these sphingolipids partially counteracted 13'-COOH-induced cell death. Further, 13'-COOH inhibited dihydroceramide desaturase without affecting the protein expression. In agreement with these mechanistic findings, δTE-13'-COOH significantly suppressed the growth and multiplicity of colon tumor in mice. Our study demonstrates that 13'-COOHs have anti-inflammatory and anticancer activities, may contribute to in vivo anticancer effect of vitamin E forms and are promising novel cancer prevention agents.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Na-Young Park
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jianjie Huang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
Torquato P, Ripa O, Giusepponi D, Galarini R, Bartolini D, Wallert M, Pellegrino R, Cruciani G, Lorkowski S, Birringer M, Mazzini F, Galli F. Analytical strategies to assess the functional metabolome of vitamin E. J Pharm Biomed Anal 2016; 124:399-412. [DOI: 10.1016/j.jpba.2016.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 12/24/2022]
|
22
|
Schmölz L, Birringer M, Lorkowski S, Wallert M. Complexity of vitamin E metabolism. World J Biol Chem 2016; 7:14-43. [PMID: 26981194 PMCID: PMC4768118 DOI: 10.4331/wjbc.v7.i1.14] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
Bioavailability of vitamin E is influenced by several factors, most are highlighted in this review. While gender, age and genetic constitution influence vitamin E bioavailability but cannot be modified, life-style and intake of vitamin E can be. Numerous factors must be taken into account however, i.e., when vitamin E is orally administrated, the food matrix may contain competing nutrients. The complex metabolic processes comprise intestinal absorption, vascular transport, hepatic sorting by intracellular binding proteins, such as the significant α-tocopherol-transfer protein, and hepatic metabolism. The coordinated changes involved in the hepatic metabolism of vitamin E provide an effective physiological pathway to protect tissues against the excessive accumulation of, in particular, non-α-tocopherol forms. Metabolism of vitamin E begins with one cycle of CYP4F2/CYP3A4-dependent ω-hydroxylation followed by five cycles of subsequent β-oxidation, and forms the water-soluble end-product carboxyethylhydroxychroman. All known hepatic metabolites can be conjugated and are excreted, depending on the length of their side-chain, either via urine or feces. The physiological handling of vitamin E underlies kinetics which vary between the different vitamin E forms. Here, saturation of the side-chain and also substitution of the chromanol ring system are important. Most of the metabolic reactions and processes that are involved with vitamin E are also shared by other fat soluble vitamins. Influencing interactions with other nutrients such as vitamin K or pharmaceuticals are also covered by this review. All these processes modulate the formation of vitamin E metabolites and their concentrations in tissues and body fluids. Differences in metabolism might be responsible for the discrepancies that have been observed in studies performed in vivo and in vitro using vitamin E as a supplement or nutrient. To evaluate individual vitamin E status, the analytical procedures used for detecting and quantifying vitamin E and its metabolites are crucial. The latest methods in analytics are presented.
Collapse
|
23
|
Jiang Q, Xu T, Huang J, Jannasch AS, Cooper B, Yang C. Analysis of vitamin E metabolites including carboxychromanols and sulfated derivatives using LC/MS/MS. J Lipid Res 2015; 56:2217-25. [PMID: 26351363 DOI: 10.1194/jlr.d061663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/20/2022] Open
Abstract
Tocopherols and tocotrienols are metabolized via hydroxylation and oxidation of their hydrophobic side chain to generate 13'-hydroxychromanols (13'-OHs) and various carboxychromanols, which can be further metabolized by conjugation including sulfation. Recent studies indicate that long-chain carboxychromanols, especially 13'-carboxychromanol (13'-COOH), appear to be more bioactive than tocopherols in anti-inflammatory and anticancer actions. To understand the potential contribution of metabolites to vitamin E-mediated effects, an accurate assay is needed to evaluate bioavailability of these metabolites. Here we describe an LC/MS/MS assay for quantifying vitamin E metabolites using negative polarity ESI. This assay includes a reliable sample extraction procedure with efficacy of ≥ 89% and interday/intraday variation of 3-11% for major metabolites. To ensure accurate quantification, short-chain, long-chain, and sulfated carboxychromanols are included as external/internal standards. Using this assay, we observed that sulfated carboxychromanols are the primary metabolites in the plasma of rodents fed with γ-tocopherol or δ-tocopherol. Although plasma levels of 13'-COOHs and 13'-OHs are low, high concentrations of these compounds are found in feces. Our study demonstrates an LC/MS/MS assay for quantitation of sulfated and unconjugated vitamin E metabolites, and this assay will be useful for evaluating the role of these metabolites in vivo.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Tianlin Xu
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Jianjie Huang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Amber S Jannasch
- Metabolite Profiling Facility Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Bruce Cooper
- Metabolite Profiling Facility Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Chao Yang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
24
|
Lavaud A, Richomme P, Gatto J, Aumond MC, Poullain C, Litaudon M, Andriantsitohaina R, Guilet D. A tocotrienol series with an oxidative terminal prenyl unit from Garcinia amplexicaulis. PHYTOCHEMISTRY 2015; 109:103-110. [PMID: 25468538 DOI: 10.1016/j.phytochem.2014.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Ten tocotrienol derivatives, i.e., amplexichromanols (1-10), were isolated from stem bark of Garcinia amplexicaulis Vieill. ex Pierre collected in Caledonia. The structures of the compounds 1-5 were determined to be chromanol derivatives substituted by a polyprenyl chain oxidized in terminal position. The remaining compounds 6-10 are the corresponding dimeric derivatives. Eleven known compounds, including xanthones, tocotrienol derivatives, triterpenes and phenolic compounds, were also isolated. Their structures were mainly determined using one and two-dimensional NMR and mass spectroscopy analysis. The compounds and some amplexichromanol molecules formerly isolated from G. amplexicaulis exhibited significant antioxidant activity against lipid peroxidation and in the ORAC assay.
Collapse
Affiliation(s)
- Alexis Lavaud
- Université d'Angers, Laboratoire SONAS, IFR Quasav, 49100 Angers, France; INSERM UMR U1063, IBS-IRIS, Université d'Angers, 49100 Angers, France
| | - Pascal Richomme
- Université d'Angers, Laboratoire SONAS, IFR Quasav, 49100 Angers, France
| | - Julia Gatto
- Université d'Angers, Laboratoire SONAS, IFR Quasav, 49100 Angers, France
| | | | - Cyril Poullain
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS, Labex LERMIT, 91198 Gif sur Yvette Cedex, France
| | - Marc Litaudon
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS, Labex LERMIT, 91198 Gif sur Yvette Cedex, France
| | | | - David Guilet
- Université d'Angers, Laboratoire SONAS, IFR Quasav, 49100 Angers, France.
| |
Collapse
|
25
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11:52. [PMID: 25435896 PMCID: PMC4247006 DOI: 10.1186/1743-7075-11-52] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
26
|
Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 2014; 72:76-90. [PMID: 24704972 PMCID: PMC4120831 DOI: 10.1016/j.freeradbiomed.2014.03.035] [Citation(s) in RCA: 530] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023]
Abstract
The vitamin E family consists of four tocopherols and four tocotrienols. α-Tocopherol (αT) is the predominant form of vitamin E in tissues and its deficiency leads to ataxia in humans. However, results from many clinical studies do not support a protective role of αT in disease prevention in people with adequate nutrient status. On the other hand, recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of αT in prevention and therapy against chronic diseases. These vitamin E forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids, and suppress proinflammatory signaling such as NF-κB and STAT3/6. Unlike αT, other vitamin E forms are significantly metabolized to carboxychromanols via cytochrome P450-initiated side-chain ω-oxidation. Long-chain carboxychromanols, especially 13'-carboxychromanols, are shown to have stronger anti-inflammatory effects than unmetabolized vitamins and may therefore contribute to the beneficial effects of vitamin E forms in vivo. Consistent with mechanistic findings, animal and human studies show that γT and tocotrienols may be useful against inflammation-associated diseases. This review focuses on non-αT forms of vitamin E with respect to their metabolism, anti-inflammatory effects and mechanisms, and in vivo efficacy in preclinical models as well as human clinical intervention studies.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Drotleff AM, Bohnsack C, Schneider I, Hahn A, Ternes W. Human oral bioavailability and pharmacokinetics of tocotrienols from tocotrienol-rich (tocopherol-low) barley oil and palm oil formulations. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
28
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014. [PMID: 25435896 DOI: 10.1186/743-7075-11-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
29
|
Traber MG. Mechanisms for the prevention of vitamin E excess. J Lipid Res 2013; 54:2295-306. [PMID: 23505319 PMCID: PMC3735929 DOI: 10.1194/jlr.r032946] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Indexed: 02/07/2023] Open
Abstract
The liver is at the nexus of the regulation of lipoprotein uptake, synthesis, and secretion, and it is the site of xenobiotic detoxification by cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III). These two major liver systems control vitamin E status. The mechanisms for the preference for α-tocopherol relative to the eight naturally occurring vitamin E forms largely depend upon the liver and include both a preferential secretion of α-tocopherol from the liver into the plasma for its transport in circulating lipoproteins for subsequent uptake by tissues, as well as the preferential hepatic metabolism of non-α-tocopherol forms. These mechanisms are the focus of this review.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
30
|
α-Tocopherol does not Accelerate Depletion of γ-Tocopherol and Tocotrienol or Excretion of their Metabolites in Rats. Lipids 2013; 48:687-95. [DOI: 10.1007/s11745-013-3796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
31
|
Podszun MC, Grebenstein N, Hofmann U, Frank J. High-dose supplementation with natural α-tocopherol does neither alter the pharmacodynamics of atorvastatin nor its phase I metabolism in guinea pigs. Toxicol Appl Pharmacol 2013. [DOI: 10.1016/j.taap.2012.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Wang Y, Jiang Q. γ-Tocotrienol inhibits lipopolysaccharide-induced interlukin-6 and granulocyte colony-stimulating factor by suppressing C/EBPβ and NF-κB in macrophages. J Nutr Biochem 2012; 24:1146-52. [PMID: 23246159 DOI: 10.1016/j.jnutbio.2012.08.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/04/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Cytokines generated from macrophages contribute to pathogenesis of inflammation-associated diseases. Here we show that γ-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin (IL)-6 production without affecting tumor necrosis factor α (TNF-α), IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW264.7 macrophages. Mechanistic studies indicate that nuclear factor κB (NF-κB), but not c-Jun NH(2)-terminal protein kinase, p38 or extracellular signal-regulated kinase mitogen-activated protein kinases (MAPKs), is important to IL-6 production and that γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNF-α or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT/enhancer-binding protein (C/EBP) β appears to be involved in IL-6 formation because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with small interfering RNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte colony-stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW264.7 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has antiinflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages.
Collapse
Affiliation(s)
- Yun Wang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
33
|
Marklund M, Landberg R, Andersson R, Aman P, Kamal-Eldin A. Alkylresorcinol metabolism in Swedish adults is affected by factors other than intake of whole-grain wheat and rye. J Nutr 2012; 142:1479-86. [PMID: 22739366 DOI: 10.3945/jn.112.159244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The urinary alkylresorcinol (AR) metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-propanoic acid (DHPPA), could potentially serve as biomarkers for intake of whole-grain (WG) wheat and rye. Excretion of AR metabolites is largely dependent on the intake of AR but may also be influenced by other factors. This study aimed to investigate the validity of free and conjugated AR metabolites as biomarkers for WG intake of wheat and rye and to identify potential determinants of AR metabolites in urine. We quantified free aglycones and conjugates of AR metabolites in 24-h urine collections from 52 free-living Swedish adults and calculated correlation coefficients between urinary AR metabolite excretion and self-reported WG intake. We used partial least-squares regression to identify possible determinants of urinary AR metabolites. Approximately 50% of urinary AR metabolites were found as conjugates. Excretions of individually quantified free and conjugated AR metabolites and their sums were correlated to self-reported intake of WG rye and wheat (r = 0.50-0.68; P < 0.001). Excretion of urinary AR metabolites was mainly dependent on intake of 2 major dietary AR homologs, C19:0 and C21:0. Sex, BMI, and vitamin C intake were identified as determinants of the proportion of free and glucuronidated DHPPA in the present study. Urinary AR metabolites may be useful in reflecting short-term to medium-term intake of WG, but urine samples should be deconjugated prior to quantification. Anthropometric and dietary factors affecting the proportion of conjugated AR metabolites in urine may to some extent influence AR elimination and thereby the performance of urinary AR metabolites as biomarkers.
Collapse
Affiliation(s)
- Matti Marklund
- Department of Food Science, BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Uchida T, Nomura S, Ichikawa T, Abe C, Ikeda S. Tissue distribution of vitamin E metabolites in rats after oral administration of tocopherol or tocotrienol. J Nutr Sci Vitaminol (Tokyo) 2012; 57:326-32. [PMID: 22293209 DOI: 10.3177/jnsv.57.326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously found that 2,7,8-trimethyl-2(2'-carboxyethyl)-6-hydroxychroman (γCEHC), a metabolite of the vitamin E isoforms γ-tocopherol or γ-tocotrienol, accumulated in the rat small intestine. The aim of this study was to evaluate tissue distribution of vitamin E metabolites. A single dose of α-tocopherol, γ-tocopherol or a tocotrienol mixture containing α- and γ-tocotrienol was orally administered to rats. Total amounts of conjugated and unconjugated metabolites in the tissues were measured by HPLC with an electrochemical detector, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox) was used as an internal standard. Twenty-four hours later, the vitamin E isoforms were detected in most tissues and in the serum. However, 2,5,7,8-tetramethyl-2(2'-carboxyethyl)-6-hydroxychroman (αCEHC), a metabolite of α-tocopherol or α-tocotrienol, and γCEHC accumulated in the serum and in some tissues including the liver, small intestine and kidney. Administration of α-tocopherol increased the γCEHC concentration in the small intestine, suggesting that α-tocopherol enhances γ-tocopherol catabolism. In contrast, ketoconazole, an inhibitor of cytochrome P450 (CYP)-dependent vitamin E catabolism, markedly decreased the γCEHC concentration. These data indicate that vitamin E metabolite accumulates not only in the liver but also in the small intestine and kidney. We conclude that some dietary vitamin E is catabolized to carboxyethyl-hydroxychroman in the small intestine and is secreted into the circulatory system.
Collapse
Affiliation(s)
- Tomono Uchida
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | | | | | | | | |
Collapse
|
35
|
Li G, Lee MJ, Liu AB, Yang Z, Lin Y, Shih WJ, Yang CS. The antioxidant and anti-inflammatory activities of tocopherols are independent of Nrf2 in mice. Free Radic Biol Med 2012; 52:1151-8. [PMID: 22226829 DOI: 10.1016/j.freeradbiomed.2011.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 01/28/2023]
Abstract
The present study investigated the antioxidant and anti-inflammatory actions of tocopherols in mice and determined whether the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved in these activities. A mixture of tocopherols (γ-TmT) that is rich in γ-tocopherol was used. Nrf2 knockout (Nrf2 -/-) and wild-type mice were maintained on 0.03, 0.1, or 0.3% γ-TmT-enriched diet starting 2 weeks before the administration of dextran sulfate sodium (DSS) in drinking water (for 1 week, to induce colonic inflammation), until the termination of the experiment at 3 days after the DSS treatment. Dietary γ-TmT dose dependently lowered the levels of 8-oxo-deoxyguanosine, nitrotyrosine, inflammation index, and leukocyte infiltration in colon tissues, as well as 8-isoprostane and prostaglandin E2 in the serum, in both Nrf2 (-/-) and wild-type mice. No significant difference on the inhibitory actions of γ-TmT between the Nrf2 (-/-) and the wild-type mice was observed. The γ-TmT treatment significantly increased the serum levels of γ- and δ-tocopherols. Interestingly, the serum levels of tocopherol metabolites, specifically the γ- and δ-forms of carboxymethylbutyl hydroxychroman and carboxyethyl hydroxychroman, in Nrf2 (-/-) mice were significantly higher than those in wild-type mice. These findings suggest that the antioxidant and anti-inflammatory activities of γ-TmT in the colon are mostly due to the direct action of tocopherols in trapping reactive oxygen and nitrogen species, independent of the antioxidant enzymes and anti-inflammatory proteins that are regulated by Nrf2; however, Nrf2 knockout appears to affect the serum levels of tocopherol metabolites.
Collapse
Affiliation(s)
- Guangxun Li
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Traber MG, Labut EM, Leonard SW, Lebold KM. α-Tocopherol injections in rats up-regulate hepatic ABC transporters, but not cytochrome P450 enzymes. Free Radic Biol Med 2011; 51:2031-40. [PMID: 21945367 PMCID: PMC3208783 DOI: 10.1016/j.freeradbiomed.2011.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 12/11/2022]
Abstract
The role of hepatic xenobiotic regulatory mechanisms in modulating hepatic α-tocopherol concentrations during excess vitamin E administration remains unclear. We hypothesized that increased hepatic α-tocopherol would cause a marked xenobiotic response. Thus, we assessed cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III) after daily α-tocopherol injections (100mg/kg body wt) for up to 9days in rats. α-Tocopherol injections increased hepatic α-tocopherol concentrations nearly 20-fold, along with a 10-fold increase in the hepatic α-tocopherol metabolites α-CEHC and α-CMBHC. Expression of phase I (CYP3A2, CYP3A1, CYP2B2) and phase II (SULT2A1) proteins and/or mRNAs was variably affected by α-tocopherol injections; however, expression of phase III transporter genes was consistently changed by α-tocopherol. Two liver efflux transporter genes, ABCB1b and ABCG2, were up-regulated after α-tocopherol injections, whereas OATP, a liver influx transporter, was down-regulated. Thus, an overload of hepatic α-tocopherol increases its own metabolism and increases expression of genes of transporters that are postulated to lead to increased excretion of both vitamin E and its metabolites.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
37
|
Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases. Biosci Biotechnol Biochem 2011; 75:1951-6. [PMID: 21979065 DOI: 10.1271/bbb.110352] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tocopherols are essential micronutrients for mammals widely known as potent lipid-soluble antioxidants that are present in cell membranes. Recent studies have demonstrated that most of the carboxychromanol (CEHC), a tocopherol metabolite, in the plasma exists primarily in sulfate- and glucuronide-conjugated forms. To gain insight into the enzymatic sulfation of tocopherols and their metabolites, a systematic investigation was performed using all 14 known human cytosolic sulfotransferases (SULTs). The results showed that the members of the SULT1 family displayed stronger sulfating activities toward tocopherols and their metabolites. These enzymes showed a substrate preference for γ-tocopherol over α-tocopherol and for γ-CEHC over other CEHCs. Using A549 human lung epithelial cells in a metabolic labeling study, a similar trend in the sulfation of tocopherols and CEHCs was observed. Collectively, the results obtained indicate that SULT-mediated enzymatic sulfation of tocopherols and their metabolites is a significant pathway for regulation of the homeostasis and physiological functions of these important compounds.
Collapse
|
38
|
Wang Y, Moreland M, Wagner JG, Ames BN, Illek B, Peden DB, Jiang Q. Vitamin E forms inhibit IL-13/STAT6-induced eotaxin-3 secretion by up-regulation of PAR4, an endogenous inhibitor of atypical PKC in human lung epithelial cells. J Nutr Biochem 2011; 23:602-8. [PMID: 21764283 DOI: 10.1016/j.jnutbio.2011.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 10/17/2022]
Abstract
Eotaxin-3 (CCL-26), a potent chemokine for eosinophil recruitment and contributing significantly to the pathogenesis of asthma, is secreted by lung epithelial cells in response to T helper 2 cytokines including interleukin 13 (IL-13). Here we showed that vitamin E forms, but not their metabolites, differentially inhibited IL-13-stimulated generation of eotaxin-3 in human lung epithelial A549 cells. The relative inhibitory potency was γ-tocotrienol (γ-TE) (IC50 ~15 μM)>γ-tocopherol, δ-tocopherol (IC50 ~25-50 μM)>α-tocopherol. Consistent with suppression of eotaxin, γ-TE treatment impaired IL-13-induced phosphorylation of STAT6, the key transcription factor for activation of eotaxin expression, and consequently blocked IL-13-stimulated DNA-binding activity of STAT6. In search of the upstream target of γTE by using inhibitor and siRNA approaches, we discovered that the atypical protein kinase C (aPKC) signaling, instead of classical PKC, p38 MAPK, JNK or ERK, played a critical role in IL-13-stimulated eotaxin generation and STAT6 activation. While showing no obvious effect on aPKC expression or phosphorylation, γ-TE treatment resulted in increased expression of prostate-apoptosis-response 4 (PAR4), an endogenous negative regulator of aPKCs. Importantly, γ-TE treatment led to enhanced formation of aPKC/PAR4 complex that is known to reduce aPKC activity via protein-protein crosstalk. Our study demonstrated that γ-TE inhibited IL-13/STAT6-activated eotaxin secretion via up-regulation of PAR4 expression and enhancement of aPKC-PAR4 complex formation. These results support the notion that specific vitamin E forms may be useful anti-asthmatic agents.
Collapse
Affiliation(s)
- Yun Wang
- Department of Foods and Nutrition, Purdue University, Stone Hall, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Wilankar C, Sharma D, Checker R, Khan NM, Patwardhan R, Patil A, Sandur SK, Devasagayam TPA. Role of immunoregulatory transcription factors in differential immunomodulatory effects of tocotrienols. Free Radic Biol Med 2011; 51:129-43. [PMID: 21536125 DOI: 10.1016/j.freeradbiomed.2011.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 12/20/2022]
Abstract
Tocotrienols have been shown to possess antioxidant, antitumor, cardioprotective, and antiproliferative effects. This report describes novel immunomodulatory effects of tocotrienols in murine lymphocytes. γ-Tocotrienol (GT) was more effective in suppressing concanavalin A (Con A)-induced T cell proliferation and cytokine production compared to α-tocotrienol (AT) when present continuously in the culture. GT inhibited T cell activation markers and costimulatory molecule. GT modulated intracellular glutathione in lymphocytes, and the suppressive effects of GT could not be abrogated by thiol or nonthiol antioxidants, indicating a poor link between anti-inflammatory properties of tocotrienols and cellular redox status. It was also observed that GT suppressed Con A-induced activation of NF-κB, AP-1, and NF-κB-dependent gene expression. Cellular uptake studies with tocotrienols showed higher accumulation of GT compared to AT. Similar immunosuppressive effects of GT were also observed when administered to mice. In contrast, transient exposure of lymphocytes to GT (4 h) resulted in higher survival and proliferation of lymphocytes in vitro and in vivo in syngeneic and allogeneic hosts. This was attributed to the ability of GT to induce NF-κB, AP-1, and mTOR activation in lymphocytes upon transient exposure. Our results demonstrated that antioxidants such as tocotrienols may exhibit pleiotropic effects by activating multiple mechanisms in cells.
Collapse
Affiliation(s)
- Chandan Wilankar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang Z, Lee MJ, Zhao Y, Yang CS. Metabolism of tocotrienols in animals and synergistic inhibitory actions of tocotrienols with atorvastatin in cancer cells. GENES AND NUTRITION 2011; 7:11-8. [PMID: 21590436 DOI: 10.1007/s12263-011-0233-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 12/31/2022]
Abstract
Tocotrienols (T3s), members of the vitamin E family, exhibit potent anti-cancer, anti-oxidative, anti-inflammatory, and some other biological activities. To better understand the bioavailability and metabolism of T3s, T3s and their metabolites were identified in urine and fecal samples from mice on diet supplemented with mixed T3s using HPLC/electrochemical detection and liquid chromatography electrospray ionisation mass spectrometry (LC-ESI-MS). Whereas the short-chain metabolites carboxyethyl hydroxychromans (CEHCs) and carboxymethylbutyl hydroxychromans (CMBHCs) were the major metabolites of T3s, several new metabolites with double bonds were also identified. Similar to tocopherols, the majority of T3 metabolites were excreted as sulfate/glucuronide conjugates in mouse urine. The distribution of γ- and δ-T3 and γ-T3 metabolites were also determined in different organs as well as in urine and fecal samples from mice on diets supplemented with corresponding T3s. The synergistic anti-cancer actions of γ-T3 and atorvastatin (ATST) were studied in HT29 and HCT116 colon cancer cell lines. The combination greatly potentiated the ability of each individual agent to inhibit cancer cell growth and to induce cell cycle arrest and apoptosis. The triple combination of γ-T3, ATST, and celecoxib exhibited synergistic actions when compared with any double combination plus the third agent. Mechanistic studies revealed that the synergistic actions of γ-T3 and ATST could be attributed to their mediation of 3-hydroxy-3-methyl-glutaryl-CoA reductase, and the subsequent inhibition of protein geranylgeranylation. It remains to be determined whether such a synergy occurs in vivo.
Collapse
Affiliation(s)
- Zhihong Yang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | | | | | | |
Collapse
|
41
|
Jiang Q, Rao X, Kim CY, Freiser H, Zhang Q, Jiang Z, Li G. Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 2011; 130:685-93. [PMID: 21400505 DOI: 10.1002/ijc.26054] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/14/2011] [Indexed: 02/05/2023]
Abstract
Although cell-based studies have shown that γ-tocotrienol (γTE) exhibits stronger anticancer activities than other forms of vitamin E including γ-tocopherol (γT), the molecular bases underlying γTE-exerted effects remains to be elucidated. Here we showed that γTE treatment promoted apoptosis, necrosis and autophagy in human prostate PC-3 and LNCaP cancer cells. In search of potential mechanisms of γTE-provoked effects, we found that γTE treatment led to marked increase of intracellular dihydroceramide and dihydrosphingosine, the sphingolipid intermediates in de novo sphingolipid synthesis pathway but had no effects on ceramide or sphingosine. The elevation of these sphingolipids by γTE preceded or coincided with biochemical and morphological signs of cell death and was much more pronounced than that induced by γT, which accompanied with much higher cellular uptake of γTE than γT. The importance of sphingolipid accumulation in γTE-caused fatality was underscored by the observation that dihydrosphingosine and dihydroceramide potently reduced the viability of both prostate cell lines and LNCaP cells, respectively. In addition, myriosin, a specific inhibitor of de novo sphingolipid synthesis, counteracted γTE-induced cell death. In agreement with these cell-based studies, γTE inhibited LNCaP xenograft growth by 53% (p < 0.05), compared to 33% (p = 0.07) by γT, in nude mice. These findings provide a molecular basis of γTE-stimulated cancer cell death and support the notion that elevation of intracellular dihydroceramide and dihydrosphingosine is likely a novel anticancer mechanism.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Foods and Nutrition, Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E. GENES AND NUTRITION 2011; 7:29-41. [PMID: 21505906 DOI: 10.1007/s12263-011-0219-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/23/2022]
Abstract
The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated "highly metabolized" T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy.
Collapse
|
43
|
Jiang Z, Yin X, Jiang Q. Natural forms of vitamin E and 13'-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. THE JOURNAL OF IMMUNOLOGY 2010; 186:1173-9. [PMID: 21169551 DOI: 10.4049/jimmunol.1002342] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukotrienes generated by 5-lipoxygenase (5-LOX)-catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1-2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B(4) (LTB(4)) with an IC(50) of 5-20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC(50) for α-tocopherol. 13'-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB(4) with an IC(50) of 4-7 μM and potently inhibited human recombinant 5-LOX activity with an IC(50) of 0.5-1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca(2+) increase and/or LTB(4) formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13'-carboxychromanol decreased cellular production of LTB(4) regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo.
Collapse
Affiliation(s)
- Ziying Jiang
- Department of Foods and Nutrition, Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
44
|
Abstract
Vitamin E is known as the most important lipid antioxidant and is widely used to prevent age-associated diseases. Despite increasing knowledge about human vitamin E metabolism, little is known to justify its widespread use. As meta-analyses revealed even harmful effects of high vitamin E doses, a profound understanding of vitamin E metabolism is mandatory. By recent advances in analytical methodology, new metabolites with distinct physicochemical and biological properties were discovered. This review covers current methods to analyze vitamin E metabolites in biological samples. Special emphasis is laid on analytical applications for the identification and quantification of metabolites with a modified hydroxychromanol ring or a truncated side chain.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
45
|
Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 2010; 80:1613-31. [PMID: 20696139 DOI: 10.1016/j.bcp.2010.07.043] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/12/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
Initially discovered in 1938 as a "fertility factor," vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (α, β, γ, and δ) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-κB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 143, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
46
|
Gao D, Wei H, Guo GS, Lin JM. Microfluidic Cell Culture and Metabolism Detection with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2010; 82:5679-85. [DOI: 10.1021/ac101370p] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dan Gao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huibin Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guang-Sheng Guo
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin-Ming Lin
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
47
|
Zhao Y, Lee MJ, Cheung C, Ju JH, Chen YK, Liu B, Hu LQ, Yang CS. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4844-4852. [PMID: 20222730 PMCID: PMC2858244 DOI: 10.1021/jf904464u] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tocopherols and tocotrienols, collectively known as vitamin E, are essential antioxidant nutrients. The biological fates and metabolite profiles of the different forms are not clearly understood. The objective of this study is to simultaneously analyze the metabolites of different tocopherols and tocotrienols in mouse and human samples. Using HPLC/electrochemical detection and mass spectrometry, 18 tocopherol-derived and 24 tocotrienol-derived side-chain degradation metabolites were identified in fecal samples. Short-chain degradation metabolites, in particular gamma- and delta-carboxyethyl hydroxychromans (CEHCs) and carboxymethylbutyl hydroxychromans (CMBHCs) were detected in urine, serum, and liver samples, with tocopherols additionally detected in serum and liver samples. The metabolite profiles of tocotrienols and tocopherols were similar, but new tocotrienol metabolites with double bonds were identified. This is the first comprehensive report describing simultaneous analysis of different side-chain metabolites of tocopherols and tocotrienols in mice and humans. Urinary metabolites may serve as useful biomarkers for the nutritional assessment of vitamin E.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Chemical Biology, Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abuasal B, Sylvester PW, Kaddoumi A. Intestinal absorption of gamma-tocotrienol is mediated by Niemann-Pick C1-like 1: in situ rat intestinal perfusion studies. Drug Metab Dispos 2010; 38:939-45. [PMID: 20207946 DOI: 10.1124/dmd.109.031567] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
gamma-Tocotrienol (gamma-T3) is a member of the vitamin E family that displays potent anticancer activity and other therapeutic benefits. The objective of this study was to evaluate gamma-T3 intestinal uptake and metabolism using the in situ rat intestinal perfusion model. Isolated segments of rat jejunum and ileum were perfused with gamma-T3 solution, and measurements were made as a function of concentration (5-150 microM). Intestinal permeability (P(eff)) and metabolism were studied by measuring total compound disappearance and major metabolite, 2,7,8-trimethyl-2-(beta-carboxy-ethyl)-6-hydroxychroman, appearance in the intestinal lumen. gamma-T3 and metabolite levels were also determined in mesenteric blood. The P(eff) of gamma-T3 was similar in both intestinal segments and significantly decreased at concentrations > or =25 microM in jejunum and ileum (p < 0.05), whereas metabolite formation was minimal and mesenteric blood concentrations of gamma-T3 and metabolite remained very low. These results indicate that gamma-T3 intestinal uptake is a saturable carrier-mediated process and metabolism is minimal. Results from subsequent in situ inhibition studies with ezetimibe, a potent and selective inhibitor of Niemann-Pick C1-like 1 (NPC1L1) transporter, suggested gamma-T3 intestinal uptake is mediated by NPC1L1. Comparable findings were obtained when Madin-Darby canine kidney II cells that express endogenous NPC1L1 were incubated with increasing concentrations of gamma-T3 or gamma-T3 with increasing concentrations of ezetimibe. The present data show for the first time that gamma-T3 intestinal absorption is partly mediated by NPC1L1.
Collapse
Affiliation(s)
- Bilal Abuasal
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | | | | |
Collapse
|
49
|
Traber MG. Regulation of xenobiotic metabolism, the only signaling function of α-tocopherol? Mol Nutr Food Res 2010; 54:661-8. [DOI: 10.1002/mnfr.200900440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Mustacich DJ, Leonard SW, Patel NK, Traber MG. Alpha-tocopherol beta-oxidation localized to rat liver mitochondria. Free Radic Biol Med 2010; 48:73-81. [PMID: 19819327 PMCID: PMC2818260 DOI: 10.1016/j.freeradbiomed.2009.10.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/21/2009] [Accepted: 10/04/2009] [Indexed: 12/14/2022]
Abstract
Approximately 40% of Americans take dietary supplements, including vitamin E (alpha-tocopherol). Unlike other fat-soluble vitamins, alpha-tocopherol is not accumulated to toxic levels. Rather tissue levels are tightly regulated, in part via increased hepatic metabolism and excretion that could, theoretically, alter metabolism of drugs, environmental toxins, and other nutrients. To date, in vivo subcellular location(s) of alpha-tocopherol metabolism have not been identified. The proposed pathway of alpha-tocopherol metabolism proceeds via omega-hydroxylation to 13'-OH-alpha-tocopherol, followed by successive rounds of beta-oxidation to form alpha-CEHC. To test the hypothesis that alpha-tocopherol omega-hydroxylation occurs in microsomes while beta-oxidation occurs in peroxisomes, rats received daily injections of vehicle, 10 mg alpha-tocopherol, or 10 mg trolox/100 g body wt for 3 days, and then microsomes, mitochondria, and peroxisomes were isolated from liver homogenates. Homogenate alpha-tocopherol levels increased 16-fold in alpha-tocopherol-injected rats, while remaining unchanged in trolox- or vehicle-injected rats. Total alpha-tocopherol recovered in the three subcellular fractions represented 93+/-4% of homogenate alpha-tocopherol levels. In alpha-tocopherol-injected rats, microsome alpha-tocopherol levels increased 28-fold, while mitochondria and peroxisome levels increased 8- and 3-fold, respectively, indicating greater partitioning of alpha-tocopherol to the microsomes with increasing liver alpha-tocopherol. In alpha-tocopherol-injected rats, microsome 13'-OH-alpha-tocopherol levels increased 24-fold compared to controls, and were 7-fold greater than 13'-OH-alpha-tocopherol levels in peroxisome and mitochondrial fractions of alpha-tocopherol-injected rats. An unexpected finding was that alpha-CEHC, the end product of alpha-tocopherol metabolism, was found almost exclusively in mitochondria. These data are the first to indicate a mitochondrial role in alpha-tocopherol metabolism.
Collapse
Affiliation(s)
- Debbie J Mustacich
- Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|