1
|
Gao S, Qiu H, Chen F, Yang G, Hou L, Dong J, Dong W. Effects of high-dose selenium-enriched Saccharomyces cerevisiae on growth performance, antioxidant status, tissue fat content and selenium concentration, and selenoenzyme mRNA expression in chicks. Poult Sci 2024; 103:104312. [PMID: 39316981 PMCID: PMC11462486 DOI: 10.1016/j.psj.2024.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Selenium-enriched Saccharomyces cerevisiae (SSC) as organic selenium (Se) has been shown to have better advantages and is approved for use in animal feed rather than inorganic Se, however, there is little available data on the toxic effects of SSC on poultry. The present study was conducted to investigate the effects of high-dose SSC on growth performance, antioxidant status, tissue fat content and Se concentration, and selenoenzyme mRNA expression in chicks. A total of 500, 1-day-old SPF chicks were randomly divided into 5 groups with 10 replicates of 10 chicks each. Group 1 served as a control and was fed a basal diet supplemented with 0.15 mg/kg Se from sodium selenite (SS), group 2 was fed the basic diet supplemented with 1.5 mg/kg Se from SS, while groups 3, 4, and 5 were fed the basal diet supplemented with 1.5, 5 and 10 mg/kg Se from SSC, respectively. The results showed that SS and SSC supplementation significantly affected the average daily feed intake (ADFI), feed/gain ratio (FCR), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, tissue fat content and Se concentration, and GPx1 and GPx4 mRNA levels compared with the control group (P < 0.05). Compared with group 2, group 3 exhibited higher GPx and SOD activities, tissue Se concentration, and lower MDA content on d 30, and higher Se concentration, GPx1 mRNA levels in liver and breast muscle and GPx4 mRNA levels in liver and thigh muscle, and lower MDA content on d 60 (P < 0.05). The results of correlation analysis showed that high-dose SSC supplementation was positively correlated with AFDI, FCR, MDA content, and tissue Se concentration, and negatively correlated with GPx and SOD activities, T-AOC, GPx1 and GPx4 mRNA levels in tissues. In conclusion, up to 1.5 mg/kg Se from SSC in diet may be a safe concentration for chicks that exhibited better biological effects than SS, the toxic effects of high-dose SSC supplementation mainly exhibited growth decrease, peroxidation and lipid metabolism disturbance, and became stronger with the increase of dietary Se levels.
Collapse
Affiliation(s)
- Shansong Gao
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Huiling Qiu
- Department of Life Sciences, Haidu College, Qingdao Agricultural University, Laiyang 265200, Shandong Province, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Guoming Yang
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lele Hou
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jihong Dong
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Wenxuan Dong
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
2
|
Jing J, Xiang X, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Zhao H. Hydroxy Selenomethionine Exert Different Protective Effects Against Dietary Oxidative Stress-Induced Inflammatory Responses in Spleen and Thymus of Pigs. Biol Trace Elem Res 2024; 202:3107-3118. [PMID: 37910261 DOI: 10.1007/s12011-023-03925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Oxidative stress (OS) is widespread in animal husbandry, which causes edema in immune organs and suppresses immune function of animals. Selenium (Se) is an essential trace element involved in immune regulation and improves animals' immunity. In present study, growing and finishing pigs were used to determine the protective effects of the new organic Se (hydroxy selenomethionine, OH-SeMet) on dietary oxidative stress (DOS) induced inflammatory responses, and the corresponding response of selenotranscriptome in spleen and thymus. Forty castrated male pigs (25.0 ± 3.0 kg) were randomly grouped into 5 dietary treatments (n = 8) and fed on basal diet (formulated with normal corn and normal oils) or oxidized diet (formulated with aged corn and oxidized oils) supplied with 0.0, 0.3, 0.6, or 0.9 mg Se/kg OH-SeMet, after 16 weeks, the corresponding indicators were determined. Results showed that DOS moderately increased the spleen and thymus index, decreased the antioxidant capacity of serum, spleen and thymus, and increased the concentration of serum inflammatory cytokines (IL-6 and TNF-α). The inflammatory response in spleen and thymus under DOS were discrepancies, DOS increased the expression of inflammation-related gene (IFN-β and TNF-α) in thymus, while exhibited no impact on that of the spleen. Dietary OH-SeMet supplementation exhibited protective effects, which decreased the spleen and thymus index, improved the antioxidant capacity of serum, spleen and thymus, and decreased the serum IL-1β and IL-6 levels. Se supplementation exhibited limited impact on the inflammation-related genes in spleen, except decreased the mRNA expression of IL-8. On the contrary, Se supplementation showed more impact on that of the thymus, which decreased the mRNA expression of IL-8 and TNF-α, increased the expression of IFN-β, IL-6, IL-10, and MCP1. In addition, selenotranscriptome responsive to dietary Se levels in spleen and thymus were discrepancies. Se supplementation increased the mRNA expression of the selenotranscriptome in thymus, while exhibited limited impact on that of in spleen. In conclusion, dietary OH-SeMet supplementation mitigates the DOS-induced immunological stress by increasing the antioxidant capacity and altering the expression of inflammation-related genes and selenotranscriptome in immune organs, and these response in spleen and thymus were discrepancies.
Collapse
Affiliation(s)
- Jinzhong Jing
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoyu Xiang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Longqiong Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Cai X, Hu Z, Zhang M, Dang Q, Yang Q, Zhao X, Zhu Y, Zhang Y, Wei Y, Fang H, Yu H. Dosage-effect of selenium supplementation on blood glucose and oxidative stress in type 2 diabetes mellitus and normal mice. J Trace Elem Med Biol 2024; 83:127410. [PMID: 38377660 DOI: 10.1016/j.jtemb.2024.127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The effectiveness of selenium (Se) supplementation on glycemic control is disparate. OBJECTIVE This study aims to evaluate the effects of different dosages of Se diets on the blood glucose in type 2 diabetes mellitus (T2DM, db/db) and normal (db/m) mice. METHODS The db/db and db/m mice were fed with different dosages of Se supplemented diets (0, 0.1, 0.3, 0.9, 2.7 mg/kg) for 12 weeks, respectively. Se concentrations of tissues, physical and biochemical characteristics, oxidative stress indexes and gene expression related to glucose, lipid metabolism and Se transporters of liver were detected. RESULTS The Se concentrations in tissues were related to the dosages of Se supplementation in db/db (blood: slope=11.69, r = 0.924; skeletal muscle: slope=0.36, r = 0.505; liver: slope=22.12, r = 0.828; kidney: slope=11.81, r = 0.736) and db/m mice (blood: slope=19.89, r = 0.876; skeletal muscle: slope=2.80, r = 0.883; liver: slope=44.75, r = 0.717; kidney: slope=60.15, r = 0.960). Compared with Se2.7 group, the fasting blood glucose (FBG) levels of Se0.1 and Se0.3 group were decreased at week3 in db/db mice. Compared with control (Se0) group, the FBG levels of Se2.7 group were increased from week6 to week12 in db/m mice. The oral glucose tolerance test (OGTT) showed that the area under the curve (AUC) of Se0.3 group was lower than that of Se0.9 and Se2.7 group in db/m mice. Furthermore, compared with control group, the malondialdehyde (MDA) level in skeletal muscle of Se0.1 group was decreased, while that of Se2.7 group was increased in db/db mice; the glutathione peroxidase (GPx) activity in skeletal muscle of Se0.3, Se0.9 and Se2.7 group was increased both in db/db and db/m mice. For db/db mice, glucose-6-phosphatase catalytic (G6pc) expression of other groups were lower and fatty acid synthase (Fasn) expression of Se0.9 group were lower compared with Se0.3 group. For db/m mice, compared with Se0.3 group, (peroxisome proliferative activated receptor gamma coactivator 1 alpha) Pgc-1α expression of control and Se0.9 group were higher; (phosphoenolpyruvate carboxykinase 1) Pck1 expression of Se0.1, Se0.9, and Se2.7 group were higher. CONCLUSION Low dosages (0.1 and 0.3 mg/kg) of Se supplementation exerted beneficial effects on FBG levels and glucose tolerance through regulating hepatic glycolysis and gluconeogenesis and inhibit the oxidative stress while high dosages of Se (0.9 and 2.7 mg/kg) supplementation enhanced FBG levels, impaired glucose tolerance and aggravate oxidative stress.
Collapse
Affiliation(s)
- Xiaxia Cai
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Zhuo Hu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Mingyuan Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China; China National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Qinyu Dang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Qian Yang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Xiaoyan Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yandi Zhu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yadi Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yuchen Wei
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Haiqin Fang
- China National Center for Food Safety Risk Assessment, Beijing 100022, PR China.
| | - Huanling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
4
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
5
|
Hasani M, Monfared V, Aleebrahim-Dehkordi E, Jafari A, Agh F, Khazdouz M, Vahid F, Vafa M. The Effect of Selenium, Zinc, and their Combined Supplementation on Cardiometabolic Biomarkers-comparing their Effects in the Energy Restriction and High-fat Diet Methods in Obese Rats. Curr Mol Med 2024; 24:1307-1315. [PMID: 38258780 DOI: 10.2174/0115665240268180231113045836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024]
Abstract
INTRODUCTION The fat distribution in the body determines the risk of cardiometabolic problems such as heart disease and diabetes. Some dietary supplements, such as selenium and zinc, possess lipolytic and anti-angiogenic functions, which may be a useful strategy in reducing the risk of cardiometabolic complications. This study evaluated the effect of zinc (Zn), selenium (Se), and their combined supplementation on cardiometabolic risk factors in male Wistar rats in two nutritional models, including caloric restriction (CR) and high-fat diet (HFD). METHODS AND MATERIALS The 48 male Wistar rats were divided into three diet groups (HFD and CR and normal diet (ND)). The HFD group was subdivided into four groups (N=8 rats in each group) that received (HFD+Se), (HFD+Zn), (HFD+Zn+Se), and HFD alone as the control group, respectively. After 8 weeks of intervention, biochemical tests were performed on serum levels, including measurement of lipid profile (triglyceride, Cholesterol, LDL and HDL) and glycemic indices (fasting blood sugar, insulin and insulin sensitivity markers). RESULTS The results showed that supplementation significantly improved the lipid profile (P <0.001). A comparison of glucose homeostasis indices in the study groups also showed a significant difference. The serum level of glucose was higher in the HFD group than in the intervention groups (P <0.001). Also, the rate of improvement of lipid profile and glycemic indexes in the group receiving the combination of two supplements showed a better trend than those receiving zinc and selenium alone. However, the values were statistically significant only for glucose homeostasis indices (P <0.001). CONCLUSION Although obesity is a multifactorial condition, controlling other risk factors, zinc and selenium and their combined supplementation can lead to promising solutions for the treatment of obesity-induced glucose and lipid homeostasis disorders.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Monfared
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Aleebrahim-Dehkordi
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Jafari
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fahimeh Agh
- Saveh University of Medical Sciences, Saveh, Iran
| | - Maryam Khazdouz
- Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Luxembourg
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Li F, Shi Z, Cheng M, Zhou Z, Chu M, Sun L, Zhou JC. Biology and Roles in Diseases of Selenoprotein I Characterized by Ethanolamine Phosphotransferase Activity and Antioxidant Potential. J Nutr 2023; 153:3164-3172. [PMID: 36963501 DOI: 10.1016/j.tjnut.2023.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Selenoprotein I (SELENOI) has been demonstrated to be an ethanolamine phosphotransferase (EPT) characterized by a nonselenoenzymatic domain and to be involved in the main synthetic branch of phosphatidylethanolamine (PE) in the endoplasmic reticulum. Therefore, defects of SELENOI may affect the health status through the multiple functions of PE. On the other hand, selenium (Se) is covalently incorporated into SELENOI as selenocysteine (Sec) in its peptide, which forms a Sec-centered domain as in the other members of the selenoprotein family. Unlike other selenoproteins, Sec-containing SELENOI was formed at a later stage of animal evolution, and the high conservation of the structural domain for PE synthesis across a wide range of species suggests the importance of EPT activity in supporting the survival and evolution of organisms. A variety of factors, such as species characteristics (age and sex), diet and nutrition (dietary Se and fat intakes), SELENOI-specific properties (tissue distribution and rank in the selenoproteome), etc., synergistically regulate the expression of SELENOI in a tentatively unclear interaction. The N- and C-terminal domains confer 2 distinct biochemical functions to SELENOI, namely PE regulation and antioxidant potential, which may allow it to be involved in numerous physiological processes, including neurological diseases (especially hereditary spastic paraplegia), T cell activation, tumorigenesis, and adipocyte differentiation. In this review, we summarize advances in the biology and roles of SELENOI, shedding light on the precise regulation of SELENOI expression and PE homeostasis by dietary Se intake and pharmaceutical or transgenic approaches to modulate the corresponding pathological status.
Collapse
Affiliation(s)
- Fengna Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Minning Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhongwei Zhou
- School of Medical, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ming Chu
- Department of Neurosurgery, The Third People's Hospital of Shenzhen, Shenzhen 518112, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China; Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China.
| |
Collapse
|
7
|
Jiang J, Chen B, Tang B, Wei Q. Selenium in Prostate Cancer: Prevention, Progression, and Treatment. Pharmaceuticals (Basel) 2023; 16:1250. [PMID: 37765058 PMCID: PMC10536940 DOI: 10.3390/ph16091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Selenium, a trace mineral with various biological functions, has become a focal point in prostate cancer research. This review aims to present a comprehensive overview of selenium's involvement in prostate cancer, covering its impact on prevention, development, treatment, and underlying mechanisms. Observational studies have revealed a link between selenium levels and selenoproteins with prostate cancer progression. However, randomized controlled studies have shown that selenium supplementation does not prevent prostate cancer (HR: 0.95; 95% CI 0.80-1.13). This discrepancy might be attributed to selenoprotein single nucleotide polymorphisms. In the context of combinatorial therapy, selenium has demonstrated promising synergistic potential in the treatment of prostate cancer. Emerging evidence highlights the significant role of selenium and selenoproteins in prostate cancer, encompassing AR signaling, antioxidative properties, cell death, cell cycle regulation, angiogenesis, epigenetic regulation, immunoregulation, epithelial-mesenchymal transformation, and redox signal. In conclusion, selenium's diverse properties make it a promising trace mineral in prostate cancer prevention, development, and treatment and as a platform for exploring novel agents.
Collapse
Affiliation(s)
- Jinjiang Jiang
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bo Tang
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China
- Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
9
|
Saghir SA, Alnaimat SM, Dmour SM, Al-Tarawni AH, Abdelnour SA, Ahmeda AF, Arisha AH, Hawwal MF, Alanzi AR, Mothana RA, Lindequist U. The ameliorative effect of bergamot oil nano-emulsion in stressed rabbit bucks: Influence on blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes. Saudi Pharm J 2023; 31:101691. [PMID: 37457368 PMCID: PMC10345481 DOI: 10.1016/j.jsps.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
This work explored the activities of bergamot oil nano-emulsion (NBG) in modulating blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes in stressed rabbit bucks. Twenty-four mature rabbit bucks (5 months) were randomly divided into three groups; control group (NBG0) received 1 ml of distilled water, while the other two groups received NBG orally at doses of 50 and 100 mg/kg (bw) twice a week. The present study's findings revealed that treated groups had lower values of total and direct bilirubin, triglyceride, lactate dehydrogenase, and creatinine compared with NBG0 group (p < 0.05). NBG100 group recorded the greatest of total protein, albumin, GPx, T3 and T4 values as well as the lowest values of uric acid, MDA, and indirect bilirubin. Both treated groups showed significantly reduced 8-OhDG, Amyloid A, TLR 4, while significantly increased nitric oxide, IgA, IgM, TAC, and SOD levels. Semen characteristics such as volume, sperm count, sperm motility, normal sperm, and vitality were significantly higher in the NBG100 group compared to the NBG50 and NBG0 groups, whereas sperm abnormalities and dead sperm were significantly reduced. HSP70, HSP72, and HSPA9 gene overexpression showed that testicular integrity was maintained after buck received oral doses of 50 or 100 mg/kg of NBG. Existing findings indicate that oral administration of NBG improves heat tolerance in rabbit bucks primarily as e result of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sultan A.M. Saghir
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | - Sulaiman M. Alnaimat
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
- Department of Biology Department, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Saif M. Dmour
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | | | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Ahmad F. Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed H. Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Liu J, Tan L, Liu Z, Shi R. The association between non-alcoholic fatty liver disease (NAFLD) and advanced fibrosis with blood selenium level based on the NHANES 2017-2018. Ann Med 2022; 54:2259-2268. [PMID: 35975984 PMCID: PMC9455329 DOI: 10.1080/07853890.2022.2110277] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND & OBJECTIVE Selenium was one of the essential trace elements that played a pivotal role in human health. Although previous studies have investigated the relationship between selenium and non-alcoholic fatty liver disease (NAFLD) and fibrosis, these findings were still inconclusive. Our study was aimed to explore the association between blood selenium level and NAFLD and advanced liver fibrosis diagnosed by vibration controlled transient elastography (VCTE) in US adults. METHODS All data were extracted from National Health and Nutrition Examination Survey database (2017-2018). Participants were divided into four groups according to quartile of blood selenium level. Liver stiffness and controlled attenuation parameter (CAP) were measured by VCTE. Multiple logistic regression models and subgroup analyses were conducted to determine the association between blood selenium level and NAFLD and advanced liver fibrosis diagnosed by a variety of methods. RESULTS A total of 3336 participants were enrolled in main analysis. In multiple logistic regression models, the higher blood selenium level (>205.32, ≤453.62 μg/L) had a significant positive association with NAFLD (β = 1.31). Moreover, high blood selenium level had significantly inversely association to advanced liver fibrosis (β = 0.61). In subgroup analysis, the main inversely correlation between blood selenium and advanced liver fibrosis was found in males with high blood selenium level. Despite dietary selenium intake being adjusted or in different subgroups, the associations between blood selenium level and NAFLD/advanced liver fibrosis remained significant. CONCLUSIONS This study showed that blood selenium level were positively association with NAFLD among US population. Participants with lower blood selenium level showed a higher percentage of advanced liver fibrosis. Blood selenium is more likely to cause NAFLD and liver fibrosis due to imbalances in selenium homeostasis rather than dietary selenium intake.Key messagesHigh blood selenium level was association with NAFLD diagnosed by vibration controlled transient elastography.Participants with lower blood selenium level had high percentage of advanced liver fibrosis.NAFLD and liver fibrosis are caused by an imbalance of selenium homeostasis, not by dietary selenium intake.
Collapse
Affiliation(s)
- Jie Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liao Tan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoya Liu
- Department of the Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Huang YC, Combs GF, Wu TL, Zeng H, Cheng WH. Selenium status and type 2 diabetes risk. Arch Biochem Biophys 2022; 730:109400. [PMID: 36122760 PMCID: PMC9707339 DOI: 10.1016/j.abb.2022.109400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Optimal selenium (Se) status is necessary for overall health. That status can be affected by food intake pattern, age, sex, and health status. At nutritional levels of intake, Se functions metabolically as an essential constituent of some two dozen selenoproteins, most, if not all, of which have redox functions. Insufficient dietary intake of Se reduces, to varying degrees, the expression of these selenoproteins. Recent clinical and animal studies have indicated that both insufficient and excessive Se intakes may increase risk of type 2 diabetes mellitus (T2D), perhaps by way of selenoprotein actions. In this review, we discuss the current evidence linking Se status and T2D risk, and the roles of 14 selenoproteins and other proteins involved in selenoprotein biosynthesis. Understanding such results can inform the setting of safe and adequate Se intakes.
Collapse
Affiliation(s)
- Ying-Chen Huang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Tung-Lung Wu
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS, USA
| | - Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
12
|
Zhao L, Chu XH, Liu S, Li R, Zhu YF, Li FN, Jiang J, Zhou JC, Lei XG, Sun LH. Selenium-Enriched Cardamine violifolia Increases Selenium and Decreases Cholesterol Concentrations in Liver and Pectoral Muscle of Broilers. J Nutr 2022; 152:2072-2079. [PMID: 35728044 DOI: 10.1093/jn/nxac141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Supernutrition of selenium (Se) in an effort to produce Se-enriched meat may inadvertently cause lipid accumulation. Se-enriched Cardamine violifolia (SeCv) contains >80% of Se in organic forms. OBJECTIVES This study was to determine whether feeding chickens a high dose of SeCv could produce Se-biofortified muscle without altering their lipid metabolism. METHODS Day-old male broilers were allocated to 4 groups (6 cages/group and 6 chicks/cage) and were fed either a corn-soy base diet (BD, 0.13-0.15 mg Se/kg), the BD plus 0.5 mg Se/kg as sodium selenite (SeNa) or as SeCv, or the BD plus a low-Se Cardamine violifolia (Cv, 0.20-0.21mg Se/kg). At week 6, concentrations of Se and lipid and expression of selenoprotein and lipid metabolism-related genes were determined in the pectoral muscle and liver. RESULTS The 4 diets showed no effects on growth performance of broilers. Compared with the other 3 diets, SeCv elevated (P < 0.05) Se concentrations in the pectoral muscle and liver by 14.4-127% and decreased (P < 0.05) total cholesterol concentrations by 12.5-46.7% and/or triglyceride concentrations by 28.8-31.1% in the pectoral muscle and/or liver, respectively. Meanwhile, SeCv enhanced (P < 0.05) muscular α-linolenic acid (80.0%) and hepatic arachidonic acid (58.3%) concentrations compared with SeNa and BD, respectively. SeCv downregulated (P < 0.05) the cholesterol and triglyceride synthesis-related proteins (sterol regulatory element binding transcription factor 2 and diacylglycerol O-acyltransferase 2) and upregulated (P < 0.05) hydrolysis and β-oxidation of fatty acid-related proteins (lipoprotein lipase, fatty acid binding protein 1, and carnitine palmitoyltransferase 1A), as well as selenoprotein P1 and thioredoxin reductase activity in the pectoral muscle and/or liver compared with SeNa. CONCLUSIONS Compared with SeNa, SeCv effectively raised Se and reduced lipids in the liver and muscle of broilers. The effect was mediated through the regulation of the cholesterol and triglyceride biosynthesis and utilization-related genes.
Collapse
Affiliation(s)
- Ling Zhao
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Han Chu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuai Liu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rong Li
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Yun-Fen Zhu
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Feng-Na Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Lv-Hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Lei XG, Combs GF, Sunde RA, Caton JS, Arthington JD, Vatamaniuk MZ. Dietary Selenium Across Species. Annu Rev Nutr 2022; 42:337-375. [PMID: 35679623 DOI: 10.1146/annurev-nutr-062320-121834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review traces the discoveries that led to the recognition of selenium (Se) as an essential nutrient and discusses Se-responsive diseases in animals and humans in the context of current understanding of the molecular mechanisms of their pathogeneses. The article includes a comprehensive analysis of dietary sources, nutritional utilization, metabolic functions, and dietary requirements of Se across various species. We also compare the function and regulation of selenogenomes and selenoproteomes among rodents, food animals, and humans. The review addresses the metabolic impacts of high dietary Se intakes in different species and recent revelations of Se-metabolites, means of increasing Se status, and the recycling of Se in food systems and ecosystems. Finally, research needs are identified for supporting basic science and practical applications of dietary Se in food, nutrition, and health across species. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Roger A Sunde
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Caton
- Department of Animal Science, North Dakota State University, Fargo, North Dakota, USA
| | - John D Arthington
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Marko Z Vatamaniuk
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
14
|
Gawor A, Ruszczyńska A, Konopka A, Wryk G, Czauderna M, Bulska E. Label-Free Mass Spectrometry-Based Proteomic Analysis in Lamb Tissues after Fish Oil, Carnosic Acid, and Inorganic Selenium Supplementation. Animals (Basel) 2022; 12:ani12111428. [PMID: 35681892 PMCID: PMC9179315 DOI: 10.3390/ani12111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Advances in proteomics and bioinformatics analysis offer the potential to investigate nutrients’ influence on protein expression profiles, and consequently on biological processes, molecular functions, and cellular components. However, knowledge in this area, particular about the exact way selenium modulates protein expression, remains limited. Therefore, in this project, global differential proteomic experiments were carried out in order to identify changes in the expression of proteins in animal tissues obtained from lambs on a specific diet involving the addition of a combination of different supplements, namely, inorganic selenium compounds, fish oil, and carnosic acid. Following inorganic selenium supplementation, a protein-protein interaction network analysis of forty differentially-expressed proteins indicated two significant clusters. Abstract Selenium is an essential nutrient, building twenty five identified selenoproteins in humans known to perform several important biological functions. The small amount of selenium in the earth’s crust in certain regions along with the risk of deficiency in organisms have resulted in increasingly popular dietary supplementation in animals, implemented via, e.g., inorganic selenium compounds. Even though selenium is included in selenoproteins in the form of selenocysteine, the dietary effect of selenium may result in the expression of other proteins or genes. Very little is known about the expression effects modulated by selenium. The present study aimed to examine the significance of protein expression in lamb tissues obtained after dietary supplementation with selenium (sodium selenate) and two other feed additives, fish oil and carnosic acid. Label-free mass spectrometry-based proteomic analysis was successfully applied to examine the animal tissues. Protein-protein interaction network analysis of forty differently-expressed proteins following inorganic selenium supplementation indicated two significant clusters which are involved in cell adhesion, heart development, actin filament-based movement, plasma membrane repair, and establishment of organelle localization.
Collapse
Affiliation(s)
- Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Ruszczyńska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Grzegorz Wryk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
- Correspondence:
| |
Collapse
|
15
|
Zhang K, Li S, Zhao Q, Li J, Han Y, Qin Y, Zhang J, Tang C. Multi-Omics Profiling Reveals Se Deficiency-Induced Redox Imbalance, Metabolic Reprogramming, and Inflammation in Pig Muscle. J Nutr 2022; 152:1207-1219. [PMID: 35102398 DOI: 10.1093/jn/nxac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nutritional muscle dystrophy is associated with selenium (Se) deficiency; however, the underlying mechanism remains unclear. OBJECTIVES This study aimed to understand the crosstalk among redox status, energy metabolism, and inflammation in nutritional muscle dystrophy induced by dietary Se deficiency. METHODS Eighteen castrated male pigs (Yorkshire, 45 d old) were fed Se-deficient (Se-D; 0.007 mg Se/kg) or Se-adequate (Se-A; in the form of selenomethionine, 0.3 mg Se/kg) diets for 16 wk. The muscle Se concentrations; antioxidant capacity; and gene expression, transcriptome, global proteome, metabolome, and lipidome profiles were analyzed. The transcriptome, metabolome, and proteome profiles were analyzed with biostatistics, bioinformatics, and pathway enrichment analysis; other data were analyzed with Student's 2-sided t tests. RESULTS The muscle Se content in the Se-D group was 96% lower than that in the Se-A group (P < 0.05). The activity of glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) in the Se-D group was 42%-69% lower than that in the Se-A group (P < 0.05). The mRNA levels of 10 selenoprotein genes were 25%-84% lower than those in the Se-A group (P < 0.05). Multi-omics analyses indicated that the levels of 1378 transcripts, 83 proteins, 22 metabolites, and 55 lipid molecules were significantly altered in response to Se deficiency. Se deficiency-induced redox imbalance led to muscle central carbon and lipid metabolism reprogramming, which enhanced the glycolysis pathway and decreased phospholipid synthesis. Inflammation and apoptosis were observed in response to Se deficiency-induced muscle oxidative stress, which may have been associated with extracellular matrix (ECM) remodeling, suppressed focal adhesion and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling, and activation of the NF-κB signaling pathway. CONCLUSIONS These results contributed to understanding the crosstalk among redox, energy metabolism, and inflammation in Se deficiency-induced muscle dystrophy in pigs, and may provide intervention targets for muscle disease treatment.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Kieliszek M, Bano I, Zare H. A Comprehensive Review on Selenium and Its Effects on Human Health and Distribution in Middle Eastern Countries. Biol Trace Elem Res 2022; 200:971-987. [PMID: 33884538 PMCID: PMC8761138 DOI: 10.1007/s12011-021-02716-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is an important microelement with numerous positive effects on human health and diseases. It is important to specify that the status and consumption of Se are for a specific community as the levels of Se are extremely unpredictable between different populations and regions. Our existing paper was based on the impacts of Se on human health and disease along with data on the Se levels in Middle Eastern countries. Overall, the findings of this comprehensive review show that the consumption and levels of Se are inadequate in Middle Eastern nations. Such findings, together with the growing awareness of the importance of Se to general health, require further work primarily on creating an acceptable range of blood Se concentration or other measures to determine optimal Se consumption and, consequently, to guarantee adequate Se supplementation in populations at high risk of low Se intake.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Iqra Bano
- Department of Veterinary Physiology and Biochemistry, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences Sakrand, Sindh, 67210 Pakistan
| | - Hamed Zare
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
17
|
Tarhonska K, Raimondi S, Specchia C, Wieczorek E, Reszka E, Krol MB, Gromadzinska J, Wasowicz W, Socha K, Borawska MH, Jablonska E. Association of allelic combinations in selenoprotein and redox related genes with markers of lipid metabolism and oxidative stress - multimarkers analysis in a cross-sectional study. J Trace Elem Med Biol 2022; 69:126873. [PMID: 34695782 DOI: 10.1016/j.jtemb.2021.126873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Selenium (Se) and selenoproteins have been shown to be involved in lipid metabolism mainly due to their ability to modulate redox homeostasis in adipose tissue. The underlying mechanisms are yet to be evaluated. In the light of few data related to the association between polymorphic variants of selenoprotein encoding genes and metabolic syndrome or obesity in humans, the role of selenoprotein polymorphisms in lipid metabolism remains unclear. The aim of this study was to investigate the impact of allelic combination within selenoprotein and redox related genes on the markers of lipid metabolism and oxidative stress. METHODS The study comprised 441 healthy individuals from Poland, in the 18-74 year age group. Allelic combinations were investigated within the polymorphic variants of four selenoprotein encoding genes (GPX1 rs1050450, GPX4 rs713041, SELENOP rs3877899 and SELENOF rs5859) and the redox related gene (SOD2 rs4880). The impact of the most common allelic GPX1-GPX4-SELENOP-SELENOF-SOD2 combinations was assessed on the following markers: triglycerides (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), glutathione peroxidase activities (GPX1, GPX3), lipid peroxidation (as TBARS), ceruloplasmin (Cp) and superoxide dismutase 1 (SOD1). RESULTS Multivariable analysis revealed significant associations between three allelic combinations and markers of lipid metabolism, including HDL-C and TC/HDL-C ratio (AAAAa), LDL-C (aaAaa), and triglycerides (aaaaA), whereas two allelic combinations (aAaAA, aaaAA) were associated with GPX3 activity. CONCLUSION This study confirms the possible implication of selenoproteins in lipid metabolism and warrants further research on specific allele combinations within selenoprotein and redox related genes in order to identify functional genetic combinations linked to metabolic phenotype.
Collapse
Affiliation(s)
- Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto diRicovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Magdalena Beata Krol
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Jolanta Gromadzinska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Wojciech Wasowicz
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, 15-222, Bialystok, Poland.
| | - Maria Halina Borawska
- Department of Bromatology, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, 15-222, Bialystok, Poland.
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348, Lodz, Poland.
| |
Collapse
|
18
|
Tang C, Li S, Zhang K, Li J, Han Y, Zhao Q, Guo X, Qin Y, Yin J, Zhang J. Selenium Deficiency Induces Pathological Cardiac Lipid Metabolic Remodeling and Inflammation. Mol Nutr Food Res 2021; 66:e2100644. [PMID: 34932259 DOI: 10.1002/mnfr.202100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Selenium (Se) disequilibrium is closely involved in many cardiac diseases, although its in vivo mechanism remains uncertain. Therefore, a pig model was created in order to generate a comprehensive picture of cardiac response to dietary Se deficiency. METHODS AND RESULTS A total of 24 pigs were divided into two equal groups, which were fed a diet with either 0.007 mg/kg Se or 0.3 mg/kg Se for 16 weeks. Se deficiency caused cardiac oxidative stress by blocking glutathione and thioredoxin systems and increased thioredoxin domain-containing protein S-nitrosylation. Energy production was disordered as free fatty acids were overloaded, the tricarboxylic acid cycle was strengthened, and three respiratory chain proteins enhanced S-nitrosylation. Excess free fatty acids led to increased synthesis of diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, where the latter two are vulnerable to oxidation and caused an increase in malondialdehyde. Moreover, increased palmitic acid enhanced de novo ceramide synthesis and accumulation. Additionally, Se deficiency initiated inflammation via cytosolic DNA-sensing pathways, which activated downstream interferon regulatory factor 7 and nuclear factor kappa B. CONCLUSIONS The present study identified a lipid metabolic vulnerability and inflammation initiation pathways via Se deficiency, which may provide targets for human redox imbalance-induced cardiac disease treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- College of Animal Science and Technology of Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingdong Yin
- College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
19
|
Ding D, Mou D, Zhao L, Jiang X, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stress in the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Funct 2021; 12:11214-11228. [PMID: 34647565 DOI: 10.1039/d1fo01653a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The thymus and spleen are the main reservoir for T lymphocytes, which can regulate the innate immune response and provide protection against pathogens and tissue damage. Oxidative stress, excessive inflammation, abnormal autophagy and endoplasmic reticulum (ER) stress can all lead to dysfunction of the thymus and spleen. This study was conducted to investigate the effect of maternal 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, an organic Se source) supplementation during pregnancy on the selenoprotein expression, inflammation, ER stress and autophagy of their young offspring's thymus and spleen. Thirty sows were randomly assigned to receive one of the following two diets during gestation: control diet (control, basal diet, n = 15) or HMSeBA supplemented diet (HMSeBA, basal diet +0.3 mg Se kg-1 as HMSeBA, n = 15). Tissues of thymus and spleen were collected from the offspring at birth and weaning after the lipopolysaccharide challenge. Results showed that maternal HMSeBA supplementation significantly up-regulated the gene expression of selenoproteins in the thymus and spleen of newborn piglets compared with the basal diet (p < 0.05), as well as the protein abundance of GPX1 and GPX4 (p < 0.05). In addition, maternal HMSeBA supplementation effectively decreased the expression of inflammation and autophagy related proteins in the thymus and spleen of newborn piglets as compared with the control group (p < 0.05). In weaning piglets, maternal HMSeBA significantly increased the antioxidative capacity of thymus and spleen (p < 0.05), and reversed LPS induced MDA content as compared with the control group (p < 0.05). Furthermore, maternal HMSeBA supplementation during gestation reversed the activation of the MAPK/NF-κB pathway, ER stress and autophagy induced by the LPS challenge in the thymus and spleen of weaning piglets (p < 0.05). In conclusion, maternal HMSeBA supplementation during gestation could decrease the level of inflammation, autophagy and ER stress in the thymus and spleen of young offspring by improving the antioxidative capacity and selenoprotein expression in these tissues. Therefore, maternal HMSeBA supplementation during gestation might be beneficial for the immune function of their offspring by alleviating inflammation, autophagy and ER stress levels in the thymus and spleen. This study showed more evidence for the function of Se on mater-offspring integrated nutrition.
Collapse
Affiliation(s)
- Dajiang Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daolin Mou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianpeng Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
20
|
Hydroxy Selenomethionine Improves Meat Quality through Optimal Skeletal Metabolism and Functions of Selenoproteins of Pigs under Chronic Heat Stress. Antioxidants (Basel) 2021; 10:antiox10101558. [PMID: 34679693 PMCID: PMC8533020 DOI: 10.3390/antiox10101558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic heat stress (CHS) induces metabolic changes in skeletal muscle from growth to maintenance that jeopardizes growth performance, carcass traits, and meat quality of pigs. We investigated the protective effect of dietary organic selenium (hydroxy-4-methylselenobutanoic acid, OH-SeMet) on CHS-induced skeletal muscle damages of growing pigs, and the corresponding responses of selenoproteins. A total of 40 ((Landrace ×Yorkshire) × Duroc) pigs with an average live weight of 49.64 ± 2.48 kg were used in this 4-week trial. Pigs were randomly allotted to 5 groups: The control group was raised on a basal diet in a thermoneutral environment (22 ± 2 °C); and four CHS groups were raised on a basal diet and supplemented with Se 0.0, 0.2, 0.4, and 0.6 mg/kg as OH-SeMet, respectively, in hyperthermal condition (33 ± 2 °C). CHS resulted in significant decrease of growth performance, carcass traits, and meat quality, which were associated with reduced (p < 0.05) serum alkaline phosphatase (ALP) and total superoxide dismutase (T-SOD) and increased (p < 0.05) serum creatine (CK), sarcous heat shock protein 70 (HSP70), glucokinase (GCK), phosphoenolpyruvate carboxykinase (PEPCK), and malondialdehyde (MDA) contents. Meanwhile, four metabolism-related genes and seven selenoprotein encoding genes were abnormally expressed in skeletal muscle. Dietary OH-SeMet addition partially alleviated the negative impact of CHS on carcass traits and improved meat quality. These improvements were accompanied by the increase in Se deposition, the anti-oxidative capacity of serum and muscle, and protein abundance of GPX1, GPX3, GPX4, and SELENOP. Supplementation with 0.6 mg Se/kg (OH-SeMet) restored the sarcous PEPCK, and 0.4 and 0.6 mg Se/kg (OH-SeMet) restored all abnormally expressed metabolism-related and selenoprotein encoding genes. In summary, dietary supplementation with OH-SeMet beyond Se requirement mitigated CHS-induced depression of carcass traits and meat quality of pigs associated with optimal skeletal metabolism, enhanced antioxidant capacity, and regulation of selenoproteins in skeletal muscle of pigs.
Collapse
|
21
|
Tang JY, He Z, Liu YG, Jia G, Liu GM, Chen XL, Tian G, Cai JY, Kang B, Zhao H. Effect of supplementing hydroxy selenomethionine on meat quality of yellow feather broiler. Poult Sci 2021; 100:101389. [PMID: 34428646 PMCID: PMC8385448 DOI: 10.1016/j.psj.2021.101389] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 01/24/2023] Open
Abstract
This study was conducted to evaluate the effect of supplementing hydroxy selenomethionine (OH-SeMet) on performance, selenium (Se) deposition in the breast muscle, quality and oxidative stability, and expression of selenoprotein encoding genes of breast meat of the native slow-growing yellow-feathered broiler birds. A total of 375 one-day-old local yellow male birds were randomly assigned into 5 dietary treatments, supplemented with Se 0.0, 0.2, 0.4, 0.6, and 0.8 mg/kg in the form of OH-SeMet. Each treatment consisted of 5 replicates and each replicate had 15 birds, the birds were fed on basal diet containing corn and soybean meal, and the experiment lasted for 63 d. The results showed that dietary Se supplementation linearly increased (P < 0.001) Se contents in both serum and muscle, no significant changes (P > 0.05) were observed on growth performance, yield of breast, meat color, and intramuscular fat deposition of the breast muscle. Dietary Se addition improved water-holding capacity, the pH24h value, and tenderness of breast muscle, evidenced by a linear decreases of shear force (P < 0.05), accompanied by lower thiobarbituric acid reactive substances and higher glutathione reductase activity. The mRNA abundance of selenoprotein encoding genes also responded to dietary Se levels. It is concluded that, dietary supplementation with OH-SeMet improved muscular Se deposition and meat quality of the native yellow birds, with enhanced antioxidant capability and regulation in selenogenome.
Collapse
Affiliation(s)
- J Y Tang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Z He
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Y G Liu
- Adisseo Asia Pacific P/L, 188778, Singapore
| | - G Jia
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - G M Liu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - X L Chen
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - G Tian
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - J Y Cai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - B Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - H Zhao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
22
|
Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA. Effect of organic and inorganic dietary selenium supplementation on gene expression in oviduct tissues and Selenoproteins gene expression in Lohman Brown-classic laying hens. BMC Vet Res 2021; 17:281. [PMID: 34419016 PMCID: PMC8380377 DOI: 10.1186/s12917-021-02964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background The oviduct of a hen provides a conducive environment for egg formation, which needs a large amount of mineral elements from the blood via trans-epithelial permeability. Eggshell is the calcified layer on the outside of an egg that provides protection and is critical for egg quality. However, little is known about the genes or proteins involved in eggshell formation, and their relationship to dietary microminerals. We hypothesized that dietary selenium supplementation in chickens will influence genes involved in eggshell biomineralization, and improve laying hen antioxidant capacity. The objective of this research was to investigate how organic and inorganic dietary selenium supplementation affected mRNA expression of shell gland genes involved in eggshell biomineralization, and selenoproteins gene expression in Lohman Brown-Classic laying hens. Results Shell gland (Uterus) and liver tissue samples were collected from hens during the active growth phase of calcification (15–20 h post-ovulation) for RT-PCR analysis. In the oviduct (shell gland and magnum) and liver of laying hens, the relative expression of functional eggshell and hepatic selenoproteins genes was investigated. Results of qPCR confirmed the higher (p < 0.05) mRNA expression of OC-17 and OC-116 in shell gland of organic Se hen compared to inorganic and basal diet treatments. Similarly, dietary Se treatments affected the mRNA expression of OCX-32 and OCX-36 in the shell gland of laying hens. In the magnum, mRNA expression of OC-17 was significantly (p < 0.05) higher in hens fed-bacterial organic, while OC-116 mRNA expression was down-regulated in dietary Se supplemented groups compared to non-Se supplemented hens. Moreover, when compared to sodium selenite, only ADS18 bacterial Se showed significantly (p < 0.05) higher mRNA levels in GPX1, GPX4, DIO1, DIO2 and SELW1, while Se-yeast showed significantly (p < 0.05) higher mRNA levels in TXNRD1 than the non-Se group. Conclusions Dietary Se supplementation especially that from a bacterial organic source, improved shell gland and hepatic selenoproteins gene expression in laying hens, indicating that it could be used as a viable alternative source of Se in laying hens. The findings could suggest that organic Se upregulation of shell gland genes and hepatic selenoproteins in laying hens is efficient.
Collapse
Affiliation(s)
- A I Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - A M Dalia
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - H Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
23
|
Li T, Zhang J, Wang PJ, Zhang ZW, Huang JQ. Selenoproteins Protect Against Avian Liver Necrosis by Metabolizing Peroxides and Regulating Receptor Interacting Serine Threonine Kinase 1/Receptor Interacting Serine Threonine Kinase 3/Mixed Lineage Kinase Domain-Like and Mitogen-Activated Protein Kinase Signaling. Front Physiol 2021; 12:696256. [PMID: 34456747 PMCID: PMC8397447 DOI: 10.3389/fphys.2021.696256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Liver necroptosis of chicks is induced by selenium (Se)/vitamin E (VE) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms of liver necrosis, a pool of the corn-soy basal diet (10 μg Se/kg; no VE added), a basal diet plus all-rac-α-tocopheryl acetate (50 mg/kg), Se (sodium selenite at 0.3 mg/kg), or both of these nutrients were provided to day-old broiler chicks (n = 40/group) for 6 weeks. High incidences of liver necrosis (30%) of chicks were induced by -SE-VE, starting at day 16. The Se concentration in liver and glutathione peroxidase (GPX) activity were decreased (P < 0.05) by dietary Se deficiency. Meanwhile, Se deficiency elevated malondialdehyde content and decreased superoxide dismutase (SOD) activity in the liver at weeks 2 and 4. Chicks fed with the two Se-deficient diets showed lower (P < 0.05) hepatic mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, Selenoh, Selenok, Selenom, Selenon, Selenoo, Selenop, Selenot, Selenou, Selenow, and Dio1 than those fed with the two Se-supplemented diets. Dietary Se deficiency had elevated (P < 0.05) the expression of SELENOP, but decreased the downregulation (P < 0.05) of GPX1, GPX4, SELENON, and SELENOW in the liver of chicks at two time points. Meanwhile, dietary Se deficiency upregulated (P < 0.05) the abundance of hepatic proteins of p38 mitogen-activated protein kinase, phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, phospho-c-Jun N-terminal kinase, extracellular signal-regulated kinase, phospho-mitogen-activated protein kinase, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL) at two time points. In conclusion, our data confirmed the differential regulation of dietary Se deficiency on several key selenoproteins, the RIPK1/RIPK3/MLKL, and mitogen-activated protein kinase signaling pathway in chicks and identified new molecular clues for understanding the etiology of nutritional liver necrosis.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Administrative Engineering College, Xu Zhou University of Technology, Xuzhou, China
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zi-Wei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Chen J, Zhang Y, Lv Y, Tian M, You J, Chen F, Zhang S, Guan W. Effects of Selenomethionine on Cell Viability, Selenoprotein Expression and Antioxidant Function in Porcine Mammary Epithelial Cells. Front Nutr 2021; 8:665855. [PMID: 34381803 PMCID: PMC8349979 DOI: 10.3389/fnut.2021.665855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/28/2021] [Indexed: 01/29/2023] Open
Abstract
This study investigated the effects of selenomethionine (Se-Met) on the cell viability, selenoprotein expression, and antioxidant function of porcine mammary epithelial cells (pMECs) to reveal the underlying molecular mechanism of Se-Met on the lactation performance and antioxidant capacity of sows in vitro. The pMECs were used as an in vitro model and were treated with various concentrations of Se-Met (0, 0.5, 1, 2, and 4 μM). Cells were analyzed for cell viability, selenoprotein transcriptome, selenoprotein expression, and antioxidant enzyme activities. The results showed that, with increasing Se-Met concentrations, cell viability first increased and then decreased at 24, 48, or 72 h posttreatment with maximum values at 0.5-μM Se-Met. As the Se-Met concentrations increased, the mRNA expression of 17 selenoproteins first upregulated and then downregulated, with maximum values at 0.5-μM Se-Met. The 17 selenoproteins included SEPHS2, SELENOP, GPX1, GPX2, GPX3, GPX6, TXNRD1, SELENOK, SELENOW, DIO1, DIO2, DIO3, SELENOF, SELENOS, SELENOH, SELENOI, and SELENOT. Additionally, the protein expression levels of SEPHS2, SELENOP, GPX1, and TXNRD1 and the activities of glutathione peroxidase and thioredoxin were highest at 0.5-μM Se-Met. In conclusion, 0.5-μM Se-Met promotes cell viability partially by improving selenoprotein expression and antioxidant function in pMECs, which provides evidence for the potential ability of Se-Met to improve mammary gland health in sows.
Collapse
Affiliation(s)
- Jun Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Yinzhi Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yantao Lv
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Wang L, Yin JJ, Zhang F, Yu HD, Chen FF, Zhang ZY, Zhang XZ. Selenium Status Affects Hypertrophic Growth of Skeletal Muscle in Growing Zebrafish by Mediating Protein Turnover. J Nutr 2021; 151:1791-1801. [PMID: 33982120 DOI: 10.1093/jn/nxab082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Selenium (Se) status is closely related to skeletal muscle physiological status. However, its influence on skeletal muscle growth has not been well studied. OBJECTIVES This study aimed to analyze the impacts of overall Se status (deficient, adequate, and high) on skeletal muscle growth using a growing zebrafish model. METHODS Zebrafish (1.5-mo-old) were fed graded levels of Se (deficient: 0.10 mg Se/kg; marginally deficient: 0.22 mg Se/kg; adequate: 0.34 mg Se/kg; high: 0.44, 0.57, and 0.69 mg Se/kg) as Se-enriched yeast for 30 d. Zebrafish growth, and Se accumulation, selenoenzyme activity, selenotranscriptome profiles, and oxidative status in the whole body, and selenotranscriptome profiles, histological characteristics, biochemicals, and gene and protein expression profiles related to muscle growth in the skeletal muscle were analyzed by model fitting and/or 1-factor ANOVA. RESULTS Se status biomarkers within the whole body and skeletal muscle indicated that 0.34 mg Se/kg was adequate for growing zebrafish. For biomarkers related to skeletal muscle growth, compared with 0.34 mg Se/kg, 0.10 mg Se/kg decreased the white muscle cross-sectional area (WMCSA) and the mean diameter of white muscle fibers (MDWMF) by 14.4%-15.1%, inhibited protein kinase B-target of rapamycin complex 1 signaling by 63.7%-68.5%, and stimulated the autophagy-lysosome pathway by 1.07 times and the ubiquitin-proteasome pathway (UPP) by 96.0% (P < 0.05), whereas 0.22 mg Se/kg only decreased the WMCSA by 7.8% (P < 0.05); furthermore, 0.44 mg Se/kg had no clear effects on skeletal muscle biomarkers, whereas 0.57-0.69 mg Se/kg decreased the WMCSA and MDWMF by 6.3%-25.9% and 5.1%-21.3%, respectively, and stimulated the UPP by 2.23 times (P < 0.05). CONCLUSIONS A level of 0.34 mg Se/kg is adequate for the growth of zebrafish skeletal muscle, whereas ≤0.10 and ≥0.57 mg Se/kg are too low or too high, respectively, for maintaining efficient protein accretion and normal hypertrophic growth.
Collapse
Affiliation(s)
- Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jiao-Jiao Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Hao-Dong Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Fei-Fei Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Zi-Yi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Xue-Zhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| |
Collapse
|
26
|
Kaixin Z, Xuedie G, Jing L, Yiming Z, Khoso PA, Zhaoyi L, Shu L. Selenium-deficient diet induces inflammatory response in the pig adrenal glands by activating TLR4/NF-κB pathway via miR-30d-R_1. Metallomics 2021; 13:6300451. [PMID: 34132350 DOI: 10.1093/mtomcs/mfab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/07/2023]
Abstract
Selenium (Se) is an important trace element to maintain the body's dynamic balance. Lack of Se can cause inflammation. Studies have shown that inflammation often leads to disorders of the hypothalamic-pituitary-adrenal axis, but the mechanism by which Se deficiency causes inflammation of the porcine adrenal glands is still unclear. In order to study the effect of Se deficiency on the adrenal glands of pigs, we obtained Se-deficient pig adrenal glands through a low-Se diet. The results of mass spectrometry showed that the Se content in the Se-deficient group was only one-tenth of the control group. We detected the expression of the toll-like receptor 4 (TLR4) and downstream factors by qRT-PCR and Western blotting, and found that the lack of Se affected the TLR4/NF-κB pathway. It is known that miR-155-3p, miR-30d-R_1, and miR-146b have all been verified for targeting relationship with TLR4. We confirmed by qRT-PCR that miR-30d-R_1 decreased most significantly in the Se-deficient pig model. Then we tested 25 selenoproteins and some indicators of oxidative stress. It is confirmed that Se deficiency reduces the antioxidant capacity and induces oxidative stress in pig adrenal tissue. In short, a diet lacking Se induces oxidative stress in pig adrenal tissues and leads to inflammation through the miR-30d-R_1/TLR4 pathway. This study provides a reference for the prevention of adrenal inflammation in pigs from a nutritional point of view.
Collapse
Affiliation(s)
- Zhang Kaixin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Gu Xuedie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan Jing
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Pakistan
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
27
|
Liu Y, Tang J, He Y, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Selenogenome and AMPK signal insight into the protective effect of dietary selenium on chronic heat stress-induced hepatic metabolic disorder in growing pigs. J Anim Sci Biotechnol 2021; 12:68. [PMID: 34116728 PMCID: PMC8196429 DOI: 10.1186/s40104-021-00590-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic heat stress (CHS) disrupts hepatic metabolic homeostasis and jeopardizes product quality of pigs. Selenium (Se) may regulate the metabolic state through affect selenoprotein. Thus, we investigate the protective effect of dietary hydroxy-4-methylselenobutanoic acid (HMSeBA) on CHS induced hepatic metabolic disorder in growing pigs, and the corresponding response of selenoprotein. METHODS Forty crossbreed growing pigs were randomly assigned to five groups: control group raised in the thermoneutral environment (22 ± 2 °C) with basal diet; four CHS groups raised in hyperthermal condition (33 ± 2 °C) with basal diet and supplied with 0.0, 0.2, 0.4, and 0.6 mg Se/kg HMSeBA, respectively. The trial lasted 28 d. The serum biochemical, hepatic metabolism related enzyme, protein and gene expression and 25 selenoproteins in liver tissue were determined by real-time PCR, ELISA and western blot. RESULTS CHS significantly increased the rectal temperature, respiration rate, serum aspartate aminotransferase (AST) and low-density lipoprotein cholesterol (LDL-C) of pigs, up-regulated hepatic heat shock protein 70 (HSP70) and induced lower liver weight, glycogen content, hepatic glucokinase and glutathione peroxidase (GSH-Px). The CHS-induced liver metabolic disorder was associated with the aberrant expression of 6 metabolism-related gene and 11 selenoprotein encoding genes, and decreased the protein abundance of GCK, GPX4 and SELENOS. HMSeBA improved anti-oxidative capacity of liver. 0.4 or 0.6 mg Se/kg HMSeBA supplementation recovered the liver weight, glycogen content and rescue of mRNA abundance of genes related to metabolism and protein levels of GCK. HMSeBA supplementation changed expressions of 15 selenoprotein encoding genes, and enhanced protein expression of GPX1, GPX4 and SELENOS in the liver affected by CHS. CHS alone showed no impact while HMSeBA supplementation increased protein levels of p-AMPKα in the liver. CONCLUSIONS In summary, HMSeBA supplementation beyond nutrient requirement mitigates CHS-induced hepatic metabolic disorder, recovered the liver glycogen content and the processes that are associated with the activation of AMPK signal and regulation of selenoproteins in the liver of growing pigs.
Collapse
Affiliation(s)
- Yan Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ying He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
28
|
Dietary selenium sources differentially regulate selenium concentration, mRNA and protein expression of representative selenoproteins in various tissues of yellow catfish Pelteobagrus fulvidraco. Br J Nutr 2021; 127:490-502. [PMID: 34085611 DOI: 10.1017/s000711452100194x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study was conducted to determine the effects of three dietary Se sources, such as sodium-selenite (S-S), seleno-yeast (S-Y) and seleno-methionine (S-M), on Se concentration, glutathione peroxidase (GPX) and TXNRD activities, and mRNA expression of fifteen representative selenoproteins, and protein expression of four endoplasmic reticulum-resided selenoproteins in a wide range of tissues of yellow catfish. Compared with S-S and S-M groups, dietary S-Y significantly decreased growth performance and feed utilisation of yellow catfish. Dietary Se sources significantly influenced Se contents in the spleen, dorsal muscle and the kidney, GPX activities in spleen, kidney, intestine, muscle and mesenteric fat, and TXNRD activities in the heart, intestine and mesenteric fat. Among ten tested tissues, dietary Se sources influenced mRNA expression of GPX4 and SELENOK in three tissues; GPX3, SELENOS and TXNRD2 in four tissues; SELENOF, SELENON and DIO2 in five tissues; SELENOM, GPX1/2 and TXNRD3 in six tissues; SELENOW in seven tissue and SELENOP and SELENOT in eight tissues. Based on these observations above, S-S and S-M seem to be suitable Se sources for improving growth performance and feed utilisation of yellow catfish. Dietary Se sources differentially influence the expression of selenoproteins in various tissues of yellow catfish. For the first time, we determined the expression of selenoproteins in fish in responses to dietary Se sources, which contributes to a better understanding of the functions and regulatory mechanisms of selenoporteins.
Collapse
|
29
|
Mou D, Ding D, Yan H, Qin B, Dong Y, Li Z, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Briens M, Wu D, Feng B. Maternal supplementation of organic selenium during gestation improves sows and offspring antioxidant capacity and inflammatory status and promotes embryo survival. Food Funct 2021; 11:7748-7761. [PMID: 32794529 DOI: 10.1039/d0fo00832j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element in humans and sows, having a biological function mediated in part by its incorporation into selenoproteins. This study was conducted to investigate the effects of maternal 2-hydroxy-4-methylselenobutanoic acid (HMSeBA), an organic Se source, on reproductive performance, antioxidant capacity and inflammatory status of sows and their offspring. Forty-three Landrace × Yorkshire sows were randomly allocated to receive one of the following three diets during gestation: control diet (control, basal diet, n = 15), sodium selenite (Na2SeO3) supplemented diet (Na2SeO3, basal diet + Na2SeO3 at 0.3 mg Se per kg, n = 13), and HMSeBA supplemented diet (HMSeBA, basal diet + HMSeBA at 0.3 mg Se per kg, n = 15). Blood samples of sows and piglets, placentas and piglet liver samples were analyzed for selenium status, antioxidant capacity and inflammatory cytokines. Results showed that, as compared to the control group, HMSeBA supplementation increased the number of born alive piglets and plasma concentrations of total selenium and selenoprotein P in both sows and piglets. Besides, the activities of antioxidant enzymes in the blood of sows, umbilical cord and piglets, placentas and piglets' liver were increased by dietary HMSeBA supplementation as compared to the control group, while malondialdehyde concentration (p < 0.05) was decreased in the blood of sows, umbilical cord and newborn piglets. In addition, maternal HMSeBA intake during gestation up-regulated antioxidant-related selenoprotein gene expression in the placenta (GPx2, GPx3, p < 0.05) and in the liver of newborn piglets (GPx1, GPx2, GPx3, TXNRD2, p < 0.05). Moreover, as compared to the control group, sows and newborn piglets in the Na2SeO3 and HMSeBA groups had a lower serum interleukin-6 (p < 0.05) concentration, and placentas in the HMSeBA group had lower IL-1β, IL-6 and IL-8 gene expression (p < 0.05). In conclusion, maternal supplementation of HMSeBA during pregnancy improved antioxidant capacities and reduced the inflammation level in mater, placenta, and fetus. This finding may highlight the important role of selenoproteins (especially GPXs) in preventing negative consequences of over-production of free radicals and inflammatory cytokines during gestation and at births.
Collapse
Affiliation(s)
- Daolin Mou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dajiang Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hui Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Binting Qin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanpeng Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | | | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
30
|
Zhang DG, Zhao T, Xu XJ, Lv WH, Luo Z. Dietary Marginal and Excess Selenium Increased Triglycerides Deposition, Induced Endoplasmic Reticulum Stress and Differentially Influenced Selenoproteins Expression in the Anterior and Middle Intestines of Yellow Catfish Pelteobagrus fulvidraco. Antioxidants (Basel) 2021; 10:antiox10040535. [PMID: 33805536 PMCID: PMC8067157 DOI: 10.3390/antiox10040535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential micro-mineral and plays important roles in antioxidant responses, and also influences lipid metabolism and selenoprotein expression in vertebrates, but the effects and mechanism remain unknown. The study was undertaken to decipher the insights into dietary Se influencing lipid metabolism and selenoprotein expression in the anterior and middle intestine (AI and MI) of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (weight: 8.27 ± 0.03 g) were fed a 0.03- (M-Se), 0.25- (A-Se), or 6.39- (E-Se) mg Se/kg diet for 12 wk. AI and MI were analyzed for triglycerides (TGs) and Se concentrations, histochemistry and immunofluorescence, enzyme activities, and gene and protein levelsassociated with antioxidant responses, lipid metabolism, endoplasmic reticulum (ER) stress, and selenoproteome. Compared to the A-Se group, M-Se and E-Se diets significantly decreased weight gain (WG) and increased TGs concentration in the AI and MI. In the AI, compared with A-Se group, M-Se and E-Se diets significantly increased activities of fatty acid synthase, expression of lipogenic genes, and suppressed lipolysis. In the MI, compared to the A-Se group, M-Se and E-Se diets significantly increased activities of lipogenesis and expression of lipogenic genes. Compared with A-Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the AI and MI, and M-Se diet did not significantly reduce GPX activities in the AI and MI. Compared with the A- Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the plasma and liver, and M-Se diet significantly reduced GPX activities in the plasma and liver. Compared with the A-Se group, M-Se and E-Se groups also increased glucose-regulated protein 78 (GRP78, ER stress marker) protein expression of the intestine. Dietary Se supplementation also differentially influenced the expression of the 28 selenoproteins in the AI and MI, many of which possessed antioxidant characteristics. Compared with the A-Se group, the M-Se group significantly decreased mRNA levels of txnrd2 and txnrd3, but made no difference on mRNA levels of these seven GPX proteins in the MI. Moreover, we characterized sterol regulatory element binding protein 1c (SREBP1c) binding sites of three ER-resident proteins (selenom, selenon, and selenos) promoters, and found that Se positively controlled selenom, selenon, and selenos expression via SREBP1c binding to the selenom, selenon, and selenos promoter. Thus, dietary marginal and excess Se increased TGs deposition of yellow catfish P. fulvidraco, which might be mediated by ER-resident selenoproteins expression and ER stress.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Xiao-Jian Xu
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Wu-Hong Lv
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: or ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|
31
|
Batai K, Trejo MJ, Chen Y, Kohler LN, Lance P, Ellis NA, Cornelis MC, Chow HHS, Hsu CH, Jacobs ET. Genome-Wide Association Study of Response to Selenium Supplementation and Circulating Selenium Concentrations in Adults of European Descent. J Nutr 2020; 151:293-302. [PMID: 33382417 PMCID: PMC7849979 DOI: 10.1093/jn/nxaa355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Selenium (Se) is a trace element that has been linked to many health conditions. Genome-wide association studies (GWAS) have identified variants for blood and toenail Se levels, but no GWAS has been conducted to date on responses to Se supplementation. OBJECTIVES A GWAS was performed to identify the single nucleotide polymorphisms (SNPs) associated with changes in Se concentrations after 1 year of supplementation. A GWAS of basal plasma Se concentrations at study entry was conducted to evaluate whether SNPs for Se responses overlap with SNPs for basal Se levels. METHODS A total of 428 participants aged 40-80 years of European descent from the Selenium and Celecoxib Trial (Sel/Cel Trial) who received daily supplementation with 200 µg of selenized yeast were included for the GWAS of responses to supplementation. Plasma Se concentrations were measured from blood samples collected at the time of recruitment and after 1 year of supplementation. Linear regression analyses were performed to assess the relationship between each SNP and changes in Se concentrations. We further examined whether the identified SNPs overlapped with those related to basal Se concentrations. RESULTS No SNP was significantly associated with changes in Se concentration at a genome-wide significance level. However, rs56856693, located upstream of the NEK6, was nominally associated with changes in Se concentrations after supplementation (P = 4.41 × 10-7), as were 2 additional SNPs, rs11960388 and rs6887869, located in the dimethylglycine dehydrogenase (DMGDH)/betaine-homocysteine S-methyltransferase (BHMT) region (P = 0.01). Alleles of 2 SNPs in the DMGDH/BHMT region associated with greater increases in Se concentrations after supplementation were also strongly associated with higher basal Se concentrations (P = 8.67 × 10-8). CONCLUSIONS This first GWAS of responses to Se supplementation in participants of European descent from the Sel/Cel Trial suggests that SNPs in the NEK6 and DMGDH/BHMT regions influence responses to supplementation.
Collapse
Affiliation(s)
- Ken Batai
- Address correspondence to KB (E-mail: )
| | - Mario J Trejo
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Yuliang Chen
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Lindsay N Kohler
- Department of Health Promotion Science, University of Arizona, Tucson, AZ, USA
| | - Peter Lance
- University of Arizona Cancer Center, Tucson, AZ, USA,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - H-H Sherry Chow
- University of Arizona Cancer Center, Tucson, AZ, USA,Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Chiu-Hsieh Hsu
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Elizabeth T Jacobs
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA,University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
32
|
Zhang K, Zhao Q, Zhan T, Han Y, Tang C, Zhang J. Effect of Different Selenium Sources on Growth Performance, Tissue Selenium Content, Meat Quality, and Selenoprotein Gene Expression in Finishing Pigs. Biol Trace Elem Res 2020; 196:463-471. [PMID: 31664683 DOI: 10.1007/s12011-019-01949-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Se-methylselenocysteine (MeSeCys) is a natural organic selenium (Se) supplement. However, its effects on animal nutrition are poorly understood. This study compared the effects of sodium selenite (SeNa), MeSeCys, and selenomethionine (SeMet) on immune function, tissue Se concentration, meat quality, and selenoprotein gene expression in pigs. A total of 72 finishing pigs were divided into four groups, which received a basal diet (BD, 0.1 mg Se/kg) without Se supplementation or one supplemented with SeNa, MeSeCys, or SeMet at a concentration of 0.25 mg Se/kg. Organic Se supplementation significantly increased the immune globulin A (IgA), IgG, and IgM serum levels compared with BD and SeNa groups (P < 0.05). There were no statistically significant differences in growth performance among the four groups. SeMet was more efficient in increasing Se concentrations in the heart, muscle, and liver than MeSeCys and SeNa (P < 0.05), while no statistically significant differences were observed between MeSeCys and SeNa. Se supplementation significantly decreased the pressing muscle loss compared with the BD group (P < 0.05). Meat color and pH were not significantly affected. Se supplement effects on liver selenoprotein gene mRNA level enhancement were ranked as follows: MeSeCys > SeMet > SeNa (P < 0.05). In muscle tissues, only the SELENOW mRNA level was significantly increased by the MeSeCys and SeMet treatment, compared with the SeNa group. In conclusion, SeMet was more efficient in increasing Se concentrations than MeSeCys and SeNa in pigs, while MeSeCys was more efficient in enhancing selenoprotein gene expression than SeMet and SeNa.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Tengfei Zhan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
33
|
Zhao Z, Kim J, Lei XG. High Dietary Fat and Selenium Concentrations Exert Tissue- and Glutathione Peroxidase 1-Dependent Impacts on Lipid Metabolism of Young-Adult Mice. J Nutr 2020; 150:1738-1748. [PMID: 32386229 PMCID: PMC7330460 DOI: 10.1093/jn/nxaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excessive dietary selenium (Se; 3 mg/kg) or fat (>25%) intakes and overproduction of glutathione peroxidase 1 (GPX1) adversely affect body lipid metabolism. OBJECTIVE The objective was to reveal impacts and mechanisms of a moderately high Se and a high fat intake on lipid metabolism in Gpx1 knockout (KO) and wild-type (WT) mice. METHODS The KO and WT mice (males, 12-wk-old, body weight = 24.8 ± 0.703 g) were allotted to 4 groups each (n = 5) and fed a sucrose-torula yeast basal diet (5% corn oil) supplemented with 0.3 or 1.0 mg (+Se) Se/kg (as sodium selenite) and 0% or 25% [high-fat (HF)] lard for 6 wk. Multiple physiological and molecular biomarkers (68) related to lipid metabolism and selenogenome expression in plasma, liver, and/or adipose tissue were analyzed by 2-way (+Se by HF) ANOVA. RESULTS Compared with the control diet, the +Se diet decreased (P < 0.05) body-weight gain and plasma and liver concentrations of lipids (22-66%) but elevated (≤1.5-fold, P < 0.05) adipose tissue concentrations of lipids in the WT mice. The +Se diet up- and downregulated (P < 0.05) mRNA and/or protein concentrations of factors related to lipogenesis, selenogenome, and transcription, stress, and cell cycle in the liver (26% to 176-fold) and adipose tissues (14% to 1-fold), respectively, compared with the control diet in the WT mice. Many of these +Se diet effects were different (P < 0.05) from those of the HF diet and were eliminated or altered (P < 0.05) by the KO. CONCLUSIONS The +Se and HF diets exerted tissue-specific and GPX1 expression-dependent impacts on lipid metabolism and related gene expression in the young-adult mice. Our findings will help reveal metabolic potential and underlying mechanisms of supplementing moderately high Se to subjects with HF intakes.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Jonggun Kim
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
34
|
Tang C, Li S, Zhang K, Li J, Han Y, Zhan T, Zhao Q, Guo X, Zhang J. Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver. Redox Biol 2020; 36:101519. [PMID: 32531544 PMCID: PMC7287308 DOI: 10.1016/j.redox.2020.101519] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se) intake disequilibrium is associated with many human diseases (e.g., Keshan disease and type 2 diabetes). To understand the mechanism of Se deficiency-induced hepatic pathogenesis, a pure line pig model was established by feeding a diet with either 0.07 mg/kg Se or 0.3 mg/kg Se for 16 weeks. The hepatic metabolome, lipidome, global proteome, and whole transcriptome were analyzed. Se deficiency causes a redox imbalance via regulation of selenoproteins at both the mRNA and protein level, and blocks the glutathione anti-oxidant system along with enhanced glutathione synthesis and catabolism. The Warburg effect was observed by enhanced activation of the glycolysis and phosphate pentose pathways. The tricarboxylic acid cycle was dysfunctional since the preliminary metabolites decreased and shifted from using glycolysis origin substrates to a glutamine catabolism-preferred metabolic mode. The reprogrammed central carbon metabolism induced widely restrained lipid synthesis. In addition, a Se deficiency initiated inflammation by activating the NF-κB pathway through multiple mechanisms. These results identified the potential metabolic vulnerability of the liver in response to a Se deficiency-induced redox imbalance and possible therapeutic or intervention targets.
Collapse
Affiliation(s)
- Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tengfei Zhan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
35
|
Selenium and Selenoproteins in Adipose Tissue Physiology and Obesity. Biomolecules 2020; 10:biom10040658. [PMID: 32344656 PMCID: PMC7225961 DOI: 10.3390/biom10040658] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium (Se) homeostasis is tightly related to carbohydrate and lipid metabolism, but its possible roles in obesity development and in adipocyte metabolism are unclear. The objective of the present study is to review the current data on Se status in obesity and to discuss the interference between Se and selenoprotein metabolism in adipocyte physiology and obesity pathogenesis. The overview and meta-analysis of the studies on blood Se and selenoprotein P (SELENOP) levels, as well as glutathione peroxidase (GPX) activity in obese subjects, have yielded heterogenous and even conflicting results. Laboratory studies demonstrate that Se may modulate preadipocyte proliferation and adipogenic differentiation, and also interfere with insulin signaling, and regulate lipolysis. Knockout models have demonstrated that the selenoprotein machinery, including endoplasmic reticulum-resident selenoproteins together with GPXs and thioredoxin reductases (TXNRDs), are tightly related to adipocyte development and functioning. In conclusion, Se and selenoproteins appear to play an essential role in adipose tissue physiology, although human data are inconsistent. Taken together, these findings do not support the utility of Se supplementation to prevent or alleviate obesity in humans. Further human and laboratory studies are required to elucidate associations between Se metabolism and obesity.
Collapse
|
36
|
Zhang K, Han Y, Zhao Q, Zhan T, Li Y, Sun W, Li S, Sun D, Si X, Yu X, Qin Y, Tang C, Zhang J. Targeted Metabolomics Analysis Reveals that Dietary Supranutritional Selenium Regulates Sugar and Acylcarnitine Metabolism Homeostasis in Pig Liver. J Nutr 2020; 150:704-711. [PMID: 32060554 DOI: 10.1093/jn/nxz317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The association between high selenium (Se) intake and metabolic disorders such as type 2 diabetes has raised great concern, but the underlying mechanism remains unclear. OBJECTIVE Through targeted metabolomics analysis, we examined the liver sugar and acylcarnitine metabolism responses to supranutritional selenomethionine (SeMet) supplementation in pigs. METHODS Thirty-six castrated male pigs (Duroc-Landrace-Yorkshire, 62.0 ± 3.3 kg) were fed SeMet adequate (Se-A, 0.25 mg Se/kg) or SeMet supranutritional (Se-S, 2.5 mg Se/kg) diets for 60 d. The Se concentration, biochemical, gene expression, enzyme activity, and energy-targeted metabolite profiles were analyzed. RESULTS The Se-S group had greater fasting serum concentrations of glucose (1.9-fold), insulin (1.4-fold), and free fatty acids (FFAs,1.3-fold) relative to the Se-A group (P < 0.05). The liver total Se concentration was 4.2-fold that of the Se-A group in the Se-S group (P < 0.05), but expression of most selenoprotein genes and selenoenzyme activity did not differ between the 2 groups. Seven of 27 targeted sugar metabolites and 4 of 21 acylcarnitine metabolites significantly changed in response to high SeMet (P < 0.05). High SeMet supplementation significantly upregulated phosphoenolpyruvate carboxy kinase (PEPCK) activity by 64.4% and decreased hexokinase and succinate dehydrogenase (SDH) activity by 46.5-56.7% (P < 0.05). The relative contents of glucose, dihydroxyacetone phosphate, α-ketoglutarate, fumarate, malate, erythrose-4-phosphate, and sedoheptulose-7-phosphate in the Se-S group were 21.1-360% greater than those in the Se-A group (P < 0.05). The expression of fatty acid synthase (FASN) and the relative contents of carnitine, hexanoyl-carnitine, decanoyl-carnitine, and tetradecanoyl-carnitine in the Se-S group were 35-97% higher than those in the Se-A group (P < 0.05). CONCLUSIONS Dietary high SeMet-induced hyperglycemia and hyperinsulinemia were associated with suppression of sugar metabolism and elevation of lipid synthesis in pig livers. Our research provides novel insights into high SeMet intake-induced type 2 diabetes.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Zhan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dandan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueyang Si
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaonan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
37
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
38
|
Chen LL, Huang JQ, Xiao Y, Wu YY, Ren FZ, Lei XG. Knockout of Selenoprotein V Affects Regulation of Selenoprotein Expression by Dietary Selenium and Fat Intakes in Mice. J Nutr 2020; 150:483-491. [PMID: 31773160 DOI: 10.1093/jn/nxz287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The metabolic function of selenoprotein V (SELENOV) remains unknown. OBJECTIVES Two experiments were conducted to determine effects of the Selenov knockout (KO) on selenium concentration and mRNA, protein, and/or activity of 4 major selenoproteins [glutathione peroxidase (GPX) 1, GPX4, thioredoxin reductase-1 (TXNRD1), and selenoprotein P (SELENOP)] in the serum, liver, testis, and/or white adipose tissue (WAT) of mice fed different dietary selenium and fat concentrations. METHODS In Experiment (Expt) 1, 40 KO and 40 wild-type (WT) mice (males, 8 wk old) were fed (n = 10/genotype) a casein-sucrose basal diet plus 0, 0.3, 1, or 3 mg Se/kg (as sodium selenite) for 32 wk . In Expt 2, 20 KO and 20 WT mice (males, 8 wk old) were fed (n = 10/genotype) a normal-fat diet (NF; 10% calories from fat) or a high-fat diet (HF; 60% calories from fat) for 19 wk. RESULTS In Expt 1, the KO caused consistent or substantial decreases (P < 0.05) of mRNA amounts of Gpx1, Txnrd1, and Selenop in the testis (≤52%), but selenium concentrations (19-29%) and GPX activities (≤ 50%) were decreased in the liver across different dietary selenium concentrations . Hepatic and testis GPX1 protein was elevated (≤31%) and decreased (≤45%) by the KO, respectively. In Expt 2, the genotype and dietary fat intake exerted interaction effects ( P < 0.05) on Gpx1 mRNA amounts in the WAT; Gpx1, Txnrd1, and Selenop mRNA amounts and TXNRD activities in the testis; and selenium concentrations in the serum and liver. However, these 2 treatments produced largely independent or additive effects (P < 0.05) on the GPX1 and SELENOP protein amounts in the liver and testis (up to ± 50% changes). CONCLUSIONS The KO-mediated changes in the tissue selenium concentrations and functional expression of 3 major selenoproteins implied potential for SELENOV in regulating body selenium metabolism in the mouse.
Collapse
Affiliation(s)
- Ling-Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuan-Yuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China
| | - Fa-Zheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
39
|
Ghaderzadeh S, Mirzaei Aghjehgheshlagh F, Nikbin S, Navidshad B. Stimulatory effects of nano-selenium and conjugated linoleic acid on antioxidant activity, trace minerals, and gene expression response of growing male Moghani lambs. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:385-391. [PMID: 33643592 PMCID: PMC7904116 DOI: 10.30466/vrf.2018.93751.2264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/04/2018] [Indexed: 11/01/2022]
Abstract
Sheep keepers need suitable strategies to improve animal immunity and the quality of their products. This study was aimed to evaluate the effect of nano-selenium (nano-Se) and conjugated linoleic acid (CLA) on an antioxidant statue, trace minerals, and mRNA expression of glutathione peroxidase 1 (GPX1) and selenoprotein W1 (SEPW1) genes in the liver and peroxisome proliferator-activated receptor-gamma (PPARγ) and stearoyl COA desaturase 1 (SCD1) genes in fat- tail of male Moghani lambs. Thirty male Moghani lambs, three months old and average weight 30.00 ± 0.25 kg, were assigned to a completely randomized design in a 2×3 factorial arrangement with dietary supplementation of nano-Se (0, 1.00 and 2.00 mg kg-1 dry matter) and CLA (0.00 and 15.00 g kg-1 dry matter). The lambs were slaughtered at the end of the experiment, on day 90 of the experiment. Results showed that dietary inclusion of nano-Se significantly improved antioxidant enzymes glutathione peroxidase and superoxide dismutase in blood, however, did not show any differences in trace mineral treatments. The analysis of qPCR showed that nano-Se inclusion at the highest level (2.00 g kg-1 dry matter) enhanced gene expression of GPX1 (0.64 vs 0.34) and SEPW1 (0.72 vs 0.35) in the liver. Dietary inclusion of CLA increased the expression of PPARγ (0.63 vs 0.38) and decreased SCD1 (0.63 vs 0.33) genes in fat- tail. It could be concluded that selenium inclusion in the growing lamb's diet could improve antioxidant status, however, no synergistic interaction was observed along with CLA on the mentioned parameters.
Collapse
Affiliation(s)
| | - Farzad Mirzaei Aghjehgheshlagh
- Correspondence Farzad Mirzaei Aghjehgheshlagh. PhD, Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail:
| | | | | |
Collapse
|
40
|
Li S, Zhao Q, Zhang K, Sun W, Jia X, Yang Y, Yin J, Tang C, Zhang J. Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metallomics 2020; 12:1576-1584. [PMID: 32869810 DOI: 10.1039/d0mt00165a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is closely associated with kidney disease, and renal injury often occurs together with hyposelenemia. This study was designed to reveal the mechanism underlying renal injury induced by Se deficiency in pigs. Twenty-four castrated male Yorkshire pigs were divided into two groups fed either a Se-deficient diet (0.007 mg Se per kg) or a Se-adequate diet (0.3 mg Se per kg). Serum and kidney samples were collected at the 16th week of the trial, processed, and analyzed for serum biochemistry, Se concentration, kidney index markers, histology, selenoprotein mRNA expression, redox status, and inflammatory cytokines. Dietary Se deficiency induced kidney injury, decreased (P < 0.05) Se concentrations, and increased (P < 0.05) kidney index and serum blood urea nitrogen, creatinine, and carbon dioxide values. Histological analysis indicated that Se deficiency induced inflammatory lesions and renal tubular atrophy in the renal medulla. Se deficiency downregulated (P < 0.05) nine selenoprotein genes (GPX1, SELENOW, SELENOH, SELENOP, GPX3, TXNRD2, SELENOI, SELENON, and SELENOM) and upregulated (P < 0.05) SEPHS2 in the kidneys. Se deficiency decreased (P < 0.05) the activity of glutathione peroxidase, thioredoxin reductase, and catalase, as well as the hydroxyl radical inhibition capacity, and increased (P < 0.05) the content of malondialdehyde and nitric oxide. Se deficiency increased (P < 0.05) the expression of the transcription factors NF-κB and HIF-1α, and regulated inflammatory cytokines. Se deficiency increased (P < 0.05) the expression of IL-6, IL-8, IL-12, IL-17, and cyclooxygenase-2, and decreased (P < 0.05) the expression of IL-10, IL-13, and TGF-β. These results indicated that Se deficiency induces kidney injury through the regulation of selenoproteins, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueting Jia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanyuan Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
41
|
Sun W, Zhu J, Li S, Tang C, Zhao Q, Zhang J. Selenium supplementation protects against oxidative stress-induced cardiomyocyte cell cycle arrest through activation of PI3K/AKT. Metallomics 2020; 12:1965-1978. [PMID: 33237045 DOI: 10.1039/d0mt00225a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress significantly contributes to heart disease, and thus might be a promising target for ameliorating heart failure. Mounting evidence suggests that selenium has chemotherapeutic potential for treating heart disease due to its regulation of selenoproteins, which play antioxidant regulatory roles. Oxidative stress-induced cardiomyocyte cell cycle arrest contributes to the loss of cardiomyocytes during heart failure. The protective effects and mechanism of selenium against oxidative stress-induced cell cycle arrest in cardiomyocytes warrant further study. H9c2 rat cardiomyoblast cells were treated with hydrogen peroxide in the presence or absence of selenium supplementation. Na2SeO3 pretreatment alleviated H2O2-induced oxidative stress, increased thioredoxin reductase (TXNRD) activity and glutathione peroxidase (GPx) activity and counteracted the H2O2-induced cell cycle arrest at the S phase. These effects were accompanied by attenuation of the H2O2-induced strengthening of the G2/M-phase inhibitory system, including increased mRNA and protein levels of cyclin-dependent kinase 1 (CDK1) and decreased p21 mRNA levels. Notably, Na2SeO3 pretreatment activated the PI3K/AKT signaling pathway, and inhibition of PI3K counteracted the protective effects of selenium on H2O2-induced cell cycle arrest. We corroborated our findings in vivo by inducing oxidative stress in pig heart by feeding a selenium deficient diet, which decreased the TXNRD activity, inactivated PI3K/AKT signaling and strengthened the G2/M-phase inhibitory system. We concluded that the cardioprotective effects of selenium supplementation against oxidative stress-induced cell cycle arrest in cardiomyocytes might be mediated by the selenoprotein-associated (GPx and TXNRD) antioxidant capacity, thereby activating redox status-associated PI3K/AKT pathways, which promote cell cycle progression by targeting the G2/M phase inhibitory system. This study provides new insight into the underlying mechanisms of cardioprotection effects of selenium at the cellular level.
Collapse
Affiliation(s)
- Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | |
Collapse
|
42
|
Lu Z, Wang P, Teng T, Shi B, Shan A, Lei XG. Effects of Dietary Selenium Deficiency or Excess on Selenoprotein Gene Expression in the Spleen Tissue of Pigs. Animals (Basel) 2019; 9:ani9121122. [PMID: 31835880 PMCID: PMC6940954 DOI: 10.3390/ani9121122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
To evaluate the effects of dietary Se deficiency and excess on the mRNA levels of selenoproteins in pig spleen tissues, 20 healthy uncastrated boars (Duroc × Landrace × Yorkshire, 10 ± 0.72 kg) were randomly divided into four groups (5 pigs per group). The pigs were fed a Se deficient corn-soybean basal feed (Se content <0.03 mg/kg) or basal feed with added sodium selenite at 0.3, 1.0, or 3.0 mg Se/kg diet, respectively. The experiment lasted 16 weeks. The spleen tissue was collected to examine the mRNA expression levels of 24 selenoprotein genes at the end of the study. Compared with pigs in other groups, those fed with the 1.0 mg Se/kg diet had higher mRNA levels of glutathione peroxidase 1 (Gpx1), glutathione peroxidase 2 (Gpx2), deiodinase type II (Dio2), thioredoxin reductase 3 (Txnrd3), selenoprotein H (Selh), selenoprotein N, 1 (Sepn1), selenoprotein P1 (Sepp1), and selenoprotein V (Selv) in the spleen (p < 0.05). Dietary Se deficiency resulted in lower mRNA levels of Gpx1, Gpx2, glutathione peroxidase 3 (Gpx3), Dio2, thioredoxin reductase 2 (Txnrd2), Txnrd3, Selh, selenoprotein I (Seli), selenoprotein K (Selk), selenoprotein M (Selm), Sepn1, Sepp1, and Selv in the spleen than the other three groups. Dietary Se levels did not affect the mRNA levels of glutathione peroxidase 4 (Gpx4), deiodinase type I (Dio1), deiodinase type III (Dio3), selenophosphate synthetase 2 (Sephs2), thioredoxin reductase 1 (Txnrd1), selenoprotein O (Selo), selenoprotein S (Sels), selenoprotein W (Selw), selenoprotein X (Selx), and selenoprotein 15 (Sel15) in the spleen (p > 0.05). Dietary Se levels can affect the transcription levels of 14 selenoprotein genes in the spleen of pigs.
Collapse
Affiliation(s)
- Zhuang Lu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (P.W.); (T.T.); (A.S.)
| | - Pengzu Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (P.W.); (T.T.); (A.S.)
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (P.W.); (T.T.); (A.S.)
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (P.W.); (T.T.); (A.S.)
- Correspondence: ; Tel./Fax: +86-0451-5519-0685
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Z.L.); (P.W.); (T.T.); (A.S.)
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
43
|
Sun LH, Huang JQ, Deng J, Lei XG. Avian selenogenome: response to dietary Se and vitamin E deficiency and supplementation. Poult Sci 2019; 98:4247-4254. [DOI: 10.3382/ps/pey408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
44
|
NONGKHLAW SS, SUGANTHI RU, GHOSH J, MALIK PK, AWACHAT VB, KRISHNAMOORTHY P, PAL DT. Antioxidant capacity, lipid oxidation status and expression of specific selenoprotein mRNA in Longissimus dorsi muscle of lambs (Ovies aries) supplemented with supranutritional selenium. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i9.93779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selenium is known to play a key role in maintenance of redox status of tissues, immunity, reproduction, thyroid and muscle functions. The present investigation was carried out to understand the effect of supranutritional dietary Se supplementation on antioxidant capacity, lipid oxidation and expression of specific selenoprotein mRNA in Longissimus dorsi muscles of growing lambs. Twenty male lambs of 5–6 months of age were fed basal diet supplemented with 0.5, 1.5 or 4.5 ppm Se-yeast (organic Se) or without Se (control) for 90 days. The antioxidant capacity, lipid oxidation of meat during different days of storage and the mRNA expression of GPX1, GPX2, GPX3, TXNRD1, TXNRD3, DIO1, DIO2, DIO3, SEPP1, SEP15 and SEPW1 were studied in Longissimus dorsi muscles of sheep. The results indicated improvement in antioxidant status by supplementation of 1.5 and 4.5 ppm Se, and reduction in meat lipid oxidation status on day 0 without any further reduction after 3 and 7 days of storage in all the Se supplemented lambs. A selective change in expression of GPX2, GPX3, TXNRD1, DIO2, DIO3, SEPP1, SEP15 and SEPW1 mRNA was observed by supranutritional Se while GPX1, TXNRD3, DIO1 and expressions remained unaffected by supplementation. In conclusion, supranutritional Se supplementation in lambs increased antioxidant status, reduced lipid oxidation status with limited effect on oxidative stability of meat during storage and regulated Longissimus dorsi muscle selenoprotein mRNA expression differentially depending on the Se feeding levels. Our results thus provided new insights into the regulation of selenoprotein gene expression by supranutritional levels of dietary Se.
Collapse
|
45
|
The protective effect of selenium from heat stress-induced porcine small intestinal epithelial cell line (IPEC-J2) injury is associated with regulation expression of selenoproteins. Br J Nutr 2019; 122:1081-1090. [DOI: 10.1017/s0007114519001910] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe present study compared the protective effect of sodium selenite (SS) and selenomethionine (SeMet) on heat stress (HS)-invoked porcine IPEC-J2 cellular damage and integrate potential roles of corresponding selenoprotein. Cells were cultured at 37°C until 80 % confluence and then subjected to four different conditions for 24 h: at 37°C (control), 41·5°C (HS), 41·5°C supplied with 0·42 µmol Se/L SS (SS), or SeMet (SeMet). HS significantly decreased cell viability, up-regulated mRNA and protein levels of heat shock protein 70 (HSP70) and down-regulated mRNA and protein levels of tight junction-related proteins (claudin-1 (CLDN-1) and zonula occludens-1 (ZO-1)). HS-induced cell injury was associated with the up-regulation (P < 0·05) of six inflammation-related genes and fourteen selenoprotein encoding genes and down-regulation (P < 0·05) of two inflammation-related genes and five selenoprotein encoding genes. Compared with the HS group, SS and SeMet supplementation resulted in an increase (P < 0·05) in cell viability, decreased (P < 0·05) mRNA expression of HSP70 and six inflammation-related genes and rescue (P < 0·05) of mRNA and protein levels of CLDN-1 and ZO-1. SS and SeMet supplementation changes the expressions of nineteen selenoprotein encoding genes in cells affected by HS. Both Se supplementation significantly recovered the protein level of glutathione peroxidase-1 and increased selenoprotein P in the IPEC-J2 cells under HS, respectively. In summary, Se supplementation alleviated the negative impact of HS on IPEC-J2 cells, and their cellular protective effect was associated with regulation expression of selenoproteins, and SeMet exhibited a better protective effect.
Collapse
|
46
|
Kim J, Chung HS, Choi MK, Roh YK, Yoo HJ, Park JH, Kim DS, Yu JM, Moon S. Association between Serum Selenium Level and the Presence of Diabetes Mellitus: A Meta-Analysis of Observational Studies. Diabetes Metab J 2019; 43:447-460. [PMID: 30688047 PMCID: PMC6712224 DOI: 10.4093/dmj.2018.0123] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/28/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Epidemiological studies have suggested an association between selenium (Se) and diabetes mellitus (DM). However, different studies have reported conflicting results. Therefore, we performed a comprehensive meta-analysis to clarify the impact of Se on DM. METHODS We searched the PubMed database for studies on the association between Se and DM from inception to June 2018. RESULTS Twenty articles evaluating 47,930 participants were included in the analysis. The meta-analysis found that high levels of Se were significantly associated with the presence of DM (pooled odds ratios [ORs], 1.88; 95% confidence interval [CI], 1.44 to 2.45). However, significant heterogeneity was found (I²=82%). Subgroup analyses were performed based on the Se measurement methods used in each study. A significant association was found between high Se levels and the presence of DM in the studies that used blood (OR, 2.17; 95% CI, 1.60 to 2.93; I²=77%), diet (OR, 1.61; 95% CI, 1.10 to 2.36; I²=0%), and urine (OR, 1.49; 95% CI, 1.02 to 2.17; I²=0%) as samples to estimate Se levels, but not in studies on nails (OR, 1.24; 95% CI, 0.52 to 2.98; I²=91%). Because of significant heterogeneity in the studies with blood, we conducted a sensitivity analysis and tested the publication bias. The results were consistent after adjustment based on the sensitivity analysis as well as the trim and fill analysis for publication bias. CONCLUSION This meta-analysis demonstrates that high levels of Se are associated with the presence of DM. Further prospective and randomized controlled trials are warranted to elucidate the link better.
Collapse
Affiliation(s)
- Juno Kim
- Department of Family Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Hye Soo Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Min Kyu Choi
- Department of Family Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Yong Kyun Roh
- Department of Family Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyung Joon Yoo
- Division of Internal Medicine, CM Hospital, Seoul, Korea
| | - Jung Hwan Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Sun Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jae Myung Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea.
| | - Shinje Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
- Department of Internal Medicine, Graduate School, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Zhao L, Feng Y, Deng J, Zhang NY, Zhang WP, Liu XL, Rajput SA, Qi DS, Sun LH. Selenium Deficiency Aggravates Aflatoxin B1-Induced Immunotoxicity in Chick Spleen by Regulating 6 Selenoprotein Genes and Redox/Inflammation/Apoptotic Signaling. J Nutr 2019; 149:894-901. [PMID: 31070734 DOI: 10.1093/jn/nxz019] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Selenium (Se) plays a protective role in aflatoxin B1 (AFB1)-induced splenic immunotoxicity in chicks. OBJECTIVE This study was designed to reveal the underlying mechanism of Se-mediated protection against AFB1-induced splenic injury in broilers. METHODS Four groups of 1-d-old Cobb male broilers (n = 5 cages/diet, 6 chicks/cage) were arranged in a 3-wk 2 × 2 factorial design trial whereby they were fed an Se-deficient, corn- and soy-based diet [base diet (BD), 36 μg Se/kg], BD plus 1.0 mg AFB1/kg, BD plus 0.3 mg Se/kg, or BD plus 1.0 mg AFB1/kg and 0.3 mg Se/kg (as 2-hydroxy-4-methylselenobutanoic acid). Serum and spleen were collected at week 3 to assay for cytokines, histology, redox status, selected inflammation- and apoptosis-related genes and proteins, and the selenogenome. RESULTS Dietary AFB1 induced growth retardation and spleen injury, decreasing (P < 0.05) body weight gain, feed intake, feed conversion efficiency, and serum interleukin-1β by 17.8-98.1% and increasing (P < 0.05) the spleen index and serum interleukin-6 by 37.6-113%. It also reduced the splenic lymphocyte number, the white pulp region, and histiocyte proliferation in Se-adequate groups. However, Se deficiency aggravated (P < 0.05) these AFB1-induced alterations by 16.2-103%. Moreover, Se deficiency decreased (P < 0.05) splenic glutathione peroxidase (GPX) activity and glutathione-S transferase and glutathione concentrations by 35.6-89.4% in AFB1-exposed groups. Furthermore, Se deficiency upregulated (P < 0.05) the apoptotic (Caspase 3 and Caspase 9) and antimicrobial (β defensin 1 and 2) genes, but downregulated (P < 0.05) antiapoptotic (B-cell lymphoma 2) and inflammatory (E3 ubiquitin-protein ligase CBL-B) genes at the mRNA and/or protein level in AFB1 supplementation groups. Additionally, Se deficiency downregulated (P < 0.05) GPX3, thioredoxin reductase 1 (TXNRD 1), GPX4, and selenoprotein (SELENO) S, and upregulated (P < 0.05) SELENOT and SELENOU in spleen in AFB1 administered groups. CONCLUSIONS Dietary Se deficiency exacerbated AFB1-induced spleen injury in chicks, partially through the regulation of oxidative stress, inflammatory and apoptotic signaling, and 6 selenoproteins.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Yue Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Li Liu
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| |
Collapse
|
48
|
Moon S, Chung HS, Yu JM, Yoo HJ, Park JH, Kim DS, Park YK, Yoon SN. Association between serum selenium level and the prevalence of diabetes mellitus in U.S. population. J Trace Elem Med Biol 2019; 52:83-88. [PMID: 30732904 DOI: 10.1016/j.jtemb.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/25/2018] [Accepted: 12/10/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Selenium seems to be a risk factor for diabetes mellitus (DM) in recent studies, opposite to the previous expectation that it may contribute to prevent DM. The authors aimed to ascertain the relationship between selenium and DM. METHODS Data were collected from the National Health and Nutrition Examination Survey conducted from 2011 to 2014. A multivariate logistic regression analysis with adjustment for age, sex, race/ethnicity, hypertension, dyslipidemia and body mass index was conducted to evaluate the odds ratio for DM. RESULTS The total number of subjects was 19,931. Large proportion of subjects were excluded due to young age (< 20 years) and missing data. The data of 3406 participants were analyzed, and a total of 604 had DM. In a multivariate logistic regression model, the increase of 10 μg/L in selenium increased the prevalence of DM by 12% (OR: 1.12; 95% CI: 1.06-1.18). Further analysis with 1:1 propensity score matching data with age and sex showed a similar results (OR: 1.08; 95% CI: 1.01-1.15). In addition, the restricted cubic spline regression showed a dose-dependent relationship between selenium level and DM. Subgroup analysis showed a dose-dependent relationship between selenium level and DM regardless of sex or race/ethnicity CONCLUSIONS: This large population study clearly demonstrates a positive association between selenium level and DM. This finding could have implications for nutritional supplementation in clinical settings.
Collapse
Affiliation(s)
- Shinje Moon
- Division of Endocrinology and Metabolism, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Graduate School, Hanyang University, Seoul, South Korea
| | - Hye Soo Chung
- Division of Endocrinology and Metabolism, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Jae Myung Yu
- Division of Endocrinology and Metabolism, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyung Joon Yoo
- Department of Internal Medicine, CM Hospital, Seoul, South Korea
| | - Jung Hwan Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Dong Sun Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Yoo-Kyung Park
- Department of Clinical Nutrition, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Sang Nam Yoon
- Department of Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea.
| |
Collapse
|
49
|
Sun Z, Xu Z, Wang D, Yao H, Li S. Selenium deficiency inhibits differentiation and immune function and imbalances the Th1/Th2 of dendritic cells. Metallomics 2019; 10:759-767. [PMID: 29766201 DOI: 10.1039/c8mt00039e] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selenium (Se) deficiency inhibits immune cell differentiation, affects immune response, and leads to cellular and humoral immune dysfunction. However, the impact of Se deficiency on the differentiation and Th1/Th2 balance of dendritic cells is still unclear. In this study, we replicated a model of Se-deficient chickens by feeding the chickens with a low-Se diet (i.e., the content of Se is 0.008 mg per kg diet). On this basis, we explored the effect of Se deficiency on the differentiation of chicken dendritic cells by induction culture of peripheral blood monocyte cells. We induced chicken dendritic cells by incubating mononuclear cells with a 100 ng mL-1 recombinant chicken granulocyte-macrophage colony-stimulating factor and 20 ng mL-1 recombinant chicken IL-4 for total 7 days. The results showed that Se deficiency decreased the expression of cell-surface markers including CD11c, CD40, CD86, and MHC II. Furthermore, we analyzed the cytokine profiles using real-time quantitative PCR and ELISA. The results indicated that Se deficiency inhibited the expression of selenoproteins and changed the secretion of IL-10, IL-12p40, and IFN-γ. Additionally, Se deficiency weakened the ability of dendritic cells to stimulate the proliferation of mixed allogeneic lymphocytes. In conclusion, Se deficiency suppressed the differentiation and immune function of chicken dendritic cells by down-regulating the expression of CD11c, CD40, CD86, MHC II, and selenoproteins. The result also showed that the Th1/Th2 imbalance was induced by enhancing the secretion of Th1-type cytokine IL-12p40 and IFN-γ and reducing that of Th2-type cytokine IL-10. Our findings contribute to understanding the mechanism of Se deficiency in the differentiation and immune function of chicken dendritic cells.
Collapse
Affiliation(s)
- Zhepeng Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | | | | | | | | |
Collapse
|
50
|
Wan N, Xu Z, Chi Q, Hu X, Pan T, Liu T, Li S. microRNA-33-3p involved in selenium deficiency-induced apoptosis via targeting ADAM10 in the chicken kidney. J Cell Physiol 2019; 234:13693-13704. [PMID: 30605240 DOI: 10.1002/jcp.28050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
Abstract
Selenium (Se) deficiency induces typical clinical and pathological changes and causes various pathological responses at the molecular level in several different chicken organs; the kidney is one of the target organs of Se deficiency. To explore the mechanisms that underlie the effects of microRNA-33-3p (miR-33-3p) on Se deficiency-induced kidney apoptosis, 60 chickens were randomly divided into two groups (30 chickens per group). We found that Se deficiency increased the expression of miR-33-3p in the chicken kidney. A disintegrin and metalloprotease domain 10 (ADAM10) was verified to be a target of miR-33-3p in the chicken kidney. The overexpression of miR-33-3p decreased the expression levels of β-catenin, cyclinD1, T-cell factor (TCF), c-myc, survivin, and Bcl-2; it increased the expression levels of E-cadherin, Bak, Bax, and caspase-3; and it increased the number of chicken kidney cells in the G0/G1 phase. In addition, Se deficiency caused the ultrastructure of the kidney to develop apoptotic characteristics. The results of flow cytometry analysis and AO/EB staining showed that the number of apoptotic chicken kidney cells increased in the miR-33-3p mimic group. All these results suggest that Se deficiency-induced cell cycle arrest and apoptosis in vivo and in vitro in the chicken kidney via the regulation of miR-33-3p, which targets ADAM10.
Collapse
Affiliation(s)
- Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - TingRu Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|