1
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
2
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
3
|
Yan J, Kothur K, Innes EA, Han VX, Jones HF, Patel S, Tsang E, Webster R, Gupta S, Troedson C, Menezes MP, Antony J, Ardern-Holmes S, Tantsis E, Mohammad S, Wienholt L, Pires AS, Heng B, Guillemin GJ, Guller A, Gill D, Bandodkar S, Dale RC. Decreased cerebrospinal fluid kynurenic acid in epileptic spasms: A biomarker of response to corticosteroids. EBioMedicine 2022; 84:104280. [PMID: 36174397 PMCID: PMC9515432 DOI: 10.1016/j.ebiom.2022.104280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Epileptic (previously infantile) spasms is the most common epileptic encephalopathy occurring during infancy and is frequently associated with abnormal neurodevelopmental outcomes. Epileptic spasms have a diverse range of known (genetic, structural) and unknown aetiologies. High dose corticosteroid treatment for 4 weeks often induces remission of spasms, although the mechanism of action of corticosteroid is unclear. Animal models of epileptic spasms have shown decreased brain kynurenic acid, which is increased after treatment with the ketogenic diet. We quantified kynurenine pathway metabolites in the cerebrospinal fluid (CSF) of infants with epileptic spasms and explored clinical correlations. Methods A panel of nine metabolites in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid) were measured using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF collected from paediatric patients less than 3 years of age with epileptic spasms (n=34, 19 males, mean age 0.85, median 0.6, range 0.3–3 yrs) were compared with other epilepsy syndromes (n=26, 9 males, mean age 1.44, median 1.45, range 0.3–3 yrs), other non-inflammatory neurological diseases (OND) (n=29, 18 males, mean age 1.47, median 1.6, range 0.1–2.9 yrs) and inflammatory neurological controls (n=12, 4 males, mean age 1.80, median 1.80, range 0.8–2.5 yrs). Findings There was a statistically significant decrease of CSF kynurenic acid in patients with epileptic spasms compared to OND (p<0.0001). In addition, the kynurenic acid/kynurenine (KYNA/KYN) ratio was lower in the epileptic spasms subgroup compared to OND (p<0.0001). Epileptic spasms patients who were steroid responders or partial steroid responders had lower KYNA/KYN ratio compared to patients who were refractory to steroids (p<0.005, p<0.05 respectively). Interpretation This study demonstrates decreased CSF kynurenic acid and KYNA/KYN in epileptic spasms, which may also represent a biomarker for steroid responsiveness. Given the anti-inflammatory and neuroprotective properties of kynurenic acid, further therapeutics able to increase kynurenic acid should be explored. Funding Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP1176660 and Macquarie University.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Emily A Innes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Velda X Han
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Hannah F Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Erica Tsang
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Richard Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Manoj P Menezes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Simone Ardern-Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Esther Tantsis
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Louise Wienholt
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ananda S Pires
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Anna Guller
- Computational NeuroSurgery Lab, Macquarie University, Sydney, NSW, Australia
| | - Deepak Gill
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
4
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
5
|
Multiple roles of haem in cystathionine β-synthase activity: implications for hemin and other therapies of acute hepatic porphyria. Biosci Rep 2021; 41:229241. [PMID: 34251022 PMCID: PMC8298261 DOI: 10.1042/bsr20210935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
The role of haem in the activity of cystathionine β-synthase (CBS) is reviewed and a hypothesis postulating multiple effects of haem on enzyme activity under conditions of haem excess or deficiency is proposed, with implications for some therapies of acute hepatic porphyrias. CBS utilises both haem and pyridoxal 5′-phosphate (PLP) as cofactors. Although haem does not participate directly in the catalytic process, it is vital for PLP binding to the enzyme and potentially also for CBS stability. Haem deficiency can therefore undermine CBS activity by impairing PLP binding and facilitating CBS degradation. Excess haem can also impair CBS activity by inhibiting it via CO resulting from haem induction of haem oxygenase 1 (HO 1), and by induction of a functional vitamin B6 deficiency following activation of hepatic tryptophan 2,3-dioxygenase (TDO) and subsequent utilisation of PLP by enhanced kynurenine aminotransferase (KAT) and kynureninase (Kynase) activities. CBS inhibition results in accumulation of the cardiovascular risk factor homocysteine (Hcy) and evidence is emerging for plasma Hcy elevation in patients with acute hepatic porphyrias. Decreased CBS activity may also induce a proinflammatory state, inhibit expression of haem oxygenase and activate the extrahepatic kynurenine pathway (KP) thereby further contributing to the Hcy elevation. The hypothesis predicts likely changes in CBS activity and plasma Hcy levels in untreated hepatic porphyria patients and in those receiving hemin or certain gene-based therapies. In the present review, these aspects are discussed, means of testing the hypothesis in preclinical experimental settings and porphyric patients are suggested and potential nutritional and other therapies are proposed.
Collapse
|
6
|
Zhang CY, Flor S, Ruiz P, Ludewig G, Lehmler HJ. Characterization of the Metabolic Pathways of 4-Chlorobiphenyl (PCB3) in HepG2 Cells Using the Metabolite Profiles of Its Hydroxylated Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9052-9062. [PMID: 34125531 PMCID: PMC8264946 DOI: 10.1021/acs.est.1c01076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The characterization of the metabolism of lower chlorinated PCB, such as 4-chlorobiphenyl (PCB3), is challenging because of the complex metabolite mixtures formed in vitro and in vivo. We performed parallel metabolism studies with PCB3 and its hydroxylated metabolites to characterize the metabolism of PCB3 in HepG2 cells using nontarget high-resolution mass spectrometry (Nt-HRMS). Briefly, HepG2 cells were exposed for 24 h to 10 μM PCB3 or its seven hydroxylated metabolites in DMSO or DMSO alone. Six classes of metabolites were identified with Nt-HRMS in the culture medium exposed to PCB3, including monosubstituted metabolites at the 3'-, 4'-, 3-, and 4- (1,2-shift product) positions and disubstituted metabolites at the 3',4'-position. 3',4'-Di-OH-3 (4'-chloro-3,4-dihydroxybiphenyl), which can be oxidized to a reactive and toxic PCB3 quinone, was a central metabolite that was rapidly methylated. The resulting hydroxylated-methoxylated metabolites underwent further sulfation and, to a lesser extent, glucuronidation. Metabolomic analyses revealed an altered tryptophan metabolism in HepG2 cells following PCB3 exposure. Some PCB3 metabolites were associated with alterations of endogenous metabolic pathways, including amino acid metabolism, vitamin A (retinol) metabolism, and bile acid biosynthesis. In-depth studies are needed to investigate the toxicities of PCB3 metabolites, especially the 3',4'-di-OH-3 derivatives identified in this study.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Patricia Ruiz
- Office
of Innovation and Analytics, Simulation Science Section, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333, United States
| | - Gabriele Ludewig
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- . Tel.: (319) 335-4981. Fax: (319) 335-4290
| |
Collapse
|
7
|
Dalvi-Garcia F, Fonseca LL, Vasconcelos ATR, Hedin-Pereira C, Voit EO. A model of dopamine and serotonin-kynurenine metabolism in cortisolemia: Implications for depression. PLoS Comput Biol 2021; 17:e1008956. [PMID: 33970902 PMCID: PMC8136856 DOI: 10.1371/journal.pcbi.1008956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/20/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022] Open
Abstract
A major factor contributing to the etiology of depression is a neurochemical imbalance of the dopaminergic and serotonergic systems, which is caused by persistently high levels of circulating stress hormones. Here, a computational model is proposed to investigate the interplay between dopaminergic and serotonergic-kynurenine metabolism under cortisolemia and its consequences for the onset of depression. The model was formulated as a set of nonlinear ordinary differential equations represented with power-law functions. Parameter values were obtained from experimental data reported in the literature, biological databases, and other general information, and subsequently fine-tuned through optimization. Model simulations predict that changes in the kynurenine pathway, caused by elevated levels of cortisol, can increase the risk of neurotoxicity and lead to increased levels of 3,4-dihydroxyphenylaceltahyde (DOPAL) and 5-hydroxyindoleacetaldehyde (5-HIAL). These aldehydes contribute to alpha-synuclein aggregation and may cause mitochondrial fragmentation. Further model analysis demonstrated that the inhibition of both serotonin transport and kynurenine-3-monooxygenase decreased the levels of DOPAL and 5-HIAL and the neurotoxic risk often associated with depression. The mathematical model was also able to predict a novel role of the dopamine and serotonin metabolites DOPAL and 5-HIAL in the ethiology of depression, which is facilitated through increased cortisol levels. Finally, the model analysis suggests treatment with a combination of inhibitors of serotonin transport and kynurenine-3-monooxygenase as a potentially effective pharmacological strategy to revert the slow-down in monoamine neurotransmission that is often triggered by inflammation.
Collapse
Affiliation(s)
- Felipe Dalvi-Garcia
- Bioinformatics Lab, National Laboratory for Scientific Computing, Petrópolis, Rio de Janeiro, Brazil
- School of Medicine and Surgery, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis L. Fonseca
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ana Tereza R. Vasconcelos
- Bioinformatics Lab, National Laboratory for Scientific Computing, Petrópolis, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Center of Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
Kim H, Enrione EB, Narayanan V, Li T, Campa A. Gender Differences in the Associations of Plasma Pyridoxal 5'-Phosphate with Plasma Polyunsaturated Fatty Acids among US Young and Middle-Aged Adults: NHANES 2003-2004. Nutrients 2021; 13:477. [PMID: 33572554 PMCID: PMC7912414 DOI: 10.3390/nu13020477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Vitamin B6-restricted diets and low plasma pyridoxal 5'-phosphate (PLP) status altered plasma polyunsaturated fatty acids (PUFA) compositions. Evidence suggests the role of gender in the metabolism of vitamin B6 and PUFA. However, no epidemiologic study examined the impact of gender on the relationship between vitamin B6 and PUFA status in adults. Thus, we investigated whether there were gender differences in the association of vitamin B6 intake and plasma PLP concentration with plasma PUFA concentrations and ratios (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), EPA + DHA, EPA/AA, (EPA + DHA)/AA) in US young/middle-aged adults. In total, 864 participants (20-59 years; 484 men, 380 women) from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 were used for this cross-sectional study. Nutrient intakes were estimated from two 24 h recalls and supplement questionnaires; plasma PLP and PUFA were measured. Multivariate linear regression was utilized to obtain unstandardized (b) and standardized (β) coefficients. Covariates included demographic, socioeconomic, dietary variables, physical activity level, cigarette smoking status, alcohol consumption, prescription medication use, and BMI. There were significant interactions between gender and PLP on EPA (P-interaction = 0.004), DHA (P-interaction = 0.020), EPA + DHA (P-interaction = 0.010), EPA/AA (P-interaction = 0.002), (EPA + DHA)/AA (P-interaction = 0.004), whereas no interaction between gender and B6 intake existed. In gender-stratified analyses, in men, PLP was positively associated with EPA (β = 0.138, b = 0.104, p = 0.0004), DHA (β = 0.101, b = 0.058, p = 0.036), EPA + DHA (β = 0.125, b = 0.073, p = 0.005), EPA/AA (β = 0.144, b = 0.099, p = 0.0002), (EPA + DHA)/AA (β = 0.123, b = 0.068, p = 0.005). However, no associations between PLP and PUFA existed in women. In conclusion, gender differences were found in the relationships between plasma PLP and plasma EPA, DHA, EPA + DHA, EPA/AA, and (EPA + DHA)/AA, with significant direct associations in men only among US young/middle-aged adults.
Collapse
Affiliation(s)
- Hyojung Kim
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (H.K.); (E.B.E.); (V.N.)
| | - Evelyn B. Enrione
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (H.K.); (E.B.E.); (V.N.)
| | - Vijaya Narayanan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (H.K.); (E.B.E.); (V.N.)
| | - Tan Li
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA;
| | - Adriana Campa
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (H.K.); (E.B.E.); (V.N.)
| |
Collapse
|
9
|
Pyridoxal 5'-Phosphate-Dependent Enzymes at the Crossroads of Host-Microbe Tryptophan Metabolism. Int J Mol Sci 2020; 21:ijms21165823. [PMID: 32823705 PMCID: PMC7461572 DOI: 10.3390/ijms21165823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5′-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.
Collapse
|
10
|
Vitamin B6 and Diabetes: Relationship and Molecular Mechanisms. Int J Mol Sci 2020; 21:ijms21103669. [PMID: 32456137 PMCID: PMC7279184 DOI: 10.3390/ijms21103669] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin B6 is a cofactor for approximately 150 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. In addition, it plays the role of antioxidant by counteracting the formation of reactive oxygen species (ROS) and advanced glycation end-products (AGEs). Epidemiological and experimental studies indicated an evident inverse association between vitamin B6 levels and diabetes, as well as a clear protective effect of vitamin B6 on diabetic complications. Interestingly, by exploring the mechanisms that govern the relationship between this vitamin and diabetes, vitamin B6 can be considered both a cause and effect of diabetes. This review aims to report the main evidence concerning the role of vitamin B6 in diabetes and to examine the underlying molecular and cellular mechanisms. In addition, the relationship between vitamin B6, genome integrity, and diabetes is examined. The protective role of this vitamin against diabetes and cancer is discussed.
Collapse
|
11
|
Yan Y, Shi N, Han X, Li G, Wen B, Gao J. UPLC/MS/MS-Based Metabolomics Study of the Hepatotoxicity and Nephrotoxicity in Rats Induced by Polygonum multiflorum Thunb. ACS OMEGA 2020; 5:10489-10500. [PMID: 32426606 PMCID: PMC7227050 DOI: 10.1021/acsomega.0c00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Polygonum multiflorum Thunb. (PM) is one of the most frequently used natural products in China. Its hepatotoxicity has been proven and reported. However, chronic PM toxicity is a dynamic process, and a few studies have reported the long-term hepatotoxic mechanism of PM or its nephrotoxicity. To elucidate the mechanism of hepatotoxicity and nephrotoxicity induced by PM after different administration times, different samples from rats were systematically investigated by traditional biochemical analysis, histopathological observation, and nontargeted metabolomics. The concentrations of direct bilirubin (DBIL) at 4 weeks and total bile acid, DBIL, uric acid, and blood urea nitrogen at 8 weeks were significantly increased in the treatment group compared with those in the control group. Approximately, 12 metabolites and 24 proteins were considered as unique toxic biomarkers and targets. Metabolic pathway analysis showed that the primary pathways disrupted by PM were phenylalanine and tyrosine metabolism, which resulted in liver injury, accompanied by chronic kidney injury. As the administration time increased, the toxicity of PM gradually affected vitamin B6, bile acid, and bilirubin metabolism, leading to aggravated liver injury, abnormal biochemical indicators, and marked nephrotoxicity. Our results suggest that the hepatotoxicity and nephrotoxicity caused by PM are both dynamic processes that affect different metabolic pathways at different administration times, which indicated that PM-induced liver and kidney injury should be treated differently in the clinic according to the degree of injury.
Collapse
Affiliation(s)
- Yan Yan
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, P. R.
China
| | - Ning Shi
- Pharmaceutical
Department of Characteristic Medical Center, Strategic Support Force, Beijing 100101, P. R. China
| | - Xuyang Han
- Beijing
Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing 100010, P. R. China
| | - Guodong Li
- Beijing
University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing 100078, P. R.
China
| | - Binyu Wen
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, P. R.
China
| | - Jian Gao
- Beijing
University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing 100078, P. R.
China
| |
Collapse
|
12
|
Johnstone DL, Al-Shekaili HH, Tarailo-Graovac M, Wolf NI, Ivy AS, Demarest S, Roussel Y, Ciapaite J, van Roermund CWT, Kernohan KD, Kosuta C, Ban K, Ito Y, McBride S, Al-Thihli K, Abdelrahim RA, Koul R, Al Futaisi A, Haaxma CA, Olson H, Sigurdardottir LY, Arnold GL, Gerkes EH, Boon M, Heiner-Fokkema MR, Noble S, Bosma M, Jans J, Koolen DA, Kamsteeg EJ, Drögemöller B, Ross CJ, Majewski J, Cho MT, Begtrup A, Wasserman WW, Bui T, Brimble E, Violante S, Houten SM, Wevers RA, van Faassen M, Kema IP, Lepage N, Lines MA, Dyment DA, Wanders RJA, Verhoeven-Duif N, Ekker M, Boycott KM, Friedman JM, Pena IA, van Karnebeek CDM. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain 2020; 142:542-559. [PMID: 30668673 DOI: 10.1093/brain/awy346] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.
Collapse
Affiliation(s)
- Devon L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hilal H Al-Shekaili
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia.,Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam University Medical Centres, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Autumn S Ivy
- Division of Child Neurology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, CO, USA
| | - Yann Roussel
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jolita Ciapaite
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Carlo W T van Roermund
- Department of Pediatrics and Clinical Chemistry, Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Ceres Kosuta
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Ban
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Skye McBride
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Khalid Al-Thihli
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Rana A Abdelrahim
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Roshan Koul
- Paediatric Neurology Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amna Al Futaisi
- Paediatric Neurology Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute of Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Heather Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, USA
| | - Laufey Yr Sigurdardottir
- Department of Neurology, University of Central Florida, Nemours Children's Hospital, Orlando, FL, USA
| | - Georgianne L Arnold
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Boon
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Noble
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Marjolein Bosma
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Judith Jans
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Britt Drögemöller
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Ross
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | | | - Wyeth W Wasserman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tuan Bui
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Elise Brimble
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, CA, USA
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron A Wevers
- United for Metabolic Diseases, The Netherlands.,Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nathalie Lepage
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Matthew A Lines
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Metabolics and Newborn Screening, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Ronald J A Wanders
- Department of Pediatrics and Clinical Chemistry, Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Nanda Verhoeven-Duif
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Clara D M van Karnebeek
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,United for Metabolic Diseases, The Netherlands.,Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Centre for Molecular Medicine and Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Chronic dietary supplementation with kynurenic acid, a neuroactive metabolite of tryptophan, decreased body weight without negative influence on densitometry and mandibular bone biomechanical endurance in young rats. PLoS One 2019; 14:e0226205. [PMID: 31809528 PMCID: PMC6897417 DOI: 10.1371/journal.pone.0226205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan. KYNA naturally occurs in breast milk and its content increases with lactation, indicating the role of neonatal nutrition in general growth with long-term health effects. KYNA is also an antagonist of ionotropic glutamate receptors expressed in bone cells. The aim of this study was to establish the effects of chronic KYNA supplementation on bone homeostasis in young rats, using mandible as a model bone. Female and male newborn Wistar rats were divided into control and KYNA-administered groups until 60 days of age (25x101 mg/L or 25x102 mg/L in drinking water). Hemimandibles were subjected to densitometry, computed tomography analysis and mechanical testing. Rats supplemented with KYNA at both doses showed a decrease in body weight. There were no effects of KYNA administration and mandible histomorphometry. In males, a significant quadratic effect (P < 0.001) was observed in the densitometry of the hemimandible, where BMD increased in the group supplemented with 2.5x101 mg/L of KYNA. Analysis of mechanical tests data showed that when fracture forces were corrected for bone geometry and rats body weight the improvement of bone material properties was observed in male and female rats supplemented with lower dose of KYNA. This study showed that chronic supplementation with KYNA may limit weight gain in the young, without adversely affecting the development of the skeleton.
Collapse
|
14
|
Changes in tryptophan and kynurenine pathway metabolites in the blood of children treated with ketogenic diet for refractory epilepsy. Seizure 2019; 69:265-272. [PMID: 31129366 DOI: 10.1016/j.seizure.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE There is growing evidence to support the role of the kynurenine pathway in the anticonvulsant efficacy of ketogenic diets (KDs) in refractory epilepsy. The aim of the present study was to measure blood levels of tryptophan (TRP) and its kynurenine derivatives and correlate them with seizure reduction after starting the KD in children with refractory epilepsy. METHODS Sixteen children (9 F/7 M; 7.1 ± 5.1 years) with refractory epilepsy were treated with the KDs. Clinical efficacy and metabolic ketosis were monitored throughout the study; blood levels of TRP, kynurenine (KYN), kynurenic acid (KYNA), and 3-OH-kynurenine (3-OH-KYN) were measured at 3, 6, and 12 months on the diet and compared to the pre-KD levels. RESULTS Out of 16 children, 14 attained a ≥50% reduction (responders) in seizure frequency 3 months after starting the KD. In the 14 responders, TRP levels decreased numerically (18-25%) but not significantly (P = 0.077) compared to the pre-KD control values. KYN levels decreased significantly (30-57%; P = 0.001) compared to the pre-KD control levels while KYNA levels significantly increased (38-96%; P < 0.001). KYNA/KYN ratios significantly increased (100-323%; P = 0.003) while 3-OH-KYN levels (P = 0.680) and KYN/TRP ratios (P = 0.385) remained unchanged. Higher concentrations of KYNA and lower concentrations of KYN (P < 0.05) were found in patients who attained a higher reduction in seizure frequencies on the KD. CONCLUSIONS We report a pattern of changes in the blood level of kynurenines in patients with refractory epilepsy who started the KD. The results of this study further support the role of specific kynurenines (e.g. KYNA) in the efficacy of the KD in refractory epilepsy.
Collapse
|
15
|
The ‘Yin’ and the ‘Yang’ of the kynurenine pathway: excitotoxicity and neuroprotection imbalance in stress-induced disorders. Behav Pharmacol 2019; 30:163-186. [DOI: 10.1097/fbp.0000000000000477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Chen S, Wang M, Yin L, Ren W, Bin P, Xia Y, Liu G, Yang H, Tan B, Yin Y. Effects of dietary tryptophan supplementation in the acetic acid-induced colitis mouse model. Food Funct 2018; 9:4143-4152. [PMID: 30042998 DOI: 10.1039/c8fo01025k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract and is strongly associated with intestinal immunity and the microbiome. Tryptophan (Trp) is an inflammatory inhibitor and modulator of the intestinal microflora. We explored the serum profile of amino acids and the effects of diet supplementation with Trp (1.0 g kg-1) on intestinal immunity and microbiota in the acetic acid-induced colitis mouse model. We analyzed the survival rate, colonic morphological parameters, profiles of serum amino acids, microbiota in colonic contents and the relative gene abundance of intestinal proinflammatory cytokines. Although the dietary Trp supplementation failed to improve the survival rate and ameliorate the morphological parameters of colon in mice with colitis, Trp modulated the general serum amino acid profile by reducing the amino acid profiles of threonine, methionine and proline, affected intestinal immunity by inhibiting the colonic expression of interleukin-22 and changed the microbiota by reducing the abundance of Candidatus, Clostridium and Coprococcus at the genus level. In conclusion, dietary Trp supplementation in a mouse model of colitis did not ameliorate the survival rate and morphological parameters of colon but did modulate the serum amino acid profiles, intestinal immunity and microbiota. These findings enhance our understanding of the roles of Trp in the metabolism of serum amino acids, intestinal immunity and microbiota.
Collapse
Affiliation(s)
- Shuai Chen
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dadvar S, Ferreira DMS, Cervenka I, Ruas JL. The weight of nutrients: kynurenine metabolites in obesity and exercise. J Intern Med 2018; 284:519-533. [PMID: 30141532 DOI: 10.1111/joim.12830] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity ultimately results from an imbalance between energy intake and expenditure. However, in addition to their bioenergetic value, nutrients and their metabolites can function as important signalling molecules in energy homeostasis. Indeed, macronutrients and their metabolites can be direct regulators of metabolism through their actions on different organs. In turn, target organs can decide to use, store or transform the incoming nutrients depending on their physiological context and in coordination with other cell types. Tryptophan-kynurenine metabolites are an example of a family of compounds that can serve as systemic integrators of energy metabolism by signalling to different cell types. These include adipocytes, immune cells and muscle fibres, in addition to the well-known effects of kynurenine metabolites on the central nervous system. In the context of energy metabolism, several of the effects elicited by kynurenic acid are mediated by the G-protein-coupled receptor, GPR35. As GPR35 is expressed in tissues such as the adipose tissue, immune cells and the gastrointestinal tract, this receptor could be a potential therapeutic target for the treatment of obesity, diabetes and other metabolic diseases. In addition, metabolic disorders often coincide with states of chronic inflammation, which further highlights GPR35 as an integration node in conditions where inflammation skews metabolism. Defining the molecular interplay between different tissues in the regulation of energy homeostasis can help us understand interindividual variability in the response to nutrient intake and develop safe and efficient therapies to fight obesity and metabolic disease.
Collapse
Affiliation(s)
- S Dadvar
- Department of Physiology and Pharmacology, Molecular & Cellular Exercise Physiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - D M S Ferreira
- Department of Physiology and Pharmacology, Molecular & Cellular Exercise Physiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - I Cervenka
- Department of Physiology and Pharmacology, Molecular & Cellular Exercise Physiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - J L Ruas
- Department of Physiology and Pharmacology, Molecular & Cellular Exercise Physiology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
18
|
Cook SF, Fiandalo MV, Watt DS, Wu Y, Mohler JL, Bies RR. Mathematical modeling of intracrine androgen metabolism in prostate cancer: Methodological aspects. Prostate 2018; 78:1069-1076. [PMID: 29938815 DOI: 10.1002/pros.23665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Progression of castration-recurrent/resistant prostate cancer (CRPC) relies in part on dihydrotestosterone derived from intratumoral androgen metabolism. Mathematical modeling provides a valuable tool for studies of androgen metabolism in CRPC. This modeling approach integrates existing knowledge about complex biologic systems and provides a means of interrogating the effects of various interventions. We sought to model a single reaction in the androgen biosynthesis network, namely the oxidation of androsterone (AND) to androstanedione (5α-dione) by four 3α-oxidoreductase enzymes, as an initial effort to establish the feasibility of our modeling approach. METHODS Models were constructed for two cell culture systems, a non-prostate cancer cell line (CV-1) and a prostate cancer cell line (LAPC-4), using the SimBiology app (version 5.3) in MATLAB (version 8.6). The models included components for substrate (AND), product (5α-dione), each of the four enzymes, and each of the four enzyme-substrate complexes. Each enzymatic reaction consisted of a reversible enzyme-substrate binding step and an irreversible catalysis step. Rates of change for each component were described using ordinary differential equations. RESULTS Mathematical models were developed with model parameter values derived from literature sources or from existing experimental data, which included gene expression measurements and substrate and product concentrations determined using liquid chromatography-tandem mass spectrometry. The models for both cell lines adequately described substrate and product concentrations observed after 12 h treatment with AND. CONCLUSIONS This modeling approach represents an adaptable, extensible and mechanistic framework that reflects androgen metabolism. The models can be expanded systematically to describe the complex androgen metabolic pathways important for study of novel therapies for CRPC.
Collapse
Affiliation(s)
- Sarah F Cook
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | | | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yue Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - Robert R Bies
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
- Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, New York
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
19
|
Metabolomics of Hydrazine-Induced Hepatotoxicity in Rats for Discovering Potential Biomarkers. DISEASE MARKERS 2018; 2018:8473161. [PMID: 29849827 PMCID: PMC5914126 DOI: 10.1155/2018/8473161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 01/05/2023]
Abstract
Metabolic pathway disturbances associated with drug-induced liver injury remain unsatisfactorily characterized. Diagnostic biomarkers for hepatotoxicity have been used to minimize drug-induced liver injury and to increase the clinical safety. A metabolomics strategy using rapid-resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) analyses and multivariate statistics was implemented to identify potential biomarkers for hydrazine-induced hepatotoxicity. The global serum and urine metabolomics of 30 hydrazine-treated rats at 24 or 48 h postdosing and 24 healthy rats were characterized by a metabolomics approach. Multivariate statistical data analyses and receiver operating characteristic (ROC) curves were performed to identify the most significantly altered metabolites. The 16 most significant potential biomarkers were identified to be closely related to hydrazine-induced liver injury. The combination of these biomarkers had an area under the curve (AUC) > 0.85, with 100% specificity and sensitivity, respectively. This high-quality classification group included amino acids and their derivatives, glutathione metabolites, vitamins, fatty acids, intermediates of pyrimidine metabolism, and lipids. Additionally, metabolomics pathway analyses confirmed that phenylalanine, tyrosine, and tryptophan biosynthesis as well as tyrosine metabolism had great interactions with hydrazine-induced liver injury in rats. These discriminating metabolites might be useful in understanding the pathogenesis mechanisms of liver injury and provide good prospects for drug-induced liver injury diagnosis clinically.
Collapse
|
20
|
Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: Tryptophan's metabolites in exercise, inflammation, and mental health. Science 2018; 357:357/6349/eaaf9794. [PMID: 28751584 DOI: 10.1126/science.aaf9794] [Citation(s) in RCA: 771] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kynurenine metabolites are generated by tryptophan catabolism and regulate biological processes that include host-microbiome signaling, immune cell response, and neuronal excitability. Enzymes of the kynurenine pathway are expressed in different tissues and cell types throughout the body and are regulated by cues, including nutritional and inflammatory signals. As a consequence of this systemic metabolic integration, peripheral inflammation can contribute to accumulation of kynurenine in the brain, which has been associated with depression and schizophrenia. Conversely, kynurenine accumulation can be suppressed by activating kynurenine clearance in exercised skeletal muscle. The effect of exercise training on depression through modulation of the kynurenine pathway highlights an important mechanism of interorgan cross-talk mediated by these metabolites. Here, we discuss peripheral mechanisms of tryptophan-kynurenine metabolism and their effects on inflammatory, metabolic, oncologic, and psychiatric disorders.
Collapse
Affiliation(s)
- Igor Cervenka
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Leandro Z Agudelo
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
21
|
Qi S, Huang S, Chen X, Huo Q, Xie N, Xia J. Liver tissue metabolic profiling and pathways of non-alcoholic steatohepatitis in rats. Hepatol Res 2017; 47:1484-1493. [PMID: 28224688 DOI: 10.1111/hepr.12876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/23/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
AIM The mechanisms of non-alcoholic steatohepatitis (NASH) in hepatocytes are unknown. Our aim is to study the tissue metabolic profiling and pathways of NASH. METHODS We built rat models for simple steatosis and NASH and analyzed the liver extract using a liquid chromatograph-mass spectrometer. The acquired data were processed by multivariate principal component analysis and partial least squares discriminant analysis (PLS-DA) to obtain metabolic profiling. Orthogonal projections to latent structures DA was used to obtain metabolites capable of distinguishing NASH and steatosis. The total differences in the metabolites between groups were analyzed to determine their metabolic pathways. RESULTS Principal component analysis showed that the metabolic profiles of NASH and steatosis are different. The PLS-DA modeling revealed a clear separation between two groups with parameters R2 Y and Q2 Y all greater than 0.7. The orthogonal projections to latent structures DA model identified 171 metabolites capable of distinguishing NASH from steatosis. The identified metabolites are involved in fatty acid metabolism, tryptophan metabolism, the urea cycle, and the citric acid cycle in hepatocytes. CONCLUSIONS These metabolic profiles and pathways in rat hepatocytes will offer useful information when studying metabolic disorders in patients with NASH.
Collapse
Affiliation(s)
- Suwen Qi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Si Huang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qin Huo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ni Xie
- Core Laboratory, Shenzhen Second Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jun Xia
- Core Laboratory, Shenzhen Second Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| |
Collapse
|
22
|
Badawy AAB, Dougherty DM. Assessment of the Human Kynurenine Pathway: Comparisons and Clinical Implications of Ethnic and Gender Differences in Plasma Tryptophan, Kynurenine Metabolites, and Enzyme Expressions at Baseline and After Acute Tryptophan Loading and Depletion. Int J Tryptophan Res 2016; 9:31-49. [PMID: 27547036 PMCID: PMC4981220 DOI: 10.4137/ijtr.s38189] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism via the kynurenine pathway (KP) was assessed in normal healthy US volunteers at baseline and after acute Trp depletion (ATD) and acute Trp loading (ATL) using amino acid formulations. The hepatic KP accounts for ~90% of overall Trp degradation. Liver Trp 2,3-dioxygenase (TDO) contributes ~70% toward Trp oxidation, with the remainder achieved by subsequent rate-limiting enzymes in the KP. TDO is not influenced by a 1.15 g Trp load, but is maximally activated by a 5.15 g dose. We recommend a 30 mg/kg dose for future ATL studies. ATD activates TDO and enhances the Trp flux down the KP via its leucine component. Higher plasma free [Trp] and lower total [Trp] are observed in women, with no gender differences in kynurenines. Kynurenic acid is lower in female Caucasians, which may explain their lower incidence of schizophrenia. African-American and Hispanic women have a lower TDO and Trp oxidation relative to free Trp than the corresponding men. African-American women have a potentially higher 3-hydroxyanthranilic acid/anthranilic acid ratio, which may protect them against osteoporosis. Future studies of the KP in relation to health and disease should focus on gender and ethnic differences.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Donald M Dougherty
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
23
|
|
24
|
Roomruangwong C, Kanchanatawan B, Sirivichayakul S, Anderson G, Carvalho AF, Duleu S, Geffard M, Maes M. IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome. Mol Neurobiol 2016; 54:3038-3049. [PMID: 27037573 DOI: 10.1007/s12035-016-9877-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/18/2016] [Indexed: 12/13/2022]
Abstract
There is some evidence that lowered tryptophan and an activated tryptophan catabolite (TRYCAT) pathway play a role in depression, somatoform disorder, and postpartum blues. The aim of this study is to delineate the associations between the TRYCAT pathway and premenstrual syndrome (PMS) and perinatal depressive and physio-somatic symptoms. We examine the associations between end of term serum IgM and IgA responses to tryptophan and 9 TRYCATs in relation to zinc, C-reactive protein (CRP), and haptoglobin and prenatal physio-somatic (previously known as psychosomatic) symptoms (fatigue, back pain, muscle pain, dyspepsia, obstipation) and prenatal and postnatal depression and anxiety symptoms as measured using the Edinburgh Postnatal Depression Scale (EPDS), Hamilton Depression Rating Scale (HAMD), and Spielberger's State Anxiety Inventory (STAI). We included pregnant females with (n = 24) and without depression (n = 25) and 24 non-pregnant females. There were no significant associations between the IgA/IgM responses to tryptophan and TRYCATs and prenatal and postnatal depression/anxiety symptoms, except for lowered IgA responses to anthranilic acid in prenatal depression. A large part of the variance in IgA responses to most TRYCATs was explained by PMS and haptoglobin (positively) and CRP (inversely) levels. The IgA responses to TRYCATs were significantly increased in PMS, in particular picolinic, anthranilic, xanthurenic and kynurenic acid, and 3OH-kynurenine. Variance (62.5%) in physio-somatic symptoms at the end of term was explained by PMS, previous depressions, zinc (inversely), CRP and haptoglobin (both positively), and the IgM responses to quinolinic acid (positively), anthranilic acid, and tryptophan (both negatively). The results suggest that mucosa-derived TRYCAT pathway activation is significantly associated with PMS, but not with perinatal depression/anxiety symptoms. Physio-somatic symptoms in pregnancy have an immune-inflammatory pathophysiology. Induction of the TRYCAT pathway appears to be more related to physio-somatic than to depression symptoms.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Michel Geffard
- Research Department, IDRPHT, Talence, France.,GEMAC, Lieu-Dit Berganton, Saint Jean d'Illac, France
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil. .,Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria. .,Revitalis, Waalre, The Netherlands. .,IMPACT Research Center, Deakin University, Geelong, Australia. .,IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
25
|
Rich AL, Patel JT, Al-Angari SS. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:51-7. [PMID: 27042092 PMCID: PMC4811267 DOI: 10.4137/ehi.s31906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 05/02/2023]
Abstract
Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.
Collapse
Affiliation(s)
- Alisa L. Rich
- Department of Environmental and Occupational Health Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- WHO Chemical Risk Assessment Network
- CORRESPONDENCE:
| | - Jay T. Patel
- Department of Environmental and Occupational Health Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Samiah S. Al-Angari
- Department of Environmental and Occupational Health Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
26
|
Severity of DSS-induced colitis is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88-NF-kB transcriptional networks. Sci Rep 2015; 5:17305. [PMID: 26610689 PMCID: PMC4661522 DOI: 10.1038/srep17305] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/28/2015] [Indexed: 02/06/2023] Open
Abstract
Indoleamine 2,3 -dioxygenase 1 (IDO1) catalyzes L-tryptophan to kynurenine in the first and rate-limiting step of tryptophan metabolism. IDO1 is expressed widely throughout the body, with especially high expression in colonic intestinal tissues. To examine the role of IDO1 in the colon, transcriptome analysis was performed in both Ido1−/− and Ido1+/+ mice. Gene set enrichment analysis identified the Inflammatory Response as the most significant category modulated by the absence of IDO1. This observation prompted us to further investigate the function of IDO1 in the development of tissue inflammation. By using DSS-induced experimental colitis mice models, we found that the disease in Ido1−/− mice was less severe than in Ido1+/+ mice. Pharmacological inhibition of IDO1 by L-1MT attenuated the severity of DSS-colitis as well. Transcriptome analyses revealed that pathways involving TLR and NF-kB signaling were significantly down-regulated by the absence of IDO1. Furthermore, dramatic changes in TLR and NF-kB signaling resulted in substantial changes in the expression of many inflammatory cytokines and chemokines. Numbers of inflammatory cells in colon and peripheral blood were reduced in IDO1 deficiency. These findings suggest that IDO1 plays important roles in producing inflammatory responses and modulating transcriptional networks during the development of colitis.
Collapse
|
27
|
Rios-Avila L, Coats B, Ralat M, Chi YY, Midttun Ø, Ueland PM, Stacpoole PW, Gregory JF. Pyridoxine supplementation does not alter in vivo kinetics of one-carbon metabolism but modifies patterns of one-carbon and tryptophan metabolites in vitamin B-6-insufficient oral contraceptive users. Am J Clin Nutr 2015; 102:616-25. [PMID: 26201817 PMCID: PMC4548178 DOI: 10.3945/ajcn.115.113159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low chronic vitamin B-6 status can occur in a subset of women who use oral contraceptives (OCs) with uncertain metabolic consequences. An insufficiency of cellular pyridoxal 5'-phosphate (PLP), which is the coenzyme form of vitamin B-6, may impair many metabolic processes including one-carbon and tryptophan metabolism. OBJECTIVE We investigated the effects of vitamin B-6 supplementation on the in vivo kinetics of one-carbon metabolism and the concentration of one-carbon and tryptophan metabolites in vitamin B-6-deficient OC users. DESIGN A primed, constant infusion of [(13)C5]methionine, [3-(13)C]serine, and [(2)H3]leucine was performed on 10 OC users (20-40 y old; plasma PLP concentrations <30 nmol/L) before and after 28 d of supplementation with 10 mg pyridoxine hydrochloric acid/d. In vivo fluxes of total homocysteine remethylation, the remethylation of homocysteine from serine, and rates of homocysteine and cystathionine production were assessed. Targeted metabolite profiling was performed, and data were analyzed by using orthogonal partial least-squares-discriminant analysis and paired t tests adjusted for multiple testing. RESULTS Pyridoxine supplementation increased the mean ± SD plasma PLP concentration from 25.8 ± 3.6 to 143 ± 58 nmol/L (P < 0.001) and decreased the leucine concentration from 103 ± 17 to 90 ± 20 nmol/L (P = 0.007) and glycine concentration from 317 ± 63 to 267 ± 58 nmol/L (P = 0.03). Supplementation did not affect in vivo rates of homocysteine remethylation or the appearance of homocysteine and cystathionine. A multivariate analysis showed a clear overall effect on metabolite profiles resulting from supplementation. Leucine, glycine, choline, cysteine, glutathione, trimethylamine N-oxide, and the ratios glycine:serine, 3-hydroxykynurenine:kynurenine, 3-hydroxykynurenine:3-hydroxyanthranilic acid, and 3-hydroxykynurenine:anthranilic acid were significant discriminating variables. CONCLUSIONS Consistent with previous vitamin B-6-restriction studies, fluxes of one-carbon metabolic processes exhibited little or no change after supplementation in low-vitamin B-6 subjects. In contrast, changes in the metabolic profiles after supplementation indicated perturbations in metabolism, suggesting functional vitamin B-6 deficiency. This study was registered at clinicaltrials.gov as NCT01128244.
Collapse
Affiliation(s)
| | - Bonnie Coats
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine
| | | | | | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine, Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
28
|
Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes. Mol Neurobiol 2015; 52:805-10. [PMID: 26055228 DOI: 10.1007/s12035-015-9232-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 10/23/2022]
Abstract
About 350 million people worldwide have type 2 diabetes (T2D). The major risk factor of T2D is impaired glucose tolerance (pre-diabetes) with 10 % of pre-diabetes subjects develop T2D every year. Understanding of mechanisms of development of T2D from pre-diabetes is important for prevention and treatment of T2D. Chronic stress and chronic low-grade inflammation are prominent risk factors for T2D development in pre-diabetic subjects. However, molecular mechanisms mediating effect of stress and inflammation on development of T2D from pre-diabetes remain unknown. One of such mechanisms might involve kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism. We suggested that chronic stress- or chronic low-grade inflammation-induced upregulation of formation of upstream KTP metabolites, KYN and 3-hydroxyKYN, combined with chronic stress- or chronic low-grade inflammation-induced deficiency of pyridoxal 5'-phosphate, a co-factor of downstream enzymes of KTP, triggers overproduction of diabetogenic downstream KYN metabolites, kynurenic acid (KYNA) and 3-hydroxyKYNA (also known as xanthurenic acid (XA)). As the initial assessment of our working hypothesis, we evaluated plasma levels of up- and downstream KP metabolites in the same samples of T2D patients. KYN, XA, and KYNA levels in plasma samples of T2D patients were higher than in samples of non-diabetic subjects. Our results provide further support of "kynurenine hypothesis of insulin resistance and its progression to T2D" that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress or chronic low-grade inflammation, is one of the mechanisms promoting development of T2D from pre-diabetes. Downstream metabolites of KP might serve as biomarkers of T2D and targets for clinical intervention.
Collapse
|
29
|
Abstract
Measures of B6 status are categorized as direct biomarkers and as functional biomarkers. Direct biomarkers measure B6 vitamers in plasma/serum, urine and erythrocytes, and among these plasma pyridoxal 5'-phosphate (PLP) is most commonly used. Functional biomarkers include erythrocyte transaminase activities and, more recently, plasma levels of metabolites involved in PLP-dependent reactions, such as the kynurenine pathway, one-carbon metabolism, transsulfuration (cystathionine), and glycine decarboxylation (serine and glycine). Vitamin B6 status is best assessed by using a combination of biomarkers because of the influence of potential confounders, such as inflammation, alkaline phosphatase activity, low serum albumin, renal function, and inorganic phosphate. Ratios between substrate-products pairs have recently been investigated as a strategy to attenuate such influence. These efforts have provided promising new markers such as the PAr index, the 3-hydroxykynurenine:xanthurenic acid ratio, and the oxoglutarate:glutamate ratio. Targeted metabolic profiling or untargeted metabolomics based on mass spectrometry allow the simultaneous quantification of a large number of metabolites, which are currently evaluated as functional biomarkers, using data reduction statistics.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, and the Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway;
| | | | | | | | | |
Collapse
|
30
|
3-Hydroxykynurenic Acid and Type 2 Diabetes: Implications for Aging, Obesity, Depression, Parkinson’s Disease, and Schizophrenia. TRYPTOPHAN METABOLISM: IMPLICATIONS FOR BIOLOGICAL PROCESSES, HEALTH AND DISEASE 2015. [DOI: 10.1007/978-3-319-15630-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Gostner JM, Becker K, Kurz K, Fuchs D. Disturbed Amino Acid Metabolism in HIV: Association with Neuropsychiatric Symptoms. Front Psychiatry 2015; 6:97. [PMID: 26236243 PMCID: PMC4500866 DOI: 10.3389/fpsyt.2015.00097] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, such as development of depression, fatigue, and cognitive impairment. Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Kathrin Becker
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Katharina Kurz
- Department of Internal Medicine VI, Medical University of Innsbruck , Innsbruck , Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
32
|
Rios-Avila L, Coats B, Chi YY, Midttun Ø, Ueland PM, Stacpoole PW, Gregory JF. Metabolite profile analysis reveals association of vitamin B-6 with metabolites related to one-carbon metabolism and tryptophan catabolism but not with biomarkers of inflammation in oral contraceptive users and reveals the effects of oral contraceptives on these processes. J Nutr 2015; 145:87-95. [PMID: 25527663 PMCID: PMC4264024 DOI: 10.3945/jn.114.201095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The use of oral contraceptives (OCs) has been associated with low plasma pyridoxal 5'-phosphate (PLP). The functional consequences are unclear. OBJECTIVES To determine whether functional vitamin B-6 insufficiency occurs in OC users and is attributable to OCs, we investigated the associations of PLP with metabolites of one-carbon metabolism, tryptophan catabolism, and inflammation in OC users, and evaluated the effects of OCs on these metabolites. METHODS Plasma metabolite concentrations were measured in 157 OC users (20-40 y of age). Associations between PLP and the metabolites were analyzed through use of generalized additive models and partial least squares-discriminant analysis (PLS-DA). Additionally, data from 111 of the 157 OC users were compared to previously reported data from 11 nonusers, at adequate and low vitamin B-6 status, with use of multivariate ANOVA. RESULTS PLP showed significant (P < 0.05) negative nonlinear association with homocysteine, glutathione, and ratios of asymmetric dimethylarginine to arginine, 3-hydroxykynurenine to 3-hydroxyanthranilic acid, and 3-hydroxykynurenine to kynurenic acid. PLS-DA supported these conclusions and identified 3-hydroxykynurenine and the 3-hydroxykynurenine-to-kynurenine ratio as discriminating biomarkers in women with PLP ≤30 nmol/L. Among the many differences, OC users had significantly higher plasma pyridoxal (157% at adequate and 195% at low vitamin B-6 status), 4-pyridoxic acid (154% at adequate and 300% at low vitamin B-6 status), xanthurenic acid (218% at low vitamin B-6 status), 3-hydroxyanthranilic acid (176% at adequate and 166% at low vitamin B-6 status), quinolinic acid (127% at low vitamin B-6 status), and nicotinamide (197% at low vitamin B-6 status). Biomarkers of inflammation were not associated with PLP, and no differences were found between the 2 groups. CONCLUSIONS PLP is associated with biomarkers of one-carbon metabolism and tryptophan catabolism but not with biomarkers of inflammation in OC users. Independent of vitamin B-6 status, OCs have effects on metabolites and ratios of one-carbon metabolism and tryptophan catabolism but not on biomarkers of inflammation. This study was registered at clinicaltrials.gov as NCT01128244. The study from which data for nonusers was derived was registered as NCT00877812.
Collapse
Affiliation(s)
| | - Bonnie Coats
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | | | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine,Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
33
|
da Silva VR, Rios-Avila L, Lamers Y, Ralat MA, Midttun Ø, Quinlivan EP, Garrett TJ, Coats B, Shankar MN, Percival SS, Chi YY, Muller KE, Ueland PM, Stacpoole PW, Gregory JF. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women. J Nutr 2013; 143:1719-27. [PMID: 23966327 PMCID: PMC3796343 DOI: 10.3945/jn.113.180588] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022] Open
Abstract
Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (<0.35 mg/d). liquid chromatography-tandem mass spectrometry analysis of the compounds relevant to one-carbon metabolism showed that vitamin B-6 restriction yielded increased cystathionine (53% pre- and 76% postprandial; P < 0.0001) and serine (12% preprandial; P < 0.05), and lower creatine (40% pre- and postprandial; P < 0.0001), creatinine (9% postprandial; P < 0.05), and dimethylglycine (16% postprandial; P < 0.05) relative to the vitamin B-6-adequate state. In the tryptophan pathway, vitamin B-6 restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P < 0.01) and higher 3-hydroxykynurenine (39% pre- and 34% postprandial; P < 0.01). Multivariate ANOVA analysis showed a significant global effect of vitamin B-6 restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.
Collapse
Affiliation(s)
- Vanessa R. da Silva
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Luisa Rios-Avila
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Yvonne Lamers
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Maria A. Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | - Eoin P. Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute
| | - Timothy J. Garrett
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | - Bonnie Coats
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | | | - Susan S. Percival
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W. Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| |
Collapse
|
34
|
Ciorba MA. Kynurenine pathway metabolites: relevant to vitamin B-6 deficiency and beyond. Am J Clin Nutr 2013; 98:863-4. [PMID: 23985806 PMCID: PMC4498264 DOI: 10.3945/ajcn.113.072025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew A Ciorba
- Division of Gastroenterology, Inflammatory Bowel Diseases Program, Washington University in St Louis, St Louis, MO
| |
Collapse
|