1
|
Ramos-Lopez O. Personalizing Dietary Polyphenols for Health Maintenance and Disease Management: A Nutrigenetic Approach. Curr Nutr Rep 2025; 14:29. [PMID: 39907890 DOI: 10.1007/s13668-025-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF THE REVIEW This literature review provides examples of the influence of certain genetic variants on health outcomes after dietary polyphenol consumption or supplementation. Available evidence is organized according to the major classes of polyphenols (flavonoids, phenolic acids, stilbenes, lignans, and tannins) and their derived subgroups. RECENT FINDINGS Nutrigenetic studies have identified mainly single nucleotide polymorphisms located within genes involved in the biotransformation of phenolic acids, stilbenes, lignans and several flavonoid molecules. These genetic variants may affect polyphenol metabolism rates and related predisposition to chronic non-communicable diseases. Moreover, differential cardiometabolic outcomes upon polyphenol supplementation as dietary sources or nutraceuticals have been modulated by specific genotypes. Although current evidence is still limited, growing gene-polyphenol interactions are contributing to systematically elucidate the biological functions of polyphenols; determine individual risk phenotypes to specific diseases or particular responses upon polyphenol exposure; and facilitate the prescription of personalized genotype-based doses of dietary polyphenols to optimize related health benefits. Additionally, the integration of genetics with other omics insights (epigenomics, transcriptomics, metagenomics, and metabolomics) trough biological systems and high-dimensional data analyses and interpretation may provide a more comprehensive understanding of polyphenol metabolism for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, BC, 22390, México.
| |
Collapse
|
2
|
da C. Pinaffi-Langley AC, Tarantini S, Hord NG, Yabluchanskiy A. Polyphenol-Derived Microbiota Metabolites and Cardiovascular Health: A Concise Review of Human Studies. Antioxidants (Basel) 2024; 13:1552. [PMID: 39765880 PMCID: PMC11673714 DOI: 10.3390/antiox13121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Polyphenols, plant-derived secondary metabolites, play crucial roles in plant stress responses, growth regulation, and environmental interactions. In humans, polyphenols are associated with various health benefits, particularly in cardiometabolic health. Despite growing evidence of polyphenols' health-promoting effects, their mechanisms remain poorly understood due to high interindividual variability in bioavailability and metabolism. Recent research highlights the bidirectional relationship between dietary polyphenols and the gut microbiota, which can influence polyphenol metabolism and, conversely, be modulated by polyphenol intake. In this concise review, we summarized recent advances in this area, with a special focus on isoflavones and ellagitannins and their corresponding metabotypes, and their effect on cardiovascular health. Human observational studies published in the past 10 years provide evidence for a consistent association of isoflavones and ellagitannins and their metabotypes with better cardiovascular risk factors. However, interventional studies with dietary polyphenols or isolated microbial metabolites indicate that the polyphenol-gut microbiota interrelationship is complex and not yet fully elucidated. Finally, we highlighted various pending research questions that will help identify effective targets for intervention with precision nutrition, thus maximizing individual responses to dietary and lifestyle interventions and improving human health.
Collapse
Affiliation(s)
- Ana Clara da C. Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, 1085 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Ahmad S, Ahsan F, Ansari JA, Mahmood T, Bano S, Shahanawaz M. Bioflavonoid Daidzein: Therapeutic Insights, Formulation Advances, and Future Directions. Drug Res (Stuttg) 2024; 74:433-455. [PMID: 39299251 DOI: 10.1055/a-2379-6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bioflavonoids, are a diverse group of phytonutrients that are widely distributed in fruits, vegetables, grains, teas, and certain medicinal herbs. They are characterized by their antioxidant properties and play essential roles in plant biology, such as providing color to fruits and flowers, protecting plants from environmental stresses. Daidzein, a bioflavonoid classified under natural products, is sourced from plants like soybeans and legumes. It exists in forms such as glycosides and aglycones, with equol and trihydroxy isoflavone being key metabolites formed by gut bacteria. Known for its wide-ranging therapeutic potential, daidzein has shown effects on cardiovascular health, cancer, diabetes, skin conditions, osteoporosis, and neurodegenerative disorders. Its mechanisms include interaction with estrogen receptors, antioxidative and anti-inflammatory properties, and modulation of apoptosis and cell cycles. Recent advances in formulation technologies aimed at enhancing daidzein's bioavailability and efficacy are critically evaluated, including nanoparticle-based delivery systems and encapsulation strategies. Researchers have developed advanced formulations like nanoparticles and liposomes to enhance daidzein's solubility, stability, bioavailability, and targeted delivery. Considered a promising nutraceutical, daidzein warrants further exploration into its molecular actions and safety profile to fully realize its clinical potential. This review offers a succinct overview encompassing therapeutic benefits, chemical characteristics, historical uses, toxicology insights, recent advancements in delivery systems, and future directions for daidzein research.
Collapse
Affiliation(s)
- Sana Ahmad
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Javed Akhtar Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Shahzadi Bano
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Mo Shahanawaz
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| |
Collapse
|
4
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
5
|
Ahmad S, Ahsan F, Ansari JA, Mahmood T, Shamim A, Bano S, Tiwari R, Ansari VA, Shafiurrahman, Kesari M. A review on daidzein as food supplement: Exploring its phytopharmacological and preclinical status. EFOOD 2024; 5. [DOI: 10.1002/efd2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/04/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractA natural product is a compound or substance originating from a living organism and found in nature. Daidzein belongs to the class of bioflavonoids, which are plant‐derived compounds with various biological activities. Predominantly exists in soybeans and several legumes in either glycoside or aglycone forms. Its primary chemical constituents include metabolites like equol and trihydroxy isoflavone, generated through the influence of intestinal bacteria. Daidzein has exhibited pharmacological impacts on different ailments, including cardiovascular disease, cancer, diabetes, skin disorders, osteoporosis, and neurodegenerative disorders. Daidzein's mechanisms of action involve interactions with estrogen receptors, as well as its antioxidant and anti‐inflammatory properties, along with its ability to regulate apoptosis and the cell cycle. In efforts to enhance its solubility, stability, bioavailability, and targeting, daidzein has been innovatively formulated into novel dosage forms, including nanoparticles, liposomes, microemulsions, and nanosuspensions. As a promising nutraceutical, daidzein presents multiple health benefits and holds potential for various clinical applications. Additional investigation is required to comprehend the molecular mechanisms of this phenomenon and assess its safety. The purpose of this review is to provide a short description of the therapeutic properties, chemical composition, traditional use, toxicology profile, new insights on the dosage form, and future prospects of daidzein.
Collapse
Affiliation(s)
- Sana Ahmad
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Farogh Ahsan
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | | | - Tarique Mahmood
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Arshiya Shamim
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Shahzadi Bano
- Department of Chemistry Integral University Lucknow Uttar Pradesh India
| | - Reshu Tiwari
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | | | - Shafiurrahman
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Mithilesh Kesari
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| |
Collapse
|
6
|
Ullah A, Mostafa NM, Halim SA, Elhawary EA, Ali A, Bhatti R, Shareef U, Al Naeem W, Khalid A, Kashtoh H, Khan A, Al-Harrasi A. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytother Res 2024; 38:4467-4501. [PMID: 39023299 DOI: 10.1002/ptr.8292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Myocardial infarction (MI) is considered one of the most common cardiac diseases and major cause of death worldwide. The prevalence of MI and MI-associated mortality have been increasing in recent years due to poor lifestyle habits viz. residency, obesity, stress, and pollution. Synthetic drugs for the treatment of MI provide good chance of survival; however, the demand to search more safe, effective, and natural drugs is increasing. Plants provide fruitful sources for powerful antioxidant and anti-inflammatory agents for prevention and/or treatment of MI. However, many plant extracts lack exact information about their possible dosage, toxicity and drug interactions which may hinder their usefulness as potential treatment options. Phytoconstituents play cardioprotective role by either acting as a prophylactic or adjuvant therapy to the concurrently used synthetic drugs to decrease the dosage or relief the side effects of such drugs. This review highlights the role of different herbal formulations, examples of plant extracts and types of several isolated phytoconstituents (phenolic acids, flavonoids, stilbenes, alkaloids, phenyl propanoids) in the prevention of MI with reported activities. Moreover, their possible mechanisms of action are also discussed to guide future research for the development of safer substitutes to manage MI.
Collapse
Affiliation(s)
- Aman Ullah
- Department of Pharmacy, Saba Medical Center, Abu Dhabi, UAE
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ain Ali
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rohail Bhatti
- Department of Pharmacology and Psychology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Usman Shareef
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Waiel Al Naeem
- Clinical Pharmacy Department, Sheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
7
|
Ubaid M, Salauddin, Shadani MA, Kawish SM, Albratty M, Makeen HA, Alhazmi HA, Najmi A, Zoghebi K, Halawi MA, Ali A, Alam MS, Iqbal Z, Mirza MA. Daidzein from Dietary Supplement to a Drug Candidate: An Evaluation of Potential. ACS OMEGA 2023; 8:32271-32293. [PMID: 37780202 PMCID: PMC10538961 DOI: 10.1021/acsomega.3c03741] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Daidzein (DDZ) is a well-known nutraceutical supplement belonging to the class of isoflavones. It is isolated from various sources such as alfalfa, soybean, and red clover. It demonstrates a broad array of pharmacological/beneficial properties such as cardiovascular exercise, cholesterol reduction, and anticancer, antifibrotic, and antidiabetic effects, which make it effective in treating a wide range of diseases. Its structure and operation are the same as those of human estrogens, which are important in preventing osteoporosis, cancer, and postmenopausal diseases. It is thus a promising candidate for development as a phytopharmaceutical. Addressing safety, efficacy, and physicochemical properties are the primary prerequisites. DDZ is already ingested every day in varying amounts, so there should not be a significant safety risk; however, each indication requires a different dose to be determined. Some clinical trials are already being conducted globally to confirm its safety, efficacy, and therapeutic potential. Furthermore, as a result of its therapeutic influence on health, in order to establish intellectual property, patents are utilized. In light of the vast potential of eugenol, this review presents a detailed data collection on DDZ to substantiate the claim to develop it in the therapeutic category.
Collapse
Affiliation(s)
- Mohammed Ubaid
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Salauddin
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Andalib Shadani
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - S. M. Kawish
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Albratty
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy
Practice Research Unit, Department of Clinical Pharmacy, College of
Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance
Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medical
Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A. Halawi
- Pharmacy
Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Department
of Haematology, Division of Cancer & Genetics School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, U.K.
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Md Shamsher Alam
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
8
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
9
|
Singh S, Grewal S, Sharma N, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Mohan S, Bungau SG, Bumbu A. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules 2023; 28:1765. [PMID: 36838751 PMCID: PMC9958968 DOI: 10.3390/molecules28041765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Herbal drugs have been attracting much scientific interest in the last few decades and nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous plants, such as the soybean and mung bean, and its IUPAC name is 4',7-dihydroxyisoflavone. This compound has received great attention as a fascinating pharmacophore with remarkable potential for the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacokinetics of DAI has been elucidated. The pharmacological applications in treatment of several disorders like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety, and inflammation with their mechanism of action are explained. Furthermore, this review article comprehensively focuses to provide up-to-date information about nanotechnology-based formulations which have been investigated for DAI in preceding years which includes polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug delivery systems.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Sonam Grewal
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Tapan Behl
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15081, Peru
| | - Syam Mohan
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602117, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Adrian Bumbu
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
10
|
Therapeutic and Nutraceutical Effects of Polyphenolics from Natural Sources. Molecules 2022; 27:molecules27196225. [PMID: 36234762 PMCID: PMC9572829 DOI: 10.3390/molecules27196225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of cardiovascular disease, oxidative stress-related complications, and chronic age-related illnesses is gradually increasing worldwide. Several causes include the ineffectiveness of medicinal treatment therapies, their toxicity, their inability to provide radical solutions in some diseases, and the necessity of multiple drug therapy in certain chronic diseases. It is therefore necessary for alternative treatment methods to be sought. In this review, polyphenols were identified and classified according to their chemical structure, and the sources of these polyphenol molecules are indicated. The cardioprotective, ROS scavenging, anti-aging, anticancer properties of polyphenolic compounds have been demonstrated by the results of many studies, and these natural antioxidant molecules are potential alternative therapeutic agents.
Collapse
|
11
|
Duan Y, Qi Q, Liu Z, Zhang M, Liu H. Soy consumption and serum uric acid levels: A systematic review and meta-analysis. Front Nutr 2022; 9:975718. [PMID: 36118757 PMCID: PMC9479323 DOI: 10.3389/fnut.2022.975718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/09/2022] Open
Abstract
Background Soy consumption has health benefits, but the relationship between soy and uric acid remains uncertain. This meta-analysis and systematic review evaluated the effects of soy intake on plasma uric acid. Methods PubMed, Embase, CNKI, and the Cochrane Library were searched for studies evaluating the effects of soy, soy products, soy protein, and soy isoflavones on uric acid levels. The primary outcome was serum or plasma uric acid concentration. Study quality was evaluated by the Cochrane Collaboration and SYRCLE risk-of-bias tools. Results A total of 17 studies were included. Qualitative analysis of three human clinical studies of acute effects revealed that soy consumption increased serum uric acid concentration; however, soy-derived products, including tofu, bean curd cake, and dried bean curd sticks, had no significant effect on serum uric acid. A meta-analysis of five long-term human studies (10 data sets) revealed that soy protein and soy isoflavones had no significant effects on uric acid levels [weighted mean difference (WMD) = -2.11; 95% confidence interval (CI): -8.78, 4.55; p = 0.53]. However, most epidemiological data revealed that soy intake is inversely associated with uric acid levels. Meta-analysis of nine animal trials (29 data sets) revealed that soy protein and soy isoflavones significantly reduced serum uric acid concentrations (vs. controls; MD = -38.02; 95% CI: -50.60, -25.44; p < 0.001). Conclusion Soy and its products have different effects on serum uric acid. Soy products like tofu, bean curd cake, and dried bean curd sticks could be high-quality protein sources for individuals with hyperuricemia or gout. It can be beneficial to nutritionists and healthcare decision-makers reconsider their conceptions about the relationship between soy and uric acid levels according to the latest and further scientific study results. Systematic review registration [www.crd.york.ac.uk/PROSPERO], identifier [CRD42022331855].
Collapse
Affiliation(s)
- Ying Duan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Qi Qi
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Zihao Liu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Min Zhang
- School of Health Management, Bengbu Medical College, Bengbu, Anhui, China
| | - Huaqing Liu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
12
|
Effects of the Treatment with Flavonoids on Metabolic Syndrome Components in Humans: A Systematic Review Focusing on Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23158344. [PMID: 35955475 PMCID: PMC9369232 DOI: 10.3390/ijms23158344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Diets high in bioactive compounds, such as polyphenols, have been used to mitigate metabolic syndrome (MetS). Polyphenols are a large group of naturally occurring bioactive compounds, classified into two main classes: non-flavonoids and flavonoids. Flavonoids are distributed in foods, such as fruits, vegetables, tea, red wine, and cocoa. Studies have already demonstrated the benefits of flavonoids on the cardiovascular and nervous systems, as well as cancer cells. The present review summarizes the results of clinical studies that evaluated the effects of flavonoids on the components of the MetS and associated complications when offered as supplements over the long term. The results show that flavonoids can significantly modulate several metabolic parameters, such as lipid profile, blood pressure, and blood glucose. Only theaflavin and catechin were unable to affect metabolic parameters. Moreover, only body weight and body mass index were unaltered. Thus, the evidence presented in this systematic review offers bases in support of a flavonoid supplementation, held for at least 3 weeks, as a strategy to improve several metabolic parameters and, consequently, reduce the risk of diseases associated with MetS. This fact becomes stronger due to the rare side effects reported with flavonoids.
Collapse
|
13
|
Feng S, Wu S, Xie F, Yang CS, Shao P. Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Alshehri MM, Sharifi-Rad J, Herrera-Bravo J, Jara EL, Salazar LA, Kregiel D, Uprety Y, Akram M, Iqbal M, Martorell M, Torrens-Mas M, Pons DG, Daştan SD, Cruz-Martins N, Ozdemir FA, Kumar M, Cho WC. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6331630. [PMID: 34539970 PMCID: PMC8448605 DOI: 10.1155/2021/6331630] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Daidzein is a phytoestrogen isoflavone found in soybeans and other legumes. The chemical composition of daidzein is analogous to mammalian estrogens, and it could be useful with a dual-directional purpose by substituting/hindering with estrogen and estrogen receptor (ER) complex. Hence, daidzein puts forth shielding effects against a great number of diseases, especially those associated with the control of estrogen, such as breast cancer, diabetes, osteoporosis, and cardiovascular disease. However, daidzein also has other ER-independent biological activities, such as oxidative damage reduction acting as an antioxidant, immune regulator as an anti-inflammatory agent, and apoptosis regulation, directly linked to its potential anticancer effects. In this sense, the present review is aimed at providing a deepen analysis of daidzein pharmacodynamics and its implications in human health, from its best-known effects alleviating postmenopausal symptoms to its potential anticancer and antiaging properties.
Collapse
Affiliation(s)
- Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Evelyn L. Jara
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Yadav Uprety
- Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Margalida Torrens-Mas
- Translational Research In Aging and Longevity (TRIAL Group), Health Research Institute of the Balearic Islands (IdISBA), 07122 Palma, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma, Spain
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
15
|
Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants (Basel) 2021; 10:antiox10071064. [PMID: 34209224 PMCID: PMC8301030 DOI: 10.3390/antiox10071064] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Soybeans are rich in proteins and lipids and have become a staple part of the human diet. Besides their nutritional excellence, they have also been shown to contain various functional components, including isoflavones, and have consequently received increasing attention as a functional food item. Isoflavones are structurally similar to 17-β-estradiol and bind to estrogen receptors (ERα and ERβ). The estrogenic activity of isoflavones ranges from a hundredth to a thousandth of that of estrogen itself. Isoflavones play a role in regulating the effects of estrogen in the human body, depending on the situation. Thus, when estrogen is insufficient, isoflavones perform the functions of estrogen, and when estrogen is excessive, isoflavones block the estrogen receptors to which estrogen binds, thus acting as an estrogen antagonist. In particular, estrogen antagonistic activity is important in the breast, endometrium, and prostate, and such antagonistic activity suppresses cancer occurrence. Genistein, an isoflavone, has cancer-suppressing effects on estrogen receptor-positive (ER+) cancers, including breast cancer. It suppresses the function of enzymes such as tyrosine protein kinase, mitogen-activated kinase, and DNA polymerase II, thus inhibiting cell proliferation and inducing apoptosis. Genistein is the most biologically active and potent isoflavone candidate for cancer prevention. Furthermore, among the various physiological functions of isoflavones, they are best known for their antioxidant activities. S-Equol, a metabolite of genistein and daidzein, has strong antioxidative effects; however, the ability to metabolize daidzein into S-equol varies based on racial and individual differences. The antioxidant activity of isoflavones may be effective in preventing dementia by inhibiting the phosphorylation of Alzheimer's-related tau proteins. Genistein also reduces allergic responses by limiting the expression of mast cell IgE receptors, which are involved in allergic responses. In addition, they have been known to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. Further, it also has positive effects on menstrual irregularity in non-menopausal women and relieving menopausal symptoms in middle-aged women. Recently, soybean consumption has shown steep increasing trend in Western countries where the intake was previously only 1/20-1/50 of that in Asian countries. In this review, I have dealt with the latest research trends that have shown substantial interest in the biological efficacy of isoflavones in humans and plants, and their related mechanisms.
Collapse
|
16
|
Recent Molecular Mechanisms and Beneficial Effects of Phytochemicals and Plant-Based Whole Foods in Reducing LDL-C and Preventing Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10050784. [PMID: 34063371 PMCID: PMC8157003 DOI: 10.3390/antiox10050784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism leads to the development of hyperlipidemia, a common cause of multiple chronic disorders, including cardiovascular disease (CVD), obesity, diabetes, and cerebrovascular disease. Low-density lipoprotein cholesterol (LDL-C) currently remains the primary target for treatment of hyperlipidemia. Despite the advancement of treatment and prevention of hyperlipidemia, medications used to manage hyperlipidemia are limited to allopathic drugs, which present certain limitations and adverse effects. Increasing evidence indicates that utilization of phytochemicals and plant-based whole foods is an alternative and promising strategy to prevent hyperlipidemia and CVD. The current review focuses on phytochemicals and their pharmacological mode of actions for the regulation of LDL-C and prevention of CVD. The important molecular mechanisms illustrated in detail in this review include elevation of reverse cholesterol transport, inhibition of intestinal cholesterol absorption, acceleration of cholesterol excretion in the liver, and reduction of cholesterol synthesis. Moreover, the beneficial effects of plant-based whole foods, such as fresh fruits, vegetables, dried nuts, flax seeds, whole grains, peas, beans, vegan diets, and dietary fibers in LDL-C reduction and cardiovascular health are summarized. This review concludes that phytochemicals and plant-based whole foods can reduce LDL-C levels and lower the risk for CVD.
Collapse
|
17
|
Domínguez-López I, Yago-Aragón M, Salas-Huetos A, Tresserra-Rimbau A, Hurtado-Barroso S. Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan: A Review. Nutrients 2020; 12:E2456. [PMID: 32824177 PMCID: PMC7468963 DOI: 10.3390/nu12082456] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary phytoestrogens are bioactive compounds with estrogenic activity. With the growing popularity of plant-based diets, the intake of phytoestrogen-rich legumes (especially soy) and legume-derived foods has increased. Evidence from preclinical studies suggests these compounds may have an effect on hormones and health, although the results of human trials are unclear. The effects of dietary phytoestrogens depend on the exposure (phytoestrogen type, matrix, concentration, and bioavailability), ethnicity, hormone levels (related to age, sex, and physiological condition), and health status of the consumer. In this review, we have summarized the results of human studies on dietary phytoestrogens with the aim of assessing the possible hormone-dependent outcomes and health effects of their consumption throughout a lifespan, focusing on pregnancy, childhood, adulthood, and the premenopausal and postmenopausal stages. In pregnant women, an improvement of insulin metabolism has been reported in only one study. Sex hormone alterations have been found in the late stages of childhood, and goitrogenic effects in children with hypothyroidism. In premenopausal and postmenopausal women, the reported impacts on hormones are inconsistent, although beneficial goitrogenic effects and improved glycemic control and cardiovascular risk markers have been described in postmenopausal individuals. In adult men, different authors report goitrogenic effects and a reduction of insulin in non-alcoholic fatty liver patients. Further carefully designed studies are warranted to better elucidate the impact of phytoestrogen consumption on the endocrine system at different life stages.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
| | - Maria Yago-Aragón
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Sara Hurtado-Barroso
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
A comprehensive review of clinical studies with herbal medicine on polycystic ovary syndrome (PCOS). ACTA ACUST UNITED AC 2019; 27:863-877. [PMID: 31741280 DOI: 10.1007/s40199-019-00312-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a frequent medical condition characterized by both metabolic and reproductive disorders. Different pharmaceutical treatments have been proposed for PCOS. However, side effects of long-term treatments and their probable low efficacy have made complementary and alternative treatments a valuable option. Recent reports have indicated the increased use of complementary treatments. Herbal medicine, as part of complementary medicine, was find introduced in traditional Persian and Chinese medicine. Medicinal herbs have used for a long time in the treatment of gynecological and infertility problems of PCOS patients. In this study, we aimed to review herbal medicines used for PCOS worldwide. METHODS PubMed, Embase, Cochrane, and Scopus databases were searched for clinical trials and Randomized Controlled Trials based on related keywords. Data were collected from 1990 to 2019. RESULTS According to a multitude of studies, a wide spectrum of herbs can be used to improve various aspects of PCOS. Herbs such as Cinnamomum verum, Trigonella foenum-graecum L., and Vitex agnus-castus can impact on menstrual and ovulatory dysfunctions, obesity, insulin resistance, lipid-metabolism dysfunction, and androgen excess-related conditions. CONCLUSION Some plants as natural remedies may have beneficial effects on improving different aspects of PCOS; but further studies are needed to investigate their mechanisms and safety.
Collapse
|
19
|
Wang Q, Liu W, Wang J, Liu H, Chen Y. Preparation and Pharmacokinetic Study of Daidzein Long-Circulating Liposomes. NANOSCALE RESEARCH LETTERS 2019; 14:321. [PMID: 31617108 PMCID: PMC6794334 DOI: 10.1186/s11671-019-3164-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/30/2019] [Indexed: 05/03/2023]
Abstract
In this study, daidzein long-circulating liposomes (DLCL) were prepared using the ultrasonication and lipid film-hydration method. The optimized preparation conditions by the orthogonal design was as follows: 55 to 40 for the molar ratio of soybean phosphatidylcholine (SPC) to cholesterol, 1 to 10 for the mass ratio of daidzein to total lipid (SPC and cholesterol) (w:w), the indicated concentration of 5% DSPE-mPEG2000 (w:w), 50 °C for the hydration temperature, and 24 min for the ultrasonic time. Under these conditions, the encapsulation efficiency and drug loading of DLCL were 85.3 ± 3.6% and 8.2 ± 1.4%, respectively. The complete release times of DLCL in the medium of pH 1.2 and pH 6.9 increased by four- and twofold of that of free drugs, respectively. After rats were orally administered, a single dose of daidzein (30 mg/kg) and DLCL (containing equal dose of daidzein), respectively, and the MRT0-t (mean residence time, which is the time required for the elimination of 63.2% of drug in the body), t1/2 (the elimination half-life, which is the time required to halve the plasma drug concentration of the terminal phase), and AUC0-t (the area under the plasma drug concentration-time curve, which represents the total absorption after a single dose and reflects the drug absorption degree) of daidzein in DLCL group, increased by 1.6-, 1.8- and 2.5-fold as compared with those in the free group daidzein. Our results indicated that DLCL could not only reduce the first-pass effect of daidzein to promote its oral absorption, but also prolong its mean resident time to achieve the slow-release effect.
Collapse
Affiliation(s)
- Qiao Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, National &Local joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062 China
| | - Wenjin Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, National &Local joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062 China
| | - Junjun Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, National &Local joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062 China
| | - Hong Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, National &Local joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062 China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, National &Local joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062 China
| |
Collapse
|
20
|
Peirotén Á, Bravo D, Landete JM. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Crit Rev Food Sci Nutr 2019; 60:1922-1937. [PMID: 31161778 DOI: 10.1080/10408398.2019.1622505] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytoestrogens (PE) are compounds found in plants such as soy (isoflavones), flax seeds and cereals (lignans) and pomegranates (ellagitannins). PE have shown estrogenic/antiestrogenic, antioxidant, anti-inflammatory, antineoplastic and apoptotic activities. The human studies are showing promising although inconsistent results about the beneficial effects of PE on ameliorating the menopausal symptoms or reducing the risk of certain cancers, cardiovascular disease or diabetes. The effects of PE on the organism are mediated by the intestinal microbiota, which transforms them into bioactive PE such as genistein, equol, enterolignans and certain urolithins. In this work, we review the most recent findings about the bacteria able to metabolize PE, together with the latest studies on the effects of PE on health. In addition, we describe the possible factors hindering the demonstration of the beneficial effect of PE on health, evincing the importance of measuring the actual circulating PE in order to encompass the variability of PE metabolism due to the intestinal microbiota. With this in mind, we also explore an approach to ensure the access to bioactive PE.
Collapse
Affiliation(s)
- Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Daniel Bravo
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José M Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
21
|
Sekikawa A, Ihara M, Lopez O, Kakuta C, Lopresti B, Higashiyama A, Aizenstein H, Chang YF, Mathis C, Miyamoto Y, Kuller L, Cui C. Effect of S-equol and Soy Isoflavones on Heart and Brain. Curr Cardiol Rev 2019; 15:114-135. [PMID: 30516108 PMCID: PMC6520578 DOI: 10.2174/1573403x15666181205104717] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Observational studies in Asia show that dietary intake of soy isoflavones had a significant inverse association with coronary heart disease (CHD). A recent randomized controlled trial (RCT) of soy isoflavones on atherosclerosis in the US, however, failed to show their benefit. The discrepancy may be due to the much lower prevalence of S-equol producers in Westerners: Only 20-30% of Westerners produce S-equol in contrast to 50-70% in Asians. S-equol is a metabolite of dietary soy isoflavone daidzein by gut microbiome and possesses the most antiatherogenic properties among all isoflavones. Several short-duration RCTs documented that soy isoflavones improves arterial stiffness. Accumulating evidence shows that both atherosclerosis and arterial stiffness are positively associated with cognitive decline/dementia. Therefore, potentially, soy isoflavones, especially S-equol, are protective against cognitive decline/dementia. METHODS/RESULTS This narrative review of clinical and epidemiological studies provides an overview of the health benefits of soy isoflavones and introduces S-equol. Second, we review recent evidence on the association of soy isoflavones and S-equol with CHD, atherosclerosis, and arterial stiffness as well as the association of atherosclerosis and arterial stiffness with cognitive decline/ dementia. Third, we highlight recent studies that report the association of soy isoflavones and S-equol with cognitive decline/dementia. Lastly, we discuss the future directions of clinical and epidemiological research on the relationship of S-equol and CHD and dementia. CONCLUSIONS Evidence from observational studies and short-term RCTs suggests that S-equol is anti-atherogenic and improves arterial stiffness and may prevent CHD and cognitive impairment/ dementia. Well-designed long-term (≥ 2years) RCTs should be pursued.
Collapse
Affiliation(s)
- Akira Sekikawa
- Address correspondence to this author at the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Suite 336, Pittsburgh, PA 15213, USA; Tel: 412-383-1063; Fax: 412-648-4401;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang S, Wang J, Zhao H, Luo Y. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases. Brain Circ 2018; 4:174-184. [PMID: 30693344 PMCID: PMC6329217 DOI: 10.4103/bc.bc_13_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
As the worldwide population ages, the morbidity of neurodegenerative, cardiovascular, cerebrovascular, and endocrine diseases, such as diabetes and osteoporosis, continues to increase. The etiology of geriatric diseases is complex, involving the interaction of genes and the environment, which makes effective treatment challenging. Traditional Chinese medicine, unlike Western medicine, uses diverse bioactive ingredients to target multiple signaling pathways in geriatric diseases. Radix puerariae is one of the most widely used ancient traditional Chinese medicines and is also consumed as food. This review summarizes the evidence from in vivo and in vitro studies of the pharmacological effects of the main active components of the tuber of Radix puerariae on geriatric diseases.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Haiping Zhao
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Yumin Luo
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
23
|
Liang H, Xu L, Zhao X, Bai J, Chen Z, Zhou S, Song X, Ouyang K, Pan K, Liu C, Qu M. Effect of daidzein on fermentation parameters and bacterial community of finishing Xianan cattle. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1431965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Huan Liang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Jun Bai
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Zuodong Chen
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Shan Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
24
|
Wang S, Wang Y, Pan MH, Ho CT. Anti-obesity molecular mechanism of soy isoflavones: weaving the way to new therapeutic routes. Food Funct 2017; 8:3831-3846. [PMID: 29043346 DOI: 10.1039/c7fo01094j] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is ringing alarm bells globally. Advances in food science and nutrition research have been devoted to identifying food components that exert anti-obesity effects, as well as investigating the molecular mechanisms by which they modulate the progression of obesity. Soy foods have attracted much interest as high-protein components of the human diet and as unique sources of isoflavones. As they have similar chemical structures to endogenous estrogens, isoflavones are believed to interact with intracellular estrogen receptors, which results in reductions in the accumulation of lipids and the distribution of adipose tissue. Both in vitro and in vivo studies have revealed other signaling pathways in which isoflavones are involved in the inhibition of adipogenesis and lipogenesis by interacting with various transcription factors and upstream signaling molecules. Although the biological mechanisms that cause the biphasic effects of isoflavones and various controversial results remain unknown, it is noteworthy that isoflavones exhibit pleiotropic effects in the human body to regulate metabolism and balance, which may potentially prevent and treat obesity.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
25
|
Reger MK, Zollinger TW, Liu Z, Jones JF, Zhang J. Dietary intake of isoflavones and coumestrol and the risk of prostate cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Int J Cancer 2017; 142:719-728. [DOI: 10.1002/ijc.31095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Michael K. Reger
- Department of Epidemiology; Indiana University Richard M. Fairbanks School of Public Health; Indianapolis IN
- College of Health Professions; Ferris State University; Big Rapids MI
| | - Terrell W. Zollinger
- Department of Epidemiology; Indiana University Richard M. Fairbanks School of Public Health; Indianapolis IN
| | - Ziyue Liu
- Department of Biostatistics; Indiana University Richard M. Fairbanks School of Public Health and School of Medicine; Indianapolis IN
| | - Josette F. Jones
- Department of Health Informatics, School of Informatics and Computing; Indiana University-Purdue University Indianapolis; Indianapolis IN
| | - Jianjun Zhang
- Department of Epidemiology; Indiana University Richard M. Fairbanks School of Public Health; Indianapolis IN
- Indiana University Melvin and Bren Simon Cancer Center; Indianapolis IN
| |
Collapse
|
26
|
Qin Y, Ran L, Wang J, Yu L, Lang HD, Wang XL, Mi MT, Zhu JD. Capsaicin Supplementation Improved Risk Factors of Coronary Heart Disease in Individuals with Low HDL-C Levels. Nutrients 2017; 9:nu9091037. [PMID: 28930174 PMCID: PMC5622797 DOI: 10.3390/nu9091037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
Low high-density lipoprotein cholesterol (HDL-C) is associated with an increased risk of coronary heart disease (CHD). This study aimed to evaluate the effects of capsaicin intervention on the serum lipid profile in adults with low HDL-C. In a randomized, double-blind, controlled clinical trial, 42 eligible subjects were randomly assigned to the capsaicin (n = 21, 4 mg of capsaicin daily) or to the control group (n = 21, 0.05 mg of capsaicin daily) and consumed two capsaicin or control capsules, which contained the powder of the skin of different peppers, twice daily for three months. Thirty-five subjects completed the trial (18 in the capsaicin group and 17 in the control group). The baseline characteristics were similar between the two groups. Compared with the control group, fasting serum HDL-C levels significantly increased to 1.00 ± 0.13 mmol/L from 0.92 ± 0.13 mmol/L in the capsaicin group (p = 0.030), while levels of triglycerides and C-reactive protein and phospholipid transfer protein activity moderately decreased (all p < 0.05). Other lipids, apolipoproteins, glucose, and other parameters did not significantly change. In conclusion, capsaicin improved risk factors of CHD in individuals with low HDL-C and may contribute to the prevention and treatment of CHD.
Collapse
Affiliation(s)
- Yu Qin
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Li Ran
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jing Wang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Li Yu
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - He-Dong Lang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xiao-Lan Wang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Man-Tian Mi
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jun-Dong Zhu
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
27
|
Relationship between equol producer status and metabolic parameters in 743 Japanese women: equol producer status is associated with antiatherosclerotic conditions in women around menopause and early postmenopause. Menopause 2017; 24:216-224. [DOI: 10.1097/gme.0000000000000743] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Tomé-Carneiro J, Visioli F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1145-1174. [PMID: 26776959 DOI: 10.1016/j.phymed.2015.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND In addition to prescription drugs, nutraceuticals/functional foods/medical foods are being increasingly added as adjunct treatment of cardiovascular disease (CVD), even though most of them have been exclusively studied in vitro. HYPOTHESIS/PURPOSE We review the available evidence (focusing on when the amount of polyphenols' intake was measured) coming from randomized controlled trials (RCTs) of (poly)phenol-based supplements. CONCLUSION We conclude that (poly)phenol-based nutraceuticals and functional foods might be indeed used as adjunct therapy of CVD, but additional long-term RCTs with adequate numerosity and with clinically relevant end points are needed to provide unequivocal evidence of their clinical usefulness.
Collapse
Affiliation(s)
- Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) - Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) - Food, CEI UAM+CSIC, Madrid, Spain; Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy .
| |
Collapse
|
29
|
Frankenfeld CL. Cardiometabolic risk and gut microbial phytoestrogen metabolite phenotypes. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201500900] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/18/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Cara L. Frankenfeld
- Department of Global and Community Health; George Mason University; Fairfax VA USA
| |
Collapse
|
30
|
Birru RL, Ahuja V, Vishnu A, Evans RW, Miyamoto Y, Miura K, Usui T, Sekikawa A. The impact of equol-producing status in modifying the effect of soya isoflavones on risk factors for CHD: a systematic review of randomised controlled trials. J Nutr Sci 2016; 5:e30. [PMID: 27547393 PMCID: PMC4976117 DOI: 10.1017/jns.2016.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022] Open
Abstract
Recent studies suggest that the ability to produce equol, a metabolite of the soya isoflavone daidzein, is beneficial to coronary health. Equol, generated by bacterial action on isoflavones in the human gut, is biologically more potent than dietary sources of isoflavones. Not all humans are equol producers. We investigated whether equol-producing status is favourably associated with risk factors for CHD following an intervention by dietary soya isoflavones. We systematically reviewed randomised controlled trials (RCT) that evaluated the effect of soya isoflavones on risk factors for CHD and that reported equol-producing status. We searched PubMed, EMBASE, Ovid Medline and the Cochrane Central Register for Controlled Trials published up to April 2015 and hand-searched bibliographies to identify the RCT. Characteristics of participants and outcomes measurements were extracted and qualitatively analysed. From a total of 1671 studies, we identified forty-two articles that satisfied our search criteria. The effects of equol on risk factors for CHD were mainly based on secondary analyses in these studies, thus with inadequate statistical power. Although fourteen out of the forty-two studies found that equol production after a soya isoflavone intervention significantly improved a range of risk factors including cholesterol and other lipids, inflammation and blood pressure variables, these results need further verification by sufficiently powered studies. The other twenty-eight studies primarily reported null results. RCT of equol, which has recently become available as a dietary supplement, on CHD and its risk factors are awaited.
Collapse
Affiliation(s)
- Rahel L. Birru
- Department of Environmental and Occupational Health and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vasudha Ahuja
- Department of Environmental and Occupational Health and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhishek Vishnu
- Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Rhobert W. Evans
- Department of Environmental and Occupational Health and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Katsuyuki Miura
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takeshi Usui
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Kyoto, Kyoto 612-8555, Japan
| | - Akira Sekikawa
- Department of Environmental and Occupational Health and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
van der Velpen V, van 't Veer P, Islam MA, Ter Braak CJF, van Leeuwen FXR, Afman LA, Hollman PC, Schouten EG, Geelen A. A risk assessment-driven quantitative comparison of gene expression profiles in PBMCs and white adipose tissue of humans and rats after isoflavone supplementation. Food Chem Toxicol 2016; 95:203-10. [PMID: 27424125 DOI: 10.1016/j.fct.2016.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
Quantitative insight into species differences in risk assessment is expected to reduce uncertainty and variability related to extrapolation from animals to humans. This paper explores quantification and comparison of gene expression data between tissues and species from intervention studies with isoflavones. Gene expression data from peripheral blood mononuclear cells (PBMCs) and white adipose tissue (WAT) after 8wk isoflavone interventions in postmenopausal women and ovariectomized F344 rats were used. A multivariate model was applied to quantify gene expression effects, which showed 3-5-fold larger effect sizes in rats compared to humans. For estrogen responsive genes, a 5-fold greater effect size was found in rats than in humans. For these genes, intertissue correlations (r = 0.23 in humans, r = 0.22 in rats) and interspecies correlation in WAT (r = 0.31) were statistically significant. Effect sizes, intertissue and interspecies correlations for some groups of genes within energy metabolism, inflammation and cell cycle processes were significant, but weak. Quantification of gene expression data reveals differences between rats and women in effect magnitude after isoflavone supplementation. For risk assessment, quantification of gene expression data and subsequent calculation of intertissue and interspecies correlations within biological pathways will further strengthen knowledge on comparability between tissues and species.
Collapse
Affiliation(s)
- Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | - Pieter van 't Veer
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - M Ariful Islam
- Sub-Department of Toxicology, Wageningen University, Wageningen, The Netherlands
| | - C J F Ter Braak
- Biometris, Wageningen University, Wageningen, The Netherlands
| | | | - Lydia A Afman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Peter C Hollman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands; RIKILT Wageningen UR, Wageningen, The Netherlands
| | - Evert G Schouten
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Anouk Geelen
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
32
|
Abbondante S, Eckel-Mahan KL, Ceglia NJ, Baldi P, Sassone-Corsi P. Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver. J Biol Chem 2015; 291:2812-28. [PMID: 26644470 DOI: 10.1074/jbc.m115.681130] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/07/2023] Open
Abstract
Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition.
Collapse
Affiliation(s)
- Serena Abbondante
- From the Center for Epigenetics and Metabolism, U904 INSERM, and the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and
| | - Kristin L Eckel-Mahan
- From the Center for Epigenetics and Metabolism, U904 INSERM, and the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and
| | - Nicholas J Ceglia
- the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and the Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, California 92697-3435
| | - Pierre Baldi
- the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and the Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, California 92697-3435
| | - Paolo Sassone-Corsi
- From the Center for Epigenetics and Metabolism, U904 INSERM, and the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and
| |
Collapse
|
33
|
Phytochemical Compounds and Protection from Cardiovascular Diseases: A State of the Art. BIOMED RESEARCH INTERNATIONAL 2015; 2015:918069. [PMID: 26504846 PMCID: PMC4609427 DOI: 10.1155/2015/918069] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/14/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases represent a worldwide relevant socioeconomical problem. Cardiovascular disease prevention relies also on lifestyle changes, including dietary habits. The cardioprotective effects of several foods and dietary supplements in both animal models and in humans have been explored. It was found that beneficial effects are mainly dependent on antioxidant and anti-inflammatory properties, also involving modulation of mitochondrial function. Resveratrol is one of the most studied phytochemical compounds and it is provided with several benefits in cardiovascular diseases as well as in other pathological conditions (such as cancer). Other relevant compounds are Brassica oleracea, curcumin, and berberine, and they all exert beneficial effects in several diseases. In the attempt to provide a comprehensive reference tool for both researchers and clinicians, we summarized in the present paper the existing literature on both preclinical and clinical cardioprotective effects of each mentioned phytochemical. We structured the discussion of each compound by analyzing, first, its cellular molecular targets of action, subsequently focusing on results from applications in both ex vivo and in vivo models, finally discussing the relevance of the compound in the context of human diseases.
Collapse
|
34
|
Abstract
Soya proteins and isoflavones have been reported to exert beneficial effects on the serum lipid profile. More recently, this claim is being challenged. The objective of this study was to comprehensively examine the effects of soya consumption on the lipid profile using published trials. A detailed literature search was conducted via MEDLINE (from 2004 through February 2014), CENTRAL (The Cochrane Controlled Clinical Trials Register) and ClinicalTrials.gov for randomised controlled trials assessing the effects of soya on the lipid profile. The primary effect measure was the difference in means of the final measurements between the intervention and control groups. In all, thirty-five studies (fifty comparisons) were included in our analyses. Treatment duration ranged from 4 weeks to 1 year. Intake of soya products resulted in a significant reduction in serum LDL-cholesterol concentration, -4.83 (95% CI -7.34, -2.31) mg/dl, TAG, -4.92 (95% CI -7.79, -2.04) mg/dl, and total cholesterol (TC) concentrations, -5.33 (95% CI -8.35, -2.30) mg/dl. There was also a significant increase in serum HDL-cholesterol concentration, 1.40 (95% CI 0.58, 2.23) mg/dl. The I² statistic ranged from 92 to 99%, indicating significant heterogeneity. LDL reductions were more marked in hypercholesterolaemic patients, -7.47 (95% CI -11.79, -3.16) mg/dl, than in healthy subjects, -2.96 (95% CI -5.28, -0.65) mg/dl. LDL reduction was stronger when whole soya products (soya milk, soyabeans and nuts) were used as the test regimen, -11.06 (95% CI -15.74, -6.37) mg/dl, as opposed to when 'processed' soya extracts, -3.17 (95% CI -5.75, -0.58) mg/dl, were used. These data are consistent with the beneficial effects of soya proteins on serum LDL, HDL, TAG and TC concentrations. The effect was stronger in hypercholesterolaemic subjects. Whole soya foods appeared to be more beneficial than soya supplementation, whereas isoflavone supplementation had no effects on the lipid profile.
Collapse
|
35
|
Serrano JCE, Jove M, Gonzalo H, Pamplona R, Portero-Otin M. Nutridynamics: mechanism(s) of action of bioactive compounds and their effects. Int J Food Sci Nutr 2015; 66 Suppl 1:S22-30. [PMID: 26241008 DOI: 10.3109/09637486.2015.1035231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Qin Y, Zhou Y, Chen SH, Zhao XL, Ran L, Zeng XL, Wu Y, Chen JL, Kang C, Shu FR, Zhang QY, Mi MT. Fish Oil Supplements Lower Serum Lipids and Glucose in Correlation with a Reduction in Plasma Fibroblast Growth Factor 21 and Prostaglandin E2 in Nonalcoholic Fatty Liver Disease Associated with Hyperlipidemia: A Randomized Clinical Trial. PLoS One 2015. [PMID: 26226139 PMCID: PMC4520650 DOI: 10.1371/journal.pone.0133496] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fish oil has been used effectively in the treatment of cardiovascular disease via triglyceride reduction and inflammation modulation. This study aimed to assess the effects of fish oil on patients with nonalcoholic fatty liver disease (NAFLD) associated with hyperlipidemia. Eighty participants with NAFLD associated with hyperlipidemia were randomly assigned to consume fish oil (n=40, 4 g/d) or corn oil capsules (n=40, 4 g/d) for 3 months in a double-blind, randomized clinical trial. Blood levels of lipids, glucose and insulin, liver enzymes, kidney parameters and cytokines at baseline and the end of the study were measured. Seventy people finished the trial. Plasma concentrations of eicosapentaenoic acid and docosahexaenoic acid significantly increased in the fish oil group after intervention. After adjustment for age, gender and BMI, fish oil significantly decreased fasting serum concentrations of total cholesterol, triglyceride, apolipoprotein B and glucose (by (mean±SD) 0.49±0.43 mmol/L, 0.58±0.89 mmol/L, 0.28±0.33 g/L and 0.76±0.56 mmol/L, respectively, P<0.05), as well as alanine aminotransferase and γ-glutamyl transpeptidase levels (by (median (interquartile)) 9.0(0.5, 21.5) and 7.0(2.2, 20.0) IU/L, respectively, P<0.05), significantly increased serum adiponectin levels (by 1.29±0.62 μg/mL, P<0.001), and reduced serum levels of tumor necrosis factor α, leukotrienes B4, fibroblast growth factor 21 (FGF21), cytokeratin 18 fragment M30 and prostaglandin E2 (by 1.70±1.18 pg/mL, 0.59±0.28 ng/mL, 121±31 pg/mL, 83±60 IU/L and 10.9±2.3 pg/mL, respectively, P<0.001). Corn oil had no effect except for increasing serum creatinine concentrations by 7.7±8.9 μmol/L (P=0.008). The effects of fish oil on lipids, glucose and γ-glutamyl transpeptidase were positively correlated with the reductions of serum FGF21 and prostaglandin E2 concentrations after adjustment for age, gender and BMI (r = 0.275 to 0.360 and 0.261 to 0.375, respectively, P<0.05). In conclusion, our findings suggest that fish oil can benefit metabolic abnormalities associated with NAFLD treatment.
Collapse
Affiliation(s)
- Yu Qin
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yong Zhou
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shi-Hui Chen
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiao-Lan Zhao
- Departments of Health Examination Centre, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Ran
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiang-Long Zeng
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Ying Wu
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jun-Li Chen
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Chao Kang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fu-Rong Shu
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qian-Yong Zhang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
- * E-mail: (MTM); (QYZ)
| | - Man-Tian Mi
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
- * E-mail: (MTM); (QYZ)
| |
Collapse
|
37
|
The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites 2015; 5:56-73. [PMID: 25594250 PMCID: PMC4381290 DOI: 10.3390/metabo5010056] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Isoflavones are found in leguminous plants, especially soybeans. They have a structural similarity to natural estrogens, which enables them to bind to estrogen receptors and elicit biological activities similar to natural estrogens. They have been suggested to be beneficial for the prevention and therapy of hormone-dependent diseases. After soy products are consumed, the bacteria of the intestinal microflora metabolize isoflavones to metabolites with altered absorption, bioavailability, and estrogenic characteristics. Variations in the effect of soy products have been correlated with the isoflavone metabolites found in plasma and urine samples of the individuals consuming soy products. The beneficial effects of the soy isoflavone daidzin, the glycoside of daidzein, have been reported in individuals producing equol, a reduction product of daidzein produced by specific colonic bacteria in individuals called equol producers. These individuals comprise 30% and 60% of populations consuming Western and soy-rich Asian diets, respectively. Since the higher percentage of equol producers in populations consuming soy-rich diets is correlated with a lower incidence of hormone-dependent diseases, considerable efforts have been made to detect the specific colonic bacteria involved in the metabolism of daidzein to the more estrogenic compound, equol, which should facilitate the investigation of the metabolic activities related to this compound.
Collapse
|
38
|
van der Velpen V, Geelen A, Hollman PCH, Schouten EG, van 't Veer P, Afman LA. Isoflavone supplement composition and equol producer status affect gene expression in adipose tissue: a double-blind, randomized, placebo-controlled crossover trial in postmenopausal women. Am J Clin Nutr 2014; 100:1269-77. [PMID: 25332325 DOI: 10.3945/ajcn.114.088484] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Isoflavone supplements, consumed by women experiencing menopausal symptoms, are suggested to have positive effects on menopause-related adiposity and cardiovascular disease risk profile, but discussions about their safety are still ongoing. OBJECTIVE The objective was to study the effects of an 8-wk consumption of 2 different isoflavone supplements compared with placebo on whole-genome gene expression in the adipose tissue of postmenopausal women. DESIGN This double-blind, randomized, placebo-controlled crossover intervention consisted of 2 substudies, one with a low-genistein (LG) supplement (56% daidzein + daidzin, 16% genistein + genistin, and 28% glycitein + glycitin) and the other with a high-genistein (HG) supplement (49% daidzein + daidzin, 41% genistein + genistin, and 10% glycitein + glycitin). Both supplements provided ∼ 100 mg isoflavones/d (aglycone equivalents). After the 8-wk isoflavone and placebo period, whole-genome arrays were performed in subcutaneous adipose tissue of postmenopausal women (n = 26 after LG, n = 31 after HG). Participants were randomized by equol-producing phenotype, and data analysis was performed per substudy for equol producers and nonproducers separately. RESULTS Gene set enrichment analysis showed downregulation of expression of energy metabolism-related genes after LG supplementation (n = 24) in both equol-producing phenotypes and oppositely regulated expression for equol producers (down) and nonproducers (up) after HG supplementation (n = 31). Expression of inflammation-related genes was upregulated in equol producers but downregulated in nonproducers, independent of supplement type. Only 4.4-7.0% of the genes with significantly changed expression were estrogen responsive. Body weight, adipocyte size, and plasma lipid profile were not affected by isoflavone supplementation. CONCLUSIONS Effects of isoflavones on adipose tissue gene expression were influenced by supplement composition and equol-producing phenotype, whereas estrogen-responsive effects were lacking. LG isoflavone supplementation resulted in a caloric restriction-like gene expression profile for both producer phenotypes and pointed toward a potential beneficial effect, whereas both supplements induced anti-inflammatory gene expression in equol producers. The study was registered at clinicaltrials.gov as NCT01556737.
Collapse
Affiliation(s)
- Vera van der Velpen
- From the Division of Human Nutrition, Wageningen University, Wageningen, Netherlands (VvdV, AG, PCHH, EGS, PvtV, and LAA), and Institute of Food Safety, Wageningen University & Research Centre, Wageningen, Netherlands (PCHH)
| | - Anouk Geelen
- From the Division of Human Nutrition, Wageningen University, Wageningen, Netherlands (VvdV, AG, PCHH, EGS, PvtV, and LAA), and Institute of Food Safety, Wageningen University & Research Centre, Wageningen, Netherlands (PCHH)
| | - Peter C H Hollman
- From the Division of Human Nutrition, Wageningen University, Wageningen, Netherlands (VvdV, AG, PCHH, EGS, PvtV, and LAA), and Institute of Food Safety, Wageningen University & Research Centre, Wageningen, Netherlands (PCHH)
| | - Evert G Schouten
- From the Division of Human Nutrition, Wageningen University, Wageningen, Netherlands (VvdV, AG, PCHH, EGS, PvtV, and LAA), and Institute of Food Safety, Wageningen University & Research Centre, Wageningen, Netherlands (PCHH)
| | - Pieter van 't Veer
- From the Division of Human Nutrition, Wageningen University, Wageningen, Netherlands (VvdV, AG, PCHH, EGS, PvtV, and LAA), and Institute of Food Safety, Wageningen University & Research Centre, Wageningen, Netherlands (PCHH)
| | - Lydia A Afman
- From the Division of Human Nutrition, Wageningen University, Wageningen, Netherlands (VvdV, AG, PCHH, EGS, PvtV, and LAA), and Institute of Food Safety, Wageningen University & Research Centre, Wageningen, Netherlands (PCHH)
| |
Collapse
|