1
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Rabizadeh S, Seyedi SA, Nabipoorashrafi SA, Omidvar Siahkalmahalleh M, Yadegar A, Mohammadi F, Rajab A, Esteghamati A, Nakhjavani M. The lack of association between different LDL-C levels and oxidized LDL in patients with type 2 diabetes. Chronic Dis Transl Med 2023; 9:329-335. [PMID: 37915391 PMCID: PMC10617302 DOI: 10.1002/cdt3.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 11/03/2023] Open
Abstract
Background High concentrations of low-density lipoprotein cholesterol (LDL-C) have been a known risk factor for cardiovascular diseases. Also, the role of oxidized LDL (ox-LDL) in forming atherosclerosis plaque has been proven. However, it has not yet been proven that atherogenic LDL-C by-products like ox-LDL will decrease by keeping the LDL levels at the desired level. This study aimed to examine the relationship between LDL-C and ox-LDL in different LDL-C values in patients with type 2 diabetes (T2D). Methods In this cross-sectional study, 347 patients with T2D who received statins were enrolled. LDL-C values were defined into four groups as LDL-C < 55 mg/dL, 55 mg/dL ≤ to <70 mg/dL, 70 mg/dL ≤ to <100 mg/dL and LDL-C ≥ 100 mg/dL. Total cholesterol, triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and ox-LDL were studied in the four defined groups. Results Ox-LDL levels were not different among the four groups (p = 0.30). In addition, LDL-C and ox-LDL levels had no significant correlation (r = 0.480, p = 0.376). Additionally, based on this study analysis, ox-LDL levels were significantly correlated with TG levels (r = 0.119, p < 0.05) and TG/HDL ratio (r = 0.390, p < 0.01). Conclusions It is concluded that ox-LDL levels were not associated with different LDL-C level categories from <55 mg/dL to >100 mg/dL in patients with T2D. However, the revealed association of ox-LDL with TG level and TG/HDL ratio may be considered in the clinic.
Collapse
Affiliation(s)
- Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | | | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Armin Rajab
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Kaneshige R, Shimizu N, Motoki Y, Nojima J. Antibody binding activity specific to monocyte scavenger receptor CD36 is frequently detectable in the plasma of patients with antiphospholipid syndrome. Lupus 2023; 32:1353-1355. [PMID: 37715736 DOI: 10.1177/09612033231203026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Affiliation(s)
- Risa Kaneshige
- Department of Laboratory Science, Faculty of Health Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoto Shimizu
- Department of Laboratory Science, Faculty of Health Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yukari Motoki
- Department of Laboratory Science, Faculty of Health Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Junzo Nojima
- Department of Laboratory Science, Faculty of Health Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
4
|
Zhang Y, Vandestienne M, Lavillegrand JR, Joffre J, Santos-Zas I, Lavelle A, Zhong X, Le Goff W, Guérin M, Al-Rifai R, Laurans L, Bruneval P, Guérin C, Diedisheim M, Migaud M, Puel A, Lanternier F, Casanova JL, Cochain C, Zernecke A, Saliba AE, Mokry M, Silvestre JS, Tedgui A, Mallat Z, Taleb S, Lenoir O, Vindis C, Camus SM, Sokol H, Ait-Oufella H. Genetic inhibition of CARD9 accelerates the development of atherosclerosis in mice through CD36 dependent-defective autophagy. Nat Commun 2023; 14:4622. [PMID: 37528097 PMCID: PMC10394049 DOI: 10.1038/s41467-023-40216-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1β production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.
Collapse
Affiliation(s)
- Yujiao Zhang
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Marie Vandestienne
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | | | - Jeremie Joffre
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Sorbonne Université, Paris, France
| | - Icia Santos-Zas
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Aonghus Lavelle
- Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Paris, France
| | - Xiaodan Zhong
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Wilfried Le Goff
- Inserm UMRS1166, ICAN, Institute of CardioMetabolism and Nutrition, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Maryse Guérin
- Inserm UMRS1166, ICAN, Institute of CardioMetabolism and Nutrition, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Rida Al-Rifai
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Ludivine Laurans
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Patrick Bruneval
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Department of Anatomopathology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Coralie Guérin
- Institut Curie, Cytometry Platform, 75006, Paris, France
| | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), 37540 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, 75015, Paris, France
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Fanny Lanternier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, 75015, Paris, France
| | - Clément Cochain
- Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Wuerzburg, Germany
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | | | - Alain Tedgui
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Ziad Mallat
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Soraya Taleb
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Olivia Lenoir
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | | | - Stéphane M Camus
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Harry Sokol
- Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Paris, France
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Hafid Ait-Oufella
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Sorbonne Université, Paris, France.
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|
5
|
Sanjurjo L, Castelblanco E, Julve J, Villalmanzo N, Téllez É, Ramirez-Morros A, Alonso N, Mauricio D, Sarrias MR. Contribution of Elevated Glucose and Oxidized LDL to Macrophage Inflammation: A Role for PRAS40/Akt-Dependent Shedding of Soluble CD14. Antioxidants (Basel) 2023; 12:antiox12051083. [PMID: 37237950 DOI: 10.3390/antiox12051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis, a process in which macrophages play a key role, is accelerated in diabetes. Elevated concentrations of serum-oxidized low-density lipoproteins (oxLDL) represent a common feature of both conditions. The main goal of this study was to determine the contribution of oxLDL to the inflammatory response of macrophages exposed to diabetic-mimicking conditions. THP1 cells and peripheral blood monocytes purified from non-diabetic healthy donors were cultured under normal (5 mM) or high glucose (HG) (15 mM) with oxLDL. Then, foam cell formation, expression of CD80, HLADR, CD23, CD206, and CD163, as well as toll-like receptor 4 (TLR4) and co-receptors CD36 and CD14 (both at the cell surface and soluble (sCD14)), and inflammatory mediators' production were measured by flow cytometry, RT-qPCR, or ELISA. Additionally, serum sCD14 was determined in subjects with subclinical atherosclerosis with and without diabetes by ELISA. Our results showed that oxLDL-mediated intracellular lipid accumulation via CD36 increased under HG and that HG + oxLDL enhanced TNF, IL1B, and IL8, and decreased IL10. Moreover, TLR4 was upregulated in macrophages under HG and monocytes of subjects with diabetes and atherosclerosis. Interestingly, HG-oxLDL upregulated CD14 gene expression, although its total cellular protein abundance remained unaltered. sCD14 shedding via PRAS40/Akt-dependent mechanisms, with pro-inflammatory activity, was significantly increased in cultured macrophages and plasma from subjects with diabetes and subclinical atherosclerosis or hypercholesterolemia. Our data support an enhanced synergistic pro-inflammatory effect induced by HG and oxLDL in cultured human macrophages, possibly explained by increased sCD14 shedding.
Collapse
Affiliation(s)
- Lucía Sanjurjo
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
| | - Josep Julve
- Endocrinology, Diabetes and Nutrition Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Nuria Villalmanzo
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Érica Téllez
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Ramirez-Morros
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
- Gerència Territorial de la Catalunya Central, Institut Català de la Salut, 08272 Sant Fruitós de Bages, Spain
| | - Núria Alonso
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Dídac Mauricio
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Sant Pau Biomedical Research Institute, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
6
|
CD36+/CD61+ Microparticles Correlate with the Risk of Percutaneous Cardiac Interventions in Coronary Artery Disease Patients and the Effects of Ticagrelor. Cardiovasc Drugs Ther 2021; 36:455-465. [PMID: 33893936 DOI: 10.1007/s10557-021-07184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The CD36 scavenger receptor is a mediator of both atherogenesis and thrombosis. We aimed to investigate the prognostic value of CD36+ microparticles (MPs) released from platelets for cardiovascular event presentation in coronary artery disease (CAD) patients and the effects of different antiplatelet drugs on MPs. METHODS A total of 101 aspirin-treated CAD patients, who were planned to undergo coronary angiography (CAG), were randomized to either a standard clopidogrel regimen or ticagrelor treatment. Total Annexin V-(AV)+ MPs, CD61+/AV+ MPs, and CD36+/CD61+/AV+ MPs were quantified by flow cytometry at baseline, before and immediately after the operation. The ADP-induced platelet inhibition rate was measured by thromboelastogram (TEG) examination 1 h before the operation. RESULTS The baseline levels of CD36+/CD61+/AV+ MPs were significantly increased in percutaneous coronary intervention (PCI) patients (n = 52) compared to no-PCI patients (n = 49) (p < 0.05). A ROC-curve clustered model for CD36+/CD61+/AV+ MPs at baseline predicted an increased risk of PCI [p = 0.009, AUC = 0.761 (95%CI: 0.601 to 0.922)]. Moreover, TEG examination showed that the preoperative proportion of CD36+/CD61+/AV+ MPs was significantly negatively correlated with R time and K time (r = - 0.236, p = 00.026; r = - 0.288, p = 0.006), and positively correlated with MAADP (r = 0.226, p = 0.045). Subgroup analysis of PCI group showed that the platelet inhibition rate of ticagrelor was significantly higher (66.05% ± 28.76% vs.31.01% ± 27.33%, p < 0.001), and the number of AV+ MPs, CD61+/AV+ MPs, and CD36+/CD61+/AV+ MPs before the operation was significantly lower than clopidogrel (p < 0.05, all). CONCLUSION The high levels of CD36+ MPs derived from activated platelets are related to an increased risk of PCI in CAD patients. Ticagrelor significantly reduced the number of CD61+/AV+ MPs and CD36+/CD61+/AV+ MPs. This trial registration number is ChiCTR1800014908 and the date of registration is 2018.05.01.
Collapse
|
7
|
Exploring cellular markers of metabolic syndrome in peripheral blood mononuclear cells across the neuropsychiatric spectrum. Brain Behav Immun 2021; 91:673-682. [PMID: 32898636 DOI: 10.1016/j.bbi.2020.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Recent evidence suggests that comorbidities between neuropsychiatric conditions and metabolic syndrome may precede and even exacerbate long-term side-effects of psychiatric medication, such as a higher risk of type 2 diabetes and cardiovascular disease, which result in increased mortality. In the present study we compare the expression of key metabolic proteins, including the insulin receptor (CD220), glucose transporter 1 (GLUT1) and fatty acid translocase (CD36), on peripheral blood mononuclear cell subtypes from patients across the neuropsychiatric spectrum, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions (n = 25/condition), relative to typical controls (n = 100). This revealed alterations in the expression of these proteins that were specific to schizophrenia. Further characterization of metabolic alterations in an extended cohort of first-onset antipsychotic drug-naïve schizophrenia patients (n = 58) and controls (n = 63) revealed that the relationship between insulin receptor expression in monocytes and physiological insulin sensitivity was disrupted in schizophrenia and that altered expression of the insulin receptor was associated with whole genome polygenic risk scores for schizophrenia. Finally, longitudinal follow-up of the schizophrenia patients over the course of antipsychotic drug treatment revealed that peripheral metabolic markers predicted changes in psychopathology and the principal side effect of weight gain at clinically relevant time points. These findings suggest that peripheral blood cells can provide an accessible surrogate model for metabolic alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic complications following antipsychotic therapy.
Collapse
|
8
|
Dobri AM, Dudău M, Enciu AM, Hinescu ME. CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience 2020; 453:301-311. [PMID: 33212223 DOI: 10.1016/j.neuroscience.2020.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CD36 is a membrane protein with wide distribution in the human body, is enriched in the monocyte-macrophage system and endothelial cells, and is involved in the cellular uptake of long chain fatty acids (LCFA) and oxidized low-density lipoproteins. It is also a scavenger receptor, binding hydrophobic amyloid fibrils found in the Alzheimer's disease (AD) brain. In neurobiology research, it has been mostly studied in relationship with chronic ischemia and stroke, but it was also related to amyloid clearance by microglial phagocytosis. In AD animal models, amyloid binding to CD36 has been consistently correlated with a pro-inflammatory response. Therapeutic approaches have two main focuses: CD36 blockade with monoclonal antibodies or small molecules, which is beneficial in terms of the inflammatory milieu, and upregulation of CD36 for increased amyloid clearance. The balance of the two approaches, centered on microglia, is poorly understood. Furthermore, CD36 evaluation in AD clinical studies is still at a very early stage and there is a gap in the knowledge regarding the impact of LCFA on AD progression and CD36 expression and genetic phenotype. This review summarizes the role played by CD36 in the pathogenic amyloid cascade and explore the translatability of preclinical data towards clinical research.
Collapse
Affiliation(s)
- Ana-Maria Dobri
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Maria Dudău
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Mihail Eugen Hinescu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania
| |
Collapse
|
9
|
Zhang F, Xia X, Chai R, Xu R, Xu Q, Liu M, Chen X, Liu B, Liu S, Liu N. Inhibition of USP14 suppresses the formation of foam cell by promoting CD36 degradation. J Cell Mol Med 2020; 24:3292-3302. [PMID: 31970862 PMCID: PMC7131911 DOI: 10.1111/jcmm.15002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is regarded as a chronic progressive inflammatory disease and is a basic pathophysiological process in coronary artery disease which is life threatening in clinic. The formation of foam cell plays a key role in the pathogenesis of atherosclerosis. OxLDL is a significant factor in progression of coronary artery disease. Our studies have demonstrated that USP14 promotes cancer development and mediates progression of cardiac hypertrophy and LPS‐induced inflammation. However, the underlying mechanism of USP14 is unknown. In this study, we found that the inhibition of USP14 significantly suppressed the oxLDL uptake, subsequently decreased the foam cell formation. Surprisingly, USP14 has an effect on the expression of CD36 but not SR‐A, ABCA1, Lox‐1, ABCG1 and SR‐Bl. Furthermore, USP14 stabilizes CD36 protein via cleaving the ubiquitin chain on CD36. Blocking CD36 activation using antibody‐dependent blocking assay remarkably attenuated the function of USP14 on the formation of foam cell. In summary, our results suggested that the inhibition of USP14 decreases foam cell formation by down‐regulating CD36‐mediated lipid uptake and provides a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Xia
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Renjie Chai
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruqin Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Bou Khzam L, Son NH, Mullick AE, Abumrad NA, Goldberg IJ. Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair. Am J Transl Res 2020; 12:7737-7761. [PMID: 33437358 PMCID: PMC7791529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/23/2020] [Indexed: 03/16/2023]
Abstract
Endothelial cells (ECs) maintain vascular integrity and mediate vascular repair and angiogenesis, by which new blood vessels are formed from pre-existing blood vessels. Hyperglycemia has been shown to increase EC angiogenic potential. However, few studies have investigated effects of fatty acids (FAs) on EC angiogenesis. Cluster of differentiation 36 (CD36) is a FA transporter expressed by ECs, but its role in EC proliferation, migration, and angiogenesis is unknown. We sought to determine if circulating FAs regulate angiogenic function in a CD36-dependent manner. CD36-dependent effects of FAs on EC proliferation and migration of mouse heart ECs (MHECs) and lung ECs (MLECs) were studied. We used both silencing RNA and antisense oligonucleotides to reduce CD36 expression. Oleic acid (OA) did not affect EC proliferation, but significantly increased migration of ECs in wound healing experiments. CD36 knockdown prevented OA-induced increases in wound healing potential. In EC transwell migration experiments, OA increased recruitment and migration of ECs, an effect abolished by CD36 knockdown. Phospho-AMP-activated protein kinase (AMPK) increased in MHECs exposed to OA in a CD36-dependent manner. To test whether in vivo CD36 affects angiogenesis, we studied 21-day recovery in post-hindlimb ischemia. EC-specific CD36 knockout mice had reduced blood flow recovery as assessed by laser Doppler imaging. EC content in post-ischemic muscle, assessed from CD31 expression, increased in ischemic muscle of control mice. However, mice with EC-specific CD36 deletion lacked the increase in CD31 and matrix metalloprotease 9 expression observed in controls. EC expression of CD36 and its function in FA uptake modulate angiogenic function and response to ischemia, likely due to reduced activation of the AMPK pathway.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| | - Ni-Huiping Son
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| | | | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Ira J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| |
Collapse
|
11
|
Lee BC, Lin KH, Hu CY, Lo SC. Thromboelastography characterized CD36 null subjects as slow clot formation and indicative of hypocoagulability. Thromb Res 2019; 178:79-84. [DOI: 10.1016/j.thromres.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022]
|
12
|
Brown M, Ahmed S. Emerging role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in inflammation and diseases. Toxicol Appl Pharmacol 2019; 370:170-177. [PMID: 30914377 DOI: 10.1016/j.taap.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is most recognized serine protease for its role in cardiovascular diseases (CVD). PCSK9 regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by selectively targeting hepatic LDL receptors (LDLR) for degradation, thereby serving as a potential therapeutic target for CVD. New pharmacological agents under development aim to lower the risk of CVD by inhibiting PCSK9 extracellularly, although secondary effects of this approach are not yet studied. Here we review the history of PCSK9 and rationale behind developing inhibitors for CVD. Importantly, we summarized the studies investigating the role and impact of modulated PCSK9 levels in inflammation, specifically in sepsis, rheumatoid arthritis and other chronic inflammatory conditions. Furthermore, we summarized studies that investigated the interactions of PCSK9 with pro-inflammatory pathways, such as scavenger receptor CD36 and thrombospondin 1 (TSP-1) in inflammatory diseases. This review highlights the conflicting role that PCSK9 plays in different inflammatory disease states and postulates that any unwanted effects of PCSK9 inhibition in early clinical testing should critically be examined.
Collapse
Affiliation(s)
- Madalyn Brown
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA; Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
13
|
Moore DK, Motaung B, du Plessis N, Shabangu AN, Loxton AG. Isolation of B-cells using Miltenyi MACS bead isolation kits. PLoS One 2019; 14:e0213832. [PMID: 30893384 PMCID: PMC6426237 DOI: 10.1371/journal.pone.0213832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/03/2019] [Indexed: 12/12/2022] Open
Abstract
This article describes the procedures used to isolate pure B-cell populations from whole blood using various Miltenyi magnetic-activated cell sorting (MACS) bead Isolation kits. Such populations are vital for studies investigating the functional capacity of B-cells, as the presence of other cell types may have indirect effects on B-cell function through cell-cell interactions or by secretion of several soluble molecules. B-cells can be isolated by two main approaches: 1) Negative selection—in which B-cells remain “untouched” in their native state; this is advantageous as it is likely that B-cells remain functionally unaltered by this process. 2) Positive selection–in which B-cells are labelled and actively removed from the sample. We used three Negative B-cell isolation kits as well as the Positive B-cell isolation kit from Miltenyi and compared the purity of each of the resulting B-cells fractions. Contamination of isolated B-cell fractions with platelets was the conclusive finding for all of the isolation techniques tested. These results illustrate the inefficiency of current available MACS B-cell isolation kits to produce pure B-cell populations, from which concrete findings can be made. As such we suggest cell sorting as the preferred method for isolating pure B-cells to be used for downstream functional assays.
Collapse
Affiliation(s)
- Dannielle K. Moore
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bongani Motaung
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayanda N. Shabangu
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - André G. Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- * E-mail:
| | - SU-IRG Consortium
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research; Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Yazgan B, Sozen E, Karademir B, Ustunsoy S, Ince U, Zarkovic N, Ozer NK. CD36 expression in peripheral blood mononuclear cells reflects the onset of atherosclerosis. Biofactors 2018; 44:588-596. [PMID: 28677864 DOI: 10.1002/biof.1372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 11/06/2022]
Abstract
Together with complex genetic and environmental factors, increased serum cholesterol and ox-LDL levels are considered as major triggering factors of atherosclerosis. Mononuclear cell infiltration to the arterial wall and uptake of ox-LDL, which is facilitated by CD36 receptor through an uncontrolled manner, play a key role in foam cell formation followed by atherogenesis development. The aim of this study was to analyze if CD36 expression in peripheral blood mononuclear cells reflect its aortic tissue level in hypercholesterolemia. In this study, CD36 protein expression was evaluated in aortic specimens of cholesterol or cholesterol plus Vitamin E treated animals in relation to the immunohistochemical analyses for the HNE-protein adducts, as well as for smooth muscle actin and vimentin. The CD36 mRNA expression was determined by RT-PCR in PBMC of hypercholesterolemic rabbits and hypercholesterolemic versus normocholesterolemic individuals. Immunohistochemistry findings revealed that smooth muscle actin, smooth muscle vimentin, HNE-protein conjugates, and CD36 protein expressions were significantly increased in aorta of hypercholesterolemic group where foam cells were present. High cholesterol diet significantly induced CD36 mRNA expression in both rabbit aorta and PBMCs, while positive correlation between aortic and PBMC CD36 expression has been found. In addition, consistent with the rabbit model, CD36 mRNA expression levels in human PBMCs were significantly higher in hypercholesterolemic patients than in normocholesterolemic individuals. Taken together, these results demonstrate that the CD36 mRNA levels of PBMCs could reflect the CD36 mRNA levels in aorta and could be used as a biomarker for diagnosis of atherosclerotic burden. © 2018 BioFactors, 44(6):588-596, 2018.
Collapse
Affiliation(s)
- Burak Yazgan
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Seyfettin Ustunsoy
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Umit Ince
- Acıbadem University and Acıbadem Heath Group, Istanbul, Turkey
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| |
Collapse
|
15
|
Tsuzuki S, Kimoto Y, Lee S, Sugawara T, Manabe Y, Inoue K. A novel role for scavenger receptor B1 as a contributor to the capture of specific volatile odorants in the nasal cavity. Biomed Res 2018; 39:117-129. [PMID: 29899187 DOI: 10.2220/biomedres.39.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Class B scavenger receptors, scavenger receptor B1 (SR-B1) and cluster of differentiation 36 (CD36), are broadly expressed cell-surface proteins and are believed to serve as multifaceted players in lipid and lipoprotein metabolism in mammals. Because of its ability to recognise distinct odour-active volatile compounds and its presence in murine olfactory epithelium, CD36 has recently emerged as a participant in the detection of odorants within the nasal cavity. However, there have been no attempts to assess whether SR-B1 has such a role. In this study, we performed a cell-free in-vitro assay utilising a peptide mimic of the receptor, and demonstrated that SR-B1 could recognise aliphatic aldehydes (e.g., tetradecanal), a distinct class of volatile odorants, as potential ligands. By reverse transcription-polymerase chain reaction and western immunoblot analyses, we detected the expression of SR-B1 mRNA and protein, respectively, in mouse olfactory tissue. Finally, we immunohistochemically mapped the distribution of SR-B1 in the surface layer of olfactory epithelium in vivo, which is the first line of odorant detection. These findings uncover a novel role for SR-B1 as a contributor to the capture of specific odorants in the nasal cavity of mammals.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Kimoto
- Laboratory of Nutrition Chemistry Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Shinhye Lee
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Manabe
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Kazuo Inoue
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
16
|
Bayoumy NMK, El-Shabrawi MM, Younes S, Omar HH. PPARα receptor expression in patients with metabolic syndrome. Diabetes Metab Syndr 2018; 12:711-714. [PMID: 29699951 DOI: 10.1016/j.dsx.2018.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metabolic syndrome (MS) is considered one of the major worldwide epidemics. It accounts for billions of cardiovascular disease events and deaths. Till now, major basics of MS are not fully clarified. Peroxisome Proliferator-Activated Receptor-α (PPARα) displays a ligand-activated transcription factor. It is involved in the regulation of many metabolic processes including inflammation, lipid, and glucose metabolism. Therefore, this study investigated the leucocytic expression of PPARα in a metabolic patient in comparison to healthy controls. METHODS 100 subjects with MS were recruited, in addition to 100 subjects without any obvious metabolic disorders as healthy controls. Expression of PPARα and CD 36 were analyzed on different leucocytic populations using optimized flow-cytometric analysis. Correlations of the expression of both indexes with different clinical and laboratory parameters were analyzed. RESULTS The eosinophilic expression of PPARα was found to be lower in subjects with MS in comparison to the healthy controls (p value 0.001). Also, PPARα expression, on most of the leucocytic populations, was inversely correlated with waist circumferences among the study populations. CONCLUSION Circulated eosinophilic expression of PPARα protein is reduced in MS subjects. This conclusion may explain the endothelial dysfunction and obesity associated with MS, as well as it may help in the management of this worldwide health problem.
Collapse
Affiliation(s)
- Nervana M K Bayoumy
- Physiology Department, College of Medicine, King Saud University, Saudi Arabia.
| | - Mohamed M El-Shabrawi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Soha Younes
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Hamdy H Omar
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Egypt.
| |
Collapse
|
17
|
Zhao L, Varghese Z, Moorhead JF, Chen Y, Ruan XZ. CD36 and lipid metabolism in the evolution of atherosclerosis. Br Med Bull 2018. [PMID: 29534172 DOI: 10.1093/bmb/ldy006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND CD36 is a multi-functional class B scavenger receptor, which acts as an important modulator of lipid homeostasis and immune responses. SOURCES OF DATA This review uses academic articles. AREAS OF AGREEMENT CD36 is closely related to the development and progression of atherosclerosis. AREAS OF CONTROVERSY Both persistent up-regulation of CD36 and deficiency of CD36 increase the risk for atherosclerosis. Abnormally up-regulated CD36 promotes inflammation, foam cell formation, endothelial apoptosis, macrophage trapping and thrombosis. However, CD36 deficiency also causes dyslipidemia, subclinical inflammation and metabolic disorders, which are established risk factors for atherosclerosis. GROWING POINTS There may be an 'optimal protective window' of CD36 expression. AREAS TIMELY FOR DEVELOPING RESEARCH In addition to traditionally modulating protein functions using gene overexpression or deficiency, the modulation of CD36 function at post-translational levels has recently been suggested to be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Z Varghese
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, UK
| | - J F Moorhead
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, UK
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, UK
| |
Collapse
|
18
|
Biologically active fungal depsidones: Chemistry, biosynthesis, structural characterization, and bioactivities. Fitoterapia 2018; 129:317-365. [PMID: 29704531 DOI: 10.1016/j.fitote.2018.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/30/2022]
Abstract
Fungi produce a wide range of structurally unique metabolites. Depsidones represent one of the most interesting classes of metabolites, consisting of two 2,4-dihydroxybenzoic acid rings linked together by both ether and ester bonds. Naturally occurring depsidones are produced by lichen, fungi, and plants. They possessed a wide array of bioactivities, including antioxidant, antiproliferative, antimalarial, cytotoxic, antibacterial, radical scavenging, antihypertensive, anti-inflammatory, antifungal, and aromatase and protein kinase inhibitory. In order to point out the potential of this class of compounds, the present review focuses only on the depsidones that have been isolated from fungal source and published from 1978 to 2018. This review outlined the research on the biosynthesis, source, isolation, spectral and physical data, and bioactivities of the naturally occurring fungal depsidones. On the basis of 88 references, > 80 compounds have been described.
Collapse
|
19
|
Rać ME, Safranow K, Garanty-Bogacka B, Dziedziejko V, Kurzawski G, Goschorska M, Kuligowska A, Pauli N, Chlubek D. CD36 gene polymorphism and plasma sCD36 as the risk factor in higher cholesterolemia. Arch Pediatr 2018; 25:177-181. [PMID: 29576254 DOI: 10.1016/j.arcped.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/26/2017] [Accepted: 01/28/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The receptor CD36 has been reported to play an important role in atherogenicity. The aim of this study was to gain insight into the relationship between CD36 gene polymorphisms or the plasma concentration of sCD36 and clinical or biochemical parameters in children. PATIENTS AND METHODS The study groups comprised Caucasian children with and without hypercholesterolemia. The alterations in the CD36 gene were detected by DHPLC and the plasma concentrations of sCD36 were measured by ELISA. RESULTS The data presented suggest that the IVS4-10A allele of CD36 (rs3211892) is associated with a lower risk of hypercholesterolemia. We observed a negative correlation of the sCD36 concentration with uric acid and insulin concentrations, the HOMA-IR ratio, weight, waist and hip circumference, systolic blood pressure, body mass index, waist-hip ratio and mean arterial pressure ratio, but a positive correlation with HDL cholesterol and ApoA1 concentrations. Female gender was a significant independent predictor of a higher plasma sCD36 concentration. CONCLUSIONS The data presented suggest a possible protective effect of a higher sCD36 concentration in relation to metabolic syndrome components.
Collapse
Affiliation(s)
- M E Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - K Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - B Garanty-Bogacka
- Independent Laboratory of Propedeutics in Pediatrics, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - V Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - G Kurzawski
- Department of Genetics and Pathomorphology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - M Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - A Kuligowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - N Pauli
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Tsuzuki S, Amitsuka T, Okahashi T, Kimoto Y, Inoue K. A Search for CD36 Ligands from Flavor Volatiles in Foods with an Aldehyde Moiety: Identification of Saturated Aliphatic Aldehydes with 9-16 Carbon Atoms as Potential Ligands of the Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6647-6655. [PMID: 28682068 DOI: 10.1021/acs.jafc.7b01890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees. Notably, the activities of tridecanal and tetradecanal were higher than that of oleic acid, the most potent ligand among the fatty acids tested. Among the aldehydes other than aliphatic aldehydes, only phenylacetaldehyde showed a weak activity. These findings make a contribution to our knowledge of recognition mechanisms for flavor volatiles in foods with an aldehyde group.
Collapse
Affiliation(s)
| | - Takahiko Amitsuka
- R&D Center, T. Hasegawa Company, Ltd. , 29-7 Kariyado, Nakahara-ku, Kawasaki, Kanagawa 211-0022, Japan
| | | | | | | |
Collapse
|
21
|
CCN3 Regulates Macrophage Foam Cell Formation and Atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1230-1237. [PMID: 28527710 DOI: 10.1016/j.ajpath.2017.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 01/27/2023]
Abstract
Recent studies implicate the Cyr61, CTGF, Nov (CCN) matricellular signaling protein family as emerging players in vascular biology, with NOV (alias CCN3) as an important regulator of vascular homeostasis. Herein, we examined the role of CCN3 in the pathogenesis of atherosclerosis. In response to a 15-week high-fat diet feeding, CCN3-deficient mice on the atherosclerosis-prone Apoe-/- background developed increased aortic lipid-rich plaques compared to control Apoe-/- mice, a result that was observed in the absence of alterations in plasma lipid content. To address the cellular contributor(s) responsible for the atherosclerotic phenotype, we performed bone marrow transplantation experiments. Transplantation of Apoe; Ccn3 double-knockout bone marrow into Apoe-/- mice resulted in an increase of atherosclerotic plaque burden, whereas transplantation of Apoe-/- marrow to Apoe; Ccn3 double-knockout mice caused a reduction of atherosclerosis. These results indicate that CCN3 deficiency, specifically in the bone marrow, plays a major role in the development of atherosclerosis. Mechanistically, cell-based studies in isolated peritoneal macrophages demonstrated that CCN3 deficiency leads to an increase of lipid uptake and foam cell formation, an effect potentially attributed to the increased expression of scavenger receptors CD36 and SRA1, key factors involved in lipoprotein uptake. These results suggest that bone marrow-derived CCN3 is an essential regulator of atherosclerosis and point to a novel role of CCN3 in modulating lipid accumulation within macrophages.
Collapse
|
22
|
Apigenin-7-O-β-D-glucuronide inhibits modified low-density lipoprotein uptake and foam cell formation in macrophages. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Jiang X, Zhao X, Chen R, Jiang Q, Zhou B. Plasma soluble CD36, carotid intima-media thickness and cognitive function in patients with type 2 diabetes. Arch Med Sci 2017; 13:1031-1039. [PMID: 28883843 PMCID: PMC5575210 DOI: 10.5114/aoms.2016.60821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/07/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Diabetes and atherosclerosis are both risk factors of cognitive deficits. Scavenger receptor CD36 is associated with increasing risk of diabetes and atherosclerosis, and may play a role in cognitive deficits. The aim of this study is to determine the correlations of plasma soluble CD36 concentrations with carotid intima-media thickness (IMT) and cognitive function in patients with type 2 diabetes. MATERIAL AND METHODS We determined the levels of soluble CD36 (sCD36), blood lipids, fasting blood glucose, glycosylated hemoglobin, carotid atherosclerosis as IMT, cognitive function by the Montreal Cognitive Assessment (MoCA) scoring system, and other clinical characteristics in 357 patients with type 2 diabetes. RESULTS Diabetic patients with the lowest quartile of IMT (Q1) had lower sCD36 concentrations (ANOVA, ptrend < 0.05) and higher MoCA scores than upper ones (Q2-Q4) (ptrend < 0.05), and those with the highest quartile of sCD36(Q4) had higher FBG, LDL-C and carotid IMT than lower ones (Q1-Q3) (ptrend < 0.05 for all). Plasma log10(sCD36) was significantly correlated with carotid IMT (r = 0.202, p < 0.001) after adjustment for age, gender, and education level. Carotid IMT was significantly associated with MoCA scores (r = 0.284, p < 0.001) after adjustment for, age, gender, education level, duration of DM and hypertension. There were no correlations between sCD36 and MoCA scores (r = -0.038, p = 0.470). CONCLUSIONS Our study shows that sCD36 is associated with carotid IMT, and carotid IMT is inversely correlated with cognitive function in type 2 diabetic patients. Nevertheless, no cross-sectional association between sCD36 and MoCA scores was detected in this study.
Collapse
Affiliation(s)
- Xiaozhen Jiang
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Xiaohui Zhao
- Department of Neurology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Ruihua Chen
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Quan Jiang
- Department of Ultrasonography, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Bin Zhou
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
24
|
Bhat OM, Uday Kumar P, Harishankar N, Ravichandaran L, Bhatia A, Dhawan V. Interleukin-18-induced cell adhesion molecule expression is associated with feedback regulation by PPAR-γ and NF-κB in Apo E-/- mice. Mol Cell Biochem 2017; 428:119-128. [PMID: 28176248 DOI: 10.1007/s11010-016-2922-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Focal recruitment of monocytes and lymphocytes is one of the earliest detectable cellular responses in atherosclerotic lesion formation. Endothelium may regulate leukocyte recruitment by expressing specific adhesion molecules. Interleukin-18 is a proinflammatory cytokine that plays an important role in vascular pathologies. The present study highlights the modulation of adhesion molecules and PPAR-γ by IL-18 and proposes a novel feedback mechanism by which PPAR-γ may regulate IL-18 expression. Three groups of normal chow diet-fed, male Apo E-/- mice, aged 12 weeks (n = 6/group) were employed: Gp I, phosphate-buffered saline (PBS) (2 mo): Gp II, recombinant IL-18 (rIL-18) (1 mo) followed by PBS (1 mo); Gp III, rIL-18 (1 mo) followed by pyrrolidine dithiocarbamate (PDTC) (1 mo). Significantly augmented mRNA expression of ICAM-1 (~5.7-fold), VCAM-1 (~3.6-fold), and NF-κB (~7-fold) was observed in Gp II mice as compared to Gp I, whereas PPAR-γ expression was not altered. PDTC treatment caused a significant downregulation of ICAM-1 (~4.2-fold), VCAM-1(~2-fold), and NF-κB (~4.5-fold) and upregulation of PPAR-γ expression (~5-fold) in Gp III mice. A similar trend was observed in protein expression. In vivo imaging results demonstrated a marked increase in probe (CF750 dye conjugated to VCAM-1 antibody) fluorescence intensity for VCAM-1 expression in Gp II mice, whereas it was moderately decreased in Gp III. PPAR-γ was found to significantly downregulate both IL-18 levels and IL-18-induced adhesion molecules. The underlying mechanism was found to be via inhibition of NF-κB activity by PDTC, thereby leading to decreased adherence of monocytes to the activated endothelial cells and a step to halt the progression and development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Owais Mohammad Bhat
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.,Department of Pharmacology and Toxicology, Virginia Common Wealth University, Richmond, VA, USA
| | - P Uday Kumar
- Department of Histopathology, National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - N Harishankar
- Department of Histopathology, National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - L Ravichandaran
- Department of Histopathology, National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - A Bhatia
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
25
|
Suresh K, Servinsky L, Reyes J, Undem C, Zaldumbide J, Rentsendorj O, Modekurty S, Dodd-O JM, Scott A, Pearse DB, Shimoda LA. CD36 mediates H2O2-induced calcium influx in lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 312:L143-L153. [PMID: 27913425 DOI: 10.1152/ajplung.00361.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/11/2016] [Accepted: 11/30/2016] [Indexed: 11/22/2022] Open
Abstract
Elevated levels of reactive oxygen species and intracellular Ca2+ play a key role in endothelial barrier dysfunction in acute lung injury. We previously showed that H2O2-induced increases in intracellular calcium concentrations ([Ca2+]i) in lung microvascular endothelial cells (LMVECs) involve the membrane Ca2+ channel, transient receptor potential vanilloid-4 (TRPV4) and that inhibiting this channel attenuated H2O2-induced barrier disruption in vitro. We also showed that phosphorylation of TRPV4 by the Src family kinase, Fyn, contributes to H2O2-induced Ca2+ influx in LMVEC. In endothelial cells, Fyn is tethered to the cell membrane by CD36, a fatty acid transporter. In this study, we assessed the effect of genetic loss or pharmacological inhibition of CD36 on Ca2+ responses to H2O2 H2O2-induced Ca2+ influx was attenuated in LMVEC isolated from mice lacking CD36 (CD36-/-). TRPV4 expression and function was unchanged in LMVEC isolated from wild-type (WT) and CD36-/- mice, as well as mice with deficiency for Fyn (Fyn-/-). TRPV4 immunoprecipitated with Fyn, but this interaction was decreased in CD36-/- LMVEC. The amount of phosphorylated TRPV4 was decreased in LMVEC from CD36-/- mice compared with WT controls. Loss of CD36 altered subcellular localization of Fyn, while inhibition of CD36 fatty acid transport with succinimidyl oleate did not attenuate H2O2-induced Ca2+ influx. Lastly, we found that CD36-/- mice were protected from ischemia-reperfusion injury in vivo. In conclusion, our data suggest that CD36 plays an important role in H2O2-mediated lung injury and that the mechanism may involve CD36-dependent scaffolding of Fyn to the cell membrane to facilitate TRPV4 phosphorylation.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Laura Servinsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose Reyes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joel Zaldumbide
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Otgonchimeg Rentsendorj
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sruti Modekurty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey M Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Alan Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David B Pearse
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Tondera C, Laube M, Pietzsch J. Insights into binding of S100 proteins to scavenger receptors: class B scavenger receptor CD36 binds S100A12 with high affinity. Amino Acids 2016; 49:183-191. [PMID: 27734162 PMCID: PMC5241339 DOI: 10.1007/s00726-016-2349-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022]
Abstract
The EF-hand type calcium-binding protein S100A12 exerts numerous intra- and extracellular functions of (patho)physiological relevance. Therefore, receptors of S100A12 are of high interest for research and clinical applications. Beside the extensively studied receptor for advanced glycation endproducts (RAGE), G-protein coupled receptors and more recently, scavenger receptors are suggested to be putative S100A12 receptors. Own findings and further information from the literature predestined CD36, a class B scavenger receptor, as promising candidate. To substantiate or prove against this hypothesis, this study aimed at investigation of interaction of S100A12 and CD36 on molecular and cellular level by the use of surface plasmon resonance (SPR), radio- and fluorescence-tracer-based cell binding, and cell activation experiments. S100A12 revealed binding affinity to CD36 in the low nanomolar range, essentially, at the CD36 thrombospondin-1 binding site. Additionally, S100A12-mediated translocation of CD36 to the membrane and elevation of both CD36 and peroxisome proliferator-activated receptor γ (PPARγ) expression was observed, which suggest a potential regulatory function of S100A12–CD36 interaction.
Collapse
Affiliation(s)
- Christoph Tondera
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
27
|
Guillou A, Troha K, Wang H, Franc NC, Buchon N. The Drosophila CD36 Homologue croquemort Is Required to Maintain Immune and Gut Homeostasis during Development and Aging. PLoS Pathog 2016; 12:e1005961. [PMID: 27780230 PMCID: PMC5079587 DOI: 10.1371/journal.ppat.1005961] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022] Open
Abstract
Phagocytosis is an ancient mechanism central to both tissue homeostasis and immune defense. Both the identity of the receptors that mediate bacterial phagocytosis and the nature of the interactions between phagocytosis and other defense mechanisms remain elusive. Here, we report that Croquemort (Crq), a Drosophila member of the CD36 family of scavenger receptors, is required for microbial phagocytosis and efficient bacterial clearance. Flies mutant for crq are susceptible to environmental microbes during development and succumb to a variety of microbial infections as adults. Crq acts parallel to the Toll and Imd pathways to eliminate bacteria via phagocytosis. crq mutant flies exhibit enhanced and prolonged immune and cytokine induction accompanied by premature gut dysplasia and decreased lifespan. The chronic state of immune activation in crq mutant flies is further regulated by negative regulators of the Imd pathway. Altogether, our data demonstrate that Crq plays a key role in maintaining immune and organismal homeostasis.
Collapse
Affiliation(s)
- Aurélien Guillou
- Department of Entomology, Cornell University, Ithaca, NY, United States Of America
| | - Katia Troha
- Department of Entomology, Cornell University, Ithaca, NY, United States Of America
| | - Hui Wang
- Department of Cell & Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States Of America
| | - Nathalie C. Franc
- Department of Cell & Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States Of America
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY, United States Of America
| |
Collapse
|
28
|
Cifarelli V, Ivanov S, Xie Y, Son NH, Saunders BT, Pietka TA, Shew TM, Yoshino J, Sundaresan S, Davidson NO, Goldberg IJ, Gelman AE, Zinselmeyer BH, Randolph GJ, Abumrad NA. CD36 deficiency impairs the small intestinal barrier and induces subclinical inflammation in mice. Cell Mol Gastroenterol Hepatol 2016; 3:82-98. [PMID: 28066800 PMCID: PMC5217470 DOI: 10.1016/j.jcmgh.2016.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS CD36 has immuno-metabolic actions and is abundant in the small intestine on epithelial, endothelial and immune cells. We examined the role of CD36 in gut homeostasis using mice null for CD36 (CD36KO) and with CD36 deletion specific to enterocytes (Ent-CD36KO) or endothelial cells (EC-CD36KO). METHODS Intestinal morphology was evaluated using immunohistochemistry and electron microscopy (EM). Intestinal inflammation was determined from neutrophil infiltration and expression of cytokines, toll-like receptors and COX-2. Barrier integrity was assessed from circulating lipopolysaccharide (LPS) and dextran administered intragastrically. Epithelial permeability to luminal dextran was visualized using two photon microscopy. RESULTS The small intestines of CD36KO mice fed a chow diet showed several abnormalities including extracellular matrix (ECM) accumulation with increased expression of ECM proteins, evidence of neutrophil infiltration, inflammation and compromised barrier function. EM showed shortened desmosomes with decreased desmocollin 2 expression. Systemically, leukocytosis and neutrophilia were present together with 80% reduction of anti-inflammatory Ly6Clow monocytes. Bone marrow transplants supported the primary contribution of non-hematopoietic cells to the inflammatory phenotype. Specific deletion of endothelial but not of enterocyte CD36 reproduced many of the gut phenotypes of germline CD36KO mice including fibronectin deposition, increased interleukin 6, neutrophil infiltration, desmosome shortening and impaired epithelial barrier function. CONCLUSIONS CD36 loss results in chronic neutrophil infiltration of the gut, impairs barrier integrity and systemically causes subclinical inflammation. Endothelial cell CD36 deletion reproduces the major intestinal phenotypes. The findings suggest an important role of the endothelium in etiology of gut inflammation and loss of epithelial barrier integrity.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri,Reprint requests Address requests for reprints to: Nada A. Abumrad, PhD, or Vincenza Cifarelli, PhD, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Campus Box 8031, St. Louis, Missouri 63110. fax: (314) 362-8230.Department of MedicineCenter for Human NutritionWashington University School of MedicineCampus Box 8031St. LouisMissouri 63110
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Yan Xie
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Ni-Huiping Son
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York
| | - Brian T. Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Terri A. Pietka
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Trevor M. Shew
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Jun Yoshino
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Nicholas O. Davidson
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Bernd H. Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Nada A. Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri,Reprint requests Address requests for reprints to: Nada A. Abumrad, PhD, or Vincenza Cifarelli, PhD, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Campus Box 8031, St. Louis, Missouri 63110. fax: (314) 362-8230.Department of MedicineCenter for Human NutritionWashington University School of MedicineCampus Box 8031St. LouisMissouri 63110
| |
Collapse
|
29
|
Campello E, Zabeo E, Radu CM, Spiezia L, Foletto M, Prevedello L, Gavasso S, Bulato C, Vettor R, Simioni P. Dynamics of circulating microparticles in obesity after weight loss. Intern Emerg Med 2016; 11:695-702. [PMID: 26837209 DOI: 10.1007/s11739-016-1397-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/16/2016] [Indexed: 12/22/2022]
Abstract
A definitive relationship between adiposity and MP production is yet to be demonstrated. The aim of our study was to prospectively evaluate the levels of microparticles (MP) in a group of 20 III degree obese patients before and after weight loss. Plasma levels of annexin V-MP, endothelial-derived MP, platelet-derived MP (CD61+ and P-Selectin+), leukocyte-derived MP, tissue factor-bearing (TF+) and CD36+MP were prospectively measured in 20 patients with III degree obesity (BMI ≥ 40 kg/m(2)) before (T0) and 3 (T3) and 12 (T12) months after sleeve gastrectomy (SLG). Obese patients had lost 18 % of their body weight at T3 and 41 % at T12. We find that considering all MP, except for endothelial-derived MP, which had significantly decreased at T3, all MP subtypes had significantly decreased at T12. At T12, subjects showed a higher median level of all types of MP, except endothelial-derived MP, compared to T3, but without a statistically significant difference. The percentages of reduction of all the MP were significantly correlated with the percentage of reduction of BMI. The reductions of leukocyte-derived, TF+ and CD36+MP were significantly correlated with the reduction of leptin. Moreover, the reductions of leukocyte-derived and CD36+MP were significantly correlated with hs-CRP decrease. The decrease of BMI post-SLG in morbid obesity was matched with a decrease of circulating MP of endothelial, platelet, leukocyte origin, TF+ and CD36+. A trend of slight increase in all MP subtypes, except endothelial-derived, was detected 12 months after gastrectomy, indicating a possible underlying slow low-grade inflammatory/hypercoagulability state from adipose tissue before the potential overt weight gain.
Collapse
Affiliation(s)
- Elena Campello
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy.
| | - Eva Zabeo
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy
| | - Claudia M Radu
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy
| | - Luca Spiezia
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy
| | - Mirto Foletto
- Week Surgery, Bariatric Unit, University of Padua, Padua, Italy
| | - Luca Prevedello
- Week Surgery, Bariatric Unit, University of Padua, Padua, Italy
| | - Sabrina Gavasso
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy
| | - Cristiana Bulato
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy
| | - Roberto Vettor
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35100, Padua, Italy
| |
Collapse
|
30
|
Increased risk of cardiovascular disease in premenopausal female ragpickers of Eastern India: involvement of inflammation, oxidative stress, and platelet hyperactivity. Mol Cell Biochem 2016; 419:193-203. [PMID: 27421852 DOI: 10.1007/s11010-016-2773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/09/2016] [Indexed: 12/18/2022]
Abstract
Millions of poor people in the developing world still thrive on ragpicking. In the present study, we have examined whether ragpicking is associated with increased risk of cardiovascular disease. For this, we have enrolled 112 premenopausal female ragpickers (median age 30 years) and 98 age-matched housemaids as control from Kolkata, Eastern India. Venous blood was drawn for routine hematology; flow cytometry was used to measure generation of reactive oxygen species (ROS) by leukocytes, surface expression of CD62P (P-selectin) in platelets and CD11b in leukocytes. Collagen-induced platelet aggregation was evaluated by aggregometer, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Soluble P-selectin (sP-sel) and CD40L (sCD40L), neutrophil-activating protein-2 (NAP-2), platelet and plasma serotonin, oxidized low-density lipoprotein (oxLDL), and anticardiolipin antibodies (aCL) in plasma were measured by ELISA. Compared with control, the ragpickers had significantly higher prevalence of hypertension and prehypertension, and hypertension was positively associated with ragpicking. The ragpickers also had higher levels of inflammation (elevated NAP-2), oxidative stress (elevated ROS generation with depleted SOD) with oxLDL, platelet activation and aggregability, soluble CD40 ligand, with altered serotonin level (rose in plasma but depleted in platelet). A greater percentage of ragpickers had elevated serum level of aCL of the IgG and IgM isotypes than the controls. The results suggest that the occupation of ragpicking increases the risk of cardiovascular diseases in premenopausal women of Eastern India via inflammation, oxidative stress, platelet hyperactivity, and hypertension.
Collapse
|
31
|
Cavalcante MF, Kazuma SM, Bender EA, Adorne MD, Ullian M, Veras MM, Saldiva PHN, Maranhão AQ, Guterres SS, Pohlmann AR, Abdalla DSP. A nanoformulation containing a scFv reactive to electronegative LDL inhibits atherosclerosis in LDL receptor knockout mice. Eur J Pharm Biopharm 2016; 107:120-9. [PMID: 27378286 DOI: 10.1016/j.ejpb.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease responsible for the majority of cases of myocardial infarction and ischemic stroke. The electronegative low-density lipoprotein, a modified subfraction of native LDL, is pro-inflammatory and plays an important role in atherogenesis. To investigate the effects of a nanoformulation (scFv anti-LDL(-)-MCMN-Zn) containing a scFv reactive to LDL(-) on the inhibition of atherosclerosis, its toxicity was evaluated in vitro and in vivo and further it was also administered weekly to LDL receptor knockout mice. The scFv anti-LDL(-)-MCMN-Zn nanoformulation did not induce cell death in RAW 264.7 macrophages and HUVECs. The 5mg/kg dose of scFv anti-LDL(-)-MCMN-Zn did not cause any typical signs of toxicity and it was chosen for the evaluation of its atheroprotective effect in Ldlr(-/-) mice. This nanoformulation significantly decreased the atherosclerotic lesion area at the aortic sinus, compared with that in untreated mice. In addition, the Il1b mRNA expression and CD14 protein expression were downregulated in the atherosclerotic lesions at the aortic arch of Ldlr(-/-) mice treated with scFv anti-LDL(-)-MCMN-Zn. Thus, the scFv anti-LDL(-)-MCMN-Zn nanoformulation inhibited the progression of atherosclerotic lesions, indicating its potential use in a future therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Marcela Frota Cavalcante
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Soraya Megumi Kazuma
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo André Bender
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Duarte Adorne
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Ullian
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Matera Veras
- LIM5, Department of Pathology, Medicine School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Andrea Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Silvia Stanisçuaski Guterres
- Department of Production and Control of Medicines, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
32
|
Leder L, Kolehmainen M, Narverud I, Dahlman I, Myhrstad MCW, de Mello VD, Paananen J, Carlberg C, Schwab U, Herzig KH, Cloetens L, Storm MU, Hukkanen J, Savolainen MJ, Rosqvist F, Hermansen K, Dragsted LO, Gunnarsdottir I, Thorsdottir I, Risérus U, Åkesson B, Thoresen M, Arner P, Poutanen KS, Uusitupa M, Holven KB, Ulven SM. Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome: a SYSDIET sub-study. GENES AND NUTRITION 2016; 11:3. [PMID: 27482295 PMCID: PMC4959556 DOI: 10.1186/s12263-016-0521-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
Abstract
Background Diet has a great impact on the risk of developing features of metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVD). We evaluated whether a long-term healthy Nordic diet (ND) can modify the expression of inflammation and lipid metabolism-related genes in peripheral blood mononuclear cells (PBMCs) during a 2-h oral glucose tolerance test (OGTT) in individuals with MetS. Methods A Nordic multicenter randomized dietary study included subjects (n = 213) with MetS, randomized to a ND group or a control diet (CD) group applying an isocaloric study protocol. In this sub-study, we included subjects (n = 89) from three Nordic centers: Kuopio (n = 26), Lund (n = 30), and Oulu (n = 33) with a maximum weight change of ±4 kg, high-sensitivity C-reactive protein concentration ≤10 mg L−1, and baseline body mass index <39 kg m−2. PBMCs were isolated, and the mRNA gene expression analysis was measured by quantitative real-time polymerase chain reaction (qPCR). We analyzed the mRNA expression changes of 44 genes before and after a 2hOGTT at the beginning and the end of the intervention. Results The healthy ND significantly down-regulated the expression of toll-like receptor 4 (TLR4), interleukin 18 (IL18), and thrombospondin receptor (CD36) mRNA transcripts and significantly up-regulated the expression of peroxisome proliferator-activated receptor delta (PPARD) mRNA transcript after the 2hOGTT compared to the CD. Conclusions A healthy ND is able to modify the gene expression in PBMCs after a 2hOGTT. However, more studies are needed to clarify the biological and clinical relevance of these findings. Electronic supplementary material The online version of this article (doi:10.1186/s12263-016-0521-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lena Leder
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo Norway
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ingunn Narverud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo Norway
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institute, Stockholm, Sweden
| | - Mari C W Myhrstad
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jussi Paananen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland ; Institute of Clinical Medicine, Internal Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Medical Research Centre Oulu, Oulu, Finland ; Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Lieselotte Cloetens
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Matilda Ulmius Storm
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland ; Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, Oulu, Finland ; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Markku J Savolainen
- Biocenter Oulu, University of Oulu, Oulu, Finland ; Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, Oulu, Finland ; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Ingibjörg Gunnarsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Inga Thorsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Björn Åkesson
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden ; Department of Clinical Nutrition, Skåne University Hospital, Lund, Sweden
| | - Magne Thoresen
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institute, Stockholm, Sweden
| | - Kaisa S Poutanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland ; Research Unit, Kuopio University Hospital, Kuopio, Finland
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo Norway ; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo Norway ; Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| |
Collapse
|
33
|
Wang ZT, Wang Z, Hu YW. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis 2016; 248:10-6. [PMID: 26978582 DOI: 10.1016/j.atherosclerosis.2016.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed.
Collapse
Affiliation(s)
- Zhi-Ting Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zi Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
34
|
Phang M, Thorne RF, Alkhatatbeh MJ, Garg ML, Lincz LF. Circulating CD36+ microparticles are not altered by docosahexaenoic or eicosapentaenoic acid supplementation. Nutr Metab Cardiovasc Dis 2016; 26:254-260. [PMID: 26803595 DOI: 10.1016/j.numecd.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/20/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Circulating microparticles (MP) are the source of a plasma derived form of the scavenger receptor CD36, termed soluble (s)CD36, the levels of which correlate with markers of atherosclerosis and risk of cardiovascular disease. Long chain n-3 polyunsaturated fatty acids have cardioprotective effects that we have previously reported to be gender specific. The aim of this study was to determine if dietary docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) supplementation affect circulating CD36 + MP levels, and if this occurs differentially in healthy men and women. METHODS AND RESULTS Participants (43M, 51F) aged 39.6 ± 1.7 years received 4 weeks of daily supplementation with DHA rich (200 mg EPA; 1000 mg DHA), EPA rich (1000 mg EPA; 200 mg DHA), or placebo (sunola) oil in a double-blinded, randomised, placebo controlled trial. Plasma CD36 + MP were enumerated by flow cytometry and differences between genders and treatments were evaluated by Student's or paired t-test and one way ANOVA. Males and females had similar levels of CD36 + MP at baseline (mean = 1018 ± 325 vs 980 ± 318; p = 0.577) and these were not significantly changed after DHA (M, p = 0.571; F, p = 0.444) or EPA (M, p = 0.361; F, p = 0.901) supplementation. Likewise, the overall percent change in these levels were not different between supplemented cohorts compared to placebo when all participants were combined (% change in CD36 + MP: DHA = 5.7 ± 37.5, EPA = -3.4 ± 35.4, placebo = -11.5 ± 32.9; p = 0.158) or stratified by gender (M, DHA = -2.6 ± 30.6, EPA = -15.1 ± 20.1, placebo = -21.4 ± 28.7, p = 0.187; F, DHA = 11.7 ± 41.5, EPA = 6.8 ± 42.9, placebo = -2.8 ± 34.7, p = 0.552). CONCLUSION The cardioprotective effects of DHA and EPA do not act through a CD36 + MP mechanism.
Collapse
Affiliation(s)
- M Phang
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R F Thorne
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - M J Alkhatatbeh
- Clinical Pharmacy Department, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - M L Garg
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - L F Lincz
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Hunter Haematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia.
| |
Collapse
|
35
|
Endothelial CD36 Contributes to Postischemic Brain Injury by Promoting Neutrophil Activation via CSF3. J Neurosci 2016; 35:14783-93. [PMID: 26538649 DOI: 10.1523/jneurosci.2980-15.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The scavenger receptor CD36 is a critical factor initiating ischemic brain injury, but the cell type(s) expressing CD36 and responsible for its harmful effects remain unknown. Using bone marrow (BM) chimeras subjected to transient middle cerebral artery occlusion, we found that CD36(-/-) mice transplanted with wild-type (WT) BM (WT→CD36(-/-)) have smaller infarcts (-67%), comparable with those of mice lacking CD36 both in brain and hematogenous cells (CD36(-/-) →CD36(-/-); - 72%). Conversely, WT mice receiving CD36(-/-) BM (CD36(-/-) →WT) have infarcts similar to WT→WT mice, suggesting that CD36 in the host brain (i.e., in microglia and endothelial cells), and not in hematogenous cells is involved in the damage. As anticipated, postischemic neutrophil infiltration in CD36(-/-) →CD36(-/-) mice was attenuated. Surprisingly, however, in WT→CD36(-/-) mice, in which infarcts were small, neutrophil infiltration was large and similar to that of CD36(-/-) →WT mice, in which infarcts were not reduced. Postischemic neutrophil free radical production was attenuated in WT→CD36(-/-) mice compared with CD36(-/-) →WT mice, whereas expression of the neutrophil activator colony-stimulating factor 3 (CSF3) was suppressed in CD36(-/-) cerebral endothelial cells, but not microglia. In CD36(-/-) cerebral endothelial cultures exposed to extracts from stroke brains, the upregulation of CSF3, but not neutrophil attractant chemokines, was suppressed. Intracerebroventricular administration of CSF3, 24 h after stroke, reconstituted neutrophil radical production and increased infarct volume in WT→CD36(-/-) mice. The findings identify endothelial cells as a key player in the deleterious effects of CD36 in stroke, and unveil a novel role of endothelial CD36 in enabling neutrophil neurotoxicity through CSF3. SIGNIFICANCE STATEMENT Ischemic stroke is a leading cause of death and disability worldwide with limited therapeutic options. The inflammatory response initiated by cerebral ischemia-reperfusion contributes to ischemic brain injury and is a potential therapeutic target. Here we report that CD36, an innate immunity receptor involved in the initiation of postischemic inflammation, is a previously unrecognized regulator of neutrophil cytotoxicity. The effect is mediated by endothelial CD36 via upregulation of the neutrophil activator CSF3 in cerebral endothelial cells. Therefore, approaches to modulate cerebral endothelial CD36 signaling or to neutralize CSF3 may provide novel therapeutic opportunities to ameliorate postischemic inflammatory injury.
Collapse
|
36
|
The Impact of Lipoprotein-Associated Oxidative Stress on Cell-Specific Microvesicle Release in Patients with Familial Hypercholesterolemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2492858. [PMID: 26925191 PMCID: PMC4748106 DOI: 10.1155/2016/2492858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/31/2015] [Indexed: 11/17/2022]
Abstract
Objective. Microvesicles (MVs) are small cell-derived particles shed upon activation. Familial hypercholesterolemia (FH) particularly when associated with Achilles tendon xanthomas (ATX) predisposes to atherosclerosis, possibly through oxLDL-C interaction with the CD36 receptor. To investigate the hypothesis that MVs derived from cells involved in atherosclerosis are increased in FH and that CD36 expressing MVs (CD36+ MVs) may be markers of oxLDL-C-induced cell activation, cell-specific MVs were measured in FH patients with and without ATX and their association with atherogenic lipid profile was studied. Approach and Results. Thirty FH patients with and without ATX and twenty-three controls were included. Plasma concentrations of MVs and CD36+ MVs derived from platelets (PMVs), erythrocytes (ErytMVs), monocytes (MMVs), and endothelial cells (EMVs), as well as tissue factor-positive cells (TF+ MVs), were measured by flow cytometry. Total MVs, MMVs, EMVs, ErytMVs, and TF+ MVs were significantly increased in FH patients, compared to controls. CD36+ MVs derived from endothelial cells and monocytes were significantly higher in FH patients and oxLDL-C predicted all the investigated cell-specific CD36+ MVs in FH patients with ATX. Conclusions. MVs derived from cells involved in atherosclerosis were increased in FH and may contribute to elevated atherothrombosis risk. The increased cell-specific CD36+ MVs observed in FH may represent markers of oxLDL-C-induced cell activation.
Collapse
|
37
|
TSUZUKI S, AMITSUKA T, OKAHASHI T, KOZAI Y, YAMASAKI M, INOUE K, FUSHIKI T. Identification of the odor-active volatile compound (Z,Z)-4,7-tridecadienal as a potential ligand for the transmembrane receptor CD36 . Biomed Res 2016; 37:335-342. [DOI: 10.2220/biomedres.37.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Satoshi TSUZUKI
- Laboratory of Nutrition Chemistry, Division of Food Sciense and Biotechnology, Graduate School of Agriculture, Kyoto University
| | | | - Tatsuya OKAHASHI
- Laboratory of Nutrition Chemistry, Division of Food Sciense and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yuki KOZAI
- Laboratory of Nutrition Chemistry, Division of Food Sciense and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Masayuki YAMASAKI
- Department of Food Science and Human Nutrition, Faculture, Ryukoku University
| | - Kazuo INOUE
- Laboratory of Nutrition Chemistry, Division of Food Sciense and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Tohru FUSHIKI
- Department of Food Science and Human Nutrition, Faculture, Ryukoku University
| |
Collapse
|
38
|
Al-Sharea A, Lee MKS, Moore XL, Fang L, Sviridov D, Chin-Dusting J, Andrews KL, Murphy AJ. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype. Thromb Haemost 2015; 115:762-72. [PMID: 26676845 DOI: 10.1160/th15-07-0571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/13/2015] [Indexed: 11/05/2022]
Abstract
Recruitment of monocytes in atherosclerosis is dependent upon increased levels of plasma lipoproteins which accumulate in the blood vessel wall. The extracellular milieu can influence the phenotype of monocyte subsets (classical: CD14++CD16-, intermediate: CD14+CD16+ and non-classical: CD14dimCD16++) and macrophages (M1 or M2) and consequently the initiation, progression and/or regression of atherosclerosis. However, it is not known what effect lipoproteins, in particular native low-density lipoproteins (nLDL), have on the polarisation of monocyte-derived macrophages. Monocytes were differentiated into macrophages in the presence of nLDL. nLDL increased gene expression of the inflammatory cytokines TNFα and IL-6 in macrophages polarised towards the M1 phenotype while decreasing the M2 surface markers, CD206 and CD200R and the anti-inflammatory cytokines TGFβ and IL-10. Compared to the classical and intermediate subsets, the non-classical subset-derived macrophages had a reduced ability to respond to M1 stimuli (LPS and IFNγ). nLDL enhanced the TNFα and IL-6 gene expression in macrophages from all monocyte subsets, indicating an inflammatory effect of nLDL. Further, the classical and intermediate subsets both responded to M2 stimuli (IL-4) with upregulation of TGFβ and SR-B1 mRNA; an effect, which was reduced by nLDL. In contrast, the non-classical subset failed to respond to IL-4 or nLDL, suggesting it may be unable to polarise into M2 macrophages. Our data suggests that monocyte interaction with nLDL significantly affects macrophage polarisation and that this interaction appears to be subset dependent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Murphy
- Dr. Andrew J. Murphy, Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road central, Melbourne, VIC 8008, Australia, Tel.: +61 3 8532 1292, Fax: +61 3 8532 1100, E-mail:
| |
Collapse
|
39
|
Zhang J, Nie S, Martinez-Zaguilan R, Sennoune SR, Wang S. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. J Nutr Biochem 2015; 30:14-23. [PMID: 27012617 DOI: 10.1016/j.jnutbio.2015.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/21/2015] [Accepted: 11/03/2015] [Indexed: 01/12/2023]
Abstract
Intimal macrophages are determinant cells for atherosclerotic lesion formation by releasing inflammatory factors and taking up oxidized low-density lipoprotein (oxLDL) via scavenger receptors, primarily the CD36 receptor. (-)-Epigallocatechin-3-gallate (EGCG) has a potential to decrease cholesterol accumulation and inflammatory responses in macrophages. We made EGCG-loaded nanoparticles (Enano) using phosphatidylcholine, kolliphor HS15, alpha-tocopherol acetate and EGCG. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdiA-PC), a CD36-targeted ligand found on oxLDL, was incorporated on the surface of Enano to make ligand-Enano (L-Enano). The objectives of this study are to deliver EGCG to macrophages via CD36-targeted L-Enano and to determine its antiatherogenic bioactivities. The optimized nanoparticles obtained in our study were spherical and around 108 nm in diameter, and had about 10% of EGCG loading capacity and 96% of EGCG encapsulation efficiency. Compared to Enano, CD36-targeted L-Enano had significantly higher binding affinity to and uptake by macrophages at the same pattern as oxLDL. CD36-targeted L-Enano dramatically improved EGCG stability, increased macrophage EGCG content, delivered EGCG to macrophage cytosol and avoided lysosomes. L-Enano significantly decreased macrophage mRNA levels and protein secretion of monocyte chemoattractant protein 1, but did not significantly change macrophage cholesterol content. The innovative CD36-targeted nanoparticles may facilitate targeted delivery of diagnostic, preventive and therapeutic compounds to intimal macrophages for the diagnosis, prevention and treatment of atherosclerosis with enhanced efficacy and decreased side effects.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Souad R Sennoune
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
40
|
Spiromastixones Inhibit Foam Cell Formation via Regulation of Cholesterol Efflux and Uptake in RAW264.7 Macrophages. Mar Drugs 2015; 13:6352-65. [PMID: 26473890 PMCID: PMC4626694 DOI: 10.3390/md13106352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022] Open
Abstract
Bioassay-guided evaluation shows that a deep sea-derived fungus, Spiromastix sp. MCCC 3A00308, possesses lipid-lowering activity. Chromatographic separation of a culture broth resulted in the isolation of 15 known depsidone-based analogues, labeled spiromastixones A–O (1–15). Each of these compounds was tested for its ability to inhibit oxidized low-density lipoprotein (oxLDL)-induced foam cell formation in RAW264.7 macrophages. Spiromastixones 6–8 and 12–14 significantly decreased oxLDL-induced lipid over-accumulation, reduced cell surface area, and reduced intracellular cholesterol concentration. Of these compounds, spiromastixones 6 and 14 exerted the strongest inhibitory effects. Spiromastixones 6 and 14 dramatically inhibited cholesterol uptake and stimulated cholesterol efflux to apolipoprotein A1 (ApoA1) and high-density lipoprotein (HDL) in RAW264.7 macrophages. Mechanistic investigation indicated that spiromastixones 6, 7, 12 and 14 significantly up-regulated the mRNA levels of ATP-binding cassette sub-family A1 (ABCA1) and down-regulated those of scavenger receptor CD36, while the transcription of ATP-binding cassette sub-family A1 (ABCG1) and proliferator-activated receptor gamma (PPARγ) were selectively up-regulated by 6 and 14. A transactivation reporter assay revealed that spiromastixones 6 and 14 remarkably enhanced the transcriptional activity of PPARγ. These results suggest that spiromastixones inhibit foam cell formation through upregulation of PPARγ and ABCA1/G1 and downregulation of CD36, indicating that spiromastixones 6 and 14 are promising lead compounds for further development as anti-atherogenic agents.
Collapse
|
41
|
Nie S, Zhang J, Martinez-Zaguilan R, Sennoune S, Hossen MN, Lichtenstein AH, Cao J, Meyerrose GE, Paone R, Soontrapa S, Fan Z, Wang S. Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles. J Control Release 2015; 220:61-70. [PMID: 26450668 DOI: 10.1016/j.jconrel.2015.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022]
Abstract
Current approaches to the diagnosis and therapy of atherosclerosis cannot target lesion-determinant cells in the artery wall. Intimal macrophage infiltration promotes atherosclerotic lesion development by facilitating the accumulation of oxidized low-density lipoproteins (oxLDL) and increasing inflammatory responses. The presence of these cells is positively associated with lesion progression, severity and destabilization. Hence, they are an important diagnostic and therapeutic target. The objective of this study was to noninvasively assess the distribution and accumulation of intimal macrophages using CD36-targeted nanovesicles. Soy phosphatidylcholine was used to synthesize liposome-like nanovesicles. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine was incorporated on their surface to target the CD36 receptor. All in vitro data demonstrate that these targeted nanovesicles had a high binding affinity for the oxLDL binding site of the CD36 receptor and participated in CD36-mediated recognition and uptake of nanovesicles by macrophages. Intravenous administration into LDL receptor null mice of targeted compared to non-targeted nanovesicles resulted in higher uptake in aortic lesions. The nanovesicles co-localized with macrophages and their CD36 receptors in aortic lesions. This molecular target approach may facilitate the in vivo noninvasive imaging of atherosclerotic lesions in terms of intimal macrophage accumulation and distribution and disclose lesion features related to inflammation and possibly vulnerability thereby facilitate early lesion detection and targeted delivery of therapeutic compounds to intimal macrophages.
Collapse
Affiliation(s)
- Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA
| | - Souad Sennoune
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA
| | - Md Nazir Hossen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Jun Cao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Gary E Meyerrose
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ralph Paone
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Suthipong Soontrapa
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Zhaoyang Fan
- Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
42
|
Oberoi R, Bogalle EP, Matthes LA, Schuett H, Koch AK, Grote K, Schieffer B, Schuett J, Luchtefeld M. Lipocalin (LCN) 2 Mediates Pro-Atherosclerotic Processes and Is Elevated in Patients with Coronary Artery Disease. PLoS One 2015; 10:e0137924. [PMID: 26367277 PMCID: PMC4569430 DOI: 10.1371/journal.pone.0137924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Lipocalin (LCN) 2 is associated with multiple acute and chronic inflammatory diseases but the underlying molecular and cellular mechanisms remain unclear. Here, we investigated whether LCN2 is released from macrophages and contributes to pro-atherosclerotic processes and whether LCN2 plasma levels are associated with the severity of coronary artery disease progression in humans. Methods and Results In an autocrine-paracrine loop, tumor necrosis factor (TNF)-α promoted the release of LCN2 from murine bone-marrow derived macrophages (BMDM) and vice versa. Moreover, LCN2 stimulation of BMDM led to up-regulation of M1 macrophage markers. In addition, enhanced migration of monocytic J774A.1 cells towards LCN2 was observed. Furthermore, LCN2 increased the expression of the scavenger receptors Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) as well as scavenger receptor class A-1 (SRA-1) and induced the conversion of macrophages to foam cells. In atherosclerotic lesions of low density lipoprotein receptor-deficient (ldlr−/−) mice fed a high fat, high cholesterol diet, LCN2 was found to be co-localized with macrophages in the shoulder region of the atherosclerotic plaque. In addition, LCN2 plasma levels were significantly increased in plasma samples of these mice. Finally, LCN2 plasma levels correlated with the severity of coronary artery disease (CAD) in patients as determined by coronary angiography. Conclusions Here we demonstrated that LCN2 plays a pivotal role in processes involved in atherogenesis by promoting polarization and migration of monocytic cells and development of macrophages towards foam cells. Moreover, LCN2 may be used as a prognostic marker to determine the status of CAD progression.
Collapse
Affiliation(s)
- Raghav Oberoi
- Department of Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Eskindir P Bogalle
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Lukas A Matthes
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Harald Schuett
- Department of Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Ann-Kathrin Koch
- Department of Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Karsten Grote
- Department of Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Department of Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Jutta Schuett
- Department of Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Maren Luchtefeld
- Department of Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
43
|
Krzystolik A, Dziedziejko V, Safranow K, Kurzawski G, Rać M, Sagasz-Tysiewicz D, Poncyljusz W, Jakubowska K, Chlubek D, Rać ME. Is plasma soluble CD36 associated with cardiovascular risk factors in early onset coronary artery disease patients? Scandinavian Journal of Clinical and Laboratory Investigation 2015; 75:398-406. [DOI: 10.3109/00365513.2015.1031693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Kurzawski
- Department of Genetics and Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| | - Michał Rać
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Wojciech Poncyljusz
- Department of Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Jakubowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Monika E. Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
44
|
Wang S, Zhang X, Liu M, Luan H, Ji Y, Guo P, Wu C. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. PHARMACEUTICAL BIOLOGY 2015; 53:1481-1487. [PMID: 25857322 DOI: 10.3109/13880209.2014.986688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Chrysin, a natural flavonoid, has been shown to possess multiple pharmacological activities including anti-atherosclerosis. OBJECTIVE The effects of chrysin on foam cell formation and cholesterol flow in RAW264.7 macrophages were investigated in this work to explore the potential mechanism underlying its anti-atherogenic activity. MATERIALS AND METHODS The inhibitive effect of chrysin on foam cell formation and cholesterol accumulation induced by oxidized low-density lipoprotein cholesterol (ox-LDL) was assessed by oil red O staining and intracellular total cholesterol and triglyceride quantification in RAW264.7 macrophages. The action of chrysin on cholesterol efflux and influx was tested by fluorescent assays. Real-time quantitative PCR was used to quantify the relative expression of cholesterol flow-associated genes and luciferase assay was applied to test the transcription activity of peroxisome proliferator-activated receptor gamma (PPARγ). RESULTS Chrysin dose dependently inhibited the formation of foam cells and prevented the enhanced cholesterol accumulation by ox-LDL. Treatment with chrysin (10 μM) significantly enhanced cholesterol efflux and substantially inhibited cholesterol influx. Simultaneously, chrysin significantly increased the mRNA levels of PPARγ, liver X receptor alpha (LXRα), ATP-binding cassette, sub-family A1 (ABCA1), and sub-family G1 (ABCG1), decreased scavenger receptor A1 (SR-A1) and SR-A2, and increased the transcriptional activity of PPARγ. DISCUSSION AND CONCLUSION Chrysin is a new inhibitor of foam cell formation that may stimulate cholesterol flow. Up-regulation of the classical PPARγ-LXRα-ABCA1/ABCG1 pathway and down-regulation of SR-A1 and SR-A2 may participate in its suppressive effect on intracellular cholesterol accumulation.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , PR China and
| | | | | | | | | | | | | |
Collapse
|
45
|
Kelley JL, Ozment TR, Li C, Schweitzer JB, Williams DL. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit Rev Immunol 2015; 34:241-61. [PMID: 24941076 DOI: 10.1615/critrevimmunol.2014010267] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Scavenger receptor A (SR-A), also known as the macrophage scavenger receptor and cluster of differentiation 204 (CD204), plays roles in lipid metabolism, atherogenesis, and a number of metabolic processes. However, recent evidence points to important roles for SR-A in inflammation, innate immunity, host defense, sepsis, and ischemic injury. Herein, we review the role of SR-A in inflammation, innate immunity, host defense, sepsis, cardiac and cerebral ischemic injury, Alzheimer's disease, virus recognition and uptake, bone metabolism, and pulmonary injury. Interestingly, SR-A is reported to be host protective in some disease states, but there is also compelling evidence that SR-A plays a role in the pathophysiology of other diseases. These observations of both harmful and beneficial effects of SR-A are discussed here in the framework of inflammation, innate immunity, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jim L Kelley
- Departments of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Tammy R Ozment
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Chuanfu Li
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - John B Schweitzer
- Departments of Pathology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - David L Williams
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| |
Collapse
|
46
|
Jay AG, Chen AN, Paz MA, Hung JP, Hamilton JA. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding. J Biol Chem 2015; 290:4590-4603. [PMID: 25555908 DOI: 10.1074/jbc.m114.627026] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Anthony G Jay
- From the Departments of Biochemistry and; Physiology and Biophysics, Boston University, Boston, Massachusetts 02118
| | - Alexander N Chen
- Physiology and Biophysics, Boston University, Boston, Massachusetts 02118
| | - Miguel A Paz
- Physiology and Biophysics, Boston University, Boston, Massachusetts 02118
| | - Justin P Hung
- Physiology and Biophysics, Boston University, Boston, Massachusetts 02118
| | - James A Hamilton
- Physiology and Biophysics, Boston University, Boston, Massachusetts 02118.
| |
Collapse
|
47
|
Bhat OM, Kumar PU, Giridharan NV, Kaul D, Kumar MJM, Dhawan V. Interleukin-18-induced atherosclerosis involves CD36 and NF-κB crosstalk in Apo E-/- mice. J Cardiol 2014; 66:28-35. [PMID: 25475966 DOI: 10.1016/j.jjcc.2014.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Interleukin (IL)-18 is a pleotropic cytokine involved in various inflammatory disorders. The transcription factor, nuclear factor kappa-B (NF-κB), is thought to play an important role in IL-18 signaling. The present study proposes a novel role for IL-18 in cholesterol efflux and plaque stability and demonstrates that pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor blocks IL-18 signaling in apolipoprotein (Apo) E-/- mice. METHODS Three groups of normal chow-diet-fed, male Apo E-/- mice, aged 12 weeks (n=6/group) were employed: Gp I, PBS (2mo); Gp II, recombinant (r)IL-18 (1mo) followed by PBS (1mo); Gp III, rIL-18 (1mo) followed by PDTC (1mo). RESULTS Significantly augmented expression of IL-18 receptor (R)α by fluorescence-activated cell sorting analysis and plasma IL-18 was observed in Gp II. There was a significant increase in total cholesterol and low-density lipoprotein cholesterol whereas high-density lipoprotein cholesterol was significantly decreased in Gp II. However, this pattern was reversed in Gp III. Significantly augmented mRNA expression of IL-18, CD36, matrix metalloproteinase (MMP)-9, and NF-κB was observed in Gp II but liver X receptor alpha (LXR-α) gene was significantly reduced. A significant increase in frequency of atherosclerotic lesions was observed in Gp II animals, whereas there was a significant decrease in the Gp III. CONCLUSION IL-18 administration initiates inflammatory cascade by binding with IL-18 Rα via NF-κB which is involved in progression and destabilization of atherosclerotic plaques in Apo E-/- mice. This study also reveals that NF-κB blockade with PDTC, blocks IL-18 signaling through down-regulation of IL-18, IL-18 Rα, CD36, and MMP-9, thus reducing inflammation and restoring plaque instability via upregulation of LXR-α.
Collapse
Affiliation(s)
- Owais Mohammad Bhat
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - P Uday Kumar
- National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, Department of Histopathology, National Institute of Nutrition (NIN), Hyderabad, India
| | - N V Giridharan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Viswavidyapeedham, Kochi, Kerala, India
| | - Deepak Kaul
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - M J Mahesh Kumar
- Animal House, Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
48
|
Ellis J, Lange EM, Li J, Dupuis J, Baumert J, Walston JD, Keating BJ, Durda P, Fox ER, Palmer CD, Meng YA, Young T, Farlow DN, Schnabel RB, Marzi CS, Larkin E, Martin LW, Bis JC, Auer P, Ramachandran VS, Gabriel SB, Willis MS, Pankow JS, Papanicolaou GJ, Rotter JI, Ballantyne CM, Gross MD, Lettre G, Wilson JG, Peters U, Koenig W, Tracy RP, Redline S, Reiner AP, Benjamin EJ, Lange LA. Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans. Hum Genet 2014; 133:985-95. [PMID: 24643644 PMCID: PMC4104766 DOI: 10.1007/s00439-014-1439-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women's Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 × 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 × 10(-6); CRP, p = 4.2 × 10(-71); APOE, p = 1.6 × 10(-6)). The fourth significant locus, CD36 (p = 1.6 × 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 × 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 × 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 × 10(-6); CD36, p = 1.4 × 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent.
Collapse
Affiliation(s)
- Jaclyn Ellis
- Department of Genetics, University of North Carolina, 5112 Genetic Medicine Bldg., Chapel Hill, NC, 27599-7264, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Low levels of CD36 in peripheral blood monocytes in subclinical atherosclerosis in rheumatoid arthritis: a cross-sectional study in a Mexican population. BIOMED RESEARCH INTERNATIONAL 2014; 2014:736786. [PMID: 25006585 PMCID: PMC4070538 DOI: 10.1155/2014/736786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Patients with rheumatoid arthritis (RA) have a higher risk for atherosclerosis. There is no clinical information about scavenger receptor CD36 and the development of subclinical atherosclerosis in patients with RA. The aim of this study was to evaluate the association between membrane expression of CD36 in peripheral blood mononuclear cells (PBMC) and carotid intima-media thickness (cIMT) in patients with RA. METHODS We included 67 patients with RA from the Rheumatology Department of Hospital Civil "Dr. Juan I. Menchaca," Guadalajara, Jalisco, Mexico. We evaluated the cIMT, considering subclinical atherosclerosis when >0.6 mm. Since our main objective was to associate the membrane expression of CD36 with subclinical atherosclerosis, other molecules related with cardiovascular risk such as ox-LDL, IL-6, and TNFα were tested. RESULTS We found low CD36 membrane expression in PBMC from RA patients with subclinical atherosclerosis (P < 0.001). CD36 mean fluorescence intensity had negative correlations with cIMT (r = -0.578, P < 0.001), ox-LDL (r = -0.427, P = 0.05), TNFα (r = -0.729, P < 0.001), and IL-6 (r = -0.822, P < 0.001). CONCLUSION RA patients with subclinical atherosclerosis showed low membrane expression of CD36 in PBMC and increased serum proinflammatory cytokines. Further studies are needed to clarify the regulation of CD36 in RA.
Collapse
|
50
|
Ramos-Arellano LE, Muñoz-Valle JF, De la Cruz-Mosso U, Salgado-Bernabé AB, Castro-Alarcón N, Parra-Rojas I. Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects. BMC Cardiovasc Disord 2014; 14:54. [PMID: 24766787 PMCID: PMC4012526 DOI: 10.1186/1471-2261-14-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) results from a combination of abnormalities in lipoprotein metabolism, oxidative stress, chronic inflammation, and susceptibility to thrombosis. Atherosclerosis is the major cause of CVD. CD36 has been shown to play a critical role in the development of atherosclerotic lesions by its capacity to bind and promote endocytosis of oxidized low-density lipoprotein (oxLDL) and is implicated in the formation of foam cells. The purpose of this research was to evaluate whether there is an association of sCD36 and oxLDL levels with cardiovascular risk factors in young subjects. METHODS A total of 188 subjects, 18 to 25 years old, 133 normal-weight and 55 obese subjects from the state of Guerrero, Mexico were recruited in the study. The lipid profile and glucose levels were measured by enzymatic colorimetric assays. Enzyme-linked immunosorbant assays (ELISA) for oxLDL and sCD36 were performed. Statistical analyses of data were performed with Wilcoxon- Mann Whitney and chi-square tests as well as with multinomial regression. RESULTS TC, LDL-C, TG, oxLDL and sCD36 levels were higher in obese subjects than in normal-weight controls, as well as, monocyte and platelet counts (P < 0.05). Obese subjects had 5.8 times higher risk of sCD36 in the third tertil (>97.8 ng/mL) than normal-weight controls (P = 0.014), and 7.4 times higher risk of oxLDL levels in third tertile (>48 U/L) than control group. The subjects with hypercholesterolemia, hypertriglyceridemia, fasting impaired LDL-C had a higher risk of oxLDL levels in the third tertile (>48 U/L) than the control group (P < 0.05). CONCLUSIONS Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects and may be potential early markers for cardiovascular disease (CVD).
Collapse
Affiliation(s)
| | | | | | | | | | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
| |
Collapse
|