1
|
Janmeda P, Jain D, Chaudhary P, Meena M, Singh D. A systematic review on multipotent carcinogenic agent, N-nitrosodiethylamine (NDEA), its major risk assessment, and precautions. J Appl Toxicol 2024; 44:1108-1128. [PMID: 38212177 DOI: 10.1002/jat.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024]
Abstract
The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.
Collapse
Affiliation(s)
- Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
2
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
3
|
Jain M, Goel A. Current Insights in Murine Models for Breast Cancer: Present, Past and Future. Curr Pharm Des 2024; 30:2267-2275. [PMID: 38910416 DOI: 10.2174/0113816128306053240604074142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.
Collapse
Affiliation(s)
- Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| |
Collapse
|
4
|
Kim MM, Steffensen I, Miguel RTD, Babic T, Johnson AD, Potts R, Junker CS. A systematic review of preclinical studies evaluating the association between nicotine and the initiation and progression of cancer. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:410. [PMID: 38213798 PMCID: PMC10777222 DOI: 10.21037/atm-23-1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/11/2023] [Indexed: 01/13/2024]
Abstract
Background The association between cigarette smoking and the increased risk of many cancers is well established. Conversely, epidemiological studies of smokeless tobacco demonstrate decreased risk, or no elevated risk, of certain cancers versus smoking. However, it is unclear what role, if any, nicotine plays in these associations. The objective of this systematic review was to synthesize the available evidence from preclinical studies that examined the potential association between nicotine and the initiation and/or progression of cancer. Methods MEDLINE, Embase, PsychInfo, and Cochrane Database of Systematic Reviews were searched for articles published from inception until February 13, 2022. Studies were eligible for inclusion if they evaluated animal cancer or tumor models, compared nicotine and non-nicotine groups, and evaluated measures of cancer initiation or progression. Results Among 1,137 identified articles, 61 were included in qualitative synthesis. Twelve studies reported data on tumor initiation, and 54 studies reported data on tumor progression. The majority of the tumor initiation studies did not identify an association between nicotine exposure and an increased risk of spontaneous tumor initiation. Results of tumor progression studies were inconsistent and varied across the reported measures, cancer type being evaluated, and animal cancer model used. Overall, the quality of reporting was poor, with many studies not demonstrating a high level of internal and/or external validity. Conclusions In conclusion, although animal models have provided invaluable data for human health risk assessments of chemical exposures, the heterogeneity across the studies included in this systematic review make the interpretation and generalizability of the results difficult.
Collapse
Affiliation(s)
| | | | | | | | - Aubrey D. Johnson
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, NC, USA
| | - Ryan Potts
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, NC, USA
| | | |
Collapse
|
5
|
Kim M, Panagiotakopoulou M, Chen C, Ruiz SB, Ganesh K, Tammela T, Heller DA. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 2023; 23:581-599. [PMID: 37353679 PMCID: PMC10528361 DOI: 10.1038/s41568-023-00593-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Stephen B Ruiz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, Wen M, Jiang T, Xiong Y, Lei J. Experimental mouse models for translational human cancer research. Front Immunol 2023; 14:1095388. [PMID: 36969176 PMCID: PMC10036357 DOI: 10.3389/fimmu.2023.1095388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The development and growth of tumors remains an important and ongoing threat to human life around the world. While advanced therapeutic strategies such as immune checkpoint therapy and CAR-T have achieved astonishing progress in the treatment of both solid and hematological malignancies, the malignant initiation and progression of cancer remains a controversial issue, and further research is urgently required. The experimental animal model not only has great advantages in simulating the occurrence, development, and malignant transformation mechanisms of tumors, but also can be used to evaluate the therapeutic effects of a diverse array of clinical interventions, gradually becoming an indispensable method for cancer research. In this paper, we have reviewed recent research progress in relation to mouse and rat models, focusing on spontaneous, induced, transgenic, and transplantable tumor models, to help guide the future study of malignant mechanisms and tumor prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Jiang
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Yanlu Xiong
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Jie Lei
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| |
Collapse
|
7
|
Bitencourt de Morais Valentim JM, Fagundes TR, Okamoto Ferreira M, Lonardoni Micheletti P, Broto Oliveira GE, Cremer Souza M, Geovana Leite Vacario B, da Silva JC, Scandolara TB, Gaboardi SC, Zanetti Pessoa Candiotto L, Mara Serpeloni J, Rodrigues Ferreira Seiva F, Panis C. Monitoring residues of pesticides in food in Brazil: A multiscale analysis of the main contaminants, dietary cancer risk estimative and mechanisms associated. Front Public Health 2023; 11:1130893. [PMID: 36908412 PMCID: PMC9992878 DOI: 10.3389/fpubh.2023.1130893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Pesticides pose a risk for cancer development and progression. People are continuously exposed to such substances by several routes, including daily intake of contaminated food and water, especially in countries that are highly pesticide consumers and have very permissive legislation about pesticide contamination as Brazil. This work investigated the relationship among pesticides, food contamination, and dietary cancer risk. Methods Analyzed two social reports from the Brazilian Government: the Program for Analysis of Residues of Pesticides in Food (PARA) and The National Program for Control of Waste and Contaminants (PNCRC). Results and discussion First, we characterized the main pesticide residues detected over the maximum limits allowed by legislation or those prohibited for use in food samples analyzed across the country. Based on this list, we estimated the dietary cancer risks for some of the selected pesticides. Finally, we searched for data about dietary cancer risks and carcinogenic mechanisms of each pesticide. We also provided a critical analysis concerning the pesticide scenario in Brazil, aiming to discuss the food contamination levels observed from a geographical, political, and public health perspective. Exposures to pesticides in Brazil violate a range of human rights when food and water for human consumption are contaminated.
Collapse
Affiliation(s)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Mariane Okamoto Ferreira
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| | | | | | - Milena Cremer Souza
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | | | | | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
- Instituto Federal Catarinense, Blumenau, Brazil
| | | | - Juliana Mara Serpeloni
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| |
Collapse
|
8
|
Bonamino MH, Correia EM. The CRISPR/Cas System in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:59-71. [PMID: 37486516 DOI: 10.1007/978-3-031-33325-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The use of CRISPR as a genetic editing tool modified the oncology field from its basic to applied research for opening a simple, fast, and cheaper way to manipulate the genome. This chapter reviews some of the major uses of this technique for in vitro- and in vivo-based biological screenings, for cellular and animal model generation, and new derivative tools applied to cancer research. CRISPR has opened new frontiers increasing the knowledge about cancer, pointing to new solutions to overcome several challenges to better understand the disease and design better treatments.
Collapse
|
9
|
Kaur H, Kaur K, Singh A, Bedi N, Singh B, Alturki MS, Aldawsari MF, Almalki AH, Haque S, Lee HJ, Yadav DK, Arora S. Frankincense oil-loaded nanoemulsion formulation of paclitaxel and erucin: A synergistic combination for ameliorating drug resistance in breast cancer: In vitro and in vivo study. Front Pharmacol 2022; 13:1020602. [PMID: 36330087 PMCID: PMC9623270 DOI: 10.3389/fphar.2022.1020602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 12/09/2022] Open
Abstract
Nanoformulation-based combinational drug delivery systems are well known to overcome drug resistance in cancer management. Among them, nanoemulsions are well-known and thermodynamically stable drug delivery systems suitable for carrying hydrophobic drugs and phytoconstituents to tackle drug-resistant cancers. In the present study, we have investigated the effect of paclitaxel in combination with erucin (natural isothiocyanate isolated from the seeds of Eruca sativa) loaded in the frankincense oil-based nanoemulsion formulation. The choice of frankincense oil for the current study was based on reported research investigations stating its magnificient therapeutic potential against breast cancer. Optimized nanoemulsion of paclitaxel (PTX) and erucin (ER) combination (EPNE) provided sustained release and exhibited enhanced cytotoxicity towards human epithelial breast cancer cells (T-47D) as compared to individual ER and PTX. EPNE was further assessed for its antitumor activity in the 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer mice model. EPNE significantly decreased the levels of hepatic and renal parameters along with oxidative stress in breast cancer mice. Furthermore, EPNE also showed decreased levels of inflammatory cytokines TNF-α, IL-6. Histopathological examinations revealed restoration of the tumorous breast to normal tissues in EPNE-treated breast cancer mice. Therefore, EPNE can act as a viable lead and therapeutic option for drug-resistant breast cancer.
Collapse
Affiliation(s)
- Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- *Correspondence: Hae-Jeung Lee, ; Saroj Arora,
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon City, Korea
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- *Correspondence: Hae-Jeung Lee, ; Saroj Arora,
| |
Collapse
|
10
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20:206. [PMID: 35538576 PMCID: PMC9088152 DOI: 10.1186/s12967-022-03405-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|
12
|
Dzhalilova DS, Makarova OV. HIF-Dependent Mechanisms of Relationship between Hypoxia Tolerance and Tumor Development. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1163-1180. [PMID: 34903150 DOI: 10.1134/s0006297921100011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxygen deficiency is one of the key pathogenetic factors determining development and severity of many diseases, including inflammatory, infectious diseases, and cancer. Lack of oxygen activates the signaling pathway of the hypoxia-inducible transcription factor HIF in cells that has three isoforms, HIF-1, HIF-2, HIF-3, regulating expression of several thousand genes. Throughout tumor progression, HIF activation stimulates angiogenesis, promotes changes in cell metabolism, adhesion, invasiveness, and ability to metastasize. HIF isoforms can play opposite roles in the development of inflammatory and neoplastic processes. Humans and laboratory animals differ both in tolerance to hypoxia and in the levels of expression of HIF and HIF-dependent genes, which may lead to predisposition to the development of certain oncological disorders. In particular, the ratio of different histogenetic types of tumors may vary among people living in the mountains and at the sea level. However, despite the key role of hypoxia at almost all stages of tumor development, basal tolerance to oxygen deficiency is not considered as a factor of predisposition to the tumor growth initiation. In literature, there are many works characterizing the level of local hypoxia in various tumors, and suggesting fundamental approaches to its mitigation by HIF inhibition. HIF inhibitors, as a rule, have a systemic effect on the organism, however, basal tolerance of an organism to hypoxia as well as the level of HIF expression are not taken into account in the process of their use. The review summarizes the literature data on different HIF isoforms and their role in tumor progression, with extrapolation to organisms with high and low tolerance to hypoxia, as well as on the prevalence of various types of tumors in the populations living at high altitudes.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Federal State Budgetary Institution "Research Institute of Human Morphology", Moscow, 117418, Russia.
| | - Olga V Makarova
- Federal State Budgetary Institution "Research Institute of Human Morphology", Moscow, 117418, Russia
| |
Collapse
|
13
|
Theile D, Wizgall P. Acquired ABC-transporter overexpression in cancer cells: transcriptional induction or Darwinian selection? Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1621-1632. [PMID: 34236499 PMCID: PMC8298356 DOI: 10.1007/s00210-021-02112-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Acquired multidrug resistance (MDR) in tumor diseases has repeatedly been associated with overexpression of ATP-binding cassette transporters (ABC-transporters) such as P-glycoprotein. Both in vitro and in vivo data suggest that these efflux transporters can cause MDR, albeit its actual relevance for clinical chemotherapy unresponsiveness remains uncertain. The overexpression can experimentally be achieved by exposure of tumor cells to cytotoxic drugs. For simplification, the drug-mediated transporter overexpression can be attributed to two opposite mechanisms: First, increased transcription of ABC-transporter genes mediated by nuclear receptors sensing the respective compound. Second, Darwinian selection of sub-clones intrinsically overexpressing drug transporters being capable of extruding the respective drug. To date, there is no definite data indicating which mechanism truly applies or whether there are circumstances promoting either mode of action. This review summarizes experimental evidence for both theories, suggests an algorithm discriminating between these two modes, and finally points out future experimental approaches of research to answer this basic question in cancer pharmacology.
Collapse
Affiliation(s)
- Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Pauline Wizgall
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Anwar HM, Moghazy AM, Elhameid Osman AAE, Abdel Rahman AAS. The Therapeutic Effect of Myrrh (Commiphora molmol) and Doxorubicin on Diethylnitrosamine Induced Hepatocarcinogenesis in Male Albino Rats. Asian Pac J Cancer Prev 2021; 22:2153-2163. [PMID: 34319038 PMCID: PMC8607089 DOI: 10.31557/apjcp.2021.22.7.2153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND This study was conducted to assess the therapeutic effect of Myrrh on Diethylnitrosamine (DEN)-induced hepatocarcinogenesis (HCC) in male albino rats. METHODS Fifty male albino rats were divided into five groups (10 rats each). Group 1 (control group) received distilled water. Group 2 (positive control) was injected intraperitoneally with DEN (55 mg/kg b.w) twice a week for two weeks, while group 3 (DOX) received doxorubicin i.p (10 mg/ kg b.w) after concomitant with DEN twice a week for four weeks. Groups 4 and 5 received a low dose of Myrrh (250 mg/kg b.w) and a high dose of Myrrh (500 mg/kg b.w) respectively daily for four weeks after the induction with DEN. The sera were used to estimate the liver enzymes (ALT, AST, and ALP), Alpha-fetoprotein (AFP), Total antioxidant capacity (TAC), and Tumor necrosis factor-ἁ (TNF-ἁ). Also, the liver tissues were collected to determine the oxidative stress markers in addition to the histopathological and immunohistochemical investigations. RESULTS The results showed that the induction of DEN causes a significant increase in the level of liver enzymes (ALT, AST, and ALP), AFP and TNF-ἁ as well as produce oxidative stress indicated by increasing of malondialdehyde (MDA) with the reduction in TAC and glutathione (GSH). Meanwhile, there are noticeable histopathological lesions with loss of hepatic architecture. This was accompanied by a significant increase of immunohistochemical markers; Caspase-3, vascular endothelial growth factor (VEGF), transforming growth factor β1(TGF- β1), and carcinoembryonic antigen (CEA) percentage area. The treatment of DEN rats with DOX reduced the alterations in most parameters. A marked amelioration of all parameters in a dose-dependent manner of Myrrh to the values almost near to those of the control group. CONCLUSION Our data revealed that Water extract of Myrrh (C. molmol) has a potential therapeutic effect in attenuation of HCC induced DEN.
Collapse
Affiliation(s)
- Hend Mohamed Anwar
- Department of Biochemistry, National Organization of Drug Control and Research (NODCAR), Giza, Egypt.
| | - Asmaa M. Moghazy
- Department of Hormonal Evaluation, National Organization of Drug Control and Research (NODCAR), Giza, Egypt.
| | - Amany Abd Elhameid Elhameid Osman
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain shams university, Asmaa Fahmy Street, Heliopolis, Cairo, Egypt.
| | - Amina A. S. Abdel Rahman
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain shams university, Asmaa Fahmy Street, Heliopolis, Cairo, Egypt.
| |
Collapse
|
15
|
Cardona B, Rudel RA. Application of an in Vitro Assay to Identify Chemicals That Increase Estradiol and Progesterone Synthesis and Are Potential Breast Cancer Risk Factors. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77003. [PMID: 34287026 PMCID: PMC8293912 DOI: 10.1289/ehp8608] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Established breast cancer risk factors, such as hormone replacement therapy and reproductive history, are thought to act by increasing estrogen and progesterone (P4) activity. OBJECTIVE We aimed to use in vitro screening data to identify chemicals that increase the synthesis of estradiol (E2) or P4 and evaluate potential risks. METHOD Using data from a high-throughput (HT) in vitro steroidogenesis assay developed for the U.S. Environmental Protection Agency (EPA) ToxCast program, we identified chemicals that increased estradiol (E2-up) or progesterone (P4-up) in human H295R adrenocortical carcinoma cells. We prioritized chemicals by their activity. We compiled in vivo studies and assessments about carcinogenicity and reproductive/developmental (repro/dev) toxicity. We identified exposure sources and predicted intakes from the U.S. EPA's ExpoCast. RESULTS We found 296 chemicals increased E2 (182) or P4 (185), with 71 chemicals increasing both. In vivo data often showed effects consistent with this mechanism. Of the E2- and P4-up chemicals, about 30% were likely repro/dev toxicants or carcinogens, whereas only 5-13% were classified as unlikely. However, most of the chemicals had insufficient in vivo data to evaluate their effects. Of 45 chemicals associated with mammary gland effects, and also tested in the H294R assay, 29 increased E2 or P4, including the well-known mammary carcinogen 7,12-dimethylbenz(a)anthracene. E2- and P4-up chemicals include pesticides, consumer product ingredients, food additives, and drinking water contaminants. DISCUSSION The U.S. EPA's in vitro screening data identified several hundred chemicals that should be considered as potential risk factors for breast cancer because they increased E2 or P4 synthesis. In vitro data is a helpful addition to current toxicity assessments, which are not sensitive to mammary gland effects. Relevant effects on the mammary gland are often not noticed or are dismissed, including for 2,4-dichlorophenol and cyfluthrin. Fifty-three active E2-up and 59 active P4-up chemicals that are in consumer products, food, pesticides, or drugs have not been evaluated for carcinogenic potential and are priorities for study and exposure reduction. https://doi.org/10.1289/EHP8608.
Collapse
|
16
|
Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021; 173:306-330. [PMID: 33798642 PMCID: PMC8191594 DOI: 10.1016/j.addr.2021.03.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Even given recent advances in nanomedicine development of breast cancer treatment in recent years and promising results in pre-clinical models, cancer nanomedicines often fail at the clinical trial stage. Limitations of conventional in vitro models include the lack of representation of the stromal population, the absence of a three-dimensional (3D) structure, and a poor representation of inter-tumor and intra-tumor heterogeneity. Herein, we review those cell culture strategies that aim to overcome these limitations, including cell co-cultures, advanced 3D cell cultures, patient-derived cells, bioprinting, and microfluidics systems. The in vivo evaluation of nanomedicines must consider critical parameters that include the enhanced permeability and retention effect, the host's immune status, and the site of tumor implantation. Here, we critically discuss the advantages and limitations of current in vivo models and report how the improved selection and application of breast cancer models can improve the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Paula M Soriano-Teruel
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain; Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Ana Armiñán
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Mar Orzáez
- Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
17
|
Rabben HL, Kodama Y, Nakamura M, Bones AM, Wang TC, Chen D, Zhao CM, Øverby A. Chemopreventive Effects of Dietary Isothiocyanates in Animal Models of Gastric Cancer and Synergistic Anticancer Effects With Cisplatin in Human Gastric Cancer Cells. Front Pharmacol 2021; 12:613458. [PMID: 33897415 PMCID: PMC8060630 DOI: 10.3389/fphar.2021.613458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring isothiocyanates (ITCs) from edible vegetables have shown potential as chemopreventive agents against several types of cancer. The aims of the present study were to study the potential of ITCs in chemoprevention and in potentiating the efficacy of cytotoxic drugs in gastric cancer treatment. The chemoprevention was studied in chemically induced mouse model of gastric cancer, namely N-methyl-N-nitrosourea (MNU) in drinking water, and in a genetically engineered mouse model of gastric cancer (the so-called INS-GAS mice). The pharmacological effects of ITCs with or without cisplatin were studied in human gastric cell lines MKN45, AGS, MKN74 and KATO-III, which were derived from either intestinal or diffused types of gastric carcinoma. The results showed that dietary phenethyl isothiocyanate (PEITC) reduced the tumor size when PEITC was given simultaneously with MNU, but neither when administrated after MNU nor in INS-GAS mice. Treatments of gastric cancer cells with ITCs resulted in a time- and concentration-dependent inhibition on cell proliferation. Pretreatment of gastric cancer cells with ITCs enhanced the inhibitory effects of cisplatin (but not 5-fluorouracil) in time- and concentration-dependent manners. Treatments of gastric cancer cells with PEITC plus cisplatin simultaneously at different concentrations of either PEITC or cisplatin exhibited neither additive nor synergetic inhibitory effect. Furthermore, PEITC depleted glutathione and induced G2/M cell cycle arrest in gastric cancer cells. In conclusion, the results of the present study showed that PEITC displayed anti-cancer effects, particularly when given before the tumor initiation, suggesting a chemopreventive effect in gastric cancer, and that pretreatment of PEITC potentiated the anti-cancer effects of cisplatin, possibly by reducing the intracellular pool of glutathione, suggesting a possible combination strategy of chemotherapy with pretreatment with PEITC.
Collapse
Affiliation(s)
- Hanne-Line Rabben
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority, Stjørdal, Norway
| | - Yosuke Kodama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Masahiko Nakamura
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Atle Magnar Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Timothy Cragin Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority, Stjørdal, Norway
| | - Anders Øverby
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Center for Clinical Pharmacy and Clinical Sciences, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
18
|
Modeling human tumor-immune environments in vivo for the preclinical assessment of immunotherapies. Cancer Immunol Immunother 2021; 70:2737-2750. [PMID: 33830275 PMCID: PMC8423639 DOI: 10.1007/s00262-021-02897-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Despite the significant contributions of immunocompetent mouse models to the development and assessment of cancer immunotherapies, they inadequately represent the genetic and biological complexity of corresponding human cancers. Immunocompromised mice reconstituted with a human immune system (HIS) and engrafted with patient-derived tumor xenografts are a promising novel preclinical model for the study of human tumor-immune interactions. Whilst overcoming limitations of immunocompetent models, HIS-tumor models often rely on reconstitution with allogeneic immune cells, making it difficult to distinguish between anti-tumor and alloantigen responses. Models that comprise of autologous human tumor and human immune cells provide a platform that is more representative of the patient immune-tumor interaction. However, limited access to autologous tissues, short experimental windows, and poor retention of tumor microenvironment and tumor infiltrating lymphocyte components are major challenges affecting the establishment and application of autologous models. This review outlines existing preclinical murine models for the study of immuno-oncology, and highlights innovations that can be applied to improve the feasibility and efficacy of autologous models.
Collapse
|
19
|
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B. Application of Animal Models in Cancer Research: Recent Progress and Future Prospects. Cancer Manag Res 2021; 13:2455-2475. [PMID: 33758544 PMCID: PMC7979343 DOI: 10.2147/cmar.s302565] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Animal models refers to the animal experimental objects and related materials that can simulate human body established in medical research. As the second-largest disease in terms of morbidity and mortality after cardiovascular disease, cancer has always been the focus of human attention all over the world, which makes it a research hotspot in the medical field. At the same time, more and more animal models have been constructed and used in cancer research. With the deepening of research, the construction methods of cancer animal models are becoming more and more diverse, including chemical induction, xenotransplantation, gene programming, and so on. In recent years, patient-derived xenotransplantation (PDX) model has become a research hotspot because it can retain the microenvironment of the primary tumor and the basic characteristics of cells. Animal models can be used not only to study the biochemical and physiological processes of the occurrence and development of cancer in objects but also for the screening of cancer drugs and the exploration of gene therapy. In this paper, several main tumor animal models and the application progress of animal models in tumor research are systematically reviewed. Finally, combined with the latest progress and development trend in this field, the future research of tumor animal model was prospected.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Alamsyah F, Pratiwi R, Firdausi N, Irene Mesak Pello J, Evi Dwi Nugraheni S, Ghitha Fadhlurrahman A, Nurhidayat L, Purwo Taruno W. Cytotoxic T cells response with decreased CD4/CD8 ratio during mammary tumors inhibition in rats induced by non-contact electric fields. F1000Res 2021; 10:35. [PMID: 34164110 PMCID: PMC8142601 DOI: 10.12688/f1000research.27952.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 04/03/2024] Open
Abstract
Background: Breast cancer is the most common cancer in women worldwide and is the leading cause of death in women with cancer. One novel therapy used for breast cancer treatment is non-contact electric fields called electro-capacitive cancer therapy (ECCT) with intermediate frequency (100 kHz) and low intensity (18 Vpp). The objective of this study was to examine the effect of ECCT on mammary tumors growth in rats and observing the immune responses that play a role in fighting the tumor. Methods: Female SD rats were used and divided into four groups, namely control (NINT), placebo (NIT), non- therapy (INT), and therapy (IT) groups with 6 biological replicates in each group. Rats in INT and IT groups were treated with 7,12-dimethylbenz[a]anthracene for mammary tumor induction. Only rats in NIT and IT groups were exposed to ECCT individually for 10 hours per day for 21 days. The size of all tumors was measured with a digital caliper. The distributions of PCNA, ErbB2, caspase-3, CD68, CD4 and CD8-positive cells were observed with immunohistochemistry and scoring with ImageJ. Results: The growth rate of mammary tumors in IT group was significantly lower (p<0.05) than that in the INT group. The number of mitotic figures and the percentage of PCNA, caspase-3, and CD68- positive cells in IT group were significantly lower (p<0.05) than those in INT group. Conversely, the percentage of CD8-positive T cells in IT group was significantly higher (p<0.05) than that in INT group. Moreover, the CD4/CD8 ratio in IT group was decreased. Some tumor tissues were blackened and detached from the surrounding tissue, resulting in an open wound which then healed up upon exposure. Conclusions: Non-contact electric fields exposure showed inhibition on mammary tumor growth in rats while inducing CD8+ T cells that lead to tumor cells death and potentially helps wound healing.
Collapse
Affiliation(s)
- Firman Alamsyah
- Center for Medical Physics and Cancer Research, Ctech Labs Edwar Technology, Tangerang, Banten, 15143, Indonesia
| | - Rarastoeti Pratiwi
- Faculty of Biology, Universitas Gadjah Mada, Sleman, DI Yogyakarta, 55281, Indonesia
| | - Nisrina Firdausi
- Faculty of Biology, Universitas Gadjah Mada, Sleman, DI Yogyakarta, 55281, Indonesia
| | | | | | | | - Luthfi Nurhidayat
- Faculty of Biology, Universitas Gadjah Mada, Sleman, DI Yogyakarta, 55281, Indonesia
| | - Warsito Purwo Taruno
- Center for Medical Physics and Cancer Research, Ctech Labs Edwar Technology, Tangerang, Banten, 15143, Indonesia
| |
Collapse
|
21
|
Alamsyah F, Pratiwi R, Firdausi N, Irene Mesak Pello J, Evi Dwi Nugraheni S, Ghitha Fadhlurrahman A, Nurhidayat L, Purwo Taruno W. Cytotoxic T cells response with decreased CD4/CD8 ratio during mammary tumors inhibition in rats induced by non-contact electric fields. F1000Res 2021; 10:35. [PMID: 34164110 PMCID: PMC8142601 DOI: 10.12688/f1000research.27952.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Breast cancer is the most common cancer in women worldwide and is the leading cause of death amongst women with cancer. One novel therapy used for breast cancer treatment constitutes non-contact electric fields and is called electro-capacitive cancer therapy (ECCT) with intermediate frequency and low intensity. The objective of this study was to examine the effect of ECCT on mammary tumors growth in rats and observing the immune responses that play a role in fighting the tumor. Methods: Female SD rats were used and divided into four groups, namely control (NINT), placebo (NIT), non- therapy (INT), and therapy (IT) groups with 6 biological replicates in each group. Rats in INT and IT groups were treated with 7,12-dimethylbenz[a]anthracene for mammary tumor induction. Only rats in NIT and IT groups were exposed to ECCT individually for 10 hours per day for 21 days. The size of all tumors was measured with a digital caliper. The distributions of PCNA, ErbB2, caspase-3, CD68, CD4, and CD8-positive cells were observed with immunohistochemistry and scoring with ImageJ. Results: The growth rate of mammary tumors in IT group was significantly lower (p<0.05) than that in INT group. The number of mitotic figures and the percentage of PCNA, caspase-3, and CD68-positive cells in IT group were significantly lower (p<0.05) than those in INT group. Conversely, the percentage of CD8-positive T cells in IT group was significantly higher (p<0.05) than that in INT group. Moreover, the CD4/CD8 ratio in IT group was found to have decreased. Some tumor tissues were blackened and detached from the surrounding tissue, resulting in an open wound which then healed upon exposure. Conclusions: Non-contact electric fields exposure showed inhibition on mammary tumor growth in rats while inducing CD8+ T cells, leading to tumor cell death and potentially helping wounds heal.
Collapse
Affiliation(s)
- Firman Alamsyah
- Center for Medical Physics and Cancer Research, Ctech Labs Edwar Technology, Tangerang, Banten, 15143, Indonesia
| | - Rarastoeti Pratiwi
- Faculty of Biology, Universitas Gadjah Mada, Sleman, DI Yogyakarta, 55281, Indonesia
| | - Nisrina Firdausi
- Faculty of Biology, Universitas Gadjah Mada, Sleman, DI Yogyakarta, 55281, Indonesia
| | | | | | | | - Luthfi Nurhidayat
- Faculty of Biology, Universitas Gadjah Mada, Sleman, DI Yogyakarta, 55281, Indonesia
| | - Warsito Purwo Taruno
- Center for Medical Physics and Cancer Research, Ctech Labs Edwar Technology, Tangerang, Banten, 15143, Indonesia
| |
Collapse
|
22
|
Costa E, Ferreira-Gonçalves T, Cardoso M, Coelho JMP, Gaspar MM, Faísca P, Ascensão L, Cabrita AS, Reis CP, Figueiredo IV. A Step Forward in Breast Cancer Research: From a Natural-Like Experimental Model to a Preliminary Photothermal Approach. Int J Mol Sci 2020; 21:E9681. [PMID: 33353068 PMCID: PMC7765974 DOI: 10.3390/ijms21249681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most frequently diagnosed malignancies and common causes of cancer death in women. Recent studies suggest that environmental exposures to certain chemicals, such as 7,12-Dimethylbenzanthracene (DMBA), a chemical present in tobacco, may increase the risk of developing breast cancer later in life. The first-line treatments for breast cancer (surgery, chemotherapy or a combination of both) are generally invasive and frequently associated with severe side effects and high comorbidity. Consequently, novel approaches are strongly required to find more natural-like experimental models that better reflect the tumors' etiology, physiopathology and response to treatments, as well as to find more targeted, efficient and minimally invasive treatments. This study proposes the development and an in deep biological characterization of an experimental model using DMBA-tumor-induction in Sprague-Dawley female rats. Moreover, a photothermal therapy approach using a near-infrared laser coupled with gold nanoparticles was preliminarily assessed. The gold nanoparticles were functionalized with Epidermal Growth Factor, and their physicochemical properties and in vitro effects were characterized. DMBA proved to be a very good and selective inductor of breast cancer, with 100% incidence and inducing an average of 4.7 tumors per animal. Epigenetic analysis showed that tumors classified with worst prognosis were hypomethylated. The tumor-induced rats were then subjected to a preliminary treatment using functionalized gold nanoparticles and its activation by laser (650-900 nm). The treatment outcomes presented very promising alterations in terms of tumor histology, confirming the presence of necrosis in most of the cases. Although this study revealed encouraging results as a breast cancer therapy, it is important to define tumor eligibility and specific efficiency criteria to further assess its application in breast cancer treatment on other species.
Collapse
Affiliation(s)
- Eduardo Costa
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (E.C.); (I.V.F.)
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (A.S.C.)
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
- Vasco da Gama Research Group (CIVG), Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
| | - Tânia Ferreira-Gonçalves
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
| | - Miguel Cardoso
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (A.S.C.)
- Dentistry Area, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Maria Manuela Gaspar
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
| | - Pedro Faísca
- Faculty of Veterinary Medicine (ULHT)/IGC, 1749-024 Lisboa, Portugal;
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - António S. Cabrita
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (A.S.C.)
| | - Catarina Pinto Reis
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Isabel V. Figueiredo
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (E.C.); (I.V.F.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
23
|
Lin WS, Leland JV, Ho CT, Pan MH. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12788-12799. [PMID: 32064876 DOI: 10.1021/acs.jafc.9b07860] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Supplementation with natural compounds found in fruits and vegetables has long been associated with a reduced risk of several types of cancer. Pterostilbene is a natural stilbenoid and a dimethylated analogue of resveratrol which is found primarily in blueberries. Pterostilbene exhibits a range of pharmacological properties, particularly anti-inflammatory and anticancer effects. Due to two methoxy groups in its skeleton, pterostilbene is more lipophilic than resveratrol and thus possesses higher intestinal permeability and cellular uptake and enhanced stability. Moreover, pterostilbene exhibits less toxicity and fewer adverse effects, providing it with superior potential in cancer chemoprevention and chemotherapy applications. Numerous research studies have demonstrated that pterostilbene possesses detoxification activities, mediating the anti-inflammation response, regulating the cell cycle, augmenting apoptosis, enhancing autophagy, and inhibiting tumor angiogenesis, invasion, and metastasis by modulating signal transduction pathways which block multiple stages of carcinogenesis. In this review, we illustrate that pterostilbene is a natural compound having bioavailability. The extensive metabolism of pterostilbene will be discussed. We also summarize recent research on pterostilbene's anti-inflammatory and anticancer properties in the multistage carcinogenesis process and related molecular mechanism and conclude that it should contribute to improved cancer management.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
24
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
25
|
Abstract
Breast cancer is one of the most common cancers worldwide, which makes it a very impactful malignancy in the society. Breast cancers can be classified through different systems based on the main tumor features and gene, protein, and cell receptors expression, which will determine the most advisable therapeutic course and expected outcomes. Multiple therapeutic options have already been proposed and implemented for breast cancer treatment. Nonetheless, their use and efficacy still greatly depend on the tumor classification, and treatments are commonly associated with invasiveness, pain, discomfort, severe side effects, and poor specificity. This has demanded an investment in the research of the mechanisms behind the disease progression, evolution, and associated risk factors, and on novel diagnostic and therapeutic techniques. However, advances in the understanding and assessment of breast cancer are dependent on the ability to mimic the properties and microenvironment of tumors in vivo, which can be achieved through experimentation on animal models. This review covers an overview of the main animal models used in breast cancer research, namely in vitro models, in vivo models, in silico models, and other models. For each model, the main characteristics, advantages, and challenges associated to their use are highlighted.
Collapse
|
26
|
Keratinocyte-Expressed Podoplanin is Dispensable for Multi-Step Skin Carcinogenesis. Cells 2020; 9:cells9061542. [PMID: 32599908 PMCID: PMC7348927 DOI: 10.3390/cells9061542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Podoplanin is a small transmembrane mucin-like glycoprotein that plays a crucial role in the development of the lung, heart and lymphatic vascular system. Its expression is upregulated in several types of human carcinomas and podoplanin levels in squamous cell carcinomas (SCCs) of the oral cavity and the lung correlate with cancer invasiveness, lymph node metastasis and shorter survival time of patients, indicating that podoplanin promotes tumor progression. However, its role during the early stages of carcinogenesis remain unclear. We generated mice with a specific deletion of podoplanin in epidermal keratinocytes (K5-Cre;Pdpnflox/flox mice) and subjected them to a multistep chemical skin carcinogenesis regimen. The rate of tumor initiation; the number, size and differentiation of tumors; and the malignant transformation rate were comparable in K5-Cre;Pdpnflox/flox mice and Pdpnflox/flox control mice. However, tumor cell invasion was reduced in K5-Cre;Pdpnflox/flox mice, in particular single cell invasion. Quantitative immunofluorescence analyses revealed that peritumoral lymphangiogenesis was reduced in K5-Cre;Pdpnflox/flox mice, whereas there were no major changes of tumor-associated immune cell subpopulations. Thus, keratinocyte-expressed podoplanin is dispensable for the early steps of skin carcinogenesis but contributes to the progression of established tumors.
Collapse
|
27
|
Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse Tumor Models for Advanced Cancer Immunotherapy. Int J Mol Sci 2020; 21:E4118. [PMID: 32526987 PMCID: PMC7312663 DOI: 10.3390/ijms21114118] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advances in the development of new methods of cancer immunotherapy require the production of complex cancer animal models that reliably reflect the complexity of the tumor and its microenvironment. Mice are good animals to create tumor models because they are low cost, have a short reproductive cycle, exhibit high tumor growth rates, and can be easily genetically modified. However, the obvious problem of these models is the high failure rate observed in human clinical trials after promising results obtained in mouse models. In order to increase the reliability of the results obtained in mice, the tumor model should reflect the heterogeneity of the tumor, contain components of the tumor microenvironment, in particular immune cells, to which the action of immunotherapeutic drugs are directed. This review discusses the current immunocompetent and immunocompromised mouse models of human tumors that are used to evaluate the effectiveness of immunotherapeutic agents, in particular chimeric antigen receptor (CAR) T-cells and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, University of Medicine, Nottingham NG7 2HA, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| |
Collapse
|
28
|
Methodology to analyze gene expression patterns of early mammary development in pig models. Mol Biol Rep 2020; 47:3241-3248. [PMID: 32219771 DOI: 10.1007/s11033-020-05362-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
In mammary gland development, normal stem cell activity occurs in the embryonic stage and postnatally. Research supports that certain breast cancers contain a small sub-population of cells that mimic stem-like activity. It is believed stem cell activation in the mutated mature human mammary tissue is what drives quiescent epithelial cells to convert to mesenchymal states initiating migration, invasion, and metastasis in breast cancer. The goal of the work reported herein was to investigate early mammary development gene expression in the postnatal pig using fine needle biopsy methods in order to establish a reliable model for human breast cancer detection. Tissue samples were collected from pig mammary glands beginning at Day 11 of age through Day 39 in order to capture early postnatal-growth gene expression. Based on the initial clustering analysis, two distinct clusters of gene expression profiles occurred before and after Day 25 of mammary development. Gene set enrichment analysis (GSEA) ontology indicated the cellular processes that changed after Day 25, and many of these processes were implicated in epithelial-mesenchymal transition (EMT) signaling events. Gene expression in the postnatal pig was compared with the Epithelial-Mesenchymal Transition gene database (dbEMT) confirming the presence of EMT activity in this early developmental program. Information from this study will provide insight into early postnatal mammary gland development. In addition, mechanisms exploited by mutated mammary epithelial cells leading to cancer initiation and growth may be detected considering that mutated mammary epithelial cells can reactivate early developmental signals.
Collapse
|
29
|
Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation. Diagnostics (Basel) 2020; 10:diagnostics10020078. [PMID: 32024029 PMCID: PMC7168934 DOI: 10.3390/diagnostics10020078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vascular disrupting agents (VDAs) have entered clinical trials for over 15 years. As the leading VDA, combretastatin A4 phosphate (CA4P) has been evaluated in combination with chemotherapy and molecular targeting agents among patients with ovarian cancer, lung cancer and thyroid cancer, but still remains rarely explored in human liver cancers. To overcome tumor residues and regrowth after CA4P monotherapy, a novel dual targeting pan-anticancer theragnostic strategy, i.e., OncoCiDia, has been developed and shown promise previously in secondary liver tumor models. Animal model of primary liver cancer is time consuming to induce, but of value for more closely mimicking human liver cancers in terms of tumor angiogenesis, histopathological heterogeneity, cellular differentiation, tumor components, cancer progression and therapeutic response. Being increasingly adopted in VDA researches, multiparametric magnetic resonance imaging (MRI) provides imaging biomarkers to reflect in vivo tumor responses to drugs. In this article as a chapter of a doctoral thesis, we overview the construction and clinical relevance of primary and secondary liver cancer models in rodents. Target selection for CA4P therapy assisted by enhanced MRI using hepatobiliary contrast agents (CAs), and therapeutic efficacy evaluated by using MRI with a non-specific contrast agent, dynamic contrast enhanced (DCE) imaging, diffusion weighted imaging (DWI) are also described. We then summarize diverse responses among primary hepatocellular carcinomas (HCCs), secondary liver and pancreatic tumors to CA4P, which appeared to be related to tumor size, vascularity, and cellular differentiation. In general, imaging-histopathology correlation studies allow to conclude that CA4P tends to be more effective in secondary liver tumors and in more differentiated HCCs, but less effective in less differentiated HCCs and implanted pancreatic tumor. Notably, cirrhotic liver may be responsive to CA4P as well. All these could be instructive for future clinical trials of VDAs.
Collapse
|
30
|
Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. Preclinical murine tumor models: a structural and functional perspective. eLife 2020; 9:e50740. [PMID: 31990272 PMCID: PMC6986875 DOI: 10.7554/elife.50740] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review is to pinpoint the specific features, including the weaknesses, of various tumor models, and to discuss the reasons why treatments that are efficient in murine tumor models often do not work in clinics. In a detailed comparison of transplanted and spontaneous tumor models, we focus on structure-function relationships in the tumor microenvironment. For instance, the architecture of the vascular tree, which depends on whether tumor cells have gone through epithelial-mesenchymal transition, is determinant for the extension of the spontaneous necrosis, and for the intratumoral localization of the immune infiltrate. Another key point is the model-dependent abundance of TGFβ in the tumor, which controls the variable susceptibility of different tumor models to treatments. Grounded in a historical perspective, this review provides a rationale for checking factors that will be key for the transition between preclinical murine models and clinical applications.
Collapse
Affiliation(s)
- Marion V Guerin
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| | - Veronica Finisguerra
- Ludwig Institute for Cancer Research, de Duve Institute WELBIOUCLouvainBrusselsBelgium
| | | | - Nadege Bercovici
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| | - Alain Trautmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014ParisFrance
| |
Collapse
|
31
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
32
|
Liu Y, Guan Q, Kong X, De Keyzer F, Feng Y, Chen F, Yu J, Liu J, Song S, van Pelt J, Swinnen J, Bormans G, Oyen R, Wang S, Huang G, Ni Y, Li Y. Predicting Therapeutic Efficacy of Vascular Disrupting Agent CA4P in Rats with Liver Tumors by Hepatobiliary Contrast Agent Mn-DPDP-Enhanced MRI. Transl Oncol 2019; 13:92-101. [PMID: 31810003 PMCID: PMC6909075 DOI: 10.1016/j.tranon.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
To evaluate hepatobiliary-specific contrast agent (CA) mangafodipir trisodium (Mn-DPDP)–enhanced magnetic resonance imaging (MRI) for predicting the therapeutic efficacy of the vascular disrupting agent combretastatin A4 phosphate (CA4P) in rats with primary and secondary liver tumors, 36 primary hepatocellular carcinomas (HCCs) were raised by diethylnitrosamine gavage in 16 male rats, in 6 of which one rhabdomyosarcomas (R1) was intrahepatically implanted as secondary liver tumors. On a 3.0T MR scanner with a wrist coil, tumors were monitored weekly by T2-/T1-weighted images (T2WI/T1WI) and characterized by Mn-DPDP-enhanced MRI. CA4P-induced intratumoral necrosis was depicted by nonspecific gadoterate meglumine (Gd-DOTA)–enhanced MRI before and 12 h after therapy. Changes of tumor-to-liver contrast (ΔT/L) on Mn-DPDP-enhanced images were analyzed. In vivo MRI findings were verified by postmortem microangiography and histopathology. Rat models of primary HCCs in a full spectrum of differentiation and secondary R1 liver tumors were successfully generated. Mn-DPDP-enhanced ΔT/L was negatively correlated with HCC differentiation grade (P < 0.01). After treatment with CA4P, more extensive tumoral necrosis was found in highly differentiated HCCs than that in moderately and poorly differentiated ones (P < 0.01); nearly complete necrosis was induced in secondary liver tumors. Mn-DPDP-enhanced MRI may help in imaging diagnosis of primary and secondary liver malignancies of different cellular differentiations and further in predicting CA4P therapeutic efficacy in primary HCCs and intrahepatic metastases.
Collapse
Affiliation(s)
- Yewei Liu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium; Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Qiu Guan
- College of Computer Science, Zhejiang University of Technology, Hangzhou 310027, China
| | - Xiangyong Kong
- College of Computer Science, Zhejiang University of Technology, Hangzhou 310027, China
| | | | - Yuanbo Feng
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Feng Chen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jie Yu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jianjun Liu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shaoli Song
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jos van Pelt
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Johan Swinnen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Guy Bormans
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Raymond Oyen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Shuncong Wang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China.
| | - Yicheng Ni
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
33
|
Crowe W, Elliott CT, Green BD. A Review of the In Vivo Evidence Investigating the Role of Nitrite Exposure from Processed Meat Consumption in the Development of Colorectal Cancer. Nutrients 2019; 11:E2673. [PMID: 31694233 PMCID: PMC6893523 DOI: 10.3390/nu11112673] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
The World Cancer Research Fund (WCRF) 2007 stated that the consumption of processed meat is a convincing cause of colorectal cancer (CRC), and therefore, the public should avoid it entirely. Sodium nitrite has emerged as a putative candidate responsible for the CRC-inducing effects of processed meats. Sodium nitrite is purported to prevent the growth of Clostridium botulinum and other food-spoiling bacteria, but recent, contradictory peer-reviewed evidence has emerged, leading to media reports questioning the necessity of nitrite addition. To date, eleven preclinical studies have investigated the effect of consuming nitrite/nitrite-containing meat on the development of CRC, but the results do not provide an overall consensus. A sizable number of human clinical studies have investigated the relationship between processed meat consumption and CRC risk with widely varying results. The unique approach of the present literature review was to include analysis that limited the human studies to those involving only nitrite-containing meat. The majority of these studies reported that nitrite-containing processed meat was associated with increased CRC risk. Nitrite consumption can lead to the formation of N-nitroso compounds (NOC), some of which are carcinogenic. Therefore, this focused perspective based on the current body of evidence links the consumption of meat containing nitrites and CRC risk.
Collapse
Affiliation(s)
| | | | - Brian D. Green
- Institute of Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK; (W.C.); (C.T.E.)
| |
Collapse
|
34
|
Kaur S, Sharma D, Singh AP, Kaur S. Amelioration of hepatic function, oxidative stress, and histopathologic damages by Cassia fistula L. fraction in thioacetamide-induced liver toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29930-29945. [PMID: 31407268 DOI: 10.1007/s11356-019-06158-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Cassia fistula L. (Caesalpinioideae) is a highly admirable medicinal plant and is traditionally recommended for the treatment of rheumatism, liver disorders, jaundice, and other inflammatory diseases. This study was designed to investigate the hepatoprotective properties of ethyl acetate fraction from C. fistula leaves in an animal model. Treatment with thioacetamide significantly elevated the level of serum glutamic-oxaloacetic transaminase (1.75-fold), alkaline phosphatase (4.07-fold), and total bilirubin (2.29-fold) as compared to the control. It was found that pretreatment of fraction followed by consecutive 2 days thioacetamide reduced the conversion of thioacetamide carcinogen to its reactive metabolites by phase I enzymes and increased the level of detoxification phase II along with antioxidative enzymes. The histopathological studies revealed the hepatoprotective nature of the fraction in restoring the normal architecture of thioacetamide-intoxicated damaged liver. The fraction showed downregulation in the expression level of p-PI3K, p-Akt, and p-mTOR pointing towards its chemopreventive potential. The HPLC analysis of the fraction had shown the dominance of three phenolic compounds namely, catechin, epicatechin, and chlorogenic acid. The above studies comprising histopathological, immunohistochemical, and hepatic enzymes are strong indicative of the potential protective ability of ethyl acetate fraction phytoconstituents against thioacetamide-induced toxicity. Graphical abstract.
Collapse
Affiliation(s)
- Sandeep Kaur
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Dipakshi Sharma
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satwinderjeet Kaur
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
35
|
Liu Y, Lu T, Wang C, Li H, Xu K, Li P. Intravital assessment of angioarchitecture in rat hepatocellular nodules using in vivo fluorescent microscopy. Quant Imaging Med Surg 2019; 9:1047-1055. [PMID: 31367558 DOI: 10.21037/qims.2019.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To prospectively evaluate the stepwise changes that occur in intra-nodular microvessels and microcirculation during the carcinogenesis process of hepatocellular nodules by using in vivo fluorescent microscopy, and to compare these with pathological changes. Methods Forty-five 10-week-old male Wistar rats received drinking water containing N-nitrosomorpholine at 10 mg/100 mL for 18weeks to develop multiple hepatocellular carcinomas (HCC) and dysplastic nodules (DN) in the liver; meanwhile, the non-lesion liver tissues become fibrotic. The microvascular morphological change and hemodynamic change of two lesion areas (HCC or DN) and one non-lesion area in each rat were observed with in vivo fluorescent microscope. After in vivo microscopy, 90 nodules and 45 non-lesion liver tissues that were observed were removed for pathological study. The microvessel density (MVD), branch density (BD), and cell density (CD) of these lesions were compared with the Kruskal-Wallis test and Mann-Whitney test, with an overall statistical significance of 0.05. Results The intra-nodular microvessels appeared tortuous, with irregular branching and abrupt diameter changes to form irregular convoluted networks in the HCC. This was distinctly different from the appearance of DN and non-lesion liver parenchyma. The MVD and BD of HCC were less than that of the DN and non-lesion liver parenchyma (P<0.01), and the BD of DN was also less than that of the non-lesion liver parenchyma (P<0.05). However, the MVD of the DN was similar to that of the non-lesion liver parenchyma (P>0.05). The CD of HCC was more than that of the DN and non-lesion liver parenchyma (P<0.05), and the CD of DN was also more than that of the non-lesion liver parenchyma (P<0.05). Conclusions Concurrent with the carcinogenesis process of the hepatocellular nodule, both the intra-nodular microvascular morphology and hemodynamics were stepwise changed, and the number of the intravascular lumen of intranodular microvessels decreased due to the infiltration and compression of intra-nodular parenchymal cells.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiology, The First Clinical Hospital of China Medical University, Shenyang 110001, China
| | - Tao Lu
- Department of Radiology, The First Clinical Hospital of China Medical University, Shenyang 110001, China
| | - Congcong Wang
- Department of Radiology, The First Clinical Hospital of China Medical University, Shenyang 110001, China
| | - Hui Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ke Xu
- Department of Radiology, The First Clinical Hospital of China Medical University, Shenyang 110001, China
| | - Peiling Li
- Department of Radiology, The First Clinical Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
36
|
Effect of Taraxacum officinale extract on PI3K/Akt pathway in DMBA-induced breast cancer in albino rats. Biosci Rep 2018; 38:BSR20180334. [PMID: 30126855 PMCID: PMC6435453 DOI: 10.1042/bsr20180334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Breast cancer is one of the most prevalent types of cancer and a leading cause of death in women. Materials and methods: An experimental model of breast cancer was induced in female albino rats using single intragastric dose of 7, 12 dimethylbenz (α) anthracene (DMBA) in sesame oil (50 mg/kg b.wt). Four months after DMBA administration, incidence of breast cancer was confirmed by measuring cancer antigen 15-3 (CA15-3) serum levels. Taraxacum officinale ssp. officinale root extract (TOE) was administered in a dose of 500 mg/kg by oral gavage for 4 weeks after breast cancer incidence. Level of CA15-3 as one of the best known breast tumor markers was elevated in all positive breast cancer rats. The genetic effects of TOE on Pdk1–Akt1–Pik3r1–Map3k1–Erbb2–PIk3ca using semi-quantitative RT-PCR analysis were evaluated. In parallel, histopathological changes and immunohistochemical expression of Bcl2 in mammary gland tissues were examined. Results: Level of CA15-3 was normalized in DMBA group administered TOE for 4 weeks. Administration of DMBA increased expression of Pdk1, Akt1, Pik3r1, Map3k1, Erbb2 and PIk3ca. Treatment with TOE normalized the up-regulated mRNA for all examined genes except Pik3ra that was up-regulated. Mammary gland tissues of DMBA group showed excessive proliferation of lining epithelium of acini and ductules with hyperchromatic nuclei with excessive immunostaining of Bcl2 in the proliferated epithelium that was ameliorated by TOE administration. In conclusion, TOE regulated PI3K and Akt pathways involved in suppression of breast cancer growth and proliferation. TOE is effective as anticancer herbal agent.
Collapse
|
37
|
Gabrielson K, Maronpot R, Monette S, Mlynarczyk C, Ramot Y, Nyska A, Sysa-Shah P. In Vivo Imaging With Confirmation by Histopathology for Increased Rigor and Reproducibility in Translational Research: A Review of Examples, Options, and Resources. ILAR J 2018; 59:80-98. [PMID: 30541081 PMCID: PMC6645176 DOI: 10.1093/ilar/ily010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Preclinical noninvasive imaging can be an indispensable tool for studying animal models of disease. In vivo imaging to assess anatomical, functional, and molecular features requires verification by a comparison to the macroscopic and microscopic morphological features, since all noninvasive in vivo imaging methods have much lower resolution than standard histopathology. Comprehensive pathological evaluation of the animal model is underutilized; yet, many institutions have veterinary or human pathologists with necessary comparative pathology expertise. By performing a rigorous comparison to gross or histopathology for image interpretation, these trained individuals can assist scientists with the development of the animal model, experimental design, and evaluation of the in vivo imaging data. These imaging and pathology corroboration studies undoubtedly increase scientific rigor and reproducibility in descriptive and hypothesis-driven research. A review of case examples including ultrasound, nuclear, optical, and MRI is provided to illustrate how a wide range of imaging modalities data can be confirmed by gross or microscopic pathology. This image confirmation and authentication will improve characterization of the model and may contribute to decreasing costs and number of animals used and to more rapid translation from preclinical animal model to the clinic.
Collapse
Affiliation(s)
- Kathleen Gabrielson
- Departments of Molecular and Comparative Pathology and Pathology School of Medicine, Environmental Health Engineering Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Coraline Mlynarczyk
- Department of Medicine, Division of Hematology & Medical Oncology and the Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Yuval Ramot
- Department of Dermatology, Hadassah—Hebrew University Medical Center, Kiryat Hadassah, Jerusalem, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel and Toxicologic Pathology, Timrat, Israel
| | - Polina Sysa-Shah
- Department of Radiology, Miller Research Building Molecular Imaging Service Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
38
|
Wang Y, Cuzzucoli F, Escobar A, Lu S, Liang L, Wang S. Tumor-on-a-chip platforms for assessing nanoparticle-based cancer therapy. NANOTECHNOLOGY 2018; 29:332001. [PMID: 29794338 DOI: 10.1088/1361-6528/aac7a4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cancer has become the most prevalent cause of deaths, placing a huge economic and healthcare burden worldwide. Nanoparticles (NPs), as a key component of nanomedicine, provide alternative options for promoting the efficacy of cancer therapy. Current conventional cancer models have limitations in predicting the effects of various cancer treatments. To overcome these limitations, biomimetic and novel 'tumor-on-a-chip' platforms have emerged with other innovative biomedical engineering methods that enable the evaluation of NP-based cancer therapy. In this review, we first describe cancer models for evaluation of NP-based cancer therapy techniques, and then present the latest advances in 'tumor-on-a-chip' platforms that can potentially facilitate clinical translation of NP-based cancer therapies.
Collapse
Affiliation(s)
- Yimin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, People's Republic of China. Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Liu YW, De Keyzer F, Feng YB, Chen F, Song SL, Swinnen J, Bormans G, Oyen R, Huang G, Ni YC. Intra-individual comparison of therapeutic responses to vascular disrupting agent CA4P between rodent primary and secondary liver cancers. World J Gastroenterol 2018; 24:2710-2721. [PMID: 29991876 PMCID: PMC6034151 DOI: 10.3748/wjg.v24.i25.2710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To compare therapeutic responses of a vascular-disrupting-agent, combretastatin-A4-phosphate (CA4P), among hepatocellular carcinomas (HCCs) and implanted rhabdomyosarcoma (R1) in the same rats by magnetic-resonance-imaging (MRI), microangiography and histopathology.
METHODS Thirty-six HCCs were created by diethylnitrosamine gavage in 14 rats that were also intrahepatically implanted with one R1 per rat as monitored by T2-/T1-weighted images (T2WI/T1WI) on a 3.0T clinical MRI-scanner. Vascular response and tumoral necrosis were detected by dynamic contrast-enhanced (DCE-) and CE-MRI before, 1 h after and 12 h after CA4P iv at 10 mg/kg (treatment group n = 7) or phosphate-buffered saline at 1.0 mL/kg (control group n = 7). Tumor blood supply was calculated by a semiquantitative DCE parameter of area under the time signal intensity curve (AUC30). In vivo MRI findings were verified by postmortem techniques.
RESULTS On CE-T1WIs, unlike the negative response in all tumors of control animals, in treatment group CA4P caused rapid extensive vascular shutdown in all R1-tumors, but mildly or spottily in HCCs at 1 h. Consequently, tumor necrosis occurred massively in R1-tumors but patchily in HCCs at 12 h. AUC30 revealed vascular closure (66%) in R1-tumors at 1 h (P < 0.05), followed by further perfusion decrease at 12 h (P < 0.01), while less significant vascular clogging occurred in HCCs. Histomorphologically, CA4P induced more extensive necrosis in R1-tumors (92.6%) than in HCCs (50.2%) (P < 0.01); tumor vascularity heterogeneously scored +~+++ in HCCs but homogeneously scored ++ in R1-tumors.
CONCLUSION This study suggests superior performance of CA4P in metastatic over primary liver cancers, which could guide future clinical applications of vascular-disrupting-agents.
Collapse
MESH Headings
- Angiography
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Contrast Media/administration & dosage
- Diethylnitrosamine/toxicity
- Humans
- Liver/diagnostic imaging
- Liver/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/diagnostic imaging
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Magnetic Resonance Imaging/methods
- Male
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Rats
- Rhabdomyosarcoma/blood supply
- Rhabdomyosarcoma/drug therapy
- Rhabdomyosarcoma/pathology
- Rhabdomyosarcoma/secondary
- Stilbenes/pharmacology
- Stilbenes/therapeutic use
- Treatment Outcome
- Tumor Microenvironment/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ye-Wei Liu
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | | | - Yuan-Bo Feng
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Feng Chen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Shao-Li Song
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Johan Swinnen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Guy Bormans
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Raymond Oyen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Yi-Cheng Ni
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
40
|
Chen H, Liu RH. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3260-3276. [PMID: 29498272 DOI: 10.1021/acs.jafc.7b04975] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
- Institute of Edible Fungi , Shanghai Academy of Agriculture Science , Shanghai 201403 , China
| | - Rui Hai Liu
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
| |
Collapse
|
41
|
Abstract
Copper oxide nanoparticles (CuO NPs) are widely used as catalysts or semiconductors in material fields. Recent studies have suggested that CuO NPs have adverse genotoxicity and cytotoxicity effects on various cells. However, little is known about the toxicity of CuO NPs following exposure to murine lungs. The purpose of this fundamental research was to investigate whether CuO NPs could induce epithelial cell injury, pulmonary inflammation, and eventually fibrosis in C57BL/6 mice. Our studies showed that CuO NPs aggravated pulmonary inflammation in a dose-dependent manner. CuO NPs induced apoptosis of epithelial cells as indicated by TUNEL staining, flow cytometry and western blot analysis, which was partially caused by increased reactive oxygen species (ROS). In addition, CuO NPs exposure promoted collagen accumulation and expression of the progressive fibrosis marker α-SMA in the lung tissues, indicating that CuO NP inhalation could induce pulmonary fibrosis in C57BL/6 mice. All data provide novel evidence that there is an urgent need to prevent the adverse effects of CuO NPs in the human respiratory system.
Collapse
|
42
|
Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N, Grippo P, Principe DR, Park A, Overgaard NH, Jungersen G, Garcia KD, Maker AV, Rund LA, Ozer H, Gaba RC, Schook LB. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front Oncol 2017; 7:190. [PMID: 28879168 PMCID: PMC5572387 DOI: 10.3389/fonc.2017.00190] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
Despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. More than 8.2 million deaths were attributed to cancer in 2012, and it is anticipated that cancer incidence will continue to rise, with 19.3 million cases expected by 2025. The development and investigation of new diagnostic modalities and innovative therapeutic tools is critical for reducing the global cancer burden. Toward this end, transitional animal models serve a crucial role in bridging the gap between fundamental diagnostic and therapeutic discoveries and human clinical trials. Such animal models offer insights into all aspects of the basic science-clinical translational cancer research continuum (screening, detection, oncogenesis, tumor biology, immunogenicity, therapeutics, and outcomes). To date, however, cancer research progress has been markedly hampered by lack of a genotypically, anatomically, and physiologically relevant large animal model. Without progressive cancer models, discoveries are hindered and cures are improbable. Herein, we describe a transgenic porcine model—the Oncopig Cancer Model (OCM)—as a next-generation large animal platform for the study of hematologic and solid tumor oncology. With mutations in key tumor suppressor and oncogenes, TP53R167H and KRASG12D, the OCM recapitulates transcriptional hallmarks of human disease while also exhibiting clinically relevant histologic and genotypic tumor phenotypes. Moreover, as obesity rates increase across the global population, cancer patients commonly present clinically with multiple comorbid conditions. Due to the effects of these comorbidities on patient management, therapeutic strategies, and clinical outcomes, an ideal animal model should develop cancer on the background of representative comorbid conditions (tumor macro- and microenvironments). As observed in clinical practice, liver cirrhosis frequently precedes development of primary liver cancer or hepatocellular carcinoma. The OCM has the capacity to develop tumors in combination with such relevant comorbidities. Furthermore, studies on the tumor microenvironment demonstrate similarities between OCM and human cancer genomic landscapes. This review highlights the potential of this and other large animal platforms as transitional models to bridge the gap between basic research and clinical practice.
Collapse
Affiliation(s)
| | - Regina M Schwind
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | | | | | - Mark Rizko
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nasya Mendoza-Elias
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel R Principe
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Park
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nana H Overgaard
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gregers Jungersen
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kelly D Garcia
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL, United States
| | - Ajay V Maker
- Department of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, United States
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Howard Ozer
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
43
|
Development of enhanced ethanol ablation as an alternative to surgery in treatment of superficial solid tumors. Sci Rep 2017; 7:8750. [PMID: 28821832 PMCID: PMC5562881 DOI: 10.1038/s41598-017-09371-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
While surgery is at the foundation of cancer treatment, its access is limited in low-income countries. Here, we describe development of a low-cost alternative therapy based on intratumoral ethanol injection suitable for resource-limited settings. Although ethanol-based tumor ablation is successful in treating hepatocellular carcinomas, the necessity for multiple treatments, injection of large fluid volumes, and decreased efficacy in treatment of non-capsulated tumors limit its applicability. To address these limitations, we investigated an enhanced ethanol ablation strategy to retain ethanol within the tumor through the addition of ethyl cellulose. This increases the viscosity of injected ethanol and forms an ethanol-based gel-phase upon exposure to the aqueous tumor environment. This technique was first optimized to maximize distribution volume, using tissue-simulating phantoms. Then, chemically-induced epithelial tumors in the hamster cheek pouch were treated. As controls, pure ethanol injections of either four times or one-fourth the tumor volume induced complete regression of 33% and 0% of tumors, respectively. In contrast, ethyl cellulose-ethanol injections of one-fourth the tumor volume induced complete regression in 100% of tumors. These results contribute to proof-of-concept for enhanced ethanol ablation as a novel and effective alternative to surgery for tumor treatment, with relevance to resource-limited settings.
Collapse
|
44
|
Liu Y, Yin T, Keyzer FD, Feng Y, Chen F, Liu J, Song S, Yu J, Vandecaveye V, Swinnen J, Bormans G, Himmelreich U, Oyen R, Zhang J, Huang G, Ni Y. Micro-HCCs in rats with liver cirrhosis: paradoxical targeting effects with vascular disrupting agent CA4P. Oncotarget 2017; 8:55204-55215. [PMID: 28903414 PMCID: PMC5589653 DOI: 10.18632/oncotarget.19339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
We sought to investigate anticancer efficacy of a vascular disrupting agent (VDA) combretastatin A-4 phosphate (CA4P) in relation to tumor size among hepatocellular carcinomas (HCCs) in rats using magnetic resonance imaging (MRI) and postmortem techniques. Nineteen rats with 43 chemically-induced HCCs of 2.8–20.9 mm in size on liver cirrhosis received CA4P intravenously at 10 mg/kg. Tumor-diameter was measured by T2-weighted imaging (T2WI) to define microcancers (< 5 mm) versus larger HCCs. Vascular responses and tissue necrosis were detected by diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (CE-T1WI) and dynamic contrast enhanced (DCE-) MRI, which were validated by microangiography and histopathology. MRI revealed nearly complete necrosis in 5 out of 7 micro-HCCs, but diverse therapeutic necrosis in larger HCCs with a positive correlation with tumor size. Necrosis in micro-HCCs was 36.9% more than that in larger HCCs. While increased diffusion coefficient (ADCdiff) suggested tumor necrosis, perfusion coefficient (ADCperf) indicated sharply decreased blood perfusion in cirrhotic liver together with a reduction in micro-HCCs. DCE revealed lowered tumor blood flow from intravascular into extravascular extracellular space (EES). Microangiography and histopathology revealed hypo- and hypervascularity in 4 and 3 micro-HCCs, massive, partial and minor degrees of tumoral necrosis in 5, 1 and 1 micro-HCCs respectively, and patchy necrotic foci in cirrhotic liver. CD34-PAS staining implicated that poorly vascularized micro-HCCs growing on liver cirrhosis tended to respond better to CA4P treatment. In this study, more complete CA4P-response occurred unexpectedly in micro-HCCs in rats, along with CA4P-induced necrotic foci in cirrhotic liver. These may help to plan clinical applications of VDAs in patients with HCCs and liver cirrhosis.
Collapse
Affiliation(s)
- Yewei Liu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Ting Yin
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | | | - Yuanbo Feng
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Feng Chen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jianjun Liu
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shaoli Song
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jie Yu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | | | - Johan Swinnen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Guy Bormans
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Uwe Himmelreich
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Raymond Oyen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Gang Huang
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Yicheng Ni
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|