1
|
Cakiroglu E, Eris S, Oz O, Karakülah G, Senturk S. Genome-wide CRISPR screen identifies BUB1 kinase as a druggable vulnerability in malignant pleural mesothelioma. Cell Death Dis 2025; 16:241. [PMID: 40180891 PMCID: PMC11968822 DOI: 10.1038/s41419-025-07587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Malignant pleural mesothelioma (MPM) is a rare yet highly aggressive malignancy with a severe prognosis. Compounded by the lack of effective treatment modalities, MPM remains a formidable health challenge. Therefore, the identification of actionable liabilities is critical for advancing precision medicine to combat this lethal disease. Here, we exploit an unbiased genome-wide CRISPR screen, integrating and cross-comparing three MPM cell lines with nonmalignant mesothelial cells, to selectively map the gene targets whose depletion indicates a common dependency in MPM cells. This systematic approach unveils a cohort of verifiable genes, among which BUB1, a mitotic checkpoint serine/threonine kinase, emerges as a high-confidence hit in cancer cells. Cellular and molecular studies demonstrate that genetic depletion or pharmacological inhibition of BUB1 profoundly impairs MPM cell survival and growth while inducing G2/M cell cycle arrest, cellular senescence, and apoptosis, and attenuating functional hallmarks of aggressive cancer cells. Transcriptomic profiling of BUB1-depleted cells discloses differential gene expression signatures congruent with cell fate phenotypes, including the reprogramming of mitotic network genes. Mechanistically, BUB1 is indispensable for the proper localization of essential mitotic regulators MAD1, MAD2, and Shugoshin (SGO1), thereby ensuring the functionality of the spindle assembly checkpoint (SAC). Furthermore, BUB1 ablation leads to cytokinesis failure and multinucleation, a phenotype characterized by the downregulation of CDC20, Cyclin A, and Cyclin B, and a reciprocal upregulation of the cyclin-dependent kinase inhibitor p21. Clinically, MPM tumors exhibit elevated levels of BUB1, and high BUB1 expression is associated with shorter patient survival. Our novel findings accentuate comparative CRISPR screens as a powerful platform to explore tumor cell-selective gene essentiality and propose BUB1 kinase as a potential marker and druggable vulnerability with therapeutic implications for MPM.
Collapse
Affiliation(s)
- Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sude Eris
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ozden Oz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Pathology, Izmir Bozyaka Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
2
|
Sun J, Liang S, Liu X, Zhang S, Li M, Zhang Q, Chen J. Insights into the selectivity of a brain-penetrant CDK4/6 vs CDK1/2 inhibitor for glioblastoma used in multiple replica molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:2223-2242. [PMID: 38112295 DOI: 10.1080/07391102.2023.2294175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Cyclin dependent kinases (CDKs) play an important role in cell cycle regulation and their dysfunction is associated with many cancers. That is why CDKs have been attractive targets for the treatment of cancer. Glioblastoma is a cancer caused by the aberrant expression of CDK4/6, so exploring the mechanism of the selection of CDK4/6 toward inhibitors relative to the other family members CDK1/2 is essential. In this work, multiple replica molecular dynamics (MRMD) simulations, principal component analysis (PCA), free energy landscapes (FELs), molecular mechanics Poisson-Boltzmann/Generalized Born surface area (MM-PB/GBSA) and other methods were integrated to decipher the selectively binding mechanism of the inhibitor N1J to CDK4/6 and CDK1/2. Molecular electrostatic potential (MESP) analysis provides an explanation for the N1J selectivity. Residue-based free energy decomposition reveals that most of the hot residues are located at the same location of CDKs proteins, but the different types of residues in different proteins cause changes in binding energy, which is considered as a potential developmental direction to improve the selectivity of inhibitors to CDK4/6. These results provide insights into the source of inhibitor and CDK4/6 selectivity for the future development of more selective inhibitors.
Collapse
Affiliation(s)
- Jiahao Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shanshan Liang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Meng Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
3
|
Giarolla J, Holdaway KA, Nazari M, Aiad L, Sarkar B, Georg GI. Targeting cyclin-dependent kinase 2 (CDK2) interactions with cyclins and Speedy 1 (Spy1) for cancer and male contraception. Future Med Chem 2025; 17:607-627. [PMID: 40034037 PMCID: PMC11901406 DOI: 10.1080/17568919.2025.2463868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The review discusses progress in discovering cyclin-dependent kinase 2 (CDK2) inhibitors for cancer treatment and their potential for male contraception. It summarizes first-, second-, and third-generation CDK inhibitors and selective CDK2 inhibitors currently in clinical trials for cancer. Novel strategies to discover allosteric inhibitors, covalent inhibitors, and degraders are also discussed.
Collapse
Affiliation(s)
- Jeanine Giarolla
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Departamento de Farmacia, School of Pharmaceutical Sciences, University of São Paulo—USP, São Paulo, SP, Brazil
| | - Kelsey A. Holdaway
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Nazari
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Laila Aiad
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Bidisha Sarkar
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Gunda I. Georg
- Medicinal Chemistry, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
4
|
Pozzato C, Outeiro-Pinho G, Galiè M, Ramadori G, Konstantinidou G. ERK5 suppression overcomes FAK inhibitor resistance in mutant KRAS-driven non-small cell lung cancer. EMBO Mol Med 2024; 16:2402-2426. [PMID: 39271958 PMCID: PMC11473843 DOI: 10.1038/s44321-024-00138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Mutated KRAS serves as the oncogenic driver in 30% of non-small cell lung cancers (NSCLCs) and is associated with metastatic and therapy-resistant tumors. Focal Adhesion Kinase (FAK) acts as a mediator in sustaining KRAS-driven lung tumors, and although FAK inhibitors are currently undergoing clinical development, clinical data indicated that their efficacy in producing long-term anti-tumor responses is limited. Here we revealed two FAK interactors, extracellular-signal-regulated kinase 5 (ERK5) and cyclin-dependent kinase 5 (CDK5), as key players underlying FAK-mediated maintenance of KRAS mutant NSCLC. Inhibition of ERK5 and CDK5 synergistically suppressed FAK function, decreased proliferation and induced apoptosis owing to exacerbated ROS-induced DNA damage. Accordingly, concomitant pharmacological inhibition of ERK5 and CDK5 in a mouse model of KrasG12D-driven lung adenocarcinoma suppressed tumor progression and promoted cancer cell death. Cancer cells resistant to FAK inhibitors showed enhanced ERK5-FAK signaling dampening DNA damage. Notably, ERK5 inhibition prevented the development of resistance to FAK inhibitors, significantly enhancing the efficacy of anti-tumor responses. Therefore, we propose ERK5 inhibition as a potential co-targeting strategy to counteract FAK inhibitor resistance in NSCLC.
Collapse
Affiliation(s)
- Chiara Pozzato
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland
| | | | - Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, 37134, Verona, Italy
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | | |
Collapse
|
5
|
Xing F, Wang Z, Bahadar N, Wang C, Wang XD. Molecular insights into kaempferol derivatives as potential inhibitors for CDK2 in colon cancer: pharmacophore modeling, docking, and dynamic analysis. Front Chem 2024; 12:1440196. [PMID: 39233923 PMCID: PMC11371583 DOI: 10.3389/fchem.2024.1440196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) has been recognized as one of the crucial factors in cell cycle regulation and has been proposed as a potential target for cancer therapies, particularly for colorectal cancer (CRC). Due to the increased incidence rate of CRC and challenges associated with existing treatment options, there is a need for efficient and selective anti-cancer compounds. The current work aims to explore the ability of novel kaempferol derivatives as CDK2 inhibitors by performing conceptual pharmacophore modeling, molecular docking, and molecular dynamic analysis. Kaempferol and its derivatives were obtained from PubChem, and the optimized 3D structures of the compounds were generated using Maestro Ligprep. Subsequently, a pharmacophore model was developed to identify compounds with high fitness values, resulting in the selection of several kaempferol derivatives for further study. We evaluated the ADMET properties of these compounds to assess their therapeutic potential. Molecular docking was conducted using Maestro and BIOVIA Discovery Studio version 4.0 to predict the binding affinities of the compounds to CDK2. The top candidates were subjected to MM-GBSA analysis to predict their binding free energies. Molecular dynamics simulations using GROMACS were performed to assess the thermodynamic stability of the ligand-protein complexes. The results revealed several kaempferol derivatives with high predicted binding affinities to CDK2 and favorable ADMET properties. Specifically, compounds 5281642, 5318980, and 14427423 demonstrated binding free energies of -30.26, -38.66, and -34.2 kcal/mol, respectively. Molecular dynamics simulations indicated that these ligand-protein complexes remained stable throughout the simulation period, with RMSD values remaining below 2 Å. In conclusion, the identified kaempferol derivatives show potential as CDK2 inhibitors based on computational predictions and demonstrate stability in molecular dynamics simulations, suggesting their future application in CRC treatment by targeting CDK2. These computational findings encourage further experimental validation and development of kaempferol derivatives as anti-cancer agents.
Collapse
Affiliation(s)
- Fei Xing
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhicheng Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Noor Bahadar
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Can Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xu-Dong Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Schmitt L, Hoppe J, Cea-Medina P, Bruch PM, Krings KS, Lechtenberg I, Drießen D, Peter C, Bhatia S, Dietrich S, Stork B, Fritz G, Gohlke H, Müller TJJ, Wesselborg S. Novel meriolin derivatives potently inhibit cell cycle progression and transcription in leukemia and lymphoma cells via inhibition of cyclin-dependent kinases (CDKs). Cell Death Discov 2024; 10:279. [PMID: 38862521 PMCID: PMC11167047 DOI: 10.1038/s41420-024-02056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
A key feature of cancer is the disruption of cell cycle regulation, which is characterized by the selective and abnormal activation of cyclin-dependent kinases (CDKs). Consequently, targeting CDKs via meriolins represents an attractive therapeutic approach for cancer therapy. Meriolins represent a semisynthetic compound class derived from meridianins and variolins with a known CDK inhibitory potential. Here, we analyzed the two novel derivatives meriolin 16 and meriolin 36 in comparison to other potent CDK inhibitors and could show that they displayed a high cytotoxic potential in different lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells. In a kinome screen, we showed that meriolin 16 and 36 prevalently inhibited most of the CDKs (such as CDK1, 2, 3, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 20). In drug-to-target modeling studies, we predicted a common binding mode of meriolin 16 and 36 to the ATP-pocket of CDK2 and an additional flipped binding for meriolin 36. We could show that cell cycle progression and proliferation were blocked by abolishing phosphorylation of retinoblastoma protein (a major target of CDK2) at Ser612 and Thr82. Moreover, meriolin 16 prevented the CDK9-mediated phosphorylation of RNA polymerase II at Ser2 which is crucial for transcription initiation. This renders both meriolin derivatives as valuable anticancer drugs as they target three different Achilles' heels of the tumor: (1) inhibition of cell cycle progression and proliferation, (2) prevention of transcription, and (3) induction of cell death.
Collapse
Affiliation(s)
- Laura Schmitt
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Julia Hoppe
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Pablo Cea-Medina
- Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Peter-Martin Bruch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Karina S Krings
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ilka Lechtenberg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Daniel Drießen
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christoph Peter
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Björn Stork
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Center (JSC) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Thomas J J Müller
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
7
|
Khan ZR, Welsby PJ, Stasik I, Hayes JM. Discovery of Potent Multikinase Type-II Inhibitors Targeting CDK5 in the DFG-out Inactive State with Promising Potential against Glioblastoma. J Med Chem 2024. [PMID: 38686637 DOI: 10.1021/acs.jmedchem.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Kinases have proven valuable targets in successful cancer drug discovery projects, but not yet for malignant brain tumors where type-II inhibition of cyclin-dependent kinase 5 (CDK5) stabilizing the DFG-out inactive state has potential for design of selective and clinically efficient drug candidates. In the absence of crystallographic evidence for a CDK5 DFG-out inactive state protein-ligand complex, for the first time, a model was designed using metadynamics/molecular dynamics simulations. Glide docking of the ZINC15 biogenic database identified [pyrimidin-2-yl]amino-furo[3,2-b]-furyl-urea/amide hit chemical scaffolds. For four selected analogues (4, 27, 36, and 42), potent effects on glioblastoma cell viability in U87-MG, T98G, and U251-MG cell lines and patient-derived cultures were generally observed (IC50s ∼ 10-40 μM at 72 h). Selectivity profiling against 11 homologous kinases revealed multikinase inhibition (CDK2, CDK5, CDK9, and GSK-3α/β), most potent for GSK-3α in the nanomolar range (IC50s ∼ 0.23-0.98 μM). These compounds may therefore have diverse anticancer mechanisms of action and are of considerable interest for lead optimization.
Collapse
Affiliation(s)
- Zahra R Khan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Philip J Welsby
- Education Directorate, Royal College of Physicians, Liverpool L7 3FA, United Kingdom
| | - Izabela Stasik
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Joseph M Hayes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
8
|
Vandael D, Vints K, Baatsen P, Śliwińska MA, Gabarre S, De Groef L, Moons L, Rybakin V, Gounko NV. Cdk5-dependent rapid formation and stabilization of dendritic spines by corticotropin-releasing factor. Transl Psychiatry 2024; 14:29. [PMID: 38233378 PMCID: PMC10794228 DOI: 10.1038/s41398-024-02749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The neuropeptide corticotropin-releasing factor (CRF) exerts a pivotal role in modulating neuronal activity in the mammalian brain. The effects of CRF exhibit notable variations, depending on factors such as duration of exposure, concentration, and anatomical location. In the CA1 region of the hippocampus, the impact of CRF is dichotomous: chronic exposure to CRF impairs synapse formation and dendritic integrity, whereas brief exposure enhances synapse formation and plasticity. In the current study, we demonstrate long-term effects of acute CRF on the density and stability of mature mushroom spines ex vivo. We establish that both CRF receptors are present in this hippocampal region, and we pinpoint their precise subcellular localization within synapses by electron microscopy. Furthermore, both in vivo and ex vivo data collectively demonstrate that a transient surge of CRF in the CA1 activates the cyclin-dependent kinase 5 (Cdk5)-pathway. This activation leads to a notable augmentation in CRF-dependent spine formation. Overall, these data suggest that upon acute release of CRF in the CA1-SR synapse, both CRF-Rs can be activated and promote synaptic plasticity via activating different downstream signaling pathways, such as the Cdk5-pathway.
Collapse
Affiliation(s)
- Dorien Vandael
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Małgorzata A Śliwińska
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Sergio Gabarre
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Naamsestraat 61 box 2464, 3000, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Naamsestraat 61 box 2464, 3000, Leuven, Belgium
| | - Vasily Rybakin
- National University of Singapore, Department of Microbiology and Immunology, Yng Loo Lin School of Medicine, and Immunology Program, 5 Science Drive 2, Blk MD4, 117545, Singapore, Singapore
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Thomas J, Wilson S. Molecular and Therapeutic Targets for Amyloid-beta Plaques in Alzheimer's Disease: A Review Study. Basic Clin Neurosci 2024; 15:1-26. [PMID: 39291090 PMCID: PMC11403107 DOI: 10.32598/bcn.2021.3522.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 09/06/2021] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive loss of cognition and a gradual decrease in memory. Although AD is considered the most persistent form of dementia and a global concern, no complete cure or agents that can completely halt the progression of AD have been found. In the past years, significant progress has been made in understanding the cellular and molecular changes associated with AD, and numerous drug targets have been identified for the development of drugs for this disease. Amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) are the major attributes of AD. Symptomatic relief is the only possible treatment available at present and a disease-modifying drug is of utmost importance. The development of drugs that can inhibit different targets responsible for the formation of plaques is a potential area in AD research. This review is not a complete list of all possible targets for AD but serves to highlight the targets related to Aβ pathology and pathways concerned with the formation of Aβ fragments. This shall serve as a prospect in the identification of Aβ plaque inhibitors and pave the strategies for newer drug treatments. Nevertheless, substantial research is done in this area but to bridle, the clinical difficulty remains a concern.
Collapse
Affiliation(s)
- Jaya Thomas
- Department of Pharmacology, School of Pharmacy University of Amrita Vishwavidyapeetham, Guntur, India
| | - Samson Wilson
- University of Amrita Vishwavidyapeetham, Coimbatore, India
| |
Collapse
|
10
|
Ezzat MAF, Elmasry GF, El-Mageed MMAA, Fouad MA, Abdel-Aziz HA, Elewa SI. Design, synthesis, and biological evaluation of furan-bearing pyrazolo[3,4-b]pyridines as novel inhibitors of CDK2 and P53-MDM2 protein-protein interaction. Drug Dev Res 2023; 84:1183-1203. [PMID: 37191966 DOI: 10.1002/ddr.22079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023]
Abstract
The novel series of furan-bearing pyrazolo[3,4-b]pyridines were designed as cyclin-dependent kinase 2 (CDK2) inhibitors and as p53-murine double minute 2 (MDM2) inhibitors. The newly synthesized compounds were screened for their antiproliferative activity toward hepatocellular carcinoma (HepG2) and breast cancer (MCF7) cell lines. The most active compounds on both cell lines were additionally evaluated for their in vitro CDK2 inhibitory activity. Compounds 7b and 12f displayed enhanced activity (half-maximal inhibitory concentration [IC50 ] = 0.46 and 0.27 µM, respectively) in comparison to the standard roscovitine (IC50 = 1.41 ± 0.03 µM), in addition to, cell cycle arrest at S phase and G1/S transition phase in MCF7 cells treated with both compounds, respectively. Moreover, the most active spiro-oxindole derivative against MCF7 cell line, 16a, exhibited enhanced inhibitory activity against p53-MDM2 interaction in vitro (IC50 = 3.09 ± 0.12 µM) compared to nutlin, and increased the levels of both p53 and p21 by nearly fourfold in comparison to the negative control. Molecular docking studies demonstrated the plausible interaction patterns of the most potent derivatives 17b and 12f in the CDK2 binding pocket and the spiro-oxindole 16a with p53-MDM2 complex, respectively. Consequently, the new chemotypes 7b, 12f, and 16a can be presented as promising antitumor hits for further studies and optimization.
Collapse
Affiliation(s)
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, School of Pharmacy, NewGiza University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Safaa I Elewa
- Organic Chemistry Department, Faculty of Women's for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Dogra A, Kumar J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front Pharmacol 2023; 14:1136779. [PMID: 36969868 PMCID: PMC10034375 DOI: 10.3389/fphar.2023.1136779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer is a severe health issue, and cancer cases are rising yearly. New anticancer drugs have been developed as our understanding of the molecular mechanisms behind diverse solid tumors, and metastatic malignancies have increased. Plant-derived phytochemical compounds target different oncogenes, tumor suppressor genes, protein channels, immune cells, protein channels, and pumps, which have attracted much attention for treating cancer in preclinical studies. Despite the anticancer capabilities of these phytochemical compounds, systemic toxicity, medication resistance, and limited absorption remain more significant obstacles in clinical trials. Therefore, drug combinations of new phytochemical compounds, phytonanomedicine, semi-synthetic, and synthetic analogs should be considered to supplement the existing cancer therapies. It is also crucial to consider different strategies for increased production of phytochemical bioactive substances. The primary goal of this review is to highlight several bioactive anticancer phytochemical compounds found in plants, preclinical research, their synthetic and semi-synthetic analogs, and clinical trials. Additionally, biotechnological and metabolic engineering strategies are explored to enhance the production of bioactive phytochemical compounds. Ligands and their interactions with their putative targets are also explored through molecular docking studies. Therefore, emphasis is given to gathering comprehensive data regarding modern biotechnology, metabolic engineering, molecular biology, and in silico tools.
Collapse
|
12
|
Merlini A, Pavese V, Manessi G, Rabino M, Tolomeo F, Aliberti S, D’Ambrosio L, Grignani G. Targeting cyclin-dependent kinases in sarcoma treatment: Current perspectives and future directions. Front Oncol 2023; 13:1095219. [PMID: 36741019 PMCID: PMC9893281 DOI: 10.3389/fonc.2023.1095219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Effective treatment of advanced/metastatic bone and soft tissue sarcomas still represents an unmet medical need. Recent advances in targeted therapies have highlighted the potential of cyclin-dependent kinases (CDK) inhibitors in several cancer types, including sarcomas. CDKs are master regulators of the cell cycle; their dysregulation is listed among the "hallmarks of cancer" and sarcomas are no exception to the rule. In this review, we report both the molecular basis, and the potential therapeutic implications for the use of CDK inhibitors in sarcoma treatment. What is more, we describe and discuss the possibility and biological rationale for combination therapies with conventional treatments, target therapy and immunotherapy, highlighting potential avenues for future research to integrate CDK inhibition in sarcoma treatment.
Collapse
Affiliation(s)
- Alessandra Merlini
- Candiolo Cancer Institute, IRCCS-FPO, Turin, Italy,Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Pavese
- Department of Oncology, University of Turin, Turin, Italy
| | - Giulia Manessi
- Department of Oncology, University of Turin, Turin, Italy
| | - Martina Rabino
- Department of Oncology, University of Turin, Turin, Italy
| | | | | | - Lorenzo D’Ambrosio
- Department of Oncology, University of Turin, Turin, Italy,Medical Oncology, Azienda Ospedaliera Universitaria San Luigi Gonzaga, Turin, Italy,*Correspondence: Lorenzo D’Ambrosio,
| | | |
Collapse
|
13
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
14
|
Taguchi K, Elias BC, Sugahara S, Sant S, Freedman BS, Waikar SS, Pozzi A, Zent R, Harris RC, Parikh SM, Brooks CR. Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation. J Clin Invest 2022; 132:e158096. [PMID: 36453545 PMCID: PMC9711881 DOI: 10.1172/jci158096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Acute kidney injury (AKI) occurs in approximately 13% of hospitalized patients and predisposes patients to chronic kidney disease (CKD) through the AKI-to-CKD transition. Studies from our laboratory and others have demonstrated that maladaptive repair of proximal tubule cells (PTCs), including induction of dedifferentiation, G2/M cell cycle arrest, senescence, and profibrotic cytokine secretion, is a key process promoting AKI-to-CKD transition, kidney fibrosis, and CKD progression. The molecular mechanisms governing maladaptive repair and the relative contribution of dedifferentiation, G2/M arrest, and senescence to CKD remain to be resolved. We identified cyclin G1 (CG1) as a factor upregulated in chronically injured and maladaptively repaired PTCs. We demonstrated that global deletion of CG1 inhibits G2/M arrest and fibrosis. Pharmacological induction of G2/M arrest in CG1-knockout mice, however, did not fully reverse the antifibrotic phenotype. Knockout of CG1 did not alter dedifferentiation and proliferation in the adaptive repair response following AKI. Instead, CG1 specifically promoted the prolonged dedifferentiation of kidney tubule epithelial cells observed in CKD. Mechanistically, CG1 promotes dedifferentiation through activation of cyclin-dependent kinase 5 (CDK5). Deletion of CDK5 in kidney tubule cells did not prevent G2/M arrest but did inhibit dedifferentiation and fibrosis. Thus, CG1 and CDK5 represent a unique pathway that regulates maladaptive, but not adaptive, dedifferentiation, suggesting they could be therapeutic targets for CKD.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sho Sugahara
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Snehal Sant
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benjamin S. Freedman
- Kidney Research Institute, Institute for Stem Cell and Regenerative Medicine, and Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Hospital, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Internal Medicine, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
16
|
Jiang M, Jike Y, Gan F, Li J, Hu Y, Xie M, Liu K, Qin W, Bo Z. Verification of Ferroptosis Subcluster-Associated Genes Related to Osteosarcoma and Exploration of Immune Targeted Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9942014. [PMID: 36211822 PMCID: PMC9534693 DOI: 10.1155/2022/9942014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background Despite tremendous advances in treating osteosarcoma (OS), the survival rates of patients have failed to improve dramatically over the past decades. Ferroptosis, a newly discovered iron-dependent type of regulated cell death, is implicated in tumors, and its features in OS remain unascertained. We designed to determine the involvement of ferroptosis subcluster-related modular genes in OS progression and prognosis. Methods The OS-related datasets retrieved from GEO and TARGET database were clustered for identifying molecular subclusters with different ferroptosis-related genes (FRGs) expression patterns. Weighted gene coexpression network analysis (WGCNA) was applied to identify modular genes from FRG subclusters. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariable Cox regression analysis were adopted to develop the prognostic model. Potential mechanisms of development and prognosis in OS were explored by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). Then, a comprehensive analysis was conducted for immune checkpoint markers and assessment of predictive power to drug response. The protein expression levels of the three ferroptosis subcluster-related modular genes were verified by immunohistochemistry. Results Two independent subclusters presenting diverse expression profiles of FRGs were obtained, with significantly different survival states. Ferroptosis subcluster-related modular genes were screened with WGCNA, and the GESA results showed that ferroptosis subcluster-related modular genes could affect the cellular energy metabolism, thus influencing the development and prognosis of osteosarcoma. A prognostic model was established by incorporating three ferroptosis subcluster-related modular genes (LRRC1, ACO2, and CTNNBIP1) and a nomogram by integrating clinical features, and they were evaluated for the predictive power on OS prognosis. The 20 immune checkpoint-related genes confirmed the insensitivity to tumor immunotherapy in high-risk patients. IC50s of Axitinib and Cytarabine suggested a higher sensitivity to the targeted drug. Finally, the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry were consistent with bioinformatics analysis. Conclusion Ferroptosis are closely associated with the OS prognosis. The risk-scoring model incorporating three ferroptosis subcluster-related modular genes has shown outstanding advantages in predicting patient prognosis.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiji Jike
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fu Gan
- Department of Urology Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Hu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingjing Xie
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaicheng Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wentao Qin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhandong Bo
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Machine Learning-Based Virtual Screening for the Identification of Cdk5 Inhibitors. Int J Mol Sci 2022; 23:ijms231810653. [PMID: 36142566 PMCID: PMC9502400 DOI: 10.3390/ijms231810653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is an atypical proline-directed serine/threonine protein kinase well-characterized for its role in the central nervous system rather than in the cell cycle. Indeed, its dysregulation has been strongly implicated in the progression of synaptic dysfunction and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), and also in the development and progression of a variety of cancers. For this reason, Cdk5 is considered as a promising target for drug design, and the discovery of novel small-molecule Cdk5 inhibitors is of great interest in the medicinal chemistry field. In this context, we employed a machine learning-based virtual screening protocol with subsequent molecular docking, molecular dynamics simulations and binding free energy evaluations. Our virtual screening studies resulted in the identification of two novel Cdk5 inhibitors, highlighting an experimental hit rate of 50% and thus validating the reliability of the in silico workflow. Both identified ligands, compounds CPD1 and CPD4, showed a promising enzyme inhibitory activity and CPD1 also demonstrated a remarkable antiproliferative activity in ovarian and colon cancer cells. These ligands represent a valuable starting point for structure-based hit-optimization studies aimed at identifying new potent Cdk5 inhibitors.
Collapse
|
18
|
Addressing artifacts of colorimetric anticancer assays for plant-based drug development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:198. [PMID: 36071299 DOI: 10.1007/s12032-022-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/14/2022]
Abstract
Cancer has become the silent killer in less-developed countries and the most significant cause of morbidity worldwide. The accessible and frequently used treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Chemotherapeutic drugs traditionally involve using plant-based medications either in the form of isolated compounds or as scaffolds for synthetic drugs. To launch a drug in the market, it has to pass through several intricate steps. The multidrug resistance in cancers calls for novel drug discovery and development. Every year anticancer potential of several plant-based compounds and extracts is reported but only a few advances to clinical trials. The false-positive or negative results impact the progress of the cell-based anticancer assays. There are several cell-based assays but the widely used include MTT, MTS, and XTT. In this article, we have discussed various pitfalls and workable solutions.
Collapse
|
19
|
Umfress A, Singh S, Ryan KJ, Chakraborti A, Plattner F, Sonawane Y, Mallareddy JR, Acosta EP, Natarajan A, Bibb JA. Systemic Administration of a Brain Permeable Cdk5 Inhibitor Alters Neurobehavior. Front Pharmacol 2022; 13:863762. [PMID: 35645825 PMCID: PMC9134315 DOI: 10.3389/fphar.2022.863762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration. Thus, Cdk5 represents a prime target for treatment in a spectrum of neurological and neuropsychiatric conditions. While intracranial infusions or treatment of acutely dissected brain tissue with compounds that inhibit Cdk5 have allowed the study of kinase function and corroborated conditional knockout findings, potent brain-penetrant systemically deliverable Cdk5 inhibitors are extremely limited, and no Cdk5 inhibitor has been approved to treat any neuropsychiatric or degenerative diseases to date. Here, we screened aminopyrazole-based analogs as potential Cdk5 inhibitors and identified a novel analog, 25-106, as a uniquely brain-penetrant anti-Cdk5 drug. We characterize the pharmacokinetic and dynamic responses of 25-106 in mice and functionally validate the effects of Cdk5 inhibition on open field and tail-suspension behaviors. Altogether, 25-106 represents a promising preclinical Cdk5 inhibitor that can be systemically administered with significant potential as a neurological/neuropsychiatric therapeutic.
Collapse
Affiliation(s)
- Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kevin J. Ryan
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ayanabha Chakraborti
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Yogesh Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Edward P. Acosta
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - James A. Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Neurobiology and Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
21
|
Sofi S, Mehraj U, Qayoom H, Aisha S, Asdaq SMB, Almilaibary A, Mir MA. Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 2022; 39:106. [PMID: 35486263 DOI: 10.1007/s12032-022-01731-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Presently, breast cancer (BC) is one of the most common malignancies diagnosed and the leading cause of tumor-related deaths among women worldwide. Cell cycle dysregulation is one of the hallmarks of cancer, resulting in uncontrolled cell proliferation. Cyclin-dependent kinases (CDKs) are central to the cell cycle control system, and deregulation of these kinases leads to the development of malignancies, including breast cancer. CDKs and cyclins have been reported as crucial components involved in tumor cell proliferation and metastasis. Given the aggressive nature, tumor heterogeneity, and chemoresistance, there is an urgent need to explore novel targets and therapeutics to manage breast cancer effectively. Inhibitors targeting CDKs modulate the cell cycle, thus throwing light upon their therapeutic aspect where the progression of tumor cells could be inhibited. This article gives a comprehensive account of CDKs in breast cancer progression and metastasis and recent developments in the modulation of CDKs in treating malignancies. We have also explored the expression pattern and prognostic significance of CDKs in breast cancer patients. The article will also shed light on the Implications of CDK inhibition and TGF-β signaling in breast cancer.
Collapse
Affiliation(s)
- Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Shariqa Aisha
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | | | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, 65511, Kingdom of Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
22
|
Ahmad M, Krüger BT, Kroll T, Vettorazzi S, Dorn AK, Mengele F, Lee S, Nandi S, Yilmaz D, Stolz M, Tangudu NK, Vázquez DC, Pachmayr J, Cirstea IC, Spasic MV, Ploubidou A, Ignatius A, Tuckermann J. Inhibition of Cdk5 increases osteoblast differentiation and bone mass and improves fracture healing. Bone Res 2022; 10:33. [PMID: 35383146 PMCID: PMC8983726 DOI: 10.1038/s41413-022-00195-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of regulators of osteoblastogenesis that can be pharmacologically targeted is a major goal in combating osteoporosis, a common disease of the elderly population. Here, unbiased kinome RNAi screening in primary murine osteoblasts identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation in both murine and human preosteoblastic cells. Cdk5 knockdown by siRNA, genetic deletion using the Cre-loxP system, or inhibition with the small molecule roscovitine enhanced osteoblastogenesis in vitro. Roscovitine treatment significantly enhanced bone mass by increasing osteoblastogenesis and improved fracture healing in mice. Mechanistically, downregulation of Cdk5 expression increased Erk phosphorylation, resulting in enhanced osteoblast-specific gene expression. Notably, simultaneous Cdk5 and Erk depletion abrogated the osteoblastogenesis conferred by Cdk5 depletion alone, suggesting that Cdk5 regulates osteoblast differentiation through MAPK pathway modulation. We conclude that Cdk5 is a potential therapeutic target to treat osteoporosis and improve fracture healing.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany.,Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Torsten Kroll
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Ann-Kristin Dorn
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Florian Mengele
- Praxisklinik für Orthopädie, Unfall- und Neurochirurgie Prof. Bischoff/Dr. Spies/Dr. Mengele, 89231, Neu-Ulm, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Dilay Yilmaz
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Miriam Stolz
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Naveen Kumar Tangudu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany.,UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5115 Center Avenue, 15232, Pittsburgh, PA, USA
| | - David Carro Vázquez
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany.,TAmiRNA GmbH, Leberstrasse 20, 1110, Vienna, Austria
| | - Johanna Pachmayr
- Paracelsus Medizinische Privatuniverstät, Institute of Pharmacy, Strubergasse 21, 5020, Salzburg, Austria
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Aspasia Ploubidou
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany. .,Department of Endocrinology, Ludwig Maximilians University Munich, Munich, 80336, Germany.
| |
Collapse
|
23
|
Ton AT, Foo J, Singh K, Lee J, Kalyta A, Morin H, Perez C, Ban F, Leblanc E, Lallous N, Cherkasov A. Development of VPC-70619, a Small-Molecule N-Myc Inhibitor as a Potential Therapy for Neuroendocrine Prostate Cancer. Int J Mol Sci 2022; 23:ijms23052588. [PMID: 35269731 PMCID: PMC8910697 DOI: 10.3390/ijms23052588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023] Open
Abstract
The Myc family of transcription factors are involved in the development and progression of numerous cancers, including prostate cancer (PCa). Under the pressure of androgen receptor (AR)-directed therapies resistance can occur, leading to the lethal form of PCa known as neuroendocrine prostate cancer (NEPC), characterized among other features by N-Myc overexpression. There are no clinically approved treatments for NEPC, translating into poor patient prognosis and survival. Therefore, there is a pressing need to develop novel therapeutic avenues to treat NEPC patients. In this study, we investigate the N-Myc-Max DNA binding domain (DBD) as a potential target for small molecule inhibitors and utilize computer-aided drug design (CADD) approaches to discover prospective hits. Through further exploration and optimization, a compound, VPC-70619, was identified with notable anti-N-Myc potency and strong antiproliferative activity against numerous N-Myc expressing cell lines, including those representing NEPC.
Collapse
|
24
|
Krüger BT, Steppe L, Vettorazzi S, Haffner-Luntzer M, Lee S, Dorn AK, Ignatius A, Tuckermann J, Ahmad M. Inhibition of Cdk5 Ameliorates Skeletal Bone Loss in Glucocorticoid-Treated Mice. Biomedicines 2022; 10:404. [PMID: 35203613 PMCID: PMC8962259 DOI: 10.3390/biomedicines10020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory diseases. However, their long-term use leads to glucocorticoid-induced osteoporosis, increasing morbidity and mortality. Both anabolic and anti-resorptive drugs are used to counteract GC-induced bone loss, however, they are expensive and/or have major side effects. Therefore, identifying new targets for cost-effective, small-molecule inhibitors is essential. We recently identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation and showed that its inhibition with roscovitine promoted osteoblastogenesis, thus improving the skeletal bone mass and fracture healing. Here, we assessed whether Cdk5 knockdown or inhibition could also reverse the GC-mediated suppression of osteoblast differentiation, bone loss, and fracture healing. We first demonstrated that Cdk5 silencing abolished the dexamethasone (Dex)-induced downregulation of alkaline phosphatase (Alp) activity, osteoblast-specific marker gene expression (Runx2, Sp7, Alpl, and Bglap), and mineralization. Similarly, Cdk5 inhibition rescued Dex-induced suppression of Alp activity. We further demonstrated that Cdk5 inhibition reversed prednisolone (Pred)-induced bone loss in mice, due to reduced osteoclastogenesis rather than improved osteoblastogenesis. Moreover, we revealed that Cdk5 inhibition failed to improve Pred-mediated impaired fracture healing. Taken together, we demonstrated that Cdk5 inhibition with roscovitine ameliorated GC-mediated bone loss but did not reverse GC-induced compromised fracture healing in mice.
Collapse
Affiliation(s)
- Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Ann-Kristin Dorn
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| |
Collapse
|
25
|
The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci U S A 2021; 118:2112674118. [PMID: 34795058 DOI: 10.1073/pnas.2112674118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
High expression of programmed death-ligand 1 (PD-L1) in cancer cells drives immune-independent, cell-intrinsic functions, leading to resistance to DNA-damaging therapies. We find that high expression of the ubiquitin E3 ligase FBXO22 sensitizes nonsmall cell lung cancer (NSCLC) cells to ionizing radiation (IR) and cisplatin, and that activation of FBXO22 by phosphorylation is necessary for this function. Importantly, FBXO22 activates PD-L1 ubiquitination and degradation, which in turn increases the sensitivity of NSCLC cells to DNA damage. Cyclin-dependent kinase 5 (CDK5), aberrantly active in cancer cells, plays a crucial role in increasing the expression of PD-L1 in medulloblastoma [R. D. Dorand et al, Science 353, 399-403 (2016)]. We show in NSCLC cells that inhibiting CDK5 or reducing its expression increases the level of FBXO22, decreases that of PD-L1, and increases the sensitivity of the cells to DNA damage. We conclude that FBXO22 is a substrate of CDK5, and that inhibiting CDK5 reduces PD-L1 indirectly by increasing FBXO22. Pairing inhibitors of CDK5 with immune checkpoint inhibitors may increase the efficacy of immune checkpoint blockade alone or in combination with DNA-damaging therapies.
Collapse
|
26
|
The cyclin dependent kinase inhibitor Roscovitine prevents diet-induced metabolic disruption in obese mice. Sci Rep 2021; 11:20365. [PMID: 34645915 PMCID: PMC8514475 DOI: 10.1038/s41598-021-99871-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Most strategies to treat obesity-related disorders have involved prevention of diet-induced weight gain in lean mice. Treatment of obese individuals will require therapies that reverse the detrimental effects of excess body weight. Cyclin-dependent kinases have been shown to contribute to obesity and its adverse complications. Here, we show that roscovitine; a an orally available cyclin-dependent kinase inhibitor; given to male mice during the last six weeks of a 19-week high fat diet, reduced weight gain and prevented accompanying insulin resistance, hepatic steatosis, visceral adipose tissue (eWAT) inflammation/fibrosis as well as restored insulin secretion and enhanced whole body energy expenditure. Proteomics and phosphoproteomics analysis of eWAT demonstrated that roscovitine suppressed expression of peptides and phosphopeptides linked to inflammation and extracellular matrix proteins. It also identified 17 putative protein kinases perturbed by roscovitine, including CMGC kinases, AGC kinases and CAMK kinases. Pathway enrichment analysis showed that lipid metabolism, TCA cycle, fatty acid beta oxidation and creatine biosynthesis are enriched following roscovitine treatment. For brown adipose tissue (BAT), analysis of upstream kinases controlling the phosphoproteome revealed two major kinase groups, AGC and CMGC kinases. Among the top enriched pathways were insulin signaling, regulation of lipolysis in adipocytes, thyroid hormone signaling, thermogenesis and cAMP-PKG signaling. We conclude that roscovitine is effective at preventing prolonged diet-induced metabolic disruption and restoring mitochondrial activity in BAT and eWAT.
Collapse
|
27
|
Cyclin-dependent kinases-based synthetic lethality: Evidence, concept, and strategy. Acta Pharm Sin B 2021; 11:2738-2748. [PMID: 34589394 PMCID: PMC8463275 DOI: 10.1016/j.apsb.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Synthetic lethality is a proven effective antitumor strategy that has attracted great attention. Large-scale screening has revealed many synthetic lethal genetic phenotypes, and relevant small-molecule drugs have also been implemented in clinical practice. Increasing evidence suggests that CDKs, constituting a kinase family predominantly involved in cell cycle control, are synthetic lethal factors when combined with certain oncogenes, such as MYC, TP53, and RAS, which facilitate numerous antitumor treatment options based on CDK-related synthetic lethality. In this review, we focus on the synthetic lethal phenotype and mechanism related to CDKs and summarize the preclinical and clinical discoveries of CDK inhibitors to explore the prospect of CDK inhibitors as antitumor compounds for strategic synthesis lethality in the future.
Collapse
|
28
|
Chitsike L, Duerksen-Hughes PJ. Targeted Therapy as a Potential De-Escalation Strategy in Locally Advanced HPV-Associated Oropharyngeal Cancer: A Literature Review. Front Oncol 2021; 11:730412. [PMID: 34490123 PMCID: PMC8418093 DOI: 10.3389/fonc.2021.730412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.
Collapse
|
29
|
Hermanowicz JM, Kalaska B, Pawlak K, Sieklucka B, Miklosz J, Mojzych M, Pawlak D. Preclinical Toxicity and Safety of MM-129-First-in-Class BTK/PD-L1 Inhibitor as a Potential Candidate against Colon Cancer. Pharmaceutics 2021; 13:pharmaceutics13081222. [PMID: 34452183 PMCID: PMC8400941 DOI: 10.3390/pharmaceutics13081222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
MM-129 is a novel inhibitor targeting BTK/PI3K/AKT/mTOR and PD-L1, as it possesses antitumor activity against colon cancer. To evaluate the safety profile of MM-129, we conducted a toxicity study using the zebrafish and rodent model. MM-129 was also assessed for pharmacokinetics features through an in vivo study on Wistar rats. The results revealed that MM-129 exhibited favorable pharmacokinetics with quick absorption and 68.6% of bioavailability after intraperitoneal administration. No serious adverse events were reported for the use of MM-129, confirming a favorable safety profile for this compound. It was not fatal and toxic to mice at an anticancer effective dose of 10 μmol/kg. At the end of 14 days of administering hematological and biochemical parameters, liver and renal functions were all at normal levels. No sublethal effects were either detected in zebrafish embryos treated with a concentration of 10 μM. MM-129 has the potential as a safe and well-tolerated anticancer formulation for future treatment of patients with colon cancer.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
- Correspondence: ; Tel./Fax: +48-8574-85601
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| |
Collapse
|
30
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:ijms22158208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| |
Collapse
|
31
|
Ghasemishahrestani Z, Melo Mattos LM, Tilli TM, Santos ALSD, Pereira MD. Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy. Curr Med Chem 2021; 28:3514-3534. [PMID: 32814521 DOI: 10.2174/0929867327999200819123357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Over the past decades, several advances in cancer cell biology have led to relevant details about a phenomenon called the 'Warburg effect'. Currently, it has been accepted that the Warburg effect is not compatible with all cancer cells, and thus the process of aerobic glycolysis is now challenged by the knowledge of a large number of cells presenting mitochondrial function. The energy metabolism of cancer cells is focused on the bioenergetic and biosynthetic pathways in order to meet the requirements of rapid proliferation. Changes in the metabolism of carbohydrates, amino acids and lipids have already been reported for cancer cells and this might play an important role in cancer progression. To the best of our knowledge, these changes are mainly attributed to genetic reprogramming which leads to the transformation of a healthy into a cancerous cell. Indeed, several enzymes that are highly relevant for cellular energy are targets of oncogenes (e.g. PI3K, HIF1, and Myc) and tumor suppressor proteins (e.g. p53). As a consequence of extensive studies on cancer cell metabolism, some new therapeutic strategies have appeared that aim to interrupt the aberrant metabolism, in addition to influencing genetic reprogramming in cancer cells. In this review, we present an overview of cancer cell metabolism (carbohydrate, amino acid, and lipid), and also describe oncogenes and tumor suppressors that directly affect the metabolism. We also discuss some of the potential therapeutic candidates which have been designed to target and disrupt the main driving forces associated with cancer cell metabolism and proliferation.
Collapse
Affiliation(s)
- Zeinab Ghasemishahrestani
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Maura Melo Mattos
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Martins Tilli
- Centro de Desenvolvimento Tecnologico em Saude, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Dias Pereira
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Galarreta A, Valledor P, Ubieto‐Capella P, Lafarga V, Zarzuela E, Muñoz J, Malumbres M, Lecona E, Fernandez‐Capetillo O. USP7 limits CDK1 activity throughout the cell cycle. EMBO J 2021; 40:e99692. [PMID: 33856059 PMCID: PMC8167359 DOI: 10.15252/embj.201899692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.
Collapse
Affiliation(s)
- Antonio Galarreta
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Pablo Valledor
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Patricia Ubieto‐Capella
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
DNA Replication GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Vanesa Lafarga
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Eduardo Zarzuela
- Proteomics UnitSpanish National Cancer Research Centre (CNIO) and ProteoRed‐ISCIIIMadridSpain
| | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Centre (CNIO) and ProteoRed‐ISCIIIMadridSpain
| | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System labCentre for Molecular Biology Severo Ochoa (CBMSO)MadridSpain
| | - Oscar Fernandez‐Capetillo
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Science for Life LaboratoryDivision of Genome BiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| |
Collapse
|
33
|
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res 2021; 11:1913-1935. [PMID: 34094661 PMCID: PMC8167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023] Open
Abstract
Dysregulated cell division, which leads to aberrant cell proliferation, is one of the key hallmarks of cancer. Therefore, therapeutic targets that block cell division would be effective for cancer treatment. Cell division is mainly controlled by a complex composed of cyclin and cyclin dependent kinases (CDKs). To date, the CDK inhibitors (CDKIs), specifically the ones that block the enzyme activity of CDK4 and CDK6 (CDK4/6), have been approved by FDA for the treatment of metastatic hormone receptor positive breast cancer. However, due to the non-selectivity and significant toxicity, most of the first generation CDK inhibitors (so called pan-CDK inhibitors that target several CDKs), have not been approved for clinical application. Despite this, great efforts and progress have been made to enable pan-CDK inhibitors application in the clinical setting. Notably, the development of combination therapy strategies in recent years has made it possible to reduce the toxicity and side effects of pan-CDK inhibitors. Thus, as a combination therapy approach, pan-CDK inhibitors regain great potential in clinical application. In this review, we introduced the CDK family members and discussed their major functions in cell cycle controlling. Then, we summarized the research progress regarding CDK inhibitors, especially those other than CDK4/6 inhibitors. We reviewed first-generation pan-CDKIs Flavopiridol and Roscovitine, and second-generation CDKIs Dinaciclib, P276-00, AT7519, TG02, Roniciclib, RGB-286638 by focusing on their developing stages, clinical trials and targeting cancers. The specific CDKIs, which targets to increase specificity and decrease the side effects, were also discussed. These CDKIs include CDK4/6, CDK7, CDK9, and CDK12/13 inhibitors. Finally, the efficacy and discrepancy of combination therapy with CDK inhibitors and PD1/PDL1 antibodies were analyzed, which might give insights into the development of promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Lingxian Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Xiao Li
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | | | - Xuan Wu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-pharm Co., Ltd.Shenzhen 518118, China
| | - Cheguo Cai
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| |
Collapse
|
34
|
Łukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action. Int J Mol Sci 2021; 22:ijms22062806. [PMID: 33802080 PMCID: PMC8001317 DOI: 10.3390/ijms22062806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Kulczycka
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
35
|
Cicenas J, Račienė A. Anti-Cancer Drugs Targeting Protein Kinases Approved by FDA in 2020. Cancers (Basel) 2021; 13:cancers13050947. [PMID: 33668248 PMCID: PMC7956733 DOI: 10.3390/cancers13050947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cancers are a large group of diseases that mostly emerge because of the uncontrollable action of many different genes in human cells [...].
Collapse
Affiliation(s)
- Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland
- Correspondence: ; Tel.: +43-6645875822 or +37-066704267
| | - Asta Račienė
- Vilnius University Hospital, Santariskiu Klinikos Santariskiu str. 2, LT-08661 Vilnius, Lithuania;
| |
Collapse
|
36
|
Carmell N, Rominiyi O, Myers KN, McGarrity-Cottrell C, Vanderlinden A, Lad N, Perroux-David E, El-Khamisy SF, Fernando M, Finegan KG, Brown S, Collis SJ. Identification and Validation of ERK5 as a DNA Damage Modulating Drug Target in Glioblastoma. Cancers (Basel) 2021; 13:cancers13050944. [PMID: 33668183 PMCID: PMC7956595 DOI: 10.3390/cancers13050944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Glioblastomas are high-grade brain tumours and are the most common form of malignancy arising in the brain. Patient survival has improved little over the last 40 years, highlighting an urgent unmet need for more effective treatments for these tumours. Current standard-of-care treatment involves surgical removal of as much of the tumour as possible followed by a course of chemo-/radiotherapy. The main chemotherapeutic drug used is called temozolomide, however even with this treatment regimen, the average patient survival following diagnosis is around 15 months. We have identified a protein called ERK5 which is present at higher levels in these high-grade brain tumours compared to normal brain tissue, and which is also associated with resistance to temozolomide and poor patient survival. Additionally, we show that targeting ERK5 in brain tumour cells can improve the effectiveness of temozolomide in killing these tumour cells and offers potential much-needed future clinical benefit to patients diagnosed with glioblastoma. Abstract Brain tumours kill more children and adults under 40 than any other cancer, with approximately half of primary brain tumours being diagnosed as high-grade malignancies known as glioblastomas. Despite de-bulking surgery combined with chemo-/radiotherapy regimens, the mean survival for these patients is only around 15 months, with less than 10% surviving over 5 years. This dismal prognosis highlights the urgent need to develop novel agents to improve the treatment of these tumours. To address this need, we carried out a human kinome siRNA screen to identify potential drug targets that augment the effectiveness of temozolomide (TMZ)—the standard-of-care chemotherapeutic agent used to treat glioblastoma. From this we identified ERK5/MAPK7, which we subsequently validated using a range of siRNA and small molecule inhibitors within a panel of glioma cells. Mechanistically, we find that ERK5 promotes efficient repair of TMZ-induced DNA lesions to confer cell survival and clonogenic capacity. Finally, using several glioblastoma patient cohorts we provide target validation data for ERK5 as a novel drug target, revealing that heightened ERK5 expression at both the mRNA and protein level is associated with increased tumour grade and poorer patient survival. Collectively, these findings provide a foundation to develop clinically effective ERK5 targeting strategies in glioblastomas and establish much-needed enhancement of the therapeutic repertoire used to treat this currently incurable disease.
Collapse
Affiliation(s)
- Natasha Carmell
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Ola Rominiyi
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Katie N. Myers
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Connor McGarrity-Cottrell
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Aurelie Vanderlinden
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Nikita Lad
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Eva Perroux-David
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
| | - Sherif F. El-Khamisy
- Sheffield Institute for Nucleic Acids (SInFoNiA) and the Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK;
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Malee Fernando
- Department of Histopathology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2TN, UK;
| | - Katherine G. Finegan
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Stephen Brown
- Department of Biomedical Science, The Sheffield RNAi Screening Facility, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Spencer J. Collis
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield S10 2SJ, UK; (N.C.); (O.R.); (K.N.M.); (C.M.-C.); (A.V.); (N.L.); (E.P.-D.)
- Sheffield Institute for Nucleic Acids (SInFoNiA) and the Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK;
- Correspondence: ; Tel.: +44-(0)114-215-9043
| |
Collapse
|
37
|
YY1 regulated transcription-based stratification of gastric tumors and identification of potential therapeutic candidates. J Cell Commun Signal 2021; 15:251-267. [PMID: 33620645 DOI: 10.1007/s12079-021-00608-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related death worldwide. The transcription factor YY1 regulates diverse biological processes, including cell proliferation, development, DNA damage responses, and carcinogenesis. This study was designed to explore the role of YY1 regulated transcription in gastric cancer. YY1 silencing in gastric cancer cells has resulted in the inhibition of Wnt/β-catenin, JNK/MAPK, ERK/MAPK, ER, and HIF-1α signaling pathways. Genome-wide mRNA profiling upon silencing the expression YY1 gene in gastric cancer cells and comparison with the previously identified YY1 regulated genes from other lineages revealed a moderate overlap among the YY1 regulated genes. Despite the differing genes, all the YY1 regulated gene sets were expressed in most of the intestinal subtype gastric tumors and a subset of diffuse subtype gastric tumors. Integrative functional genomic analysis of the YY1 gene sets revealed an association among the pathways Wnt/β-catenin, Rapamycin, Cyclin-D1, Myc, E2F, PDGF, and AKT. Further, the drugs capable of inhibiting YY1 mediated transcription were identified as suitable targeted therapeutic candidates for gastric tumors with activated YY1. The data emerging from the investigation would pave the way for the development of YY1-based targeted therapeutics for gastric cancer.
Collapse
|
38
|
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020157. [PMID: 33673021 PMCID: PMC7918405 DOI: 10.3390/ph14020157] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Antia Gonzalez Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
39
|
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:41-51. [PMID: 33046531 PMCID: PMC7894654 DOI: 10.1681/asn.2020040511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 and polycystin-2, respectively, cause autosomal dominant polycystic kidney disease (ADPKD). Polycystins are expressed in the primary cilium, and disrupting cilia structure significantly slows ADPKD progression following inactivation of polycystins. The cellular mechanisms of polycystin- and cilia-dependent cyst progression in ADPKD remain incompletely understood. METHODS Unbiased transcriptional profiling in an adult-onset Pkd2 mouse model before cysts formed revealed significant differentially expressed genes (DEGs) in Pkd2 single-knockout kidneys, which were used to identify candidate pathways dysregulated in kidneys destined to form cysts. In vivo studies validated the role of the candidate pathway in the progression of ADPKD. Wild-type and Pkd2/Ift88 double-knockout mice that are protected from cyst growth served as controls. RESULTS The RNASeq data identified cell proliferation as the most dysregulated pathway, with 15 of 241 DEGs related to cell cycle functions. Cdk1 appeared as a central component in this analysis. Cdk1 expression was similarly dysregulated in Pkd1 models of ADPKD, and conditional inactivation of Cdk1 with Pkd1 markedly improved the cystic phenotype and kidney function compared with inactivation of Pkd1 alone. The Pkd1/Cdk1 double knockout blocked cyst cell proliferation that otherwise accompanied Pkd1 inactivation alone. CONCLUSIONS Dysregulation of Cdk1 is an early driver of cyst cell proliferation in ADPKD due to Pkd1 inactivation. Selective targeting of cyst cell proliferation is an effective means of slowing ADPKD progression caused by inactivation of Pkd1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Bruno Balbo
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Ming Ma
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jun Zhao
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Xin Tian
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut,Program in Applied Mathematics, Yale University, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Yale University, New Haven, Connecticut,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
40
|
Nakano-Tateno T, Lau KJ, Wang J, McMahon C, Kawakami Y, Tateno T, Araki T. Multimodal Non-Surgical Treatments of Aggressive Pituitary Tumors. Front Endocrinol (Lausanne) 2021; 12:624686. [PMID: 33841328 PMCID: PMC8033019 DOI: 10.3389/fendo.2021.624686] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Up to 35% of aggressive pituitary tumors recur and significantly affect mortality and quality of life. Management can be challenging and often requires multimodal treatment. Current treatment options, including surgery, conventional medical therapies such as dopamine agonists, somatostatin receptor agonists and radiotherapy, often fail to inhibit pituitary tumor growth. Recently, anti-tumor effects of chemotherapeutic drugs such as Temozolomide, Capecitabine, and Everolimus, as well as peptide receptor radionuclide therapy on aggressive pituitary tumors have been increasingly investigated and yield mixed, although sometimes promising, outcomes. The purpose of this review is to provide thorough information on non-surgical medical therapies and their efficacies and used protocols for aggressive pituitary adenomas from pre-clinical level to clinical use.
Collapse
Affiliation(s)
- Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kheng Joe Lau
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Justin Wang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Cailin McMahon
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Toru Tateno, ; Takako Araki,
| | - Takako Araki
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Toru Tateno, ; Takako Araki,
| |
Collapse
|
41
|
Do PA, Lee CH. The Role of CDK5 in Tumours and Tumour Microenvironments. Cancers (Basel) 2020; 13:E101. [PMID: 33396266 PMCID: PMC7795262 DOI: 10.3390/cancers13010101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5), which belongs to the protein kinase family, regulates neuronal function but is also associated with cancer development and has been proposed as a target for cancer treatment. Indeed, CDK5 has roles in cell proliferation, apoptosis, angiogenesis, inflammation, and immune response. Aberrant CDK5 activation triggers tumour progression in numerous types of cancer. In this review, we summarise the role of CDK5 in cancer and neurons and CDK5 inhibitors. We expect that our review helps researchers to develop CDK5 inhibitors as treatments for refractory cancer.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- Phamaceutical Biochemistry, College of Pharmacy, BK21 FOUR Team, and Integrated Research Institute for Drug Development, Dongguk University, Goyang 100-715, Korea;
| |
Collapse
|
42
|
Soeda Y, Takashima A. New Insights Into Drug Discovery Targeting Tau Protein. Front Mol Neurosci 2020; 13:590896. [PMID: 33343298 PMCID: PMC7744460 DOI: 10.3389/fnmol.2020.590896] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
43
|
Momtaz AZ, Ahumada Sabagh AD, Gonzalez Amortegui JG, Salazar SA, Finessi A, Hernandez J, Christensen S, Serbus LR. A Role for Maternal Factors in Suppressing Cytoplasmic Incompatibility. Front Microbiol 2020; 11:576844. [PMID: 33240234 PMCID: PMC7680759 DOI: 10.3389/fmicb.2020.576844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
Wolbachia are maternally transmitted bacterial endosymbionts, carried by approximately half of all insect species. Wolbachia prevalence in nature stems from manipulation of host reproduction to favor the success of infected females. The best known reproductive modification induced by Wolbachia is referred to as sperm-egg Cytoplasmic Incompatibility (CI). In CI, the sperm of Wolbachia-infected males cause embryonic lethality, attributed to paternal chromatin segregation defects during early mitotic divisions. Remarkably, the embryos of Wolbachia-infected females “rescue” CI lethality, yielding egg hatch rates equivalent to uninfected female crosses. Several models have been discussed as the basis for Rescue, and functional evidence indicates a major contribution by Wolbachia CI factors. A role for host contributions to Rescue remains largely untested. In this study, we used a chemical feeding approach to test for CI suppression capabilities by Drosophila simulans. We found that uninfected females exhibited significantly higher CI egg hatch rates in response to seven chemical treatments that affect DNA integrity, cell cycle control, and protein turnover. Three of these treatments suppressed CI induced by endogenous wRi Wolbachia, as well as an ectopic wMel Wolbachia infection. The results implicate DNA integrity as a focal aspect of CI suppression for different Wolbachia strains. The framework presented here, applied to diverse CI models, will further enrich our understanding of host reproductive manipulation by insect endosymbionts.
Collapse
Affiliation(s)
- Ajm Zehadee Momtaz
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Abraham D Ahumada Sabagh
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Julian G Gonzalez Amortegui
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Samuel A Salazar
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Andrea Finessi
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Jethel Hernandez
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
44
|
Lapcik P, Pospisilova A, Janacova L, Grell P, Fabian P, Bouchal P. How Different Are the Molecular Mechanisms of Nodal and Distant Metastasis in Luminal A Breast Cancer? Cancers (Basel) 2020; 12:E2638. [PMID: 32947901 PMCID: PMC7563588 DOI: 10.3390/cancers12092638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lymph node status is one of the best prognostic factors in breast cancer, however, its association with distant metastasis is not straightforward. Here we compare molecular mechanisms of nodal and distant metastasis in molecular subtypes of breast cancer, with major focus on luminal A patients. We analyze a new cohort of 706 patients (MMCI_706) as well as an independent cohort of 836 primary tumors with full gene expression information (SUPERTAM_HGU133A). We evaluate the risk of distant metastasis, analyze targetable molecular mechanisms in Gene Set Enrichment Analysis and identify relevant inhibitors. Lymph node positivity is generally associated with NF-κB and Src pathways and is related to high risk (OR: 5.062 and 2.401 in MMCI_706 and SUPERTAM_HGU133A, respectively, p < 0.05) of distant metastasis in luminal A patients. However, a part (≤15%) of lymph node negative tumors at the diagnosis develop the distant metastasis which is related to cell proliferation control and thrombolysis. Distant metastasis of lymph node positive patients is mostly associated with immune response. These pro-metastatic mechanisms further vary in other molecular subtypes. Our data indicate that the management of breast cancer and prevention of distant metastasis requires stratified approach based on targeted strategies.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Anna Pospisilova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| |
Collapse
|
45
|
Ikwu FA, Isyaku Y, Obadawo BS, Lawal HA, Ajibowu SA. In silico design and molecular docking study of CDK2 inhibitors with potent cytotoxic activity against HCT116 colorectal cancer cell line. J Genet Eng Biotechnol 2020; 18:51. [PMID: 32930901 PMCID: PMC7492310 DOI: 10.1186/s43141-020-00066-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Colorectal cancer is common to both sexes; third in terms of morbidity and second in terms of mortality, accounting for 10% and 9.2% of cancer cases in men and women globally. Although drugs such as bevacizumab, Camptosar, and cetuximab are being used to manage colorectal cancer, the efficacy of the drugs has been reported to vary from patient to patient. These drugs have also been reported to have varying degrees of side effects; thus, the need for novel drug therapies with better efficacy and lesser side effects. In silico drugs design methods provide a faster and cost-effect method for lead identification and optimization. The aim of this study, therefore, was to design novel imidazol-5-ones via in silico design methods. RESULTS A QSAR model was built using the genetic function algorithm method to model the cytotoxicity of the compounds against the HCT116 colorectal cancer cell line. The built model had statistical parameters; R2 = 0.7397, R2adj = 0.6712, Q2cv = 0.5547, and R2ext. = 0.7202 and revealed the cytotoxic activity of the compounds to be dependent on the molecular descriptors nS, GATS5s, VR1_Dze, ETA_dBetaP, and L3i. These molecular descriptors were poorly correlated (VIF < 4.0) and made unique contributions to the built model. The model was used to design a novel set of derivatives via the ligand-based drug design approach. Compounds e, h, j, and l showed significantly better cytotoxicity (IC50 < 5.0 μM) compared to the template. The interaction of the compounds with the CDK2 enzyme (PDB ID: 6GUE) was investigated via molecular docking study. The compounds were potent inhibitors of the enzyme having binding affinity of range -10.8 to -11.0 kcal/mol and primarily formed hydrogen bond interaction with lysine, aspartic acid, leucine, and histidine amino acid residues of the enzyme. CONCLUSION The QSAR model built was stable, robust, and had a good predicting ability. Thus, predictions made by the model were reliably employed in further in silico studies. The compounds designed were more active than the template and showed better inhibition of the CDK2 enzyme compared to the standard drugs sorafenib and kenpaullone.
Collapse
Affiliation(s)
- Fabian Adakole Ikwu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Isyaku
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Samuel Akolade Ajibowu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
46
|
The Effect of Novel 7-methyl-5-phenyl-pyrazolo[4,3- e]tetrazolo[4,5- b][1,2,4]triazine Sulfonamide Derivatives on Apoptosis and Autophagy in DLD-1 and HT-29 Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21155221. [PMID: 32717981 PMCID: PMC7432848 DOI: 10.3390/ijms21155221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of cytotoxic drugs is focused on designing a compound structure that directly affects cancer cells without an impact on normal cells. The mechanism of anticancer activity is mainly related with activation of apoptosis. However, recent scientific reports show that autophagy also plays a crucial role in cancer cell progression. Thus, the objective of this study was to synthesize 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine utilizing nucleophilic substitution reaction at the position N1. The biological activity of tested compounds was assessed in DLD-1 and HT-29 cell lines. The induction of apoptosis was confirmed by Annexin V binding assay and acridine orange/ethidium bromide staining. The loss of mitochondrial membrane potential and caspase-8 activity was estimated using cytometer flow analysis. The concentration of p53, LC3A, LC3B and beclin-1 was measured using the ELISA technique. Our study revealed that anticancer activity of 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives is related with initiation of apoptosis occur on the intrinsic pathway with mitochondrial membrane decrease and extrinsic with increase of activity of caspase-8. Moreover, a decrease in beclin-1, LC3A, and LC3B were observed in two cell lines after treatment with novel compounds. This study showed that novel 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives might be a potential strategy in colon cancer treatment.
Collapse
|
47
|
Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer. PLoS One 2020; 15:e0234103. [PMID: 32645016 PMCID: PMC7347136 DOI: 10.1371/journal.pone.0234103] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) contribute to the cancer hallmarks of uncontrolled proliferation and increased survival. As a result, over the last two decades substantial efforts have been directed towards identification and development of pharmaceutical CDK inhibitors. Insights into the biological consequences of CDK inhibition in specific tumor types have led to the successful development of CDK4/6 inhibitors as treatments for certain types of breast cancer. More recently, a new generation of pharmaceutical inhibitors of CDK enzymes that regulate the transcription of key oncogenic and pro-survival proteins, including CDK9, have entered clinical development. Here, we provide the first disclosure of the chemical structure of fadraciclib (CYC065), a CDK inhibitor and clinical candidate designed by further optimization from the aminopurine scaffold of seliciclib. We describe its synthesis and mechanistic characterization. Fadraciclib exhibits improved potency and selectivity for CDK2 and CDK9 compared to seliciclib, and also displays high selectivity across the kinome. We show that the mechanism of action of fadraciclib is consistent with potent inhibition of CDK9-mediated transcription, decreasing levels of RNA polymerase II C-terminal domain serine 2 phosphorylation, the pro-survival protein Myeloid Cell Leukemia 1 (MCL1) and MYC oncoprotein, and inducing rapid apoptosis in cancer cells. This cellular potency and mechanism of action translate to promising anti-cancer activity in human leukemia mouse xenograft models. Studies of leukemia cell line sensitivity identify mixed lineage leukemia (MLL) gene status and the level of B-cell lymphoma 2 (BCL2) family proteins as potential markers for selection of patients with greater sensitivity to fadraciclib. We show that the combination of fadraciclib with BCL2 inhibitors, including venetoclax, is synergistic in leukemic cell models, as predicted from simultaneous inhibition of MCL1 and BCL2 pro-survival pathways. Fadraciclib preclinical pharmacology data support its therapeutic potential in CDK9- or CDK2-dependent cancers and as a rational combination with BCL2 inhibitors in hematological malignancies. Fadraciclib is currently in Phase 1 clinical studies in patients with advanced solid tumors (NCT02552953) and also in combination with venetoclax in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) (NCT03739554) and relapsed refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) (NCT04017546).
Collapse
|
48
|
Wang Y, Zhao J, Guo FL, Gao X, Xie X, Liu S, Yang X, Yang X, Zhang L, Ye Y, Fan L, Wang J. Metformin Ameliorates Synaptic Defects in a Mouse Model of AD by Inhibiting Cdk5 Activity. Front Cell Neurosci 2020; 14:170. [PMID: 32670025 PMCID: PMC7327108 DOI: 10.3389/fncel.2020.00170] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that is activated by the neuron-specific activators p35/p39 and plays important roles in neuronal development, synaptic plasticity, and cognitive behavior. However, the proteolytic cleavage of p35 to p25 leads to prolonged and aberrant Cdk5 activation and results in synaptic depression, highly mimicking the early pathology of Alzheimer’s disease (AD). Therefore, Cdk5 inhibition is a potential promising strategy for AD drug development. Here in the present study, we showed that metformin, the most widely used drug for type 2 diabetes, suppressed Cdk5 hyper-activation and Cdk5-dependent tau hyper-phosphorylation in the APP/PS1 mouse hippocampus. We also identified the underlying molecular and cellular mechanism that metformin prevented Cdk5 hyper-activation by inhibiting the calpain-dependent cleavage of p35 into p25. Moreover, chronic metformin treatment rescued the core phenotypes in APP/PS1 mice as evidenced by restored spine density, surface GluA1 trafficking, Long-term potentiation (LTP) expression, and spatial memory. Altogether our study discovered an unidentified role of metformin in suppressing Cdk5 hyper-activation and thus preventing AD pathogenesis and suggested that metformin is a potential promising AD therapeutic drug.
Collapse
Affiliation(s)
- YaLi Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - JianHua Zhao
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - XiaHuan Gao
- Department of Pathology, People's Hospital of Tongchuan, Tongchuan, China
| | - Xine Xie
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - ShouQing Liu
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - Xin Yang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XinFeng Yang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LuYi Zhang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - YuXiao Ye
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LiBing Fan
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
49
|
Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery. Int J Mol Sci 2020; 21:ijms21093354. [PMID: 32397434 PMCID: PMC7246882 DOI: 10.3390/ijms21093354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibitors targeting the general RNA polymerase II (RNAPII) transcription machinery are candidate therapeutics in cancer and other complex diseases. Here, we review the molecular targets and mechanisms of action of these compounds, framing them within the steps of RNAPII transcription. We discuss the effects of transcription inhibitors in vitro and in cellular models (with an emphasis on cancer), as well as their efficacy in preclinical and clinical studies. We also discuss the rationale for inhibiting broadly acting transcriptional regulators or RNAPII itself in complex diseases.
Collapse
|
50
|
Hübbers A, Hennings J, Lambertz D, Haas U, Trautwein C, Nevzorova YA, Sonntag R, Liedtke C. Pharmacological Inhibition of Cyclin-Dependent Kinases Triggers Anti-Fibrotic Effects in Hepatic Stellate Cells In Vitro. Int J Mol Sci 2020; 21:ijms21093267. [PMID: 32380742 PMCID: PMC7246535 DOI: 10.3390/ijms21093267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a wound healing process in response to chronic liver injury, which is characterized by the accumulation of extracellular collagen produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs controlled by cyclins and associated cyclin-dependent kinases (Cdks). Cdk2 mediates the entry and progression through S-phase in complex with E-and A-type cyclins. We have demonstrated that cyclin E1 is essential for liver fibrogenesis in mice, but it is not known if this is dependent on Cdk2 or related Cdks. Here, we aimed to evaluate the benefit of the pan-Cdk inhibitor CR8 for treatment of liver fibrosis in vitro. CR8-treatment reduced proliferation and survival in immortalized HSC lines and in addition attenuated pro-fibrotic properties in primary murine HSCs. Importantly, primary murine hepatocytes were much more tolerant against the cytotoxic and anti-proliferative effects of CR8. We identified CR8 dosages mediating anti-fibrotic effects in primary HSCs without affecting cell cycle activity and survival in primary hepatocytes. In conclusion, the pharmacological pan-Cdk inhibitor CR8 restricts the pro-fibrotic properties of HSCs, while preserving proliferation and viability of hepatocytes at least in vitro. Therefore, CR8 and related drugs might be beneficial for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Anna Hübbers
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Julia Hennings
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Daniela Lambertz
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Ute Haas
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University Madrid, 28040 Madrid, Spain
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
- Correspondence: (R.S.); (C.L.)
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany; (A.H.); (J.H.); (D.L.); (U.H.); (C.T.); (Y.A.N.)
- Correspondence: (R.S.); (C.L.)
| |
Collapse
|