1
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Lopez-Scarim J, Mendoza D, Nambiar SM, Billerbeck E. CD4+ T cell help during early acute hepacivirus infection is critical for viral clearance and the generation of a liver-homing CD103+CD49a+ effector CD8+ T cell subset. PLoS Pathog 2024; 20:e1012615. [PMID: 39392861 PMCID: PMC11498735 DOI: 10.1371/journal.ppat.1012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/23/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
In hepatitis C virus (HCV) infection, CD4+ and CD8+ T cells are crucial for viral control. However, a detailed understanding of the kinetic of CD4+ T cell help and its role in the generation of different CD8+ T cell subsets during acute infection is lacking. The absence of a small HCV animal model has impeded mechanistic studies of hepatic antiviral T cell immunity and HCV vaccine development. In this study, we used a recently developed HCV-related rodent hepacivirus infection mouse model to investigate the impact of CD4+ T cell help on the hepatic CD8+ T cell response and viral clearance during hepacivirus infection in vivo. Our results revealed a specific kinetic of CD4+ T cell dependency during acute infection. Early CD4+ T cell help was essential for CD8+ T cell priming and viral clearance, while CD4+ T cells became dispensable during later stages of acute infection. Effector CD8+ T cells directly mediated timely hepacivirus clearance. An analysis of hepatic CD8+ T cells specific for two different viral epitopes revealed the induction of subsets of liver-homing CD103+CD49a+ and CD103-CD49a+ effector CD8+ T cells with elevated IFN-γ and TNF-α production. CD103+CD49a+ T cells further persisted as tissue-resident memory subsets. A lack of CD4+ T cell help and CD40L-CD40 interactions resulted in reduced effector functions and phenotypical changes in effector CD8+ T cells and a specific loss of the CD103+CD49a+ subset. In summary, our study shows that early CD4+ T cell help through CD40L signaling is essential for priming functional effector CD8+ T cell subsets, including unique liver-homing subsets, and hepacivirus clearance.
Collapse
Affiliation(s)
- Jarrett Lopez-Scarim
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dustyn Mendoza
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shashank M. Nambiar
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eva Billerbeck
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
3
|
Herrero-Fernández B, Ortega-Zapero M, Gómez-Bris R, Sáez A, Iborra S, Zorita V, Quintas A, Vázquez E, Dopazo A, Sánchez-Madrid F, Arribas SM, González-Granado JM. Role of lamin A/C on dendritic cell function in antiviral immunity. Cell Mol Life Sci 2024; 81:400. [PMID: 39264480 PMCID: PMC11393282 DOI: 10.1007/s00018-024-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Marina Ortega-Zapero
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Raquel Gómez-Bris
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Angela Sáez
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Fundacion Inmunotek, Alcalá de Henares, 28805, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Immunology Unit, Medicine Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Instituto Investigacion Sanitaria-Princesa IIS-IP, Madrid, Spain, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain.
| | - Jose Maria González-Granado
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
4
|
Kim SH, Españo E, Padasas BT, Son JH, Oh J, Webby RJ, Lee YR, Park CS, Kim JK. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Netw 2024; 24:e19. [PMID: 38974213 PMCID: PMC11224667 DOI: 10.4110/in.2024.24.e19] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | | | - Ju-Ho Son
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jihee Oh
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38195, USA
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
5
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
6
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
7
|
Wang G, Tajima M, Honjo T, Ohta A. STAT5 interferes with PD-1 transcriptional activation and affects CD8+ T-cell sensitivity to PD-1-dependent immunoregulation. Int Immunol 2021; 33:563-572. [PMID: 34453440 DOI: 10.1093/intimm/dxab059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death-1 (PD-1) is a co-inhibitory receptor that dampens immune responses upon interaction with PD-L1 and PD-L2. Although PD-1 expression on T cells is known to be activation-dependent, how cytokines modify its regulation is not fully resolved. Using polyclonal T-cell activation to study cytokine-dependent PD-1 regulation, we found that IL-2 inhibited transcriptional up-regulation of PD-1 despite the promotion of T-cell activation. The IL-2-mediated reduction in PD-1 expression augmented CD8+ T-cell activities against PD-L1-expressing target cells. To study the mechanism of PD-1 reduction, we focused on STAT5 activation in the IL-2 signaling pathway. Bioinformatic analysis suggested a novel conserved PD-1 promoter domain where NFAT and STAT5 can potentially compete with each other for binding. NFAT1 interaction with this domain revealed substantial potency in PD-1 transcription compared to STAT5A, and STAT5A overexpression could quench NFAT1-dependent PD-1 up-regulation in a sequence-specific manner. Chromatin immunoprecipitation analysis of activated T cells showed that IL-2 treatment significantly diminished the binding of NFAT1 and NFAT2 in the hypothesized competition site, while STAT5 binding to the same region was increased. These results raise the possibility that the competition of transcriptional factors might be involved in the fine-tuning of PD-1 expression by cytokines such as IL-2.
Collapse
Affiliation(s)
- Guanning Wang
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Masaki Tajima
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Akio Ohta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| |
Collapse
|
8
|
Pauken KE, Godec J, Odorizzi PM, Brown KE, Yates KB, Ngiow SF, Burke KP, Maleri S, Grande SM, Francisco LM, Ali MA, Imam S, Freeman GJ, Haining WN, Wherry EJ, Sharpe AH. The PD-1 Pathway Regulates Development and Function of Memory CD8 + T Cells following Respiratory Viral Infection. Cell Rep 2021; 31:107827. [PMID: 32610128 DOI: 10.1016/j.celrep.2020.107827] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 07/05/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jernej Godec
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Pamela M Odorizzi
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Keturah E Brown
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly P Burke
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Seth Maleri
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shannon M Grande
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Loise M Francisco
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mohammed-Alkhatim Ali
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sabrina Imam
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E John Wherry
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Pauken KE, Torchia JA, Chaudhri A, Sharpe AH, Freeman GJ. Emerging concepts in PD-1 checkpoint biology. Semin Immunol 2021; 52:101480. [PMID: 34006473 PMCID: PMC8545711 DOI: 10.1016/j.smim.2021.101480] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
The PD-1 pathway is a cornerstone in immune regulation. While the PD-1 pathway has received considerable attention for its role in contributing to the maintenance of T cell exhaustion in chronic infection and cancer, the PD-1 pathway plays diverse roles in regulating host immunity beyond T cell exhaustion. Here, we discuss emerging concepts in the PD-1 pathway, including (1) the impact of PD-1 inhibitors on diverse T cell differentiation states including effector and memory T cell development during acute infection, as well as T cell exhaustion during chronic infection and cancer, (2) the role of PD-1 in regulating Treg cells, NK cells, and ILCs, and (3) the functions of PD-L1/B7-1 and PD-L2/RGMb/neogenin interactions. We then discuss the emerging use of neoadjuvant PD-1 blockade in the treatment of early-stage cancers and how the timing of PD-1 blockade may improve clinical outcomes. The diverse binding partners of PD-1 and its associated ligands, broad expression patterns of the receptors and ligands, differential impact of PD-1 modulation on cells depending on location and state of differentiation, and timing of PD-1 blockade add additional layers of complexity to the PD-1 pathway, and are important considerations for improving the efficacy and safety of PD-1 pathway therapeutics.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - James A Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA; Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Johnnidis JB, Muroyama Y, Ngiow SF, Chen Z, Manne S, Cai Z, Song S, Platt JM, Schenkel JM, Abdel-Hakeem M, Beltra JC, Greenplate AR, Ali MAA, Nzingha K, Giles JR, Harly C, Attanasio J, Pauken KE, Bengsch B, Paley MA, Tomov VT, Kurachi M, Vignali DAA, Sharpe AH, Reiner SL, Bhandoola A, Johnson FB, Wherry EJ. Inhibitory signaling sustains a distinct early memory CD8 + T cell precursor that is resistant to DNA damage. Sci Immunol 2021; 6:6/55/eabe3702. [PMID: 33452106 DOI: 10.1126/sciimmunol.abe3702] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.
Collapse
Affiliation(s)
- Jonathan B Johnnidis
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuki Muroyama
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Shufei Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse M Platt
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jason M Schenkel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohamed Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim A Ali
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO 'Immunotherapy, Graft, Oncology', Nantes, France
| | - John Attanasio
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bertram Bengsch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Michael A Paley
- Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vesselin T Tomov
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh PA 15232, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - F Bradley Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J Interferon Cytokine Res 2019; 38:69-80. [PMID: 29443656 DOI: 10.1089/jir.2017.0037] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection with dengue virus (DENV) can lead to a wide spectrum of clinical presentations, ranging from asymptomatic infection to death. It is estimated that the disease manifests only in 90 million cases out of the total 390 million yearly infections. Even though research has not yet elucidated which are the precise pathophysiological mechanisms that trigger severe forms of dengue, the infection elicits a critical immune response significant for dengue pathogenesis development. Understanding how the immune response to DENV is established and how it can resolve the infection or turn into an immunopathology is of great importance in DENV research. Currently, studies have extensively debated 2 hypotheses involving immune response: antibody-dependent enhancement and cytokine storm. However, despite its undeniable importance in severe forms of the disease, these 2 hypotheses are based on a primed immune status resulting from previous heterologous infection, abstaining them from explaining the severe forms of dengue in naive immune subjects, for example. Thus, it seems that a more intricate arrangement of causes and conditions must be achieved to severe dengue to occur. Among them, the cytokine network signature elicited, in association with viral aspects deserves special attention regarding the establishment of infection and evolution to pathogenesis. In this work, we intend to shed light on how those elements contribute to severe dengue development.
Collapse
Affiliation(s)
- Diogo Kuczera
- 1 Laboratório de Virologia Molecular, Instituto Carlos Chagas , ICC/Fiocruz/PR, Curitiba, Brazil
| | - João Paulo Assolini
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda Tomiotto-Pellissier
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
12
|
Cassady K, Martin PJ, Zeng D. Regulation of GVHD and GVL Activity via PD-L1 Interaction With PD-1 and CD80. Front Immunol 2018; 9:3061. [PMID: 30622541 PMCID: PMC6308317 DOI: 10.3389/fimmu.2018.03061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for hematological malignancies (i.e. leukemia and lymphoma), because graft-versus-leukemia (GVL) activity mediated by alloreactive T cells can eliminate residual malignant cells and prevent relapse. However, the same alloreactive T cells also mediate a severe side effect, graft-versus-host disease (GVHD), and prevention of GVHD while preserving GVL activity remains an elusive goal. The immune checkpoint molecule PD-L1 and its interaction with PD-1 receptor in regulating cancer immunity is under intensive and wide-spread study, but knowledge about this interaction in regulating GVHD and GVL activity is very limited. In this review, we summarize the literature exploring how PD-L1 interaction with its receptors PD-1 and CD80 regulate GVHD and GVL activities, how PD-L1 signaling regulates T cell metabolic profiles, and how a differential role of PD-L1 interaction with PD-1, CD80 or both may provide a novel avenue to prevent GVHD while preserving strong GVL effects.
Collapse
Affiliation(s)
- Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Department of Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA, United States.,Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Department of Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA, United States.,Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
13
|
CD4 T cells control development and maintenance of brain-resident CD8 T cells during polyomavirus infection. PLoS Pathog 2018; 14:e1007365. [PMID: 30372487 PMCID: PMC6224182 DOI: 10.1371/journal.ppat.1007365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Tissue-resident memory CD8 T (TRM) cells defend against microbial reinfections at mucosal barriers; determinants driving durable TRM cell responses in non-mucosal tissues, which often harbor opportunistic persistent pathogens, are unknown. JC polyomavirus (JCPyV) is a ubiquitous constituent of the human virome. With altered immunological status, JCPyV can cause the oft-fatal brain demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV is a human-only pathogen. Using the mouse polyomavirus (MuPyV) encephalitis model, we demonstrate that CD4 T cells regulate development of functional antiviral brain-resident CD8 T cells (bTRM) and renders their maintenance refractory to systemic CD8 T cell depletion. Acquired CD4 T cell deficiency, modeled by delaying systemic CD4 T cell depletion until MuPyV-specific CD8 T cells have infiltrated the brain, impacted the stability of CD8 bTRM, impaired their effector response to reinfection, and rendered their maintenance dependent on circulating CD8 T cells. This dependence of CD8 bTRM differentiation on CD4 T cells was found to extend to encephalitis caused by vesicular stomatitis virus. Together, these findings reveal an intimate association between CD4 T cells and homeostasis of functional bTRM to CNS viral infection.
Collapse
|
14
|
Buschow SI, Biesta PJ, Groothuismink ZMA, Erler NS, Vanwolleghem T, Ho E, Najera I, Ait-Goughoulte M, de Knegt RJ, Boonstra A, Woltman AM. TLR7 polymorphism, sex and chronic HBV infection influence plasmacytoid DC maturation by TLR7 ligands. Antiviral Res 2018; 157:27-37. [PMID: 29964062 DOI: 10.1016/j.antiviral.2018.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
TLR7 agonists are of high interest for the treatment of cancer, auto-immunity and chronic viral infections. They are known to activate plasmacytoid dendritic cells (pDCs) to produce high amounts of Type I Interferon (IFN) and to facilitate T and B cell responses, the latter with the help of maturation markers such as CD40, CD80 and CD86. The TLR7 single nucleotide polymorphism (SNP) rs179008 (GLn11Leu), sex and chronic viral infection have all been reported to influence pDC IFN production. It is unknown, however, whether these factors also influence pDC phenotypic maturation and thereby IFN-independent pDC functions. Furthermore, it is unclear whether SNP rs179008 influences HBV susceptibility and/or clearance. Here we investigated whether the SNP rs179008, sex and HBV infection affected phenotypic maturation of pDCs from 38 healthy individuals and 28 chronic HBV patients. In addition, we assessed SNP prevalence in a large cohort of healthy individuals (n = 231) and chronic HBV patients (n = 1054). Consistent with previous reports, the rs179008 variant allele was largely absent in Asians and more prevalent in Caucasians. Among Caucasians, the SNP was equally prevalent in healthy and chronically infected males. The SNP was, however, significantly more prevalent in healthy females than in those with chronic HBV infection (42 versus 28%), suggesting that in females it may offer protection from chronic infection. Ex vivo experiments demonstrated that induction of the co-stimulatory molecules CD40 and CD86 by TLR7 ligands, but not TLR9 ligands, was augmented in pDCs from healthy SNP-carrying females. Furthermore, CD80 and CD86 upregulation was more pronounced in females independent of the SNP. Lastly, our data suggested that chronic HBV infection impairs pDC maturation. These findings provide insight into factors determining TLR7 responses, which is important for further clinical development of TLR7-based therapies.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Paula J Biesta
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Nicole S Erler
- Department of Biostatistics, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands; Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Erwin Ho
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Najera
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| | - Malika Ait-Goughoulte
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Jacqueline C, Bonnefoy N, Charrière GM, Thomas F, Roche B. Personal history of infections and immunotherapy: Unexpected links and possible therapeutic opportunities. Oncoimmunology 2018; 7:e1466019. [PMID: 30221066 PMCID: PMC6136881 DOI: 10.1080/2162402x.2018.1466019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023] Open
Abstract
The recent breakthroughs in the understanding of tumor immune biology have given rise to a new generation of immunotherapies, harnessing the immune system to eliminate tumors. As the typology and frequency of encountered infections are susceptible to shape the immune system, it could also impact the efficiency of immunotherapy. In this review, we report evidences for an indirect link between personal history of infection and different strategies of immunotherapy. In the current context of interest rise for personalized medicine, we discuss the potential medical applications of considering personal history of infection to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, INSERM, Université de Montpellier, ICM, F-34298, Montpellier, France
| | - Guillaume M. Charrière
- IHPE, UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, 34095, France
| | - Frédéric Thomas
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Benjamin Roche
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- UMMISCO, IRD/ Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
16
|
Buchan SL, Fallatah M, Thirdborough SM, Taraban VY, Rogel A, Thomas LJ, Penfold CA, He LZ, Curran MA, Keler T, Al-Shamkhani A. PD-1 Blockade and CD27 Stimulation Activate Distinct Transcriptional Programs That Synergize for CD8 + T-Cell-Driven Antitumor Immunity. Clin Cancer Res 2018; 24:2383-2394. [PMID: 29514845 PMCID: PMC5959006 DOI: 10.1158/1078-0432.ccr-17-3057] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/23/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
Purpose: PD-1 checkpoint blockade has revolutionized the field of cancer immunotherapy, yet the frequency of responding patients is limited by inadequate T-cell priming secondary to a paucity of activatory dendritic cells (DC). DC signals can be bypassed by CD27 agonists, and we therefore investigated if the effectiveness of anti-PD-1/L1 could be improved by combining with agonist anti-CD27 monoclonal antibodies (mAb).Experimental Design: The efficacy of PD-1/L1 blockade or agonist anti-CD27 mAb was compared with a dual-therapy approach in multiple tumor models. Global transcriptional profiling and flow cytometry analysis were used to delineate mechanisms underpinning the observed synergy.Results: PD-1/PD-L1 blockade and agonist anti-CD27 mAb synergize for increased CD8+ T-cell expansion and effector function, exemplified by enhanced IFNγ, TNFα, granzyme B, and T-bet. Transcriptome analysis of CD8+ T cells revealed that combination therapy triggered a convergent program largely driven by IL2 and Myc. However, division of labor was also apparent such that anti-PD-1/L1 activates a cytotoxicity-gene expression program whereas anti-CD27 preferentially augments proliferation. In tumor models, either dependent on endogenous CD8+ T cells or adoptive transfer of transgenic T cells, anti-CD27 mAb synergized with PD-1/L1 blockade for antitumor immunity. Finally, we show that a clinically relevant anti-human CD27 mAb, varlilumab, similarly synergizes with PD-L1 blockade for protection against lymphoma in human-CD27 transgenic mice.Conclusions: Our findings suggest that suboptimal T-cell invigoration in cancer patients undergoing treatment with PD-1 checkpoint blockers will be improved by dual PD-1 blockade and CD27 agonism and provide mechanistic insight into how these approaches cooperate for CD8+ T-cell activation. Clin Cancer Res; 24(10); 2383-94. ©2018 AACR.
Collapse
Affiliation(s)
- Sarah L Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mohannad Fallatah
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Vadim Y Taraban
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Christine A Penfold
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Li-Zhen He
- Celldex Therapeutics Inc., Hampton, New Jersey
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tibor Keler
- Celldex Therapeutics Inc., Hampton, New Jersey
| | - Aymen Al-Shamkhani
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
17
|
Bathke B, Pätzold J, Kassub R, Giessel R, Lämmermann K, Hinterberger M, Brinkmann K, Chaplin P, Suter M, Hochrein H, Lauterbach H. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice. Immunology 2018; 154:285-297. [PMID: 29281850 PMCID: PMC5980220 DOI: 10.1111/imm.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022] Open
Abstract
The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic® (MVA-BN® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN® backbone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Suter
- Vetsuisse Fakultät, Dekanat, Bereich Immunologie, Universität Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Front Immunol 2017; 8:1597. [PMID: 29255458 PMCID: PMC5723106 DOI: 10.3389/fimmu.2017.01597] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
PD-1-PD-L1 interaction is known to drive T cell dysfunction, which can be blocked by anti-PD-1/PD-L1 antibodies. However, studies have also shown that the function of the PD-1-PD-L1 axis is affected by the complex immunologic regulation network, and some CD8+ T cells can enter an irreversible dysfunctional state that cannot be rescued by PD-1/PD-L1 blockade. In most advanced cancers, except Hodgkin lymphoma (which has high PD-L1/L2 expression) and melanoma (which has high tumor mutational burden), the objective response rate with anti-PD-1/PD-L1 monotherapy is only ~20%, and immune-related toxicities and hyperprogression can occur in a small subset of patients during PD-1/PD-L1 blockade therapy. The lack of efficacy in up to 80% of patients was not necessarily associated with negative PD-1 and PD-L1 expression, suggesting that the roles of PD-1/PD-L1 in immune suppression and the mechanisms of action of antibodies remain to be better defined. In addition, important immune regulatory mechanisms within or outside of the PD-1/PD-L1 network need to be discovered and targeted to increase the response rate and to reduce the toxicities of immune checkpoint blockade therapies. This paper reviews the major functional and clinical studies of PD-1/PD-L1, including those with discrepancies in the pathologic and biomarker role of PD-1 and PD-L1 and the effectiveness of PD-1/PD-L1 blockade. The goal is to improve understanding of the efficacy of PD-1/PD-L1 blockade immunotherapy, as well as enhance the development of therapeutic strategies to overcome the resistance mechanisms and unleash the antitumor immune response to combat cancer.
Collapse
Affiliation(s)
- Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianyong Li
- Department of Hematology, JiangSu Province Hospital, The First Affiliated Hospital of NanJing Medical University, NanJing, JiangSu Province, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Science, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
|
20
|
Ma Z, Liu J, Wu W, Zhang E, Zhang X, Li Q, Zelinskyy G, Buer J, Dittmer U, Kirschning CJ, Lu M. The IL-1R/TLR signaling pathway is essential for efficient CD8 + T-cell responses against hepatitis B virus in the hydrodynamic injection mouse model. Cell Mol Immunol 2017; 14:997-1008. [PMID: 28757610 PMCID: PMC5719144 DOI: 10.1038/cmi.2017.43] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/13/2017] [Accepted: 05/13/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hepatitis B viral (HBV) infection is determined by the complex interactions between replicating HBV and the immune system. While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively, the contribution of innate immune mechanisms remains to be defined. Here we examined the role of the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model. Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice (WT) and a panel of mouse strains lacking specific innate immunity component expression. We found higher levels of HBV protein production and replication in Tlr2−/−, Tlr23479−/−, 3d/Tlr24−/−, Myd88/Trif−/− and Irak4−/− mice, which was associated with reduced HBV-specific CD8+ T-cell responses in these mice. Importantly, HBV clearance was delayed for more than 2 weeks in 3d/Tlr24−/−, Myd88/Trif−/− and Irak4−/− mice compared to WT mice. HBV-specific CD8+ T-cell responses were functionally impaired for producing the cytokines IFN-γ, TNF-α and IL-2 in TLR signaling-deficient mice compared to WT mice. In conclusion, the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Zhiyong Ma
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jia Liu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Weimin Wu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Ejuan Zhang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Qian Li
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Carsten J Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
21
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
22
|
Durlanik S, Loyal L, Stark R, Sercan Alp Ö, Hartung A, Radbruch A, von Herrath M, Matzmohr N, Frentsch M, Thiel A. CD40L expression by CD4 + but not CD8 + T cells regulates antiviral immune responses in acute LCMV infection in mice. Eur J Immunol 2016; 46:2566-2573. [PMID: 27562840 DOI: 10.1002/eji.201646420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/29/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022]
Abstract
CD40-CD40 ligand (CD40L) signaling plays multiple indispensable roles in cellular and humoral immunity. Impaired memory T-cell responses in the absence of CD40L have been well documented, but the requirement of this interaction for efficient priming of CD8+ T cells especially under inflammatory conditions has been under debate. In contrast to previous publications, we report here that virus-specific CD8+ T-cell responses as well as viral clearance are affected not only in the memory but also in the effector phase in CD40L-/- mice infected with lymphocytic choriomeningitis virus (LCMV) Armstrong strain. Interestingly, a considerable part of the LCMV-specific effector and memory T cells consists of CD40L+ CD8+ T cells. However, deficiency of CD40L in CD8+ T cells did influence neither the quantity nor the quality of primary T-cell responses in LCMV infection. Virus-specific CD8+ T cells in conditional knockout mice, with a selective deletion of the CD40L in CD8+ T cells, were fully functional regarding cytokine production and efficient pathogen clearance. Thus, our results unambiguously demonstrate that while CD40L is critical to generate effective primary CD8+ T-cell responses also under inflammatory conditions, CD40L expression by CD8+ T cells themselves is dispensable in acute LCMV infection.
Collapse
Affiliation(s)
- Sibel Durlanik
- Regenerative Immunology and Aging, Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Cellular Biology, German Rheumatism Research Center (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Lucie Loyal
- Regenerative Immunology and Aging, Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regina Stark
- Regenerative Immunology and Aging, Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Özen Sercan Alp
- Cellular Biology, German Rheumatism Research Center (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Anett Hartung
- Regenerative Immunology and Aging, Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- Cellular Biology, German Rheumatism Research Center (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Matthias von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Novo Nordisk Diabetes Research and Development Center, Seattle, WA, USA
| | - Nadine Matzmohr
- Regenerative Immunology and Aging, Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Unit 303, Efficacy and Safety Assessment of Veterinary Drugs, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Marco Frentsch
- Regenerative Immunology and Aging, Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Demethylation of the PD-1 Promoter Is Imprinted during the Effector Phase of CD8 T Cell Exhaustion. J Virol 2016; 90:8934-46. [PMID: 27466420 DOI: 10.1128/jvi.00798-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED PD-1 is an inhibitory receptor that has a major role in T cell dysfunction during chronic infections and cancer. While demethylation of the PD-1 promoter DNA is observed in exhausted T cells isolated from chronically infected individuals, little is known about when this stable demethylation of PD-1 promoter DNA is programmed during the course of a chronic infection. To assess if PD-1 promoter DNA demethylation is impacted by prolonged stimulation during effector phase of chronic infection, we adoptively transferred virus-specific day 8 effector CD8 T cells from mice infected with lymphocytic choriomeningitis virus (LCMV) clone 13 into recipient mice that had cleared an acute infection. We observed that LCMV-specific CD8 T cells from chronically infected mice maintained their surface expression of PD-1 even after transfer into acute immune mice until day 45 posttransfer. Interestingly, the PD-1 transcriptional regulatory region continued to remain unmethylated in these donor CD8 T cells generated from a chronic infection. The observed maintenance of PD-1 surface expression and the demethylated PD-1 promoter were not a result of residual antigen in the recipient mice, because similar results were seen when chronic infection-induced effector cells were transferred into mice infected with a variant strain of LCMV (LCMV V35A) bearing a mutation in the cognate major histocompatibility complex class I (MHC-I) epitope that is recognized by the donor CD8 T cells. Importantly, the maintenance of PD-1 promoter demethylation in memory CD8 T cells was coupled with impaired clonal expansion and higher PD-1 re-expression upon secondary challenge. These data show that the imprinting of the epigenetic program of the inhibitory receptor PD-1 occurs during the effector phase of chronic viral infection. IMPORTANCE Since PD-1 is a major inhibitory receptor regulating T cell dysfunction during chronic viral infection and cancers, a better understanding of the mechanisms that regulate PD-1 expression is important. In this work, we demonstrate that the PD-1 epigenetic program in antigen-specific CD8 T cells is fixed during the priming phase of chronic infection.
Collapse
|
24
|
Ligocki AJ, Brown JR, Niederkorn JY. Role of interferon-γ and cytotoxic T lymphocytes in intraocular tumor rejection. J Leukoc Biol 2015; 99:735-47. [PMID: 26578649 DOI: 10.1189/jlb.3a0315-093rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
The eye is normally an immunosuppressive environment. This condition is better known as immune privilege and protects the eye from immune-mediated inflammation of tissues that cannot regenerate. However, immune privilege creates a dilemma for the eye when intraocular neoplasms arise. In some cases, immune privilege is suspended, resulting in the immune rejection of intraocular tumors. This study employed a mouse model in which interferon-γ-dependent intraocular tumor rejection occurs. We tested the hypothesis that this rejection requires interferon-γ for the generation and functional capacity of cytotoxic T lymphocyte-mediated rejection of intraocular tumors. Tumors grew progressively in the eyes of interferon-γ knockout mice, even though the mice generated tumor-specific cytotoxic T lymphocyte responses in the periphery. However, interferon-γ knockout mice rejected tumors that were introduced into extraocular sites. Subcutaneous tumor immunization before intraocular challenge led to tumor rejection and preservation of the eye in wild-type mice. By contrast, tumors grew progressively in the eyes of interferon-γ knockout mice despite their ability to generate peripheral tumor-specific cytotoxic T lymphocytes as well as the capacity of CD8(+) T cells to enter the eye as shown by the presence of CD8 and perforin message and CD3(+)CD8(+) leukocytes within the tumor-bearing eye. We found that cytotoxic T lymphocytes generated in wild-type mice and adoptively transferred into interferon-γ knockout mice mediated the rejection of intraocular tumors in interferon-γ knockout hosts. The results indicate that interferon-γ is critical for the initial priming and differentiation of cytotoxic T lymphocytes residing in the periphery to produce the most effect antitumor function within the eye.
Collapse
Affiliation(s)
- Ann J Ligocki
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph R Brown
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, Sivakumaran S, Ghorashian S, Carpenter B, Bennett C, Freeman GJ, Sykes M, Croft M, Al-Shamkhani A, Chakraverty R. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:125-133. [PMID: 25404365 PMCID: PMC4272895 DOI: 10.4049/jimmunol.1401644] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exhaustion of chronically stimulated CD8(+) T cells is a significant obstacle to immune control of chronic infections or tumors. Although coinhibitory checkpoint blockade with anti-programmed death ligand 1 (PD-L1) Ab can restore functions to exhausted T cell populations, recovery is often incomplete and dependent upon the pool size of a quiescent T-bet(high) subset that expresses lower levels of PD-1. In a model in which unhelped, HY-specific CD8(+) T cells gradually lose function following transfer to male bone marrow transplantation recipients, we have explored the effect of shifting the balance away from coinhibition and toward costimulation by combining anti-PD-L1 with agonistic Abs to the TNFR superfamily members, OX40 and CD27. Several weeks following T cell transfer, both agonistic Abs, but especially anti-CD27, demonstrated synergy with anti-PD-L1 by enhancing CD8(+) T cell proliferation and effector cytokine generation. Anti-CD27 and anti-PD-L1 synergized by downregulating the expression of multiple quiescence-related genes concomitant with a reduced frequency of T-bet(high) cells within the exhausted population. However, in the presence of persistent Ag, the CD8(+) T cell response was not sustained and the overall size of the effector cytokine-producing pool eventually contracted to levels below that of controls. Thus, CD27-mediated costimulation can synergize with coinhibitory checkpoint blockade to switch off molecular programs for quiescence in exhausted T cell populations, but at the expense of losing precursor cells required to maintain a response.
Collapse
Affiliation(s)
- Sarah Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton
| | - Teresa Manzo
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Barry Flutter
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton
| | - Noha Edwards
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Lei Zhang
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Shivajanani Sivakumaran
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Sara Ghorashian
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Ben Carpenter
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Clare Bennett
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York
| | | | | | - Ronjon Chakraverty
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| |
Collapse
|
26
|
Hu Z, Molloy MJ, Usherwood EJ. CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose. Cell Mol Immunol 2014; 13:82-93. [PMID: 25544501 DOI: 10.1038/cmi.2014.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 11/09/2022] Open
Abstract
CD4(+) T-cell help (CD4 help) plays a pivotal role in CD8(+) T-cell responses against viral infections. However, the role in primary CD8(+) T-cell responses remains controversial. We evaluated the effects of infection route and viral dose on primary CD8(+) T-cell responses to vaccinia virus (VACV) in MHC class II(-/-) mice. CD4 help deficiency diminished the generation of VACV-specific CD8(+) T cells after intraperitoneal (i.p.) but not after intranasal (i.n.) infection. A large viral dose could not restore normal expansion of VACV-specific CD8(+) T cells in i.p. infected MHC II(-/-) mice. In contrast, dependence on CD4 help was observed in i.n. infected MHC II(-/-) mice when a small viral dose was used. These data suggested that primary CD8(+) T-cell responses are less dependent on CD4 help in i.n. infection compared to i.p. infection. Activated CD8(+) T cells produced more IFN-γ, TNF-α and granzyme B in i.n. infected mice than those in i.p. infected mice, regardless of CD4 help. IL-2 signaling via CD25 was not necessary to drive expansion of VACV-specific CD8(+) T cells in i.n. infection, but it was crucial in i.p. infection. VACV-specific CD8(+) T cells underwent increased apoptosis in the absence of CD4 help, but proliferated normally and had cytotoxic potential, regardless of infection route. Our results indicate that route of infection and viral dose are two determinants for CD4 help dependence, and intranasal infection induces more potent effector CD8(+) T cells than i.p. infection.
Collapse
|
27
|
CD4+ T cell help is dispensable for protective CD8+ T cell memory against mousepox virus following vaccinia virus immunization. J Virol 2014; 89:776-83. [PMID: 25355885 DOI: 10.1128/jvi.02176-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED It has been shown in various infection models that CD4(+) T cell help (TH) is necessary for the conditioning, maintenance, and/or recall responses of memory CD8(+) T cells (CD8M). Yet, in the case of vaccinia virus (VACV), which constitutes the vaccine used to eradicate smallpox and is a candidate vector for other infectious diseases, the issue is controversial because different groups have shown either T(H) dependence or independence of CD8M conditioning, maintenance, and/or recall response. In agreement with some of these groups, we show that T(H) plays a role in, but is not essential for, the maintenance, proliferation, and effector differentiation of polyclonal memory CD8(+) T cells after infection with wild-type VACV strain Western Reserve. More important, we show that unhelped and helped anti-VACV memory CD8(+) T cells are similarly efficient at protecting susceptible mice from lethal mousepox, the mouse equivalent of human smallpox. Thus, T(H) is not essential for the conditioning and maintenance of memory CD8(+) T cells capable of mounting a recall response strong enough to protect from a lethal natural pathogen. Our results may partly explain why the VACV vaccine is so effective. IMPORTANCE We used vaccinia virus (VACV)--a gold standard vaccine--as the immunogen and ectromelia virus (ECTV) as the pathogen to demonstrate that the conditioning and maintenance of anti-VACV memory CD8(+) T cells and their ability to protect against an orthopoxvirus (OPV) infection in its natural host can develop in the absence of CD4(+) T cell help. Our results provide important insight to our basic knowledge of the immune system. Further, because VACV is used as a vaccine in humans, our results may help us understand how this vaccine induces protective immunity in this species. In addition, this work may partly explain why VACV is so effective as a vaccine.
Collapse
|
28
|
Zickovich JM, Meyer SI, Yagita H, Obar JJ. Agonistic anti-CD40 enhances the CD8+ T cell response during vesicular stomatitis virus infection. PLoS One 2014; 9:e106060. [PMID: 25166494 PMCID: PMC4148391 DOI: 10.1371/journal.pone.0106060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/31/2014] [Indexed: 02/07/2023] Open
Abstract
Intracellular pathogens are capable of inducing vigorous CD8+ T cell responses. However, we do not entirely understand the factors driving the generation of large pools of highly protective memory CD8+ T cells. Here, we studied the generation of endogenous ovalbumin-specific memory CD8+ T cells following infection with recombinant vesicular stomatitis virus (VSV) and Listeria monocytogenes (LM). VSV infection resulted in the generation of a large ovalbumin-specific memory CD8+ T cell population, which provided minimal protective immunity that waned with time. In contrast, the CD8+ T cell population of LM-ova provided protective immunity and remained stable with time. Agonistic CD40 stimulation during CD8+ T cell priming in response to VSV infection enabled the resultant memory CD8+ T cell population to provide strong protective immunity against secondary infection. Enhanced protective immunity by agonistic anti-CD40 was dependent on CD70. Agonistic anti-CD40 not only enhanced the size of the resultant memory CD8+ T cell population, but enhanced their polyfunctionality and sensitivity to antigen. Our data suggest that immunomodulation of CD40 signaling may be a key adjuvant to enhance CD8+ T cell response during development of VSV vaccine strategies.
Collapse
Affiliation(s)
- Julianne M. Zickovich
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Susan I. Meyer
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Hideo Yagita
- Department of Immunology, Juntendo University, School of Medicine, Toyko, Japan
| | - Joshua J. Obar
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shaw PJ, Weidinger C, Vaeth M, Luethy K, Kaech SM, Feske S. CD4⁺ and CD8⁺ T cell-dependent antiviral immunity requires STIM1 and STIM2. J Clin Invest 2014; 124:4549-63. [PMID: 25157823 DOI: 10.1172/jci76602] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/10/2014] [Indexed: 02/03/2023] Open
Abstract
Calcium signaling is critical for lymphocyte function, and intracellular Ca2+ concentrations are regulated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels. In patients, loss-of-function mutations in CRAC channel components ORAI1 and STIM1 abolish SOCE and are associated with recurrent and chronic viral infections. Here, using mice with conditional deletion of Stim1 and its homolog Stim2 in T cells, we determined that both components are required for the maintenance of virus-specific memory CD8+ T cells and recall responses following secondary infection. In the absence of STIM1 and STIM2, acute viral infections became chronic. Early during infection, STIM1 and STIM2 were required for the differentiation of naive CD8+ T cells into fully functional cytolytic effector cells and mediated the production of cytokines and prevented cellular exhaustion in viral-specific CD8+ effector T cells. Importantly, memory and recall responses by CD8+ T cells required expression of STIM1 and STIM2 in CD4+ T cells. CD4+ T cells lacking STIM1 and STIM2 were unable to provide "help" to CD8+ T cells due to aberrant regulation of CD40L expression. Together, our data indicate that STIM1, STIM2, and CRAC channel function play distinct but synergistic roles in CD4+ and CD8+ T cells during antiviral immunity.
Collapse
|
30
|
Monjazeb AM, Tietze JK, Grossenbacher SK, Hsiao HH, Zamora AE, Mirsoian A, Koehn B, Blazar BR, Weiss JM, Wiltrout RH, Sckisel GD, Murphy WJ. Bystander activation and anti-tumor effects of CD8+ T cells following Interleukin-2 based immunotherapy is independent of CD4+ T cell help. PLoS One 2014; 9:e102709. [PMID: 25119341 PMCID: PMC4131875 DOI: 10.1371/journal.pone.0102709] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25−NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion.
Collapse
Affiliation(s)
- Arta M. Monjazeb
- Department of Radiation Oncology School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Julia K. Tietze
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Steven K. Grossenbacher
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Hui-Hua Hsiao
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Anthony E. Zamora
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Brent Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, Massachusetts, United States of America
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, Massachusetts, United States of America
| | - Jonathan M. Weiss
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Robert H. Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Gail D. Sckisel
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kim HL. Antibody-based depletion of Foxp3+ T cells potentiates antitumor immune memory stimulated by mTOR inhibition. Oncoimmunology 2014; 3:e29081. [PMID: 25083329 PMCID: PMC4108462 DOI: 10.4161/onci.29081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 11/19/2022] Open
Abstract
Inhibition of mTOR signaling enhances antitumor memory T lymphocytes while increasing the frequency of immunosuppressive regulatory T cells (Tregs). We report here a strategy to further improve immunologic memory by controlling CD4+ T cells with CD4-depleting monoclonal antibody therapy thereby improving CD8+ memory T cell quality and function. We report that removal of Tregs is the mechanism underlying immunological memory formation in response to this combination immunotherapy.
Collapse
Affiliation(s)
- Hyung L Kim
- Department of Surgery; Division of Urology; Cedars-Sinai Medical Center; Los Angeles, CA USA
| |
Collapse
|
32
|
Promotion of a subdominant CD8 T cell response during murine gammaherpesvirus 68 infection in the absence of CD4 T cell help. J Virol 2014; 88:7862-9. [PMID: 24789784 DOI: 10.1128/jvi.00690-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8 and CD4 T cells are each critically important for immune control of murine gammaherpesvirus 68 (γHV68) infection. In immunocompetent mice, acute γHV68 infection results in lifelong latency, but in the absence of CD4 T cell help, mice succumb to viral recrudescence and disease. However, the requirements for CD4 T cell help in the generation and maintenance of antiviral CD8 T cell responses are incompletely understood, and it is unclear whether there are epitope-specific differences in the requirement of CD8 T cells for CD4 help. In this report, we characterized the CD8 T cell response to γHV68 in major histocompatibility complex (MHC) class II(-/-) mice, which lack CD4 T cells, or after antibody-mediated depletion of CD4 T cells. All antiviral CD8 T cells exhibited marked upregulation of surface expression of the inhibitory receptor programmed death-1 (PD-1), but surprisingly, while the immunodominant memory response appeared to be functionally impaired, helpless CD8 T cells of a subdominant specificity had increased numbers and enhanced functionality. Thus, we demonstrate differential requirements for CD4 help in the antiviral CD8 T cell response to a latent gammaherpesvirus. Importance: γHV68 is a mouse pathogen closely related to the oncogenic human γHVs, which infect a majority of the world's population. Reactivation of these viruses from latency can lead to complications, disease, and even death. CD4 T cells are required for complete immune control of long-term infection, in part by providing key signals to dendritic cells that in turn instruct optimal antiviral CD8 T cell responses. We have investigated multiple virus-specific CD8 T cell responses during infection and identified a subdominant CD8 T cell response that is numerically and functionally enhanced in the absence of CD4 T cell help. This occurs in spite of high surface expression of an inhibitory receptor and in contrast to the immunodominant response, which is impaired. Our data suggest that signals from CD4 T cells are important in maintaining the CD8 T cell hierarchy during γHV infections.
Collapse
|
33
|
Wang Y, Sparwasser T, Figlin R, Kim HL. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition. Cancer Res 2014; 74:2217-28. [PMID: 24574514 DOI: 10.1158/0008-5472.can-13-2928] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients.
Collapse
Affiliation(s)
- Yanping Wang
- Authors' Affiliations: Department of Surgery, Division of Urology; Department of Medicine, Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, California; and Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | | | | | | |
Collapse
|
34
|
Bhadra R, Cobb DA, Khan IA. CD40 signaling to the rescue: A CD8 exhaustion perspective in chronic infectious diseases. Crit Rev Immunol 2013; 33:361-78. [PMID: 23971530 DOI: 10.1615/critrevimmunol.2013007444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic infectious diseases such as HIV, HBV, and HCV, among others, cause severe morbidity and mortality globally. Progressive decline in CD8 functionality, survival, and proliferative potential-a phenomenon referred to as CD8 exhaustion-is believed to be responsible for poor pathogen control in chronic infectious diseases. While the role of negative inhibitory receptors such as PD-1 in augmenting CD8 exhaustion has been extensively studied, the role of positive costimulatory receptors remains poorly understood. In this review, we discuss how one such costimulatory pathway, CD40-CD40L, regulates CD8 dysfunction and rescue. While the significance of this pathway has been extensively investigated in models of autoimmunity, acute infectious diseases, and tumor models, the role played by CD40-CD40L in regulating CD8 exhaustion in chronic infectious diseases is just beginning to be understood. Considering that monotherapy with blocking antibodies targeting inhibitory PD-1-PD-L1 pathway is only partially effective at ameliorating CD8 exhaustion and that humanized CD40 agonist antibodies are currently available, a better understanding of the role of the CD40-CD40L pathway in chronic infectious diseases will pave the way for the development of more robust immunotherapeutic and prophylactic vaccination strategies.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
35
|
Church SE, Jensen SM, Antony PA, Restifo NP, Fox BA. Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells. Eur J Immunol 2013; 44:69-79. [PMID: 24114780 PMCID: PMC4283993 DOI: 10.1002/eji.201343718] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/31/2013] [Accepted: 09/23/2013] [Indexed: 01/25/2023]
Abstract
Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor-specific CD4(+) T cells enhance CD8(+) T-cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase-related protein 1-specific CD4(+) transgenic T cells-CD4(+) T cells and pmel-CD8(+) T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8(+) T cells with tumor-specific cytokine expression. When combined with CD4(+) T cells, transfer of total (naïve and effector) or effector CD8(+) T cells were highly effective, suggesting CD4(+) T cells can help mediate therapeutic effects by maintaining function of activated CD8(+) T cells. In addition, CD4(+) T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8(+) T cells recovered from mice treated with both CD8(+) and CD4(+) T cells had decreased expression of PD-1 and PD-1-blockade enhanced the therapeutic efficacy of pmel-CD8 alone, suggesting that CD4(+) T cells help reduce CD8(+) T-cell exhaustion. These data support combining immunotherapies that elicit both tumor-specific CD4(+) and CD8(+) T cells for treatment of patients with cancer.
Collapse
Affiliation(s)
- Sarah E Church
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
36
|
Harfuddin Z, Kwajah S, Chong Nyi Sim A, MacAry PA, Schwarz H. CD137L-stimulated dendritic cells are more potent than conventional dendritic cells at eliciting cytotoxic T-cell responses. Oncoimmunology 2013; 2:e26859. [PMID: 24482752 PMCID: PMC3897521 DOI: 10.4161/onci.26859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) are highly potent initiators of adaptive immune responses and, as such, represent promising tools for immunotherapeutic applications. Despite their potential, the current efficacy of DC-based immunotherapies is poor. CD137 ligand (CD137L) signaling has been used to derive a novel type of DCs from human peripheral blood monocytes, termed CD137L-DCs. Here, we report that CD137L-DCs induce more potent cytotoxic T-cell responses than classical DCs (cDCs). Furthermore, in exploring several DC maturation factors for their ability to enhance the potency of CD137L-DCs, we found the combination of interferon γ (IFNγ) and the mixed Toll-like receptor (TLR)7/8 agonist R848, to display the highest efficacy in potentiating the T-cell co-stimulatory activity of CD137L-DCs. Of particular importance, CD137L-DCs were found to be more efficient than cDCs in activating autologous T cells targeting the cytomegalovirus (CMV)-derived protein pp65. Specifically, CD137L-DC-stimulated T cells were found to secrete higher levels of IFNγ and killed 2-3 times more HLA-matched, pp65-pulsed target cells than T cells activated by cDCs. Finally, in addition to stimulating CD8+ T cells, CD137L-DCs efficiently activated CD4+ T cells. Taken together, these findings demonstrate the superior potency of CD137L-stimulated DCs in activating CMV-specific, autologous T cells, and encourage the further development of CD137L-DCs for antitumor immunotherapy.
Collapse
Affiliation(s)
- Zulkarnain Harfuddin
- Department of Physiology; National University of Singapore; Singapore
- Immunology Programme; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Shaqireen Kwajah
- Department of Physiology; National University of Singapore; Singapore
| | - Adrian Chong Nyi Sim
- Immunology Programme; National University of Singapore; Singapore
- Department of Microbiology; National University of Singapore; Singapore
| | - Paul Anthony MacAry
- Immunology Programme; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
- Department of Microbiology; National University of Singapore; Singapore
| | - Herbert Schwarz
- Department of Physiology; National University of Singapore; Singapore
- Immunology Programme; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
37
|
Umeshappa CS, Xie Y, Xu S, Nanjundappa RH, Freywald A, Deng Y, Ma H, Xiang J. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways. PLoS One 2013; 8:e64787. [PMID: 23785406 PMCID: PMC3681805 DOI: 10.1371/journal.pone.0064787] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
Involvement of CD4+ helper T (Th) cells is crucial for CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4+ Th’s signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2Kb/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.
Collapse
Affiliation(s)
| | - Yufeng Xie
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | - Shulin Xu
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | | | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jim Xiang
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
38
|
Wong M, La Cava A, Hahn BH. Blockade of programmed death-1 in young (New Zealand Black x New Zealand White)F1 mice promotes the suppressive capacity of CD4+ regulatory T cells protecting from lupus-like disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:5402-10. [PMID: 23636058 DOI: 10.4049/jimmunol.1202382] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Programmed death-1 (PD-1) usually acts as a negative signal for T cell activation, and its expression on CD8(+)Foxp3(+) T cells is required for their suppressive capacity. In this study, we show that PD-1 signaling is required for the maintenance of functional regulatory CD4(+)CD25(+)Foxp3(+) regulatory T cells (CD4(+) T(reg)) that can control autoimmunity in (New Zealand Black × New Zealand White)F1 lupus mice. PD-1 signaling induced resistance to apoptosis and prolonged the survival of CD4(+) T(reg). In vivo, the blockade of PD-1 with a neutralizing Ab reduced PD-1 expression on CD4(+) T(reg) (PD1(lo)CD4(+) T(reg)). PD1(lo)CD4(+) T(reg) had an increased ability to promote B cell apoptosis and to suppress CD4(+) Th as compared with CD4(+) T(reg) with elevated PD-1 expression (PD1(hi)CD4(+) T(reg)). When PD-1 expression on CD4(+) T(reg) was blocked in vitro, PD1(lo)CD4(+) T(reg) suppressed B cell production of IgG and anti-dsDNA Ab. Finally, in vitro studies showed that the suppressive capacity of CD4(+) T(reg) depended on PD-1 expression and that a fine-tuning of the expression of this molecule directly affected cell survival and immune suppression. These results indicate that PD-1 expression has multiple effects on different immune cells that directly contribute to a modulation of autoimmune responses.
Collapse
Affiliation(s)
- Maida Wong
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
39
|
CD154 and IL-2 signaling of CD4+ T cells play a critical role in multiple phases of CD8+ CTL responses following adenovirus vaccination. PLoS One 2012; 7:e47004. [PMID: 23071696 PMCID: PMC3465321 DOI: 10.1371/journal.pone.0047004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/10/2012] [Indexed: 01/22/2023] Open
Abstract
Adenoviral (AdV) vectors represent most commonly utilized viral vaccines in clinical studies. While the role of CD8+ cytotoxic T lymphocyte (CTL) responses in mediating AdV-induced protection is well understood, the involvement of CD4+ T cell-provided signals in the development of functional CD8+ CTL responses remain unclear. To explore CD4+ T helper signals required for AdVova-stimulated CTL responses, we established an adoptive transfer system by transferring CD4+ T cells derived from various knock out and transgenic mice into wild-type and/or CD4-deficient animals, followed by immunizing with recombinant ovalbumin (OVA)-expressing AdVova vector. Without CD4+ T help, both primary and memory CTL responses were greatly reduced in this model, and were associated with increased PD-1 expression. The provision of OVA-specific CD4+ T help in CD4+ T cell-deficient mice restored AdVova-induced primary CTL responses, and supported survival and recall responses of AdVova-stimulated memory CTLs. These effects were specifically mediated by CD4+ T cell-produced IL-2 and CD154 signals. Adoptive transfer of “helped” or “unhelped” effector and memory CTLs into naïve CD4+ T cell-deficient or -sufficient mice also revealed an additional role for polyclonal CD4+ T cell environment in the survival of AdVova-stimulated CTLs, partially explaining the extension of CTL contraction phase. Finally, during recall responses, CD4+ T cell environment, particularly involving memory CD4+ T cells, greatly enhanced expansion of memory CTLs. Collectively, our data strongly suggest a critical role for CD4+ T help in multiple phases of AdV-stimulated CTL responses, and could partially explain certain failures in AdV-based immunization trials targeting malignant tumors and chronic diseases that are often associated with compromised CD4+ T cell population and function.
Collapse
|
40
|
|
41
|
Odorizzi PM, Wherry EJ. Inhibitory receptors on lymphocytes: insights from infections. THE JOURNAL OF IMMUNOLOGY 2012; 188:2957-65. [PMID: 22442493 DOI: 10.4049/jimmunol.1100038] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Costimulatory and inhibitory receptors are critical regulators of adaptive immune cell function. These pathways regulate the initiation and termination of effective immune responses to infections while limiting autoimmunity and/or immunopathology. This review focuses on recent advances in our understanding of inhibitory receptor pathways and their roles in different diseases and/or infections, emphasizing potential clinical applications and important unanswered mechanistic questions. Although significant progress has been made in defining the influence of inhibitory receptors at the cellular level, relatively little is known about the underlying molecular pathways. We discuss our current understanding of the molecular mechanisms for key inhibitory receptor pathways, highlight major gaps in knowledge, and explore current and future clinical applications.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Microbiology, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
42
|
Dong H, Franklin NA, Roberts DJ, Yagita H, Glennie MJ, Bullock TNJ. CD27 stimulation promotes the frequency of IL-7 receptor-expressing memory precursors and prevents IL-12-mediated loss of CD8(+) T cell memory in the absence of CD4(+) T cell help. THE JOURNAL OF IMMUNOLOGY 2012; 188:3829-38. [PMID: 22422886 DOI: 10.4049/jimmunol.1103329] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fully functional CD8(+) T cell memory is highly dependent upon CD4(+) T cell support. CD4(+) T cells play a critical role in inducing the expression of CD70, the ligand for CD27, on dendritic cells. In this study, we demonstrate that CD27 stimulation during primary CD8(+) T cell responses regulates the ability to mount secondary CD8(+) T cell responses. CD27 stimulation during vaccinia and dendritic cell immunization controls the expression of the IL-7R (CD127), which has been shown to be necessary for memory CD8(+) T cell survival. Furthermore, CD27 stimulation during primary CD8(+) T cell responses to vaccinia virus restrained the late expression on memory precursor cells of cytokine receptors that support terminal differentiation. The formation of CD8(+) T cell memory precursors and secondary CD8(+) T cell responses was restored in the absence of CD27 costimulation when endogenous IL-12 was not available. Similarly, the lesion in CD8(+) T cell memory that occurs in the absence of CD4(+) T cells did not occur in mice lacking IL-12. These data indicate that CD4(+) T cell help and, by extension, CD27 stimulation support CD8(+) T cell memory by modulating the expression of cytokine receptors that influence the differentiation and survival of memory CD8(+) T cells.
Collapse
Affiliation(s)
- Han Dong
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
43
|
Hafalla JCR, Claser C, Couper KN, Grau GE, Renia L, de Souza JB, Riley EM. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology. PLoS Pathog 2012; 8:e1002504. [PMID: 22319445 PMCID: PMC3271068 DOI: 10.1371/journal.ppat.1002504] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022] Open
Abstract
The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8+ T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8+ T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites. T cells are part of the body's defense system in response to infection. However, once the infection has been suitably controlled, these T cells must be switched off. Inhibitory pathways, such as CTLA-4 and PD-1, are known to send the ‘turn off’ signal to T cells during chronic infections. However, their roles in acute infections, such as malaria, are unclear. We compared the function of these inhibitory pathways in mice that are either susceptible or resistant to severe malarial disease (cerebral malaria). Strikingly, we found that receptors for CTLA-4 and PD-1 are more highly expressed in T cells from susceptible mice than from resistant mice. Therefore, cerebral malaria develops despite the high expression of these inhibitory receptors. Moreover, we demonstrated that blocking these inhibitory receptors in the resistant mice increased the function of T cells, which in turn led to the characteristic signs of cerebral malaria. Finally, reminiscent of what is known for the susceptible strain, we confirmed that certain T cells (CD8+) and molecules (IFN-γ) are crucial to the development of cerebral malaria in the otherwise resistant mice. Thus, the CTLA-4 and PD-1 inhibitory pathways have essential, independent and non-redundant roles in regulating the body's complex response to malaria.
Collapse
Affiliation(s)
- Julius Clemence R Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
44
|
Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4⁺ T cells in immunity to viruses. Nat Rev Immunol 2012; 12:136-48. [PMID: 22266691 PMCID: PMC3764486 DOI: 10.1038/nri3152] [Citation(s) in RCA: 669] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4+ T cells are orchestrators, regulators and direct effectors of antiviral immunity. Neutralizing antibodies provide protection against many viral pathogens, and CD4+ T cells can help B cells to generate stronger and longer-lived antibody responses. CD4+ T cells help antiviral CD8+ T cells in two main ways: they maximize CD8+ T cell population expansion during a primary immune response and also facilitate the generation of virus-specific memory CD8+ T cell populations. In addition to their helper functions, CD4+ T cells contribute directly to viral clearance. They secrete cytokines with antiviral activities and, in some circumstances, can eliminate infected cells through cytotoxic killing. Memory CD4+ T cells provide superior protection during re-infection with a virus. Compared with new effector CD4+ T cells, memory CD4+ T cells have enhanced helper and effector functions and can rapidly trigger innate immune defence mechanisms early in the infection.
Immunity to viruses is typically associated with the development of cytotoxic CD8+ T cells. However, CD4+ T cells are also important for protection during viral infection. Here, the authors describe the various ways in which different CD4+T cell subsets can contribute to the antiviral immune response. Viral pathogens often induce strong effector CD4+ T cell responses that are best known for their ability to help B cell and CD8+ T cell responses. However, recent studies have uncovered additional roles for CD4+ T cells, some of which are independent of other lymphocytes, and have described previously unappreciated functions for memory CD4+ T cells in immunity to viruses. Here, we review the full range of antiviral functions of CD4+ T cells, discussing the activities of these cells in helping other lymphocytes and in inducing innate immune responses, as well as their direct antiviral roles. We suggest that all of these functions of CD4+ T cells are integrated to provide highly effective immune protection against viral pathogens.
Collapse
Affiliation(s)
- Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue N, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
45
|
Chen Y, Wu S, Guo G, Fei L, Guo S, Yang C, Fu X, Wu Y. Programmed death (PD)-1-deficient mice are extremely sensitive to murine hepatitis virus strain-3 (MHV-3) infection. PLoS Pathog 2011; 7:e1001347. [PMID: 21750671 PMCID: PMC3131267 DOI: 10.1371/journal.ppat.1001347] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/03/2011] [Indexed: 12/15/2022] Open
Abstract
The inhibitory receptor programmed death-1 (PD-1) has the capacity to maintain peripheral tolerance and limit immunopathological damage; however, its precise role in fulminant viral hepatitis (FH) has yet to be described. Here, we investigated the functional mechanisms of PD-1 as related to FH pathogenesis induced by the murine hepatitis virus strain-3 (MHV-3). High levels of PD-1-positive CD4+, CD8+ T cells, NK cells and macrophages were observed in liver, spleen, lymph node and thymus tissues following MHV-3 infection. PD-1-deficient mice exhibited significantly higher expression of the effector molecule which initiates fibrinogen deposition, fibrinogen-like protein 2 (FGL2), than did their wild-type (WT) littermates. As a result, more severe tissue damage was produced and mortality rates were higher. Fluorescence double-staining revealed that FGL2 and PD-1 were not co-expressed on the same cells, while quantitative RT-PCR demonstrated that higher levels of IFN-γ and TNF-α mRNA transcription occurred in PD-1-deficient mice in response to MHV-3 infection. Conversely, in vivo blockade of IFN-γ and TNF-α led to efficient inhibition of FGL2 expression, greatly attenuated the development of tissue lesions, and ultimately reduced mortality. Thus, the up-regulation of FGL2 in PD-1-deficient mice was determined to be mediated by IFN-γ and TNF-α. Taken together, our results suggest that PD-1 signaling plays an essential role in decreasing the immunopathological damage induced by MHV-3 and that manipulation of this signal might be a useful strategy for FH immunotherapy. The principal characteristic of fulminant viral hepatitis (FH) induced by the murine hepatitis virus strain-3 (MHV-3) is severe hepatocellular necrosis, which is mediated by the fibrinogen-like protein 2 (FGL2), a molecule that has the capacity to promote fibrinogen deposition and activate the coagulation cascades. Here, we report that MHV-3 infection of program death-1 (PD-1)-deficient mice results in tissue damage throughout multiple organs, including the liver, spleen, thymus and lymph nodes. The liver damage, in particular, occurred earlier and was more severe in PD-1-deficient mice than in their wild type (WT) littermates. Further investigation determined that MHV-3 infection was associated with high levels of IFN-γ and TNF-α in the damaged organs of PD-1-deficient mice. Conversely, intraperitoneal injection of a combination of anti-IFN-γ and anti-TNF-α blocking mAbs led to inhibition of FGL2 expression, greatly attenuated tissue lesions and reduced mortality. Our results demonstrate that PD-1 signaling controls immunopathological damage following MHV-3 infection, indicating that manipulation of the PD-1 signal might represent a useful strategy for FH immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Disease Models, Animal
- Disease Progression
- Fibrinogen/metabolism
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/mortality
- Hepatitis, Viral, Animal/pathology
- Host-Pathogen Interactions
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Liver/metabolism
- Liver/pathology
- Liver/virology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Lymphoid Tissue/virology
- Mice
- Mice, Knockout
- Murine hepatitis virus/pathogenicity
- Murine hepatitis virus/physiology
- Programmed Cell Death 1 Receptor/physiology
- Signal Transduction
- Survival Rate
- Tissue Array Analysis
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
- * E-mail: (YC); (YW)
| | - Shengxi Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
- Department of Chemistry and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China
| | - Guoning Guo
- Department of Emergency, SouthWest Hospital, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Sheng Guo
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Chengying Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Xiaolan Fu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, P. R. China
- * E-mail: (YC); (YW)
| |
Collapse
|
46
|
Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8(+) T cells. J Immunother 2011; 33:769-79. [PMID: 20842060 DOI: 10.1097/cji.0b013e3181ee238f] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The immune response to the tumor can be enhanced by targeting costimulatory molecules on T cells. As the CD70-CD27 costimulatory axis plays an important role in the activation, survival, and differentiation of lymphocytes, we have examined the efficacy of agonistic anti-CD27 antibodies as monotherapies for established melanoma in a murine model. We show that this approach leads to a substantial reduction in the outgrowth of both experimental lung metastases and subcutaneous tumors. Anti-CD27 treatment supports the maintenance of tumor-specific CD8(+) T cells within the tumor, reduces the frequency of FoxP3-expressing CD4(+) T cells within tumors, and potentiates the ability of NK1.1(+) and CD8(+) tumor infiltrating cells to secrete IFNγ upon coculture with tumor cells. The enhanced effector function correlated with lower levels of PD-1 expression on CD8(+) T cells from anti-CD27-treated mice. Despite the modulating effect of anti-CD27 on multiple cell types, only CD8(+) T cells were absolutely required for tumor control. The CD4(+) T cells were dispensable, whereas NK1.1(+) cells were needed during early stages of tumor growth but not for the effectiveness of anti-CD27. Thus, CD27-mediated costimulation provides a potent boost to multiple aspects of the endogenous responses to tumor, and may be exploited to enhance tumor immunity.
Collapse
|
47
|
Allie SR, Zhang W, Fuse S, Usherwood EJ. Programmed death 1 regulates development of central memory CD8 T cells after acute viral infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:6280-6. [PMID: 21525385 DOI: 10.4049/jimmunol.1003870] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The T cell response possesses a number of inhibitory receptors to regulate the extent of the antiviral response and prevent immune pathology. These receptors are generally transiently upregulated during an effector response and then downregulated during memory. Some inhibitory receptors, such as programmed death 1 (PD-1) and LAG-3, were shown to be aberrantly upregulated during memory to chronic lymphocytic choriomeningitis virus infection, limiting functional capabilities. However, little is known about the impact of inhibitory receptors on memory development during a normal CD8 T cell response to acute virus infection. Our previous data showed that PD-1 is aberrantly upregulated during a secondary response by memory CD8 T cells that were generated without CD4 T cell help. Therefore, we examined the role of PD-1 in memory differentiation during acute vaccinia virus infection in intact mice. In the absence of PD-1, the primary and memory CD8 T cell responses were enhanced. Moreover, there were distinct phenotypic and functional changes in the memory PD-1(-/-) CD8 T cells. Higher levels of CD62L, CD27, and CCR7 were detected; cells produced more IL-2 and made an enhanced secondary response. These changes indicate a skewing of the memory population toward the central memory phenotype in the absence of PD-1 signaling.
Collapse
Affiliation(s)
- S Rameeza Allie
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
48
|
Niu L, Termini JM, Kanagavelu SK, Gupta S, Rolland MM, Kulkarni V, Pavlakis GN, Felber BK, Mullins JI, Fischl MA, Stone GW. Preclinical evaluation of HIV-1 therapeutic ex vivo dendritic cell vaccines expressing consensus Gag antigens and conserved Gag epitopes. Vaccine 2011; 29:2110-9. [PMID: 21241732 PMCID: PMC3046258 DOI: 10.1016/j.vaccine.2010.12.131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dendritic cell (DC) therapy is a promising technology for the treatment of HIV infected individuals. HIV-1 Gag- and Nef RNA-loaded DC have previously been shown to induce immune responses ex vivo following coculture with autologous lymphocytes. However, polyfunctionality and memory responses following coculture have not been evaluated. In addition, little is known regarding whether specific HIV-1 proteome components, such as highly conserved regions of the HIV-1, could enhance clinical responses following DC therapy. METHODOLOGY AND PRINCIPAL FINDINGS To determine the breadth of the immune responses to antigen loaded DC, we analyzed polyfunctional T cell response ex vivo to Gag RNA loaded DC. Blood samples were used to generate monocyte derived DC, which were then matured and cocultured with autologous lymphocytes. We found that cytokine-matured DC loaded with Gag RNA was able to induce Gag-specific IFN-γ and IL-2 responses after a 12-day coculture. We characterized these responses by polyfunctional intracellular cytokine staining and evaluation of T cell memory phenotypes. Central memory CD8+ T cells were induced ex vivo after DC coculture from each of 3 patients, and the effector memory pool was increased by DC coculture from 2 patients. We also observed a decrease in the terminal effector and intermediate CD8+ T cell pool and an increase in the naïve/other population. There was a reduction in terminal effector and intermediate CD4+ T cells, and a corresponding increase in naïve/other CD4+ T cells. Finally, we evaluated conserved regions of Gag as a novel DC therapy immunogen and found that a conserved element (CE) p24 Gag antigen elicited IFN-γ and IL-2 responses comparable to those induced by a full-length Gag antigen. CONCLUSIONS We showed that RNA-loaded DC therapy induced a polyfunctional T cell response ex vivo, supporting the use of such DC-therapy for HIV infection. However, the central and effector memory phenotypes of T cells did not appear to be enhanced during coculture with Gag RNA-loaded DC. Furthermore, comparable antigen-specific responses were induced in HIV infected individuals using full-length Gag or only conserved elements of the Gag p24 protein. This indicates that immune responses can be focused onto the conserved elements of Gag in the absence of other Gag components.
Collapse
Affiliation(s)
- Liguo Niu
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - James M. Termini
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Saravana K. Kanagavelu
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Sachin Gupta
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Morgane M. Rolland
- Department of Microbiology and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Viraj Kulkarni
- National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Barbara K. Felber
- National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - James I. Mullins
- Department of Microbiology and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Margaret A. Fischl
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
49
|
Obar JJ, Lefrançois L. Early events governing memory CD8+ T-cell differentiation. Int Immunol 2010; 22:619-25. [PMID: 20504887 PMCID: PMC2908475 DOI: 10.1093/intimm/dxq053] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/07/2010] [Indexed: 01/10/2023] Open
Abstract
Understanding the regulation of the CD8(+) T-cell response and how protective memory cells are generated has been intensely studied. It is now appreciated that a naive CD8(+) T cell requires at least three signals to mount an effective immune response: (i) TCR triggering, (ii) co-stimulation and (iii) inflammatory cytokines. Only recently have we begun to understand the molecular integration of those signals and how early events regulate the fate decisions of the responding CD8(+) T cells. This review will discuss the recent findings about both the extracellular and intracellular factors that regulate the destiny of responding CD8(+) T cells.
Collapse
Affiliation(s)
- Joshua J Obar
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1319, USA
| | | |
Collapse
|
50
|
Abstract
Cross-priming is an important mechanism to activate cytotoxic T lymphocytes (CTLs) for immune defence against viruses and tumours. Although it was discovered more than 25 years ago, we have only recently gained insight into the underlying cellular and molecular mechanisms, and we are just beginning to understand its physiological importance in health and disease. Here we summarize current concepts on the cross-talk between the immune cells involved in CTL cross-priming and on its role in antimicrobial and antitumour defence, as well as in immune-mediated diseases.
Collapse
|