1
|
Hadifar S, Masoudzadeh N, Heydari H, Mashayekhi Goyonlo V, Kerachian M, Daneshpazhooh M, Sadeghnia A, Tootoonchi N, Erfanian Salim R, Rafati S, Harandi AM. Intralesional gene expression profile of JAK-STAT signaling pathway and associated cytokines in Leishmania tropica-infected patients. Front Immunol 2024; 15:1436029. [PMID: 39364404 PMCID: PMC11446769 DOI: 10.3389/fimmu.2024.1436029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Background The JAK-STAT signaling pathway is a central cascade of signal transduction for the myriad of cytokines in which dysregulation has been implicated in progression of inflammatory and infectious diseases. However, the involvement of this pathway in human cutaneous leishmaniasis (CL) due to Leishmania (L.) tropica warrants further investigation. Methods This study sought to investigate differential gene expression of several cytokines and their associated jak-stat genes in the lesions of L. tropica-infected patients byquantitative Real-Time PCR. Further, the expression of five inhibitory immune checkpoint genes was evaluated. Results Results showed that the gene expression levelsof both Th1 (ifng, il12, il23) and Th2 (il4, il10) types cytokines were increased in the lesion of studied patients. Further, elevated expression levels of il35, il21, il27 and il24 genes were detected in the lesions of CL patients. Notably, the expression of the majority of genes involved in JAK/STAT signaling pathway as well as checkpoint genes including pdl1, ctla4 and their corresponding receptors was increased. Conclusion Our finding revealed dysregulation of cytokines and related jak-stat genes in the lesion of CL patients. These results highlight the need for further exploration of the functional importance of these genes in the pathogenesis of, and immunity to, CL.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Heydari
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohammadali Kerachian
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Aldridge DL, Moodley D, Park J, Phan AT, Rausch M, White KF, Ren Y, Golin K, Radaelli E, Kedl R, Holland PM, Hill J, Hunter CA. Endogenous IL-27 during toxoplasmosis limits early monocyte responses and their inflammatory activation by pathological T cells. mBio 2024; 15:e0008324. [PMID: 38376210 PMCID: PMC10936422 DOI: 10.1128/mbio.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Mice that lack the genes for IL-27, or the IL-27 receptor, and infected with Toxoplasma gondii develop T cell-mediated pathology. Here, studies were performed to determine the impact of endogenous IL-27 on the immune response to T. gondii in wild-type (WT) mice. Analysis of infected mice revealed the early production of IL-27p28 by a subset of Ly6Chi, inflammatory monocytes, and sustained IL-27p28 production at sites of acute and chronic infection. Administration of anti-IL-27p28 prior to infection resulted in an early (day 5) increase in levels of macrophage and granulocyte activation, as well as enhanced effector T cell responses, as measured by both cellularity, cytokine production, and transcriptional profiling. This enhanced acute response led to immune pathology, while blockade during the chronic phase of infection resulted in enhanced T cell responses but no systemic pathology. In the absence of IL-27, the enhanced monocyte responses observed at day 10 were a secondary consequence of activated CD4+ T cells. Thus, in WT mice, IL-27 has distinct suppressive effects that impact innate and adaptive immunity during different phases of this infection. IMPORTANCE The molecule IL-27 is critical in limiting the immune response to the parasite Toxoplasma gondii. In the absence of IL-27, a lethal, overactive immune response develops during infection. However, when exactly in the course of infection this molecule is needed was unclear. By selectively inhibiting IL-27 during this parasitic infection, we discovered that IL-27 was only needed during, but not prior to, infection. Additionally, IL-27 is only needed in the active areas in which the parasite is replicating. Finally, our work found that a previously unstudied cell type, monocytes, was regulated by IL-27, which contributes further to our understanding of the regulatory networks established by this molecule.
Collapse
Affiliation(s)
- Daniel L. Aldridge
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jeongho Park
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Kangwon National University College of Veterinary Medicine and Institute of Veterinary Science, Chuncheon, South Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, South Korea
| | - Anthony T. Phan
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Yue Ren
- Surface Oncology, Cambridge, Massachusetts, USA
| | - Karin Golin
- Surface Oncology, Cambridge, Massachusetts, USA
| | - Enrico Radaelli
- Comparative Pathology Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ross Kedl
- Surface Oncology, Cambridge, Massachusetts, USA
- University of Colorado, Anschuitz Medical Campus, Aurora, Colorado, USA
| | | | | | - Christopher A. Hunter
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Cox LS, Alvarez-Martinez M, Wu X, Gabryšová L, Luisier R, Briscoe J, Luscombe NM, O'Garra A. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res 2023; 8:403. [PMID: 38074197 PMCID: PMC10709690 DOI: 10.12688/wellcomeopenres.19680.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Background CD4 + Th1 cells producing IFN-γ are required to eradicate intracellular pathogens, however if uncontrolled these cells can cause immunopathology. The cytokine IL-10 is produced by multiple immune cells including Th1 cells during infection and regulates the immune response to minimise collateral host damage. In this study we aimed to elucidate the transcriptional network of genes controlling the expression of Il10 and proinflammatory cytokines, including Ifng in Th1 cells differentiated from mouse naive CD4 + T cells. Methods We applied computational analysis of gene regulation derived from temporal profiling of gene expression clusters obtained from bulk RNA sequencing (RNA-seq) of flow cytometry sorted naïve CD4 + T cells from mouse spleens differentiated in vitro into Th1 effector cells with IL-12 and IL-27 to produce Ifng and Il10, compared to IL-27 alone which express Il10 only , or IL-12 alone which express Ifng and no Il10, or medium control driven-CD4 + T cells which do not express effector cytokines . Data were integrated with analysis of active genomic regions from these T cells using an assay for transposase-accessible chromatin with sequencing (ATAC)-seq, integrated with literature derived-Chromatin-immunoprecipitation (ChIP)-seq data and the RNA-seq data, to elucidate the transcriptional network of genes controlling expression of Il10 and pro-inflammatory effector genes in Th1 cells. The co-dominant role for the transcription factors, Prdm1 (encoding Blimp-1) and Maf (encoding c-Maf) , in cytokine gene regulation in Th1 cells, was confirmed using T cells obtained from mice with T-cell specific deletion of these transcription factors. Results We show that the transcription factors Blimp-1 and c-Maf each have unique and common effects on cytokine gene regulation and not only co-operate to induce Il10 gene expression in IL-12 plus IL-27 differentiated mouse Th1 cells, but additionally directly negatively regulate key proinflammatory cytokines including Ifng, thus providing mechanisms for reinforcement of regulated Th1 cell responses. Conclusions These data show that Blimp-1 and c-Maf positively and negatively regulate a network of both unique and common anti-inflammatory and pro-inflammatory genes to reinforce a Th1 response in mice that will eradicate pathogens with minimum immunopathology.
Collapse
Affiliation(s)
- Luke S. Cox
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Marisol Alvarez-Martinez
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Xuemei Wu
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Leona Gabryšová
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Raphaëlle Luisier
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Nicholas M. Luscombe
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, England, UK
| |
Collapse
|
4
|
Mirzaei M, Sharifi I, Mohammad-Rafi F, Anjomshoa M, Abiri A, Moqaddari AH, Nooshadokht M, Raiesi O, Amirheidari B. Antileishmanial effects and drugability characteristics of a heterocyclic copper complex: An in silico, in vitro and molecular study. J Inorg Biochem 2023; 245:112245. [PMID: 37167732 DOI: 10.1016/j.jinorgbio.2023.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Leishmaniasis caused by the protozoan Leishmania presents a severe illness, principally in tropical and subtropical areas. Antileishmanial metal complexes, like Glucantime®️ with proven activity, are routinely studied to probe their potency. We investigated the effects of a Cu (II) homoleptic complex coordinated by two dimethyl-bipyridine ligands against Leishmania major stages in silico and in vitro. The affinity of this heterocyclic Cu (II) complex (CuDMBP) towards a parasitic metacaspase was studied by molecular docking. Key pharmacokinetic and pharmacodynamic properties of the complex were predicted using three web-based tools. CuDMBP was tested for in vitro antileishmanial activities using MTT assay, model murine macrophages, flow cytometry, and quantitative real-time polymerase chain reaction (qPCR). Molecular docking confirmed the tendency between the target macromolecule and the complex. ADMET evaluations highlighted CuDMBP's key pharmacological features, including P-glycoprotein-associated GI absorption and lack of trans-BBB permeability. MTT showed significant inhibitory effects against promastigotes. CuDMBP significantly increased the level of cellular IL-12 expression (p < 0.05), while the upregulation observed in the expression of iNOS was considered not significant (p > 0.05). It decreased the expression of IL-10 significantly (p < 0.05). Findings demonstrated that CuDMBP deserves to be introduced as a leishmanicidal candidate provided further studies are carried out.
Collapse
Affiliation(s)
- Mohammad Mirzaei
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farrokh Mohammad-Rafi
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzieh Anjomshoa
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Hossain Moqaddari
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Maryam Nooshadokht
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Bagher Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Jawale D, Khandibharad S, Singh S. Decoding systems immunological model of sphingolipids with IL-6/IL-17/IL-23 axes in L. major infection. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159261. [PMID: 36494028 DOI: 10.1016/j.bbalip.2022.159261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
IL-6, IL-17, IL-23 and IL-1β are the crucial cytokines controlling inflammatory and immune response during L. major infection. During cutaneous leishmaniasis, an important T helper cell type CD4+ Th17 subset plays a deterministic role in lesion formation through channelling infected macrophages and production of IL-1β, IL-6, IL-23 and IFN-γ. Ceramide derived sphingosine precursors may assist in pro-inflammatory cytokine response. However, the role of these metabolites in inflammation with pleiotropic pro-inflammatory cytokines in L. major infection is unknown. The present study indicates IL-6/IL-17/IL-23 and SPHK1-S1P-S1PRs signaling axes with the overexpression of SATB1 aiding in disease progression. Targeting SATB1 might modulate the secretion of pro-inflammatory cytokines and abnormal immune functioning, thereby killing the intracellular parasite. Systems immunological methods assisted in a step towards identifying the key to the mystery of crucial components and serving as an approach for therapeutic intervention in L. major infection.
Collapse
Affiliation(s)
- Diksha Jawale
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
6
|
de Menezes JPB, Brodskyn C, Gonçalves R, Bacellar O. Editorial: Immunology and immunopathogenesis of human leishmaniasis. Front Cell Infect Microbiol 2022; 12:1055221. [PMID: 36310861 PMCID: PMC9614420 DOI: 10.3389/fcimb.2022.1055221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Juliana P. B. de Menezes
- Laboratory of Parasite-Host Interaction and Epidemiology, Goncalo Moniz Institute, Salvador, Brazil
| | - Cláudia Brodskyn
- Laboratory of Parasite-Host Interaction and Epidemiology, Goncalo Moniz Institute, Salvador, Brazil
| | - Ricardo Gonçalves
- General Pathology Department, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Olivia Bacellar
- Servico de Imunologia, Complexo Hospitalar Universitario Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciencia e Tecnologia de Doencas Tropicais - INCT-DT Conselho Nacional de Pesquisa/Ministério de Ciências e Tecnologia (CNPq/MCT), Salvador, Brazil
- *Correspondence: Olivia Bacellar,
| |
Collapse
|
7
|
Gonçalves LO, Pulido AFV, Mathias FAS, Enes AES, Carvalho MGR, de Melo Resende D, Polak ME, Ruiz JC. Expression Profile of Genes Related to the Th17 Pathway in Macrophages Infected by Leishmania major and Leishmania amazonensis: The Use of Gene Regulatory Networks in Modeling This Pathway. Front Cell Infect Microbiol 2022; 12:826523. [PMID: 35774406 PMCID: PMC9239034 DOI: 10.3389/fcimb.2022.826523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmania amazonensis and Leishmania major are the causative agents of cutaneous and mucocutaneous diseases. The infections‘ outcome depends on host–parasite interactions and Th1/Th2 response, and in cutaneous form, regulation of Th17 cytokines has been reported to maintain inflammation in lesions. Despite that, the Th17 regulatory scenario remains unclear. With the aim to gain a better understanding of the transcription factors (TFs) and genes involved in Th17 induction, in this study, the role of inducing factors of the Th17 pathway in Leishmania–macrophage infection was addressed through computational modeling of gene regulatory networks (GRNs). The Th17 GRN modeling integrated experimentally validated data available in the literature and gene expression data from a time-series RNA-seq experiment (4, 24, 48, and 72 h post-infection). The generated model comprises a total of 10 TFs, 22 coding genes, and 16 cytokines related to the Th17 immune modulation. Addressing the Th17 induction in infected and uninfected macrophages, an increase of 2- to 3-fold in 4–24 h was observed in the former. However, there was a decrease in basal levels at 48–72 h for both groups. In order to evaluate the possible outcomes triggered by GRN component modulation in the Th17 pathway. The generated GRN models promoted an integrative and dynamic view of Leishmania–macrophage interaction over time that extends beyond the analysis of single-gene expression.
Collapse
Affiliation(s)
- Leilane Oliveira Gonçalves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Andrés F. Vallejo Pulido
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Alexandre Estevão Silvério Enes
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | | | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Marta E. Polak
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jeronimo C. Ruiz, ; Marta E. Polak,
| | - Jeronimo C. Ruiz
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
- *Correspondence: Jeronimo C. Ruiz, ; Marta E. Polak,
| |
Collapse
|
8
|
Li T, Hadigan C, Whitlock JM, Qin J, Kumar J, Kumar P, Catalfamo M. IL-27 Modulates the Cytokine Secretion in the T Cell-Osteoclast Crosstalk During HIV Infection. Front Immunol 2022; 13:818677. [PMID: 35479090 PMCID: PMC9037094 DOI: 10.3389/fimmu.2022.818677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
In People with HIV (PWH), chronic immune activation and systemic inflammation are associated with increased risk to develop comorbidities including bone loss. Numerous cells of the immune system, namely, T cells are involved in the regulation of the bone homeostasis and osteoclasts (OCs) activity. IL-27, a cytokine that belongs to the IL-12 family can regulate the secretion of pro- and anti-inflammatory cytokines by T cells, however its role in the setting of HIV is largely unknown. In the present study, we determined the impact of OCs in T cell secretion of cytokines and whether IL-27 can regulate this function. We found that the presence of OCs in the T cell cultures significantly enhanced secretion of IFNγ, TNFα, IL-17, RANKL, and IL-10 in both PWH and healthy controls. In PWH, IL-27 inhibited IL-17 secretion and downregulated surface expression of RANKL in CD4 T cells. All together these results suggest that in the context of HIV infection IL-27 may favor IFNγ and TNFα secretion at the sites of bone remodeling.
Collapse
Affiliation(s)
- Tong Li
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Colleen Hadigan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jarred M. Whitlock
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jing Qin
- Biostatistics Research Branch, Division of Clinical Research (DCR), National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jai Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC, United States
| | - Princy Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
9
|
Immune Responses in Leishmaniases: An Overview. Trop Med Infect Dis 2022; 7:tropicalmed7040054. [PMID: 35448829 PMCID: PMC9029249 DOI: 10.3390/tropicalmed7040054] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a parasitic, widespread, and neglected disease that affects more than 90 countries in the world. More than 20 Leishmania species cause different forms of leishmaniasis that range in severity from cutaneous lesions to systemic infection. The diversity of leishmaniasis forms is due to the species of parasite, vector, environmental and social factors, genetic background, nutritional status, as well as immunocompetence of the host. Here, we discuss the role of the immune system, its molecules, and responses in the establishment, development, and outcome of Leishmaniasis, focusing on innate immune cells and Leishmania major interactions.
Collapse
|
10
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
11
|
A Historic Review of the Role of CD4+ T-Cell Subsets in Development of the Immune Responses against Cutaneous and Visceral Leishmaniases. IRANIAN BIOMEDICAL JOURNAL 2022; 26:99-109. [PMID: 35090305 PMCID: PMC8987415 DOI: 10.52547/ibj.26.2.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterogeneity of CD4+ T cells has been investigated since the late 1970s, when their Th1 and Th2 subsets were coined. Later studies on the cutaneous form of the Leishmaniasis were focused on the experimental models of Leishmania major infection using the susceptible BALB/c and the resistant C57BL/6 mice. At the early 21st century, the regulatory T-cells subpopulation was introduced and its role in concomitant immunity, responsible for lifelong resistance of the host to the reinfection was proposed. Subsequent studies, mainly focused on the visceral form of the infection pointed to the role of IL-17, produced by Th17 subset of CD4+ T cells that along the neutrophils were shown to have important yet equivocal functions in protection against or exacerbation of the infection. Altogether, the current knowledge indicates that the above four subsets could orchestrate the immune, the regulatory and the inflammatory responses of the host against different forms of leishmaniases.
Collapse
|
12
|
Wan X, Zhang Y, Tang H, Li M, Jiang T, He J, Bao C, Wang J, Song Y, Xiao P, Liu Y, Lai L, Wang Q. IL‐27 signaling negatively regulates FcɛRI‐mediated mast cell activation and allergic response. J Leukoc Biol 2022; 112:411-424. [PMID: 35075687 DOI: 10.1002/jlb.2ma1221-637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaopeng Wan
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veternary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Huanna Tang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Mengyao Li
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Tianqi Jiang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Jia He
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Chunjing Bao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Junkai Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yinjing Song
- Department of Dermatology and Venereology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Peng Xiao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yang Liu
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Lihua Lai
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Qingqing Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
13
|
Rahimi Z, Yaghobi R, Afshari A, Roozbeh J, Mokhtari MJ, Hosseini AM. The effect of BKV reactivation on cytokines behavior in kidney transplanted patients. BMC Nephrol 2022; 23:20. [PMID: 34996392 PMCID: PMC8739991 DOI: 10.1186/s12882-021-02645-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND BK virus associated nephropathy (BKVAN) is one of the common causes of graft loss among kidney transplanted recipients (KTRs). The current treatment for BKV nephropathy is decreasing the immunosuppressive regimen in KTRs. Interleukin-27 (IL-27) is a multifunctional cytokine that might be the front-runner of an important pathway in this regard. Therefore, in current study it is tried to evaluate the changes in the expression level of IL-27 and some related molecules, resulting from BKV reactivation in KTR patients. METHODS EDTA-treated blood samples were collected from all participants. Patients were divided into two groups, 31 kidney transplant recipients with active and 32 inactive BKV infection, after being monitored by Real time PCR (Taq-Man) in plasma. Total of 30 normal individuals were considered as healthy control group. Real time PCR (SYBR Green) technique is used to determine the expression level of studied genes. RESULTS The results of gene expression comparisons showed that the expression level of IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 genes was significantly higher in inactive group in comparison to active group. The expression level of TLR4 was lower in both active and inactive groups in comparison to control group. ROC curve analysis showed that IL-27 and IRF7 are significantly different amongst other studied genes. Finally, the analyses revealed that the expression level of most of the studied genes (except for TNF-α and TLR4) have significant correlation with viral load. CONCLUSIONS Our findings revealed that IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 expression level is higher in inactive group and TLR4 expression level is lower in patients' groups in comparison to control group. Also, ROC curve analysis showed IL-27 and IRF7 can significantly differentiate studied groups (BKV active vs. inactive). Therefore, these results might help elucidating the pattern in charge of BKV reactivation in kidney transplanted patients.
Collapse
Affiliation(s)
- Zahra Rahimi
- Department of Biology, Zarghan branch, Islamic Azad University, Zarghan, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Malek Hosseini
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Thakur L, Madaan P, Jain A, Shankar V, Negi A, Chauhan SB, Sundar S, Singh OP, Jain M. An Insight Into Systemic Immune Response in Leishmania donovani Mediated Atypical Cutaneous Leishmaniasis in the New Endemic State of Himachal Pradesh, India. Front Immunol 2022; 12:765684. [PMID: 35087516 PMCID: PMC8787830 DOI: 10.3389/fimmu.2021.765684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Leishmaniasis continues to afflict known and newer endemic sites despite global efforts towards its control and elimination. In this regard, the emergence of newer endemic sites with unusual disease formats is recognized wherein Leishmania donovani complex classically known to cause visceral disease is demonstrated to cause cutaneous manifestation. In this context, atypical cutaneous leishmaniasis (CL) cases caused by L. donovani genetic variants from the newer endemic state of Himachal Pradesh (HP) in India are beginning to be understood in terms of parasite determinants. The atypical CL manifestation further needs to be explored to define host immune correlates with a possible role in driving the unusual disease progression. In the given study, we performed comprehensive systemic-immune profiling of the atypical CL patients from the study area in HP, India, in comparison with the classical visceral leishmaniasis (VL) patients from the northeast region of India. The systemic immune response was studied using ELISA-based assessment of Th1, Th2, Th17, Treg, and Th22 specific plasma cytokine expression pattern and parasite-specific total serum IgG/IgG subclasses. The specified immune correlates are known to exhibit heterogeneous association with the different infecting parasite species, infection load, and co-lateral host immunopathology in classical CL and VL. In the atypical CL patient group, altered expression of IL-10 emerged as the key finding that could potentially fine-tune the Th1/Th17/Th22 effector cytokine axis towards a localized cutaneous manifestation. A reduced expression of IL-10 along with a high IFN-γ/IL-10 ratio as a readout of effective parasite killing defined atypical cutaneous outcome. In contrast, high circulatory IL-10 levels and a depressed IFN-γ/IL-10 ratio were seen in classical VL patients in line with an ineffective parasite-killing cytokine response. Overall, the study highlights new knowledge on host immune correlates in terms of cytokine expression pattern and IgG subclasses that underline atypical disease manifestation such that L. donovani, a generally visceralizing parasite species cause skin localized cutaneous lesions.
Collapse
Affiliation(s)
- Lovlesh Thakur
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Priyanka Madaan
- Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Vinay Shankar
- Department of Dermatology, Maharishi Markandeshwar Medical College and Hospital, Kumarhatti, Solan, India
| | - Ajeet Negi
- Department of Dermatology, Indira Gandhi Medical College, Shimla, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, India
| |
Collapse
|
15
|
Lagatie O, Batsa Debrah L, Debrah AY, Stuyver LJ. Whole blood transcriptome analysis in onchocerciasis. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100100. [PMID: 36082138 PMCID: PMC9445278 DOI: 10.1016/j.crpvbd.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Identifying the molecular mechanisms controlling the host’s response to infection with Onchocerca volvulus is important to understand how the human host controls such parasitic infection. Little is known of the cellular immune response upon infection with O. volvulus. We performed a transcriptomic study using PAXgene-preserved whole blood from 30 nodule-positive individuals and 21 non-endemic controls. It was found that of the 45,042 transcripts that were mapped to the human genome, 544 were found to be upregulated and 447 to be downregulated in nodule-positive individuals (adjusted P-value < 0.05). Pathway analysis was performed on this set of differentially expressed genes, which demonstrated an impact on oxidative phosphorylation and protein translation. Upstream regulator analysis showed that the mTOR associated protein RICTOR appears to play an important role in inducing the transcriptional changes in infected individuals. Functional analysis of the genes affected by infection indicated a suppression of antibody response, Th17 immune response and proliferation of activated T lymphocytes. Multiple regression models were used to select 22 genes that could contribute significantly in the generation of a classifier to predict infection with O. volvulus. For these 22 genes, as well as for 8 reference target genes, validated RT-qPCR assays were developed and used to re-analyze the discovery sample set. These data were used to perform elastic net regularized logistic regression and a panel of 7 genes was found to be the best performing classifier. The resulting algorithm returns a value between 0 and 1, reflecting the predicted probability of being infected. A validation panel of 69 nodule-positive individuals and 5 non-endemic controls was used to validate the performance of this classifier. Based on this validation set only, a sensitivity of 94.2% and a specificity of 60.0% was obtained. When combining the discovery test set and validation set, a sensitivity of 96.0% and a specificity of 92.3% was obtained. Large-scale validation approaches will be necessary to define the intended use for this classifier. Besides the use as marker for infection in MDA efficacy surveys and epidemiological transmission studies, this classifier might also hold potential as pharmacodynamic marker in macrofilaricide clinical trials. Whole blood transcriptome analysis was performed in onchocerciasis patients. Suppression of antibodies, Th17, and proliferation of activated T cells. RICTOR plays an important role in inducing the transcriptional changes. A 7-gene expression classifier was built as a tool for onchocerciasis detection.
Collapse
Affiliation(s)
- Ole Lagatie
- Johnson & Johnson Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
- Corresponding author.
| | - Linda Batsa Debrah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Y. Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lieven J. Stuyver
- Johnson & Johnson Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
16
|
Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Commun Biol 2021; 4:929. [PMID: 34330999 PMCID: PMC8324786 DOI: 10.1038/s42003-021-02446-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023] Open
Abstract
Visceral Leishmaniasis (VL), a potentially fatal disease is caused by Leishmania donovani parasites with no vaccine available. Here we produced a dermotropic live attenuated centrin gene deleted Leishmania major (LmCen−/−) vaccine under Good Laboratory Practices and demonstrated that a single intradermal injection confers robust and durable protection against lethal VL transmitted naturally via bites of L. donovani-infected sand flies and prevents mortality. Surprisingly, immunogenicity characteristics of LmCen−/− parasites revealed activation of common immune pathways like L. major wild type parasites. Spleen cells from LmCen−/− immunized and L. donovani challenged hamsters produced significantly higher Th1-associated cytokines including IFN-γ, TNF-α, and reduced expression of the anti-inflammatory cytokines like IL-10, IL-21, compared to non-immunized challenged animals. PBMCs, isolated from healthy people from non-endemic region, upon LmCen−/− infection also induced more IFN-γ compared to IL-10, consistent with our immunogenicity data in LmCen−/− immunized hamsters. This study demonstrates that the LmCen−/− parasites are safe and efficacious against VL and is a strong candidate vaccine to be tested in a human clinical trial. Karmakar et al produced a dermotropic, live attenuated centrin gene-deleted Leishmania major (LmCen−/−) vaccine against Visceral Leishmaniasis (VL). They demonstrated in hamsters that a single intradermal injection confers robust and durable protection against lethal VL that is transmitted naturally via bites of L. donovani-infected sand flies.
Collapse
|
17
|
Zhang G, Chen H, Guo Y, Zhang W, Jiang Q, Zhang S, Han L, Chen S, Xue R. Activation of Platelet NLRP3 Inflammasome in Crohn's Disease. Front Pharmacol 2021; 12:705325. [PMID: 34262463 PMCID: PMC8273542 DOI: 10.3389/fphar.2021.705325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with Crohn’s disease (CD) are inclined to have platelet hyperactivity and an increased risk of intestinal micro-thrombosis. However, the mechanisms underlying platelet hyperactivity in CD are not well understood. We investigated the assembly of platelet NLRP3 inflammasome in patients with active CD and its correlation with platelet hyperactivity. In this study, Real-time PCR and western blotting analyses uncovered that ASC, NLRP3, and active caspase-1 were significantly upregulated in platelets from patients with active CD compared with healthy subjects. As revealed by flow cytometry (FCM) and ELISA analyses, the levels of interleukin-1β in both serum and isolated platelets were elevated in patients with active CD. Co-immunoprecipitation and immunofluorescence experiments revealed an increased assembly of NLRP3 inflammasome in platelets from patients with active CD. In addition, higher levels of intracellular reactive oxygen species (ROS) were observed in these platelets by FCM. Furthermore, elevated levels of platelet P-selectin exposure and fibrinogen binding were demonstrated in patients with active CD by FCM. They were positively correlated with the protein levels of NLRP3 inflammasome components. Collectively, our results indicate that the ROS-NLRP3 inflammasome-interleukin-1β axis may contribute to platelet hyperactivity in active CD.
Collapse
Affiliation(s)
- Ge Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - He Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Guo
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuyu Jiang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liping Han
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Bamorovat M, Sharifi I, Tavakoli Oliaee R, Jafarzadeh A, Khosravi A. Determinants of Unresponsiveness to Treatment in Cutaneous Leishmaniasis: A Focus on Anthroponotic Form Due to Leishmania tropica. Front Microbiol 2021; 12:638957. [PMID: 34140933 PMCID: PMC8203913 DOI: 10.3389/fmicb.2021.638957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a curable disease; however, due to various risk factors, unresponsiveness to CL treatments is inevitable. The treatment of CL has been firmly correlated with multiple determinants, such as demographical, clinical, and environmental factors, the host’s immune response, poor treatment adherence, the parasite’s genetic make-up, and Leishmania RNA virus. This study primarily focuses on the risk factors associated with different therapeutic outcomes following meglumine antimoniate (MA; Glucantime®) treatment and policy approaches to prevent unresponsiveness in CL patients with a focus on anthroponotic form (ACL). Findings suggest that effective preventive and therapeutic measures should be more vigorously implemented, particularly in endemic areas. Accordingly, extensive training is essential to monitor drug unresponsiveness regularly, especially in tropical regions where the disease is prevalent. Since humans are the fundamental reservoir host of ACL due to L. tropica, prompt detection, early diagnosis, and timely and effective treatment could help control this disease. Furthermore, major challenges and gaps remain: efficacious vaccine, new tools, and expert staff are crucial before CL can be definitively controlled.
Collapse
Affiliation(s)
- Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Zha X, Yang S, Niu W, Tan L, Xu Y, Zeng J, Tang Y, Sun L, Pang G, Qiao S, Zhang H, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-27/IL-27R Mediates Protective Immunity against Chlamydial Infection by Suppressing Excessive Th17 Responses and Reducing Neutrophil Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2160-2169. [PMID: 33863788 DOI: 10.4049/jimmunol.2000957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
IL-27, a heterodimeric cytokine of the IL-12 family, has diverse influences on the development of multiple inflammatory diseases. In this study, we identified the protective role of IL-27/IL-27R in host defense against Chlamydia muridarum respiratory infection and further investigated the immunological mechanism. Our results showed that IL-27 was involved in C. muridarum infection and that IL-27R knockout mice (WSX-1-/- mice) suffered more severe disease, with greater body weight loss, higher chlamydial loads, and more severe inflammatory reactions in the lungs than C57BL/6 wild-type mice. There were excessive IL-17-producing CD4+ T cells and many more neutrophils, neutrophil-related proteins, cytokines, and chemokines in the lungs of WSX-1-/- mice than in wild-type mice following C. muridarum infection. In addition, IL-17/IL-17A-blocking Ab treatment improved disease after C. muridarum infection in WSX-1-/- mice. Overall, we conclude that IL-27/IL-27R mediates protective immunity during chlamydial respiratory infection in mice by suppressing excessive Th17 responses and reducing neutrophil inflammation.
Collapse
Affiliation(s)
- Xiaoyu Zha
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Shuaini Yang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Wenhao Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Lu Tan
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yueyue Xu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Jiajia Zeng
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yingying Tang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Lida Sun
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Gaoju Pang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Sai Qiao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Hong Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Tengli Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Ningbo Zheng
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yongci Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Hong Bai
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| |
Collapse
|
20
|
Novais FO, Amorim CF, Scott P. Host-Directed Therapies for Cutaneous Leishmaniasis. Front Immunol 2021; 12:660183. [PMID: 33841444 PMCID: PMC8032888 DOI: 10.3389/fimmu.2021.660183] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous leishmaniasis exhibits a wide spectrum of clinical presentations from self-resolving infections to severe chronic disease. Anti-parasitic drugs are often ineffective in the most severe forms of the disease, and in some cases the magnitude of the disease can result from an uncontrolled inflammatory response rather than unrestrained parasite replication. In these patients, host-directed therapies offer a novel approach to improve clinical outcome. Importantly, there are many anti-inflammatory drugs with known safety and efficacy profiles that are currently used for other inflammatory diseases and are readily available to be used for leishmaniasis. However, since leishmaniasis consists of a wide range of clinical entities, mediated by a diverse group of leishmanial species, host-directed therapies will need to be tailored for specific types of leishmaniasis. There is now substantial evidence that host-directed therapies are likely to be beneficial beyond autoimmune diseases and cancer and thus should be an important component in the armamentarium to modulate the severity of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine 2021; 145:155458. [PMID: 33581983 DOI: 10.1016/j.cyto.2021.155458] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Jagneshwar Dandapat
- P.G. Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; Trident Academy of Creative Technology, Bhubaneswar 751024, India; Department of Allied Health Sciences, BLDE (Deemed University), Vijayapura 562135, India.
| |
Collapse
|
22
|
Murray HW. Targeting IL-27 and/or IL-10 in Experimental Murine Visceral Leishmaniasis. Am J Trop Med Hyg 2020; 103:1938-1941. [PMID: 32815498 DOI: 10.4269/ajtmh.20-0531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Interleukin-10 (IL-10) and interleukin-27 (IL-27) both exert counterregulatory immunodeactivation in visceral Leishmania donovani infection. We studied experimental L. donovani infection in the livers of IL-10-/- and IL-27Rα-/- mice and observed that in IL-27Rα-/-, but not IL-10-/- mice, interferon-gamma (IFN-γ) and tumor necrosis factor (TNF) were required for heightened granulomatous inflammation and accelerated control of intracellular parasite replication. This difference in mechanism, along with residual IL-10 activity in IL-27Rα-/- mice, suggested targeting IL-27 in addition to IL-10 in a macrophage-activating, anti-counterregulatory cytokine treatment strategy. In C57BL/6 wild-type mice with established liver infection, a single injection of anti-IL-27 p28 or anti-IL-10R monoclonal antibody enhanced granuloma assembly, enabled macrophage activation, and induced comparable parasite killing (49-56%). However, anti-IL-27 p28 plus anti-IL-10R combination treatment did not increase leishmanicidal effects. These results suggest that IL-27 and IL-10 may operate in a linked deactivating mechanism and that in this intracellular infection, either IL-27 or IL-10 is a suitable immunotherapeutic target.
Collapse
Affiliation(s)
- Henry W Murray
- Division of Infectious Diseases, Department of Medicine, Well Cornell Medical College, New York, New York
| |
Collapse
|
23
|
Montes de Oca M, de Labastida Rivera F, Winterford C, Frame TCM, Ng SS, Amante FH, Edwards CL, Bukali L, Wang Y, Uzonna JE, Kuns RD, Zhang P, Kabat A, Klein Geltink RI, Pearce EJ, Hill GR, Engwerda CR. IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathog 2020; 16:e1008994. [PMID: 33049000 PMCID: PMC7584222 DOI: 10.1371/journal.ppat.1008994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/23/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammation is critical for controlling pathogens, but also responsible for symptoms of infectious diseases. IL-27 is an important regulator of inflammation and can limit development of IFNγ-producing Tbet+ CD4+ T (Th1) cells. IL-27 is thought to do this by stimulating IL-10 production by CD4+ T cells, but the underlying mechanisms of these immunoregulatory pathways are not clear. Here we studied the role of IL-27 signalling in experimental visceral leishmaniasis (VL) caused by infection of C57BL/6 mice with the human pathogen Leishmania donovani. We found IL-27 signalling was critical for the development of IL-10-producing Th1 (Tr1) cells during infection. Furthermore, in the absence of IL-27 signalling, there was improved control of parasite growth, but accelerated splenic pathology characterised by the loss of marginal zone macrophages. Critically, we discovered that IL-27 signalling limited glycolysis in Th1 cells during infection that in turn attenuated inflammation. Furthermore, the modulation of glycolysis in the absence of IL-27 signalling restricted tissue pathology without compromising anti-parasitic immunity. Together, these findings identify a novel mechanism by which IL-27 mediates immune regulation during disease by regulating cellular metabolism. Infectious diseases like visceral leishmaniasis caused by the protozoan parasites Leishmania donovani and L. infantum are associated with an inflammatory response generated by the host. This is needed to control parasite growth, but also contributes to the symptoms of disease. Consequently, these inflammatory responses need to be tightly regulated. Although we now recognize many of the cells and molecules involved in controlling inflammation, the underlying mechanisms mediating immune regulation are unclear. CD4+ T cells are critical drivers of inflammatory responses during infections and as they progress from a naïve to activated state, the metabolic pathways they use have to change to meet the new energy demands required to proliferate and produce effector molecules. In this study, we discovered that the inflammatory CD4+ T cells needed to control L. donovani infection switch from relying on mitochondrial oxidative pathways to glycolysis. Critically, we found the cytokine IL-27 limited glycolysis in these inflammatory CD4+ T cells, and in the absence of IL-27 signaling pathways, these cells expanded more rapidly to better control parasite growth, but also caused increased tissue damage in the spleen. However, pharmacological dampening of glycolysis in inflammatory CD4+ T cells in L. donovani-infected mice lacking IL-27 signaling pathways limited tissue damage without affecting their improved anti-parasitic activity. Together, these results demonstrate that the pathogenic activity of inflammatory CD4+ T cells can be modulated by altering their cellular metabolism.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fabian de Labastida Rivera
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Clay Winterford
- QIMR Berghofer Histology Facility, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Teija C. M. Frame
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chelsea L. Edwards
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Luzia Bukali
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yulin Wang
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jude E. Uzonna
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachel D. Kuns
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ping Zhang
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Agnieszka Kabat
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Edward J. Pearce
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Washington, United States of America
| | - Christian R. Engwerda
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
24
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
25
|
Saha B, Bhattacharjee S, Sarkar A, Bhor R, Pai K, Bodhale N. Conundrums in leishmaniasis. Cytokine 2020; 145:155304. [PMID: 33004260 DOI: 10.1016/j.cyto.2020.155304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022]
Abstract
Parasites of the genus Leishmania cause the disease leishmaniasis. As the sandfly vector transfers the promastigotes into the skin of the human host, the infection is either cured or exacerbated. In the process, there emerge several unsolved paradoxes of leishmaniasis. Chronologically, as the infections starts in skin, the role of the salivary proteins in supporting the infection or the host response to these proteins influencing the induction of immunological memory becomes a conundrum. As the parasite invokes inflammation, the infiltrating neutrophils may act as "Trojan Horse" to transfer parasites to macrophages that, along with dendritic cells, carry the parasite to lymphoid organs to start visceralization. As the visceralized infection becomes chronic, the acutely enhanced monocytopoiesis takes a downturn while neutropenia and thrombocytopenia ensue with concomitant rise in splenic colony-forming-units. These responses are accompanied by splenic and hepatic granulomas, polyclonal activation of B cells and deviation of T cell responses. The granuloma formation is both a containment process and a form of immunopathogenesis. The heterogeneity in neutrophils and macrophages contribute to both cure and progression of the disease. The differentiation of T-helper subsets presents another paradox of visceral leishmaniasis, as the counteractive T cell subsets influence the curing or non-curing outcome. Once the parasites are killed by chemotherapy, in some patients the cured visceral disease recurs as a cutaneous manifestation post-kala azar dermal leishmaniasis (PKDL). As no experimental model exists, the natural history of PKDL remains almost a black box at the end of the visceral disease.
Collapse
Affiliation(s)
- Baibaswata Saha
- Centre of Advanced Study, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura Central University, Agartala, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneshwar, Odisha 751024, India
| | - Renuka Bhor
- Centre of Advanced Study, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Kalpana Pai
- Centre of Advanced Study, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Neelam Bodhale
- Jagadis Bose National Science Talent Search, 1300 Rajdanga Road, Kolkata 700107, India; National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
26
|
Mirzaei A, Maleki M, Masoumi E, Maspi N. A historical review of the role of cytokines involved in leishmaniasis. Cytokine 2020; 145:155297. [PMID: 32972825 DOI: 10.1016/j.cyto.2020.155297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is an infectious disease caused by the Leishmania genus, affecting millions of persons in the world. Despite increased studies, no vaccine has been developed against leishmaniasis, and drug resistance is evolving in some Leishmania species (spp). Innate and acquired immune cells and their associated cytokines interplay together to determine the immune responses related outcomes in leishmaniasis. Interferon (IFN)-γ or macrophage activating factor (MAF) is the first effective lymphokine (LK), with a related function to leishmaniasis, discovered in 1979. This review article discussed the history of cytokines involved in Leishmania infection, and it is the first report demonstrating the involvement in the disease by focusing on cutaneous leishmaniasis. Up to now, the role of many cytokines has been determined and the literature review showed that IL-35 is the latest known cytokine involved in leishmaniasis. This review revealed that the cytokines have pleiotropic effects, depending upon the cytokine environment, generated during the infection and the host genetic background or infecting Leishmania spp. Overall, advances in our knowledge of immune cells and their secreted cytokines, contributing to the protection or pathological process of leishmaniasis may help to reach new approaches for immunotherapy.
Collapse
Affiliation(s)
- Asad Mirzaei
- Department of Parasitology, School of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Maleki
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Elham Masoumi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nahid Maspi
- Department of Parasitology, School of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
27
|
Jafarzadeh A, Nemati M, Chauhan P, Patidar A, Sarkar A, Sharifi I, Saha B. Interleukin-27 Functional Duality Balances Leishmania Infectivity and Pathogenesis. Front Immunol 2020; 11:1573. [PMID: 32849534 PMCID: PMC7427467 DOI: 10.3389/fimmu.2020.01573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
IL-27 is a cytokine that exerts diverse effects on the cells of innate and adaptive immune systems. Chiefly expressed in macrophages and dendritic cells during the early phase of Leishmania infection, IL-27 contributes to the protection against L. major infection but suppresses the protective Th1 response against L. donovani, L. infantum, L. amazonensis and L. braziliensis infections, suggesting its functional duality. During the late stage of Leishmania infection, IL-27 limits the immunopathogenic reactions and tissue damages. Herein, we analyze the mechanism of the functional duality of IL-27 in the resistance or susceptibility to Leishmania infection, prompting IL-27 for anti-Leishmanial therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, India
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, India
- Trident Academy of Creative Technology, Bhubaneswar, India
| |
Collapse
|
28
|
Azizi M, Yousefi R, Yeganeh F, Mami S, Haji Molla Hoseini M. Co‐administration of chitin micro‐particle and
Leishmania
antigen proposed a new immune adjuvant against experimental leishmaniasis. Parasite Immunol 2019; 41:e12676. [DOI: 10.1111/pim.12676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Roya Yousefi
- Department of Immunology School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Farshid Yeganeh
- Department of Immunology School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sanaz Mami
- Department of Immunology School of Medicine Ilam University of Medical Sciences Ilam Iran
| | | |
Collapse
|
29
|
Gonçalves de Albuquerque SDC, da Costa Oliveira CN, Vaitkevicius-Antão V, Silva AC, Luna CF, de Lorena VMB, de Paiva-Cavalcanti M. Study of association of the rs2275913 IL-17A single nucleotide polymorphism and susceptibility to cutaneous leishmaniasis caused by Leishmania braziliensis. Cytokine 2019; 123:154784. [PMID: 31344596 DOI: 10.1016/j.cyto.2019.154784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous leishmaniasis (CL) caused by Leishmania braziliensis is the most spread clinical form of leishmaniasis in Brazil. However, only a few part of the people infected develop clinically perceptive disease, suggesting the influence of human genetic components in the CL pathogeny. The rs2275913 SNP is the nucleotide variant of the IL17A gene. The A allele is associated with a vast number of infectious and non-infectious diseases. Here, we investigated the association of the rs2275913 SNP (G/A) from IL-17A and two forms of susceptibility to CL in Brazil by case-control study. Furthermore, we evaluated the functional relevance of this SNP during the immune response of the host and analyzed its impact in the parasite elimination. Weak associations of A allele with susceptibility to L. braziliensis infection or to symptomatic CL were observed, and a tendency of A allele carriers to be more susceptible to infection and cutaneous disease. Functional analysis of the Th17 cell phenotypes revealed lower frequencies of CD4+ IL-17+ cells in samples of infected people with AA/AG genotypes. Furthermore, people carrying the A allele maintain higher parasite loads, reinforcing the genetic susceptibility findings. This study adds knowledge about the influence of a significant genetic variation on IL-17 promoter on CL pathogenesis, and may contribute to enhance the knowledge about the role of IL-17 in the L. braziliensis infections.
Collapse
Affiliation(s)
- Suênia da Cunha Gonçalves de Albuquerque
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil; Central Laboratory of Public Health Dr Milton Bezerra de Sobral, Rua João Fernandes Vieira S/N, 50050-215 Recife, Pernambuco, Brazil
| | - Cíntia Nascimento da Costa Oliveira
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Victor Vaitkevicius-Antão
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Ana Carla Silva
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Carlos Feitosa Luna
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Virgínia Maria Barros de Lorena
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Prof. Moraes Rego S/N, 50670-420 Recife, Pernambuco, Brazil.
| |
Collapse
|
30
|
Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK. Cytokines: Key Determinants of Resistance or Disease Progression in Visceral Leishmaniasis: Opportunities for Novel Diagnostics and Immunotherapy. Front Immunol 2019; 10:670. [PMID: 31024534 PMCID: PMC6459942 DOI: 10.3389/fimmu.2019.00670] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis is a parasitic disease of humans, highly prevalent in parts of the tropics, subtropics, and southern Europe. The disease mainly occurs in three different clinical forms namely cutaneous, mucocutaneous, and visceral leishmaniasis (VL). The VL affects several internal organs and is the deadliest form of the disease. Epidemiology and clinical manifestations of VL are variable based on the vector, parasite (e.g., species, strains, and antigen diversity), host (e.g., genetic background, nutrition, diversity in antigen presentation and immunity) and the environment (e.g., temperature, humidity, and hygiene). Chemotherapy of VL is limited to a few drugs which is expensive and associated with profound toxicity, and could become ineffective due to the parasites developing resistance. Till date, there are no licensed vaccines for humans against leishmaniasis. Recently, immunotherapy has become an attractive strategy as it is cost-effective, causes limited side-effects and do not suffer from the downside of pathogens developing resistance. Among various immunotherapeutic approaches, cytokines (produced by helper T-lymphocytes) based immunotherapy has received great attention especially for drug refractive cases of human VL. Therefore, a comprehensive knowledge on the molecular interactions of immune cells or components and on cytokines interplay in the host defense or pathogenesis is important to determine appropriate immunotherapies for leishmaniasis. Here, we summarized the current understanding of a wide-spectrum of cytokines and their interaction with immune cells that determine the clinical outcome of leishmaniasis. We have also highlighted opportunities for the development of novel diagnostics and intervention therapies for VL.
Collapse
Affiliation(s)
| | | | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Suresh K Kalangi
- Department of Biosciences, School of Sciences, Indrashil University, Mehsana, India
| |
Collapse
|
31
|
Kumar R, Ng S, Engwerda C. The Role of IL-10 in Malaria: A Double Edged Sword. Front Immunol 2019; 10:229. [PMID: 30809232 PMCID: PMC6379449 DOI: 10.3389/fimmu.2019.00229] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
IL-10 produced by CD4+ T cells suppresses inflammation by inhibiting T cell functions and the upstream activities of antigen presenting cells (APCs). IL-10 was first identified in Th2 cells, but has since been described in IFNγ-producing Tbet+ Th1, FoxP3+ CD4+ regulatory T (Treg) and IL-17-producing CD4+ T (Th17) cells, as well as many innate and innate-like immune cell populations. IL-10 production by Th1 cells has emerged as an important mechanism to dampen inflammation in the face of intractable infection, including in African children with malaria. However, although these type I regulatory T (Tr1) cells protect tissue from inflammation, they may also promote disease by suppressing Th1 cell-mediated immunity, thereby allowing infection to persist. IL-10 produced by other immune cells during malaria can also influence disease outcome, but the full impact of this IL-10 production is still unclear. Together, the actions of this potent anti-inflammatory cytokine along with other immunoregulatory mechanisms that emerge following Plasmodium infection represent a potential hurdle for the development of immunity against malaria, whether naturally acquired or vaccine-induced. Recent advances in understanding how IL-10 production is initiated and regulated have revealed new opportunities for manipulating IL-10 for therapeutic advantage. In this review, we will summarize our current knowledge about IL-10 production during malaria and discuss its impact on disease outcome. We will highlight recent advances in our understanding about how IL-10 production by specific immune cell subsets is regulated and consider how this knowledge may be used in drug delivery and vaccination strategies to help eliminate malaria.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India.,Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna Ng
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christian Engwerda
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its function in maintaining the delicate balance between effective immunity and tissue protection, it is evident that IL-10 expression is highly dynamic and needs to be tightly regulated. The transcriptional regulation of IL-10 production in myeloid cells and T cells is the topic of this review. Drivers of IL-10 expression as well as their downstream signaling pathways and transcription factors will be discussed. We will examine in more detail how various signals in CD4+ T cells converge on common transcriptional circuits, which fine-tune IL-10 expression in a context-dependent manner.
Collapse
|
33
|
DeLong JH, O'Hara Hall A, Rausch M, Moodley D, Perry J, Park J, Phan AT, Beiting DP, Kedl RM, Hill JA, Hunter CA. IL-27 and TCR Stimulation Promote T Cell Expression of Multiple Inhibitory Receptors. Immunohorizons 2019; 3:13-25. [PMID: 31356173 PMCID: PMC6994206 DOI: 10.4049/immunohorizons.1800083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Inhibitory receptors (IR) are a diverse group of cell surface molecules that modulate T cell activation, but there are gaps in our knowledge of the cell-extrinsic factors that regulate their expression. The present study found that in vivo overexpression of IL-27 in mice led to increased T cell expression of PD-L1, LAG-3, TIGIT, and TIM-3. In vitro, TCR stimulation alone promoted expression of multiple IRs, whereas IL-27 alone induced expression of PD-L1. However, the combination of intermediate TCR stimulation and IL-27 resulted in synergistic induction of LAG-3, CTLA-4, and TIGIT. In vivo, infection with Toxoplasma gondii resulted in parasite-specific effector T cells that expressed high levels of IR, and at local sites of infection where IL-27 production was highest, IL-27 was required for maximal effector cell expression of PD-L1, LAG-3, CTLA-4, and TIGIT. Together, these results affirm the critical role of TCR signals in the induction of IR expression but find that during infection, IL-27 promotes T cell expression of IR.
Collapse
Affiliation(s)
- Jonathan H DeLong
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aisling O'Hara Hall
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Discovery Research, Janssen Research and Development, LLC, Spring House, PA 19477
| | | | | | - Joseph Perry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeongho Park
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anthony T Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | | | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
34
|
Regulatory cytokine function in the respiratory tract. Mucosal Immunol 2019; 12:589-600. [PMID: 30874596 PMCID: PMC7051906 DOI: 10.1038/s41385-019-0158-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/04/2023]
Abstract
The respiratory tract is an important site of immune regulation; required to allow protective immunity against pathogens, while minimizing tissue damage and avoiding aberrant inflammatory responses to inhaled allergens. Several cell types work in concert to control pulmonary immune responses and maintain tolerance in the respiratory tract, including regulatory and effector T cells, airway and interstitial macrophages, dendritic cells and the airway epithelium. The cytokines transforming growth factor β, interleukin (IL-) 10, IL-27, and IL-35 are key coordinators of immune regulation in tissues such as the lung. Here, we discuss the role of these cytokines during respiratory infection and allergic airway disease, highlighting the critical importance of cellular source and immunological context for the effects of these cytokines in vivo.
Collapse
|
35
|
Kilgore AM, Welsh S, Cheney EE, Chitrakar A, Blain TJ, Kedl BJ, Hunter CA, Pennock ND, Kedl RM. IL-27p28 Production by XCR1 + Dendritic Cells and Monocytes Effectively Predicts Adjuvant-Elicited CD8 + T Cell Responses. Immunohorizons 2018; 2:1-11. [PMID: 29354801 PMCID: PMC5771264 DOI: 10.4049/immunohorizons.1700054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is well accepted that the innate response is a necessary prerequisite to the formation of the adaptive response. This is true for T cell responses against infections or adjuvanted subunit vaccination. However, specific innate parameters with predictive value for the magnitude of an adjuvant-elicited T cell response have yet to be identified. We previously reported how T cell responses induced by subunit vaccination were dependent on the cytokine IL-27. These findings were unexpected, given that T cell responses to an infection typically increase in the absence of IL-27. Using a novel IL-27p28-eGFP reporter mouse, we now show that the degree to which an adjuvant induces IL-27p28 production from dendritic cells and monocytes directly predicts the magnitude of the T cell response elicited. To our knowledge, these data are the first to identify a concrete innate correlate of vaccine-elicited cellular immunity, and they have significant practical and mechanistic implications for subunit vaccine biology.
Collapse
Affiliation(s)
- Augustus M Kilgore
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Seth Welsh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Elizabeth E Cheney
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Alisha Chitrakar
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Trevor J Blain
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Benjamin J Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| | - Chris A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nathan D Pennock
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Ross M Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver at Anschutz Medical Campus, Denver, CO 80045
| |
Collapse
|
36
|
Gonçalves-de-Albuquerque SDC, Pessoa-e-Silva R, Trajano-Silva LAM, de Goes TC, de Morais RCS, da C. Oliveira CN, de Lorena VMB, de Paiva-Cavalcanti M. The Equivocal Role of Th17 Cells and Neutrophils on Immunopathogenesis of Leishmaniasis. Front Immunol 2017; 8:1437. [PMID: 29163510 PMCID: PMC5670345 DOI: 10.3389/fimmu.2017.01437] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Advances in the understanding of leishmaniasis progression indicate that cellular interactions more complex than the Th1/Th2 paradigm define the course of infection. Th17 cells are a crucial modulator of adaptive immunity against Leishmania parasites acting mainly on neutrophil recruitment and playing a dual role at the site of infection. This review describes the roles of both these cell types in linking innate defense responses to the establishment of specific immunity. We focus on the Th17-neutrophil interaction as a crucial component of anti-Leishmania immunity, and the clinical evolution of cutaneous or visceral leishmaniasis. To date, information obtained through experimental models and patient evaluations suggests that the influence of the presence of interleukin (IL)-17 (the main cytokine produced by Th17 cells) and neutrophils during Leishmania infections is strictly dependent on the tissue (skin or liver/spleen) and parasite species. Also, the time at which neutrophils are recruited, and the persistence of IL-17 in the infection microenvironment, may also be significant. A clearer understanding of these interactions will enable better measurement of the influence of IL-17 and its regulators, and contribute to the identification of disease/resistance biomarkers.
Collapse
Affiliation(s)
| | - Rômulo Pessoa-e-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Lays A. M. Trajano-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Tayná Correia de Goes
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Rayana C. S. de Morais
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Cíntia N. da C. Oliveira
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Virgínia M. B. de Lorena
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
37
|
Wang Q, Ning H, Peng H, Wei L, Hou R, Hoft DF, Liu J. Tristetraprolin inhibits macrophage IL-27-induced activation of antitumour cytotoxic T cell responses. Nat Commun 2017; 8:867. [PMID: 29021521 PMCID: PMC5636828 DOI: 10.1038/s41467-017-00892-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/02/2017] [Indexed: 01/04/2023] Open
Abstract
IFN-γ-producing cytotoxic T lymphocytes are essential for host defense against viral infection and cancer. Here we show that the RNA-binding tristetraprolin, encoded by Zfp36, is needed for CD8+ T-cell production of IFN-γ in vivo. When activated in vitro, however, IFN-γ production by naive wild type and tristetraprolin-deficient CD8+ T-cells is comparable. IL-27 is overproduced by tristetraprolin-deficient macrophages and increased systemically in tristetraprolin-deficient mice. Tristetraprolin suppresses IL-27 production by promoting p28 mRNA degradation. Importantly, deletion of IL-27 receptor WSX-1 in tristetraprolin-deficient mice (WSX-1/tristetraprolin double knockout) leads to a reduction in cytotoxic T lymphocyte numbers. Moreover, tumor growth is accelerated, not only in tristetraprolin-deficient mice after cytotoxic T lymphocyte depletion, but also in WSX-1/tristetraprolin double knockout mice, with substantial reduction in the number of tumor cytotoxic T lymphocytes. This study describes a regulatory pathway for IL-27 expression and cytotoxic T lymphocyte function mediated by tristetraprolin, contributing to regulation of antitumour immunity. IL-27 is one of a number of cytokines that can induce antitumour CD8+ T cell responses. Here the authors show that TTP, encoded by Zfp36, degrades p28 to inhibit IL-27 production by macrophages and is thereby a negative regulator of the antitumour response.
Collapse
Affiliation(s)
- Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Hui Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Lin Wei
- Department of Immunology, School of Basic Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA.
| |
Collapse
|
38
|
Medina TS, Oliveira GG, Silva MC, David BA, Silva GK, Fonseca DM, Sesti-Costa R, Frade AF, Baron MA, Ianni B, Pereira AC, Chevillard C, Cunha-Neto E, Marin-Neto JA, Silva JS. Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-γ-Driven Inflammation. Front Immunol 2017; 8:1213. [PMID: 29033934 PMCID: PMC5626942 DOI: 10.3389/fimmu.2017.01213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively, we describe a novel regulatory mechanism where Ebi3 dampens cardiac inflammation by modulating the overproduction of IFN-γ, the bona fide culprit of Chagas disease cardiomyopathy.
Collapse
Affiliation(s)
- Tiago Silva Medina
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Cláudia Silva
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruna Araújo David
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Grace Kelly Silva
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Renata Sesti-Costa
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Farage Frade
- Medical School/Heart Institute, University of São Paulo, São Paulo, Brazil.,Department of Bioengineering, Brazil University, São Paulo, Brazil
| | | | - Barbara Ianni
- Medical School/Heart Institute, University of São Paulo, São Paulo, Brazil
| | | | | | - Edécio Cunha-Neto
- Medical School/Heart Institute, University of São Paulo, São Paulo, Brazil
| | | | - João Santana Silva
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
39
|
Moreira-Teixeira L, Redford PS, Stavropoulos E, Ghilardi N, Maynard CL, Weaver CT, Freitas do Rosário AP, Wu X, Langhorne J, O'Garra A. T Cell-Derived IL-10 Impairs Host Resistance to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:613-623. [PMID: 28584007 PMCID: PMC5502318 DOI: 10.4049/jimmunol.1601340] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis infection, is a leading cause of mortality and morbidity, causing ∼1.5 million deaths annually. CD4+ T cells and several cytokines, such as the Th1 cytokine IFN-γ, are critical in the control of this infection. Conversely, the immunosuppressive cytokine IL-10 has been shown to dampen Th1 cell responses to M. tuberculosis infection impairing bacterial clearance. However, the critical cellular source of IL-10 during M. tuberculosis infection is still unknown. Using IL-10 reporter mice, we show in this article that during the first 14 d of M. tuberculosis infection, the predominant cells expressing IL-10 in the lung were Ly6C+ monocytes. However, after day 21 postinfection, IL-10–expressing T cells were also highly represented. Notably, mice deficient in T cell–derived IL-10, but not mice deficient in monocyte-derived IL-10, showed a significant reduction in lung bacterial loads during chronic M. tuberculosis infection compared with fully IL-10–competent mice, indicating a major role for T cell–derived IL-10 in TB susceptibility. IL-10–expressing cells were detected among both CD4+ and CD8+ T cells, expressed high levels of CD44 and Tbet, and were able to coproduce IFN-γ and IL-10 upon ex vivo stimulation. Furthermore, during M. tuberculosis infection, Il10 expression in CD4+ T cells was partially regulated by both IL-27 and type I IFN signaling. Together, our data reveal that, despite the multiple immune sources of IL-10 during M. tuberculosis infection, activated effector T cells are the major source accounting for IL-10–induced TB susceptibility.
Collapse
Affiliation(s)
- Lúcia Moreira-Teixeira
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Paul S Redford
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Evangelos Stavropoulos
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Xuemei Wu
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jean Langhorne
- Malaria Immunology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; and
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom.,National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6NP, United Kingdom
| |
Collapse
|
40
|
Souza DM, Alves PM, Silva MLF, Paulino TP, Coraspe HO, Mendonça MMS, Ribeiro BM, da Silva MV, Rodrigues Júnior V, Rodrigues DBR. 5-ALA-mediated photodynamic therapy reduces the parasite load in mice infected withLeishmania braziliensis. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/17/2016] [Indexed: 11/30/2022]
Affiliation(s)
- D. M. Souza
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - P. M. Alves
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - M. L. F. Silva
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - T. P. Paulino
- Cefores - Centro de Educação Profissional; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - H. O. Coraspe
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - M. M. S. Mendonça
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - B. M. Ribeiro
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - M. V. da Silva
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - V. Rodrigues Júnior
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
| | - D. B. R. Rodrigues
- Immunology Laboratory; Department of Biological Sciences; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
- Cefores - Centro de Educação Profissional; Federal University of Triângulo Mineiro; Uberaba Minas Gerais Brazil
- Department of Immunology and Molecular Biology; University of Uberaba; Uberaba Minas Gerais Brazil
| |
Collapse
|
41
|
Yizengaw E, Getahun M, Tajebe F, Cruz Cervera E, Adem E, Mesfin G, Hailu A, Van der Auwera G, Yardley V, Lemma M, Skhedy Z, Diro E, Yeshanew A, Melkamu R, Mengesha B, Modolell M, Munder M, Müller I, Takele Y, Kropf P. Visceral Leishmaniasis Patients Display Altered Composition and Maturity of Neutrophils as well as Impaired Neutrophil Effector Functions. Front Immunol 2016; 7:517. [PMID: 27965662 PMCID: PMC5126105 DOI: 10.3389/fimmu.2016.00517] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Immunologically, active visceral leishmaniasis (VL) is characterized by profound immunosuppression, severe systemic inflammatory responses, and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication, and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis; however, their role in human VL is poorly understood. In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase, and elastase, all contained in neutrophils' granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analyzed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species, and phagocytose bacterial particles, but not Leishmania parasites. Our results suggest that impaired effector functions, increased activation, and immaturity of neutrophils play a key role in the pathogenesis of VL.
Collapse
Affiliation(s)
- Endalew Yizengaw
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | - Mulusew Getahun
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | | | | | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Getnet Mesfin
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University , Addis Ababa , Ethiopia
| | - Gert Van der Auwera
- Department of Biomedical Sciences, Institute of Tropical Medicine , Antwerp , Belgium
| | - Vanessa Yardley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Mulualem Lemma
- Department of Internal Medicine, University of Gondar , Gondar , Ethiopia
| | - Ziv Skhedy
- Department of Mathematics and Statistics, University of Hasselt , Hasselt , Belgium
| | - Ermias Diro
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Arega Yeshanew
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Roma Melkamu
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Bewketu Mengesha
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institute for Immunobiology and Epigenetics , Freiburg , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz , Mainz , Germany
| | - Ingrid Müller
- Department of Medicine, Imperial College London , London , UK
| | - Yegnasew Takele
- Department of Medicine, Imperial College London, London, UK; Leishmaniasis Research and Treatment Centre, Gondar University, Gondar, Ethiopia
| | - Pascale Kropf
- Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
42
|
Pérez-Cabezas B, Cecílio P, Robalo AL, Silvestre R, Carrillo E, Moreno J, San Martín JV, Vasconcellos R, Cordeiro-da-Silva A. Interleukin-27 Early Impacts Leishmania infantum Infection in Mice and Correlates with Active Visceral Disease in Humans. Front Immunol 2016; 7:478. [PMID: 27867384 PMCID: PMC5095612 DOI: 10.3389/fimmu.2016.00478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
The complexity of Leishmania–host interactions, one of the main leishmaniasis issues, is yet to be fully understood. We detected elevated IL-27 plasma levels in European patients with active visceral disease caused by Leishmania infantum, which returned to basal levels after successful treatment, suggesting this cytokine as a probable infection mediator. We further addressed this hypothesis recurring to two classical susceptible visceral leishmaniasis mouse models. BALB/c, but not C57BL/6 mice, showed increased IL-27 systemic levels after infection, which was associated with an upregulation of IL-27p28 expression by dendritic cells and higher parasite burdens. Neutralization of IL-27 in acutely infected BALB/c led to decreased parasite burdens and a transient increase in IFN-γ+ splenic T cells, while administration of IL-27 to C57BL/6 promoted a local anti-inflammatory cytokine response at the site of infection and increased parasite loads. Overall, we show that, as in humans, BALB/c IL-27 systemic levels are infection dependently upregulated and may favor parasite installation by controlling inflammation.
Collapse
Affiliation(s)
- Begoña Pérez-Cabezas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Cecílio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana Luisa Robalo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- ICVS - Instituto de Investigação em Ciências da Vida e Saúde, Escola de Ciências da Saúde, Universidade do Minho, Braga, Portugal; ICVS/3B's - Laboratório Associado, Braga, Portugal
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Madrid , Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Madrid , Spain
| | | | - Rita Vasconcellos
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense , Niterói , Brazil
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Faculdade de Farmácia, Departamento de Ciências Biológicas, Universidade do Porto, Porto, Portugal
| |
Collapse
|
43
|
Zijlstra EE. The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasit Vectors 2016; 9:464. [PMID: 27553063 PMCID: PMC4995613 DOI: 10.1186/s13071-016-1721-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/24/2016] [Indexed: 12/30/2022] Open
Abstract
Post-kala-azar dermal leishmaniasis (PKDL) is a common complication of visceral leishmaniasis (VL) caused by Leishmania donovani. Because of its possible role in transmission it is considered a public health problem in VL endemic areas. The clinical features include a skin rash consisting of macules, papules or nodules in an otherwise healthy individual; this presentation is determined by the immune response towards parasites in the skin that probably persisted from the previous VL episode. The immune response in VL, cured VL and PKDL is the result of changes in the cytokine profile that only in part can be captured under the Th1 and Th2 dichotomy. Regulatory T cells and Th 17 cells also play a role. VL is characterized by an absent immune response to Leishmania with a predominantly Th2 type of response with high levels of IL-10; after successful treatment the patient will be immune with in vitro features of a Th1 type of response and in vivo a positive leishmanin skin test. PKDL takes an intermediate position with a dissociation of the immune response between the skin and the viscera, with a Th2 and Th1 type of response, respectively. It is likely that immune responses determine the different epidemiological and clinical characteristics of PKDL in Asia and Africa; various risk factors for PKDL may influence this, such as incomplete and inadequate treatment of VL, parasite resistance and genetic factors. It should be noted that PKDL is a heterogeneous and dynamic condition and patients differ with regard to time of onset after visceral leishmaniasis (VL), chronicity, extent and appearance of the rash including related immune responses, all of which may vary over time. Better understanding of these immune responses may offer opportunities for manipulation including combined chemotherapy and immunotherapy for VL to prevent PKDL from occurring and similarly in the treatment of chronic or treatment resistant PKDL cases.
Collapse
Affiliation(s)
- Eduard E Zijlstra
- Rotterdam Centre for Tropical Medicine, Bovenstraat 21, 3077, BB, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Interleukin-27 (IL-27) Mediates Susceptibility to Visceral Leishmaniasis by Suppressing the IL-17-Neutrophil Response. Infect Immun 2016; 84:2289-2298. [PMID: 27245409 DOI: 10.1128/iai.00283-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/21/2016] [Indexed: 01/01/2023] Open
Abstract
The relationship established between Leishmania infantum and the vertebrate host can lead to a self-healing infection or to the manifestation of visceral leishmaniasis, a chronic systemic infection associated with high rates of mortality. We hypothesized that regulatory cytokines, such as interleukin-27 (IL-27), play a role in susceptibility to L. infantum infection. IL-27 is a heterodimeric cytokine composed of IL-27p28 and EBi3 subunits which, when combined, bind to IL-27R, leading to STAT-1 and -3 activation, playing a role in the regulation of the immune response. We observed in this work that IL-27 regulates the Th1/Th17 profiles in a mouse model of visceral leishmaniasis (VL) caused by L. infantum We showed here that the pathogen recognition by endosomal Toll-like receptors triggers a type I interferon (IFN) response, which acts through the type I IFN receptor and interferon regulatory factor 1 to induce IL-27 production by macrophages. Furthermore, IL-27 plays a major regulatory role in vivo, because Ebi3(-/-) mice can efficiently control parasite replication despite reduced levels of IFN-γ compared to wild-type mice. On the other hand, the absence of Ebi3 leads to exacerbated IL-17A production in the infected organs as well as in a coculture system, suggesting a direct regulatory action of IL-27 during L. infantum infection. As a consequence of exacerbated IL-17A in Ebi3(-/-) mice, a greater neutrophil influx was observed in the target organs, playing a role in parasite control. Thus, this work unveiled the molecular steps of IL-27 production after L. infantum infection and demonstrated its regulatory role in the IL-17A-neutrophil axis.
Collapse
|
45
|
Banerjee A, Bhattacharya P, Joshi AB, Ismail N, Dey R, Nakhasi HL. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines. Cell Immunol 2016; 309:37-41. [PMID: 27444130 DOI: 10.1016/j.cellimm.2016.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 02/01/2023]
Abstract
The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites.
Collapse
Affiliation(s)
- Antara Banerjee
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amritanshu B Joshi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
46
|
Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 2016; 9:277. [PMID: 27175732 PMCID: PMC4866332 DOI: 10.1186/s13071-016-1553-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Saumya Srivastava
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Prem Shankar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyotsna Mishra
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
47
|
Pennock ND, Kedl JD, Kedl RM. T Cell Vaccinology: Beyond the Reflection of Infectious Responses. Trends Immunol 2016; 37:170-180. [PMID: 26830540 PMCID: PMC4775298 DOI: 10.1016/j.it.2016.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/31/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Inducing sustained, robust CD8(+) T cell responses is necessary for therapeutic intervention in chronic infectious diseases and cancer. Unfortunately, most adjuvant formulations fail to induce substantial cellular immunity in humans. Attenuated acute infectious agents induce strong CD8(+) T cell immunity, and are thought to therefore represent a good road map for guiding the development of subunit vaccines capable of inducing the same. However, recent evidence suggests that this assumption may need reconsideration. Here we provide an overview of subunit vaccine history as it pertains to instigating T cell responses. We argue that in light of evidence demonstrating that T cell responses to vaccination differ from those induced by infectious challenge, research in pursuit of cellular immunity-inducing vaccine adjuvants should no longer follow only the infection paradigm.
Collapse
Affiliation(s)
- Nathan D Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Justin D Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO, USA.
| |
Collapse
|
48
|
Zhou LW, Ma N, Li Z, Feng BS. Role of interleukin-27 in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2016; 24:549-557. [DOI: 10.11569/wcjd.v24.i4.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), which is characterized by chronic or recurrent relapsing gastrointestinal inflammation, includes ulcerative colitis (UC) and Crohn's disease (CD). The pathogenesis of IBD remains obscure, however, abnormal immune responses are regarded as the major component of IBD pathogenesis. Interleukin-27 (IL-27) is a new member of the IL-12 family, and it is produced by activated antigen-presenting cells and plays an important role in the differentiation and function of different T cell subsets. IL-27 has various immunoregulatory functions and is implicated in the pathogenesis of many infectious and autoimmune diseases. Recent studies have showed that IL-27 is strongly associated with the genesis and development of IBD. Here we provide an overview of the role of IL-27 in the pathogenesis of IBD.
Collapse
|
49
|
Charmoy M, Hurrell BP, Romano A, Lee SH, Ribeiro-Gomes F, Riteau N, Mayer-Barber K, Tacchini-Cottier F, Sacks DL. The Nlrp3 inflammasome, IL-1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice. Eur J Immunol 2016; 46:897-911. [PMID: 26689285 DOI: 10.1002/eji.201546015] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 01/12/2023]
Abstract
Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1β mRNA and IL-1β-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1β or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1β might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1β by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1β, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.
Collapse
Affiliation(s)
- Melanie Charmoy
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin P Hurrell
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Flavia Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicolas Riteau
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katrin Mayer-Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Montes de Oca M, Kumar R, de Labastida Rivera F, Amante FH, Sheel M, Faleiro RJ, Bunn PT, Best SE, Beattie L, Ng SS, Edwards CL, Muller W, Cretney E, Nutt SL, Smyth MJ, Haque A, Hill GR, Sundar S, Kallies A, Engwerda CR. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathog 2016; 12:e1005398. [PMID: 26765224 PMCID: PMC4713066 DOI: 10.1371/journal.ppat.1005398] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation. Many parasitic diseases are associated with the generation of potent inflammatory responses. These are often needed to control infection, but can also cause tissue damage if not appropriately regulated. IL-10 has emerged as an important immune regulator that protects tissues by dampening inflammation. Recently, some T cells that initially produce inflammatory cytokines have been found to start producing IL-10 as a mechanism of auto-regulation. We identified an important transcriptional regulator called B lymphocyte-induced maturation protein 1 (Blimp-1), which promotes IL-10 production by IFNγ-producing CD4+ T (Tr1) cells during malaria and visceral leishmaniasis, two important diseases caused by protozoan parasites. We found that Tr1 cell-derived IL-10 suppressed anti-parasitic immunity, but played a critical role in preventing tissue damage caused by the potent pro-inflammatory cytokine TNF. Specifically, IL-10 protected macrophages from TNF-mediated destruction, and this enabled lymphocytes to continue to migrate to regions in the spleen where T and B cell responses are generated. These findings allow us to better understand how parasites persist in a host, but also identify new opportunities to control inflammation to prevent disease.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Netaji Subhas Institute of Technology, New Delhi, India
| | | | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rebecca J. Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, Institute of Glycomics, Gold Coast, Australia
| | - Shannon E. Best
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Werner Muller
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom
| | - Erika Cretney
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | - Mark J. Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Shyam Sundar
- Banaras Hindu University, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Axel Kallies
- Walter and Eliza Hall Medical Research Institute, Division of Molecular Immunology, Melbourne, Australia
- The University of Melbourne, Department of Medical Biology, Melbourne, Australia
| | | |
Collapse
|