1
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Sri-Ngern-Ngam K, Umthong S, Takano J, Koseki H, Palaga T. A polycomb group protein EED epigenetically regulates responses in lipopolysaccharide tolerized macrophages. Epigenetics Chromatin 2024; 17:36. [PMID: 39614386 DOI: 10.1186/s13072-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or "tolerance" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages. RESULT We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages. In Eed KO macrophages, significant reduction in H3K27me3 and increased active histone mark, H3K27ac, was observed. Eed KO macrophages exhibited dampened pro-inflammatory cytokine productions (TNF-α and IL-6) while increasing non-tolerizable genes upon LPS tolerance. Pharmacological inhibition of EED also reduced TNF-α and IL-6 during LPS tolerance. Mechanistically, LPS tolerized Eed KO macrophages failed to increase glycolytic activity. RNA-Seq analyses revealed that the hallmarks of hypoxia, TGF-β, and Wnt/β-catenin signaling were enriched in LPS tolerized Eed KO macrophages. Among the upregulated genes, the promoter of Runx3 was found to be associated with EED. Silencing Runx3 in Eed KO macrophages partially rescued the dampened pro-inflammatory response during LPS tolerance. Enrichment of H3K27me3 was decreased in a subset of genes that are upregulated in Eed KO LPS tolerized macrophages, indicating the direct regulatory roles of PRC2 on such genes. Motif enrichment analysis identified the ETS family transcription factor binding sites in the absence of EED in LPS tolerized macrophages. CONCLUSION Our results provided mechanistic insight into how the PRC2 via EED regulates LPS tolerance in macrophages by epigenetically silencing genes that play a crucial role during LPS tolerance such as those of the TGF-β/Runx3 axis.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittitach Sri-Ngern-Ngam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supawadee Umthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junichiro Takano
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Yin M, Kim J, Choi JI, Bom JS, Bae HB, Jeong S. AMPK reduces macrophage endotoxin tolerance through inhibition of TGF-β1 production and its signaling pathway. Int Immunopharmacol 2023; 118:110146. [PMID: 37037116 DOI: 10.1016/j.intimp.2023.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is involved in suppression of the development of endotoxin tolerance, which is a driver of the immunosuppression induced by sepsis. However, the mechanism by which AMPK inhibits the development of endotoxin tolerance has not been clearly elucidated. Therefore, the present study was performed to investigate the mechanism by which the AMPK activator, metformin, inhibits the development of endotoxin tolerance. Lipopolysaccharide (LPS) increased the production of transforming growth factor (TGF)-β1 in macrophages, which was inhibited by metformin and resveratrol. Knockdown of AMPKα1 inhibited the suppressive effect of metformin on LPS-induced TGF-β1 production. TGF-β neutralizing antibody and TGF-β type I receptor inhibitor increased the production of TNF-α and IL-6 via LPS restimulation in tolerized macrophages. LPS increased Smad2 phosphorylation, but this was inhibited in cells treated with TGF-β neutralizing antibody or metformin. Smad2 knockdown inhibited the development of endotoxin tolerance, as evidenced by increased TNF-α production in response to LPS restimulation in tolerized macrophages. TGF-β1 expression was increased, and the levels of TNF-α and IL-6 production induced by LPS stimulation were decreased, in splenocytes of cecal ligation and puncture (CLP) model mice compared to sham-operated controls. However, metformin treatment suppressed the production of TGF-β1, and enhanced the production of TNF-α and IL-6 induced by LPS stimulation in splenocytes of CLP mice. These results indicated that AMPK activation inhibits LPS-induced TGF-β1 production and its signaling pathway, thus suppressing the development of endotoxin tolerance in macrophages.
Collapse
Affiliation(s)
- Mei Yin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, South Korea
| | - Joungmin Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Jeong-Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Joon-Suk Bom
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hong-Beom Bae
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea.
| | - Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea.
| |
Collapse
|
3
|
Bozzini S, Del Fante C, Morosini M, Berezhinskiy HO, Auner S, Cattaneo E, Della Zoppa M, Pandolfi L, Cacciatore R, Perotti C, Hoetzenecker K, Jaksch P, Benazzo A, Meloni F. Mechanisms of Action of Extracorporeal Photopheresis in the Control of Bronchiolitis Obliterans Syndrome (BOS): Involvement of Circulating miRNAs. Cells 2022; 11:cells11071117. [PMID: 35406680 PMCID: PMC8997705 DOI: 10.3390/cells11071117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence suggests an improvement or stabilization of lung function in a fraction of patients with bronchiolitis obliterans syndrome (BOS) treated by extracorporeal photopheresis (ECP); however, few studies have explored the epigenetic and molecular regulation of this therapy. The aim of present study was to evaluate whether a specific set of miRNAs were significantly regulated by ECP. Total RNA was isolated from serum of patients with established BOS grade 1–2 prior to the start and after 6 months of ECP treatment. We observed a significant downregulation of circulating hsa-miR-155-5p, hsa-miR-146a-5p and hsa-miR-31-5p in BOS patients at the start of ECP when compared to healthy subjects. In responders, increased miR-155-5p and decreased miR-23b-3p expression levels at 6 months were found. SMAD4 mRNA was found to be a common target of these two miRNAs in prediction pathways analysis, and a significant downregulation was found at 6 months in PBMCs of a subgroup of ECP-treated patients. According to previous evidence, the upregulation of miR-155 might be correlated with a pro-tolerogenic modulation of the immune system. Our analysis also suggests that SMAD4 might be a possible target for miR-155-5p. Further longitudinal studies are needed to address the possible role of miR-155 and its downstream targets.
Collapse
Affiliation(s)
- Sara Bozzini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
- Correspondence: ; Tel.: +39-0382-501-001
| | - Claudia Del Fante
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Monica Morosini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Hatice Oya Berezhinskiy
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Sophia Auner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Elena Cattaneo
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Matteo Della Zoppa
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Laura Pandolfi
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Rosalia Cacciatore
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Cesare Perotti
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Alberto Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Federica Meloni
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
4
|
The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl) 2021; 99:1373-1384. [PMID: 34258628 PMCID: PMC8277227 DOI: 10.1007/s00109-021-02113-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is a chronic debilitating condition characterized by progressive deposition of connective tissue, leading to a steady restriction of lung elasticity, a decline in lung function, and a median survival of 4.5 years. The leading causes of pulmonary fibrosis are inhalation of foreign particles (such as silicosis and pneumoconiosis), infections (such as post COVID-19), autoimmune diseases (such as systemic autoimmune diseases of the connective tissue), and idiopathic pulmonary fibrosis. The therapeutics currently available for pulmonary fibrosis only modestly slow the progression of the disease. This review is centered on the interplay of damage-associated molecular pattern (DAMP) molecules, Toll-like receptor 4 (TLR4), and inflammatory cytokines (such as TNF-α, IL-1β, and IL-17) as they contribute to the pathogenesis of pulmonary fibrosis, and the possible avenues to develop effective therapeutics that disrupt this interplay.
Collapse
|
5
|
Quan H, Yin M, Kim J, Jang EA, Yang SH, Bae HB, Jeong S. Resveratrol suppresses the reprogramming of macrophages into an endotoxin-tolerant state through the activation of AMP-activated protein kinase. Eur J Pharmacol 2021; 899:173993. [PMID: 33675782 DOI: 10.1016/j.ejphar.2021.173993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 12/14/2022]
Abstract
Resveratrol has been reported to have beneficial effects on sepsis by regulating the inflammatory response. However, it remains unclear if resveratrol plays a role in the development of endotoxin tolerance. Treatment with resveratrol in macrophages stimulated with primary lipopolysaccharide (LPS) resulted in the increased production of TNF-α and IL-6 induced by a 2nd dose of LPS (by 74.5 ± 12.9% and 63.4 ± 12%, respectively, compared to untreated cells, P < 0.05). This effect was inhibited by compound C, an AMPK inhibitor, and STO609, a calcium/calmodulin-dependent protein kinase-kinase (CaMKK) inhibitor. Resveratrol diminished the expression of interleukin-1 receptor-associated kinase M (IRAK-M) and Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) by prolonging the exposure of cells to LPS (by 60.8 ± 16.3% and 70.3 ± 18.1%, respectively, compared to LPS only). The effect of resveratrol on the LPS-induced expression of IRAK-M and SHIP1 was inhibited by compound C or STO609. After a 2nd dose of LPS, resveratrol increased phosphorylation of ERK1/2, p38, and JNK in endotoxin tolerant macrophages. In vivo systemic administration of resveratrol prevented a significant increase in mortality rate by cecal ligation and puncture in LPS-induced endotoxin-tolerant mice. These results indicate that resveratrol induces AMPK activation through the Ca2+/CaMKKβ pathway and suppresses the development of endotoxin tolerance by inhibiting LPS-induced expression of IRAK-M and SHIP1.
Collapse
Affiliation(s)
- Hui Quan
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Mei Yin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, South Korea
| | - Joungmin Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun-A Jang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Si-Ho Yang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hong-Beom Bae
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeollanamdo, South Korea.
| | - Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeollanamdo, South Korea.
| |
Collapse
|
6
|
Fan C, Zhang X, Zhang P, Zhao J, Shen H, Zhang Y, Wu X, Jia Z, Wang Y. LPS stimulation during HCV infection induces MMP/TIMP1 imbalance in macrophages. J Med Microbiol 2020; 69:759-766. [PMID: 32242792 PMCID: PMC7451043 DOI: 10.1099/jmm.0.001185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/07/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction. During chronic hepatitis C virus (HCV) infections, HCV antigens establish cross-tolerance of endotoxins, but additional lipopolysaccharide (LPS) stimulation effects in this condition are poorly understood.Aim. This study aims to investigate the effects of the upregulated LPS on MMP and TIMP expression during chronic hepatitis C infection.Methodology. In the present study, we analysed the effect of HCV antigens and LPS stimulation on peripheral blood mononuclear cells (PBMCs) both in vivo and in vitro. Macrophages from HCV patients were isolated and their association with endotoxin tolerance was examined. MMP/TIMP1 expression and the related signalling pathways in macrophages were analysed. The macrophage and Huh7.5 cell co-culture model was used to analyse the effects of the cross-tolerance on collagen I deposition.Results. LPS levels were found to be significantly higher in HCV patients, particularly in those with HCV-induced liver fibrosis. In addition, although LPS serum level was occasionally upregulated in the patients, it did not induce intense immune response in PBMCs due to endotoxin cross-tolerance, and this was measured according to the changes in IL-6 and TNF-α levels. However, TIMP1 expression increased significantly during stimulation, exhibiting a tolerance/resistance phenotype, which was associated with TGF-β/Erk activation in macrophages. However, MMP levels did not increase due to endotoxin tolerance, which ultimately led to MMP/TIMP imbalance and influenced the deposition of collagen I.Conclusion. Increased LPS stimulation of macrophage during HCV antigen-induced endotoxin cross-tolerance contributes to MMP/TIMP1 imbalance and collagen I deposition.
Collapse
Affiliation(s)
- Chao Fan
- Institute of Cancer Research, School of Basical Medical Science of Xian Jiaotong University, Xian, PR China
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xian, PR China
| | - Xiaoxiao Zhang
- Department of Microbiology, Fourth Military Medical University, Xian, PR China
| | - Peixin Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xian, PR China
| | - Jieru Zhao
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xian, PR China
| | - Huanjun Shen
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xian, PR China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xian, PR China
| | - Xingan Wu
- Department of Microbiology, Fourth Military Medical University, Xian, PR China
| | - Zhansheng Jia
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xian, PR China
| | - Yili Wang
- Institute of Cancer Research, School of Basical Medical Science of Xian Jiaotong University, Xian, PR China
| |
Collapse
|
7
|
McKiernan PJ, Molloy KP, Cryan SA, McElvaney NG, Greene CM. X Chromosome-encoded MicroRNAs Are Functionally Increased in Cystic Fibrosis Monocytes. Am J Respir Crit Care Med 2019; 197:668-670. [PMID: 28796536 DOI: 10.1164/rccm.201707-1417le] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | - Sally A Cryan
- 1 Royal College of Surgeons in Ireland Dublin, Ireland
| | | | | |
Collapse
|
8
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
9
|
Twayana KS, Chaudhari N, Ravanan P. Prolonged lipopolysaccharide exposure induces transient immunosuppression in BV2 microglia. J Cell Physiol 2018; 234:1889-1903. [PMID: 30054903 DOI: 10.1002/jcp.27064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Continuous pre-exposure of immune cells to low level of inflammatory stimuli makes them hyporesponsive to subsequent exposure. This pathophysiological adaptation; known as endotoxin tolerance is a general paradigm behind several disease pathogenesis. Current study deals with this immunosuppression with respect to BV2 microglia. We attempted to investigate their immune response under prolonged endotoxin exposure and monitor the same upon withdrawal of the stimuli. BV2 microglia cells were maintained under continual exposure of lipopolysaccharide (LPS) for weeks with regular passage after 72 hr (prolonged LPS exposed cells [PLECs]). PLECs were found to be immunosuppressed with diminished expression of proinflammatory cytokines (IL6, IL1β, TNF-α, and iNOS) and production of nitric oxide, as compared to once LPS exposed cells. Upon remaintenance of cells in normal media without LPS exposure (LPS withdrawal cells [LWCs]), the induced immunosuppression reversed and cells started responding to inflammatory stimuli; revealed by significant expression of proinflammatory cytokines. LWCs showed functional similarities to never LPS exposed cells (NLECs) in phagocytosis activity and their response to anti-inflammatory agents like dexamethasone. Despite their immunoresponsiveness, PLECs were inflamed and showed higher autophagy rate than NLECs. Additionally, we investigated the role of inhibitor of apoptotic proteins (IAPs) in PLECs to understand whether IAPs aids in the survival of microglial cells under stress conditions. Our results revealed that cIAP1 and cIAP2 are induced in PLECs which might play a role in retaining the viability. Furthermore, antagonism of IAPs has significantly induced cell death in PLECs suggesting the role of IAPs in microglial survival under stress condition. Conclusively, our data suggest that continuous exposure of BV2 microglia cells to LPS results in transient immunosuppression and indicates the involvement of IAPs in retaining their viability under inflammatory stress.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Namrata Chaudhari
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
10
|
Distinct pattern of immune tolerance in dendritic cells treated with lipopolysaccharide or lipoteichoic acid. Mol Immunol 2017; 91:57-64. [DOI: 10.1016/j.molimm.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022]
|
11
|
Lyroni K, Patsalos A, Daskalaki MG, Doxaki C, Soennichsen B, Helms M, Liapis I, Zacharioudaki V, Kampranis SC, Tsatsanis C. Epigenetic and Transcriptional Regulation of IRAK-M Expression in Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 198:1297-1307. [DOI: 10.4049/jimmunol.1600009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
|
12
|
The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun 2016; 7:13436. [PMID: 27824038 PMCID: PMC5105176 DOI: 10.1038/ncomms13436] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Sustained low-grade inflammation mediated by non-resolving inflammatory monocytes has long been suspected in the pathogenesis of atherosclerosis; however, the molecular mechanisms responsible for the sustainment of non-resolving inflammatory monocytes during atherosclerosis are poorly understood. Here we observe that subclinical endotoxemia, often seen in humans with chronic inflammation, aggravates murine atherosclerosis through programming monocytes into a non-resolving inflammatory state with elevated Ly6C, CCR5, MCP-1 and reduced SR-B1. The sustainment of inflammatory monocytes is due to the disruption of homeostatic tolerance through the elevation of miR-24 and reduction of the key negative-feedback regulator IRAK-M. miR-24 reduces the levels of Smad4 required for the expression of IRAK-M and also downregulates key lipid-processing molecule SR-B1. IRAK-M deficiency in turn leads to elevated miR-24 levels, sustains disruption of monocyte homeostasis and aggravates atherosclerosis. Our data define an integrated feedback circuit in monocytes and its disruption may lead to non-resolving low-grade inflammation conducive to atherosclerosis.
Collapse
|
13
|
Anderson WD, Makadia HK, Greenhalgh AD, Schwaber JS, David S, Vadigepalli R. Computational modeling of cytokine signaling in microglia. MOLECULAR BIOSYSTEMS 2016; 11:3332-46. [PMID: 26440115 DOI: 10.1039/c5mb00488h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuroinflammation due to glial activation has been linked to many CNS diseases. We developed a computational model of a microglial cytokine interaction network to study the regulatory mechanisms of microglia-mediated neuroinflammation. We established a literature-based cytokine network, including TNFα, TGFβ, and IL-10, and fitted a mathematical model to published data from LPS-treated microglia. The addition of a previously unreported TGFβ autoregulation loop to our model was required to account for experimental data. Global sensitivity analysis revealed that TGFβ- and IL-10-mediated inhibition of TNFα was critical for regulating network behavior. We assessed the sensitivity of the LPS-induced TNFα response profile to the initial TGFβ and IL-10 levels. The analysis showed two relatively shifted TNFα response profiles within separate domains of initial condition space. Further analysis revealed that TNFα exhibited adaptation to sustained LPS stimulation. We simulated the effects of functionally inhibiting TGFβ and IL-10 on TNFα adaptation. Our analysis showed that TGFβ and IL-10 knockouts (TGFβ KO and IL-10 KO) exert divergent effects on adaptation. TFGβ KO attenuated TNFα adaptation whereas IL-10 KO enhanced TNFα adaptation. We experimentally tested the hypothesis that IL-10 KO enhances TNFα adaptation in murine macrophages and found supporting evidence. These opposing effects could be explained by differential kinetics of negative feedback. Inhibition of IL-10 reduced early negative feedback that results in enhanced TNFα-mediated TGFβ expression. We propose that differential kinetics in parallel negative feedback loops constitute a novel mechanism underlying the complex and non-intuitive pro- versus anti-inflammatory effects of individual cytokine perturbations.
Collapse
Affiliation(s)
- Warren D Anderson
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Graduate Program in Neuroscience, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hirenkumar K Makadia
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew D Greenhalgh
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Graduate Program in Neuroscience, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. and Graduate Program in Neuroscience, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Liu X, Qin Y, Dai A, Zhang Y, Xue H, Ni H, Han L, Zhu L, Yuan D, Tao T, Cao M. SMAD4 is Involved in the Development of Endotoxin Tolerance in Microglia. Cell Mol Neurobiol 2016; 36:777-88. [PMID: 26758028 DOI: 10.1007/s10571-015-0260-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
Abstract
Initial exposure of macrophages to LPS induces hyporesponsiveness to a second challenge with LPS, a phenomenon termed LPS tolerance. Smad4 plays important roles in the induction of LPS tolerance. However, the function of Smad4 in microglia remains unknown. Here we show that expression of Smad4 was highly up-regulated in LPS-tolerized mouse cerebral cortex. Smad4 was mostly colocalized with microglia, rarely with neurons. Using a microglia cell line, BV2, we find that LPS activates endogenous Smad4, inducing its migration into the nucleus and increasing its expression. Smad4 significantly suppressed TLR-triggered production of proinflammatory cytokines (IL-6), increased anti-inflammatory cytokine in LPS-tolerized microglia. Moreover, IL-6 concentrations in culture supernatants after second LPS challenge are higher in SMAD4 small interfering RNA (siRNA) BV2 cells than control siRNA BV2 cells, indicating failure to induce tolerance in absence of Smad4 signaling. In our study, we conclude that both in vivo and in vitro, Smad4 signaling is required for maximal induction of endotoxin tolerance.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yongwei Qin
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Chcina
- Department of Pathogen Biology, Medical College of Nantong University, Nantong, 226001, China
| | - Aihua Dai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yu Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Huaqing Xue
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Chcina
| | - Haidan Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lijian Han
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Liang Zhu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Debin Yuan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Chcina
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Chcina.
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
15
|
MiR-146b Mediates Endotoxin Tolerance in Human Phagocytes. Mediators Inflamm 2015; 2015:145305. [PMID: 26451077 PMCID: PMC4584235 DOI: 10.1155/2015/145305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 01/06/2023] Open
Abstract
A proper regulation of the innate immune response is fundamental to keep the immune system in check and avoid a chronic status of inflammation. As they act as negative modulators of TLR signaling pathways, miRNAs have been recently involved in the control of the inflammatory response. However, their role in the context of endotoxin tolerance is just beginning to be explored. We here show that miR-146b is upregulated in human monocytes tolerized by LPS, IL-10, or TGFβ priming and demonstrate that its transcription is driven by STAT3 and RUNX3, key factors downstream of IL-10 and TGFβ signaling. Our study also found that IFNγ, known to revert LPS tolerant state, inhibits miR-146b expression. Finally, we provide evidence that miR-146b levels have a profound effect on the tolerant state, thus candidating miR-146b as a molecular mediator of endotoxin tolerance.
Collapse
|
16
|
Srivastav S, Saha A, Barua J, Ukil A, Das PK. IRAK-M regulates the inhibition of TLR-mediated macrophage immune response during late in vitro Leishmania donovani infection. Eur J Immunol 2015; 45:2787-97. [PMID: 26140693 DOI: 10.1002/eji.201445336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 12/18/2022]
Abstract
Intramacrophage protozoan parasite Leishmania donovani, causative agent of visceral leishmaniasis, escapes Toll-like receptor (TLR) dependent early host immune response by inducing the deubiquitinating enzyme A20, which is sustained up to 6 h postinfection only. Therefore, Leishmania must apply other means to deactivate late host responses. Here, we elucidated the role of IL-1 receptor-associated kinase M (IRAK-M), a negative regulator of TLR signaling, in downregulating macrophage proinflammatory response during late hours of in vitro infection. Our data reveal a sharp decline in IRAK1 and IRAK4 phosphorylation at 24 h postinfection along with markedly reduced association of IRAK1-TNF receptor associated factor 6, which is mandatory for TLR activation. In contrast, IRAK-M was induced after A20 levels decreased and reached a maximum at 24 h postinfection. IRAK-M induction coincided with increased stimulation of TGF-β, a hallmark cytokine of visceral infection. TGF-β-dependent signaling-mediated induction of SMAD family of proteins, 2, 3, and 4 plays important roles in transcriptional upregulation of IRAK-M. In infected macrophages, siRNA-mediated silencing of IRAK-M displayed enhanced IRAK1 and IRAK4 phosphorylation with a concomitant increase in downstream NF-κB activity and reduced parasite survival. Taken together, the results suggest that IRAK-M may be targeted by L. donovani to inhibit TLR-mediated proinflammatory response late during in vitro infection.
Collapse
Affiliation(s)
- Supriya Srivastav
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amrita Saha
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Jayita Barua
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
17
|
Murphy M, Xiong Y, Pattabiraman G, Qiu F, Medvedev AE. Pellino-1 Positively Regulates Toll-like Receptor (TLR) 2 and TLR4 Signaling and Is Suppressed upon Induction of Endotoxin Tolerance. J Biol Chem 2015; 290:19218-32. [PMID: 26082489 DOI: 10.1074/jbc.m115.640128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.
Collapse
Affiliation(s)
- Michael Murphy
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Yanbao Xiong
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Goutham Pattabiraman
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Fu Qiu
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Andrei E Medvedev
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| |
Collapse
|
18
|
Herb-Partitioned Moxibustion and the miRNAs Related to Crohn's Disease: A Study Based on Rat Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:265238. [PMID: 25810742 PMCID: PMC4355562 DOI: 10.1155/2015/265238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/05/2015] [Indexed: 12/17/2022]
Abstract
Crohn's disease (CD) is a major subtype
of inflammatory bowel disease (IBD). Herb-partitioned moxibustion
(HPM) has been proven to be effective in treating CD by a large
amount of clinical and experimental researches. MiRNAs (microRNAs) are increasingly recognized
as important posttranscriptional regulators of inflammatory genes. In this study, we established experimental
CD rat models and investigated the miRNAs associated with the onset of experimental CD; then, we further
identified CD-related miRNAs that were regulated by HPM and explored the relationship between CD and the
potential target genes of involved miRNAs. We found that miR-147 and miR-205 were significantly downregulated
in colons of experimental CD rats and may be closely associated with the onset of experimental CD. HPM may
extenuate inflammatory responses in colons and ameliorate colonic damages in CD via upregulating the expression
of miR-147 and miR-205 and then further downregulating the expression of inflammation-related mRNAs, negatively
regulating inflammatory signal pathways, and reducing the production of downstream inflammatory cytokines.
Collapse
|
19
|
Yu L, Liu X, Cui K, Di Y, Xin L, Sun X, Zhang W, Yang X, Wei M, Yao Z, Yang J. SND1 Acts Downstream of TGFβ1 and Upstream of Smurf1 to Promote Breast Cancer Metastasis. Cancer Res 2015; 75:1275-86. [DOI: 10.1158/0008-5472.can-14-2387] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/29/2014] [Indexed: 11/16/2022]
|
20
|
Iyer S, Viernes DR, Chisholm JD, Margulies BS, Kerr WG. SHIP1 regulates MSC numbers and their osteolineage commitment by limiting induction of the PI3K/Akt/β-catenin/Id2 axis. Stem Cells Dev 2014; 23:2336-51. [PMID: 24857423 DOI: 10.1089/scd.2014.0122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we show that Src homology 2-domain-containing inositol 5'-phosphatase 1 (SHIP1) is required for the efficient development of osteoblasts from mesenchymal stem cells (MSCs) such that bone growth and density are reduced in mice that lack SHIP1 expression in MSCs. We find that SHIP1 promotes the osteogenic output of MSCs by limiting activation of the PI3K/Akt/β-catenin pathway required for induction of the MSC stemness factor Id2. In parallel, we demonstrate that mice with myeloid-restricted ablation of SHIP1, including osteoclasts (OCs), show no reduction in bone mass or density. Hence, diminished bone mass and density in the SHIP1-deficient mice results from SHIP deficiency in MSC and osteolineage progenitors. Intriguingly, mice with a SHIP-deficient MSC compartment also exhibit decreased OC numbers. In agreement with our genetic findings we also show that treatment of mice with an SHIP1 inhibitor (SHIPi) significantly reduces bone mass. These findings demonstrate a novel role for SHIP1 in MSC fate determination and bone growth. Further, SHIPi may represent a novel therapeutic approach to limit bone development in osteopetrotic and sclerotic bone diseases.
Collapse
Affiliation(s)
- Sonia Iyer
- 1 Department of Microbiology and Immunology, SUNY Upstate Medical University , Syracuse, New York
| | | | | | | | | |
Collapse
|
21
|
Abstract
The bone marrow milieu comprising both hematopoietic and nonhematopoietic lineages has a unique structural organization. Bone undergoes continuous remodeling throughout life. This dynamic process involves a balance between bone-forming osteoblasts (OBs) derived from multipotent mesenchymal stem cells (MSCs) and bone-resorbing osteoclasts (OCs) derived from hematopoietic stem cells (HSCs). Src homology 2-domain-containing inositol 5'-phosphatase 1 (SHIP1) regulates cellular processes such as proliferation, differentiation, and survival via the PI3K/Akt signaling pathway initiated at the plasma membrane. SHIP1-deficient mice also exhibit profound osteoporosis that has been proposed to result from hyperresorptive activity by OCs. We have previously observed that SHIP1 is expressed in primary OBs, which display defective development in SHIP1-deficient mice. These findings led us to question whether SHIP1 plays a functional role in osteolineage development from MSC in vivo, which contributes to the osteoporotic phenotype in germline SHIP1 knockout mice. In this short review, we discuss our current understanding of inositol phospholipid signaling downstream of SHIP1 in bone biology.
Collapse
Affiliation(s)
- Sonia Iyer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
22
|
Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol 2013; 32:116-33. [PMID: 23570313 DOI: 10.3109/08830185.2013.774391] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) play critical roles in host defense against microbes. In the past decade, growing numbers of in vitro, in vivo and in silico studies have been performed and revealed the physiological significance and structural basis of their ligands and signal transduction, which involves various extracellular, membrane-bound, cytoplasmic and nuclear signaling molecules for the activation of TLR signaling. However, negative regulation of TLR-mediated responses is also essential for the prevention of autoimmunity and is mediated by a number of molecules. In this review, we will introduce recent advances in the understanding of TLR biology in terms of their ligands and signaling pathways.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
23
|
Zhang W, Wang X, Xia X, Liu X, Suo S, Guo J, Li M, Cao W, Cai Z, Hui Z, Subramaniam M, Spelsberg TC, Wang J, Wang L. Klf10 inhibits IL-12p40 production in macrophage colony-stimulating factor-induced mouse bone marrow-derived macrophages. Eur J Immunol 2012; 43:258-69. [PMID: 23065757 DOI: 10.1002/eji.201242697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/06/2012] [Accepted: 10/09/2012] [Indexed: 11/06/2022]
Abstract
Bone marrow-derived macrophages (BMMs) treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF), differentiate into GM-CSF-induced mouse bone marrow-derived macrophages (GM-BMMs) or M-CSF-induced mouse bone marrow-derived macrophages (M-BMMs), which have an M1 or M2 profile, respectively. GM-BMMs produce large amounts of proinflammatory cytokines and mediate resistance to pathogens, whereas M-BMMs produce antiinflammatory cytokines that contribute to tissue repair and remodeling. M-BMMs stimulated with lipopolysaccharide (LPS) are in an antiinflammatory state, with an IL-12(low) IL-10(high) phenotype. However, the regulation of this process remains unclear. Klf10 belongs to the family of Krüppel-like transcription factors and was initially described as a TGF-β inducible early gene 1. IL-12p40 is upregulated in LPS-stimulated M-BMMs from Klf10-deficient mice, but downregulated during Klf10 overexpression. Klf11, another member of the Krüppel-like factor family, can also repress the production of IL-12p40. Furthermore, Klf10 binds to the CACCC element of the IL-12p40 promoter and inhibits its transcription. We have therefore identified Klf10 as a transcription factor that regulates the expression of IL-12p40 in M-BMMs.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Peng Q, O’Loughlin JL, Humphrey MB. DOK3 negatively regulates LPS responses and endotoxin tolerance. PLoS One 2012; 7:e39967. [PMID: 22761938 PMCID: PMC3384629 DOI: 10.1371/journal.pone.0039967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/05/2012] [Indexed: 02/08/2023] Open
Abstract
Innate immune activation via Toll-like receptors (TLRs), although critical for host defense against infection, must be regulated to prevent sustained cell activation that can lead to cell death. Cells repeatedly stimulated with lipopolysaccharide (LPS) develop endotoxin tolerance making the cells hypo-responsive to additional TLR stimulation. We show here that DOK3 is a negative regulator of TLR signaling by limiting LPS-induced ERK activation and cytokine responses in macrophages. LPS induces ubiquitin-mediated degradation of DOK3 leading to SOS1 degradation and inhibition of ERK activation. DOK3 mice are hypersensitive to sublethal doses of LPS and have altered cytokine responses in vivo. During endotoxin tolerance, DOK3 expression remains stable, and it negatively regulates the expression of SHIP1, IRAK-M, SOCS1, and SOS1. As such, DOK3-deficient macrophages are more sensitive to LPS-induced tolerance becoming tolerant at lower levels of LPS than wild type cells. Taken together, the absence of DOK3 increases LPS signaling, contributing to LPS-induced tolerance. Thus, DOK3 plays a role in TLR signaling during both naïve and endotoxin-induced tolerant conditions.
Collapse
Affiliation(s)
- Qisheng Peng
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Key Laboratory for Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Jason L. O’Loughlin
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sun Y, Li H, Yang MF, Shu W, Sun MJ, Xu Y. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli. PLoS One 2012; 7:e39224. [PMID: 22723968 PMCID: PMC3377652 DOI: 10.1371/journal.pone.0039224] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/17/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and Escherichia coli (E. coli) LPS in murine peritoneal macrophages. METHODOLOGY/PRINCIPAL FINDINGS We studied the cytokine production (TNF-α and IL-10) and Toll-like receptor 2, 4 (TLR2, 4) gene and protein expressions in peritoneal macrophages from young (2-month-old) and middle-aged (12-month-old) ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (p<0.05), and the markedly lower levels of TNF-α and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p<0.05). In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p<0.05). CONCLUSIONS/SIGNIFICANCE Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulted from aging might be related to TLR2, 4 and might lead to the incontrollable periodontal inflammation in older adults.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Hui Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Mi-Fang Yang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wei Shu
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Meng-Jun Sun
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Inducible NOS-induced chloride intracellular channel 4 (CLIC4) nuclear translocation regulates macrophage deactivation. Proc Natl Acad Sci U S A 2012; 109:6130-5. [PMID: 22474389 DOI: 10.1073/pnas.1201351109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear translocation of cytosolic CLIC4 is an essential feature of its proapoptotic and prodifferentiation functions. Here we demonstrate that CLIC4 is induced concurrently with inducible nitric oxide synthase (iNOS) and S-nitrosylated in proinflammatory peritoneal macrophages. Chemical inhibition or genetic ablation of iNOS inhibits S-nitrosylation and nuclear translocation of CLIC4. In macrophages, iNOS-induced nuclear CLIC4 coincides with the pro- to anti-inflammatory transition of the cells because IL-1β and CXCL1 mRNA remain elevated in CLIC4 and iNOS knockout macrophages at late time points, whereas TNFα mRNA is elevated only in the iNOS knockout macrophages. Active IL-1β remains elevated in CLIC4 knockout macrophages and in macrophages in which CLIC4 nuclear translocation is prevented by the NOS inhibitor l-NAME. Moreover, overexpression of nuclear-targeted CLIC4 down-regulates IL-1β in stimulated macrophages. In mice, genetically null for CLIC4, the number of phagocytosing macrophages stimulated by LPS is reduced. Thus, iNOS-induced nuclear CLIC4 is an essential part of the macrophage deactivation program.
Collapse
|
27
|
Vartanian KB, Stevens SL, Marsh BJ, Williams-Karnesky R, Lessov NS, Stenzel-Poore MP. LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation 2011; 8:140. [PMID: 21999375 PMCID: PMC3217906 DOI: 10.1186/1742-2094-8-140] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022] Open
Abstract
Background Toll-like receptor 4 (TLR4) is activated in response to cerebral ischemia leading to substantial brain damage. In contrast, mild activation of TLR4 by preconditioning with low dose exposure to lipopolysaccharide (LPS) prior to cerebral ischemia dramatically improves outcome by reprogramming the signaling response to injury. This suggests that TLR4 signaling can be altered to induce an endogenously neuroprotective phenotype. However, the TLR4 signaling events involved in this neuroprotective response are poorly understood. Here we define several molecular mediators of the primary signaling cascades induced by LPS preconditioning that give rise to the reprogrammed response to cerebral ischemia and confer the neuroprotective phenotype. Methods C57BL6 mice were preconditioned with low dose LPS prior to transient middle cerebral artery occlusion (MCAO). Cortical tissue and blood were collected following MCAO. Microarray and qtPCR were performed to analyze gene expression associated with TLR4 signaling. EMSA and DNA binding ELISA were used to evaluate NFκB and IRF3 activity. Protein expression was determined using Western blot or ELISA. MyD88-/- and TRIF-/- mice were utilized to evaluate signaling in LPS preconditioning-induced neuroprotection. Results Gene expression analyses revealed that LPS preconditioning resulted in a marked upregulation of anti-inflammatory/type I IFN-associated genes following ischemia while pro-inflammatory genes induced following ischemia were present but not differentially modulated by LPS. Interestingly, although expression of pro-inflammatory genes was observed, there was decreased activity of NFκB p65 and increased presence of NFκB inhibitors, including Ship1, Tollip, and p105, in LPS-preconditioned mice following stroke. In contrast, IRF3 activity was enhanced in LPS-preconditioned mice following stroke. TRIF and MyD88 deficient mice revealed that neuroprotection induced by LPS depends on TLR4 signaling via TRIF, which activates IRF3, but does not depend on MyD88 signaling. Conclusion Our results characterize several critical mediators of the TLR4 signaling events associated with neuroprotection. LPS preconditioning redirects TLR4 signaling in response to stroke through suppression of NFκB activity, enhanced IRF3 activity, and increased anti-inflammatory/type I IFN gene expression. Interestingly, this protective phenotype does not require the suppression of pro-inflammatory mediators. Furthermore, our results highlight a critical role for TRIF-IRF3 signaling as the governing mechanism in the neuroprotective response to stroke.
Collapse
Affiliation(s)
- Keri B Vartanian
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, 97239, USA
| | | | | | | | | | | |
Collapse
|
28
|
Zaric SS, Coulter WA, Shelburne CE, Fulton CR, Zaric MS, Scott A, Lappin MJ, Fitzgerald DC, Irwin CR, Taggart CC. Altered Toll-like receptor 2-mediated endotoxin tolerance is related to diminished interferon beta production. J Biol Chem 2011; 286:29492-500. [PMID: 21705332 PMCID: PMC3190989 DOI: 10.1074/jbc.m111.252791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/01/2011] [Indexed: 01/25/2023] Open
Abstract
Induction of endotoxin tolerance leads to a reduced inflammatory response after repeated challenge by LPS and is important for resolution of inflammation and prevention of tissue damage. Enterobacterial LPS is recognized by the TLR4 signaling complex, whereas LPS of some non-enterobacterial organisms is capable of signaling independently of TLR4 utilizing TLR2-mediated signal transduction instead. In this study we report that Porphyromonas gingivalis LPS, a TLR2 agonist, fails to induce a fully endotoxin tolerant state in a human monocytic cell line (THP-1) and mouse bone marrow-derived macrophages. In contrast to significantly decreased production of human IL-8 and TNF-α and, in mice, keratinocyte-derived cytokine (KC), macrophage inflammatory protein-2 (MIP-2), and TNF-α after repeated challenge with Escherichia coli LPS, cells repeatedly exposed to P. gingivalis LPS responded by producing less TNF-α but sustained elevated secretion of IL-8, KC, and MIP-2. Furthermore, in endotoxin-tolerant cells, production of IL-8 is controlled at the signaling level and correlates well with NF-κB activation, whereas TNF-α expression is blocked at the gene transcription level. Interferon β plays an important role in attenuation of chemokine expression in endotoxin-tolerized cells as shown in interferon regulatory factor-3 knock-out mice. In addition, human gingival fibroblasts, commonly known not to display LPS tolerance, were found to be tolerant to repeated challenge by LPS if pretreated with interferon β. The data suggest that the inability of the LPS-TLR2 complex to induce full endotoxin tolerance in monocytes/macrophages is related to diminished production of interferon β and may partly explain the involvement of these LPS isoforms in the pathogenesis of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Svetislav S Zaric
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hirayama T, Tamaki Y, Takakubo Y, Iwazaki K, Sasaki K, Ogino T, Goodman SB, Konttinen YT, Takagi M. Toll-like receptors and their adaptors are regulated in macrophages after phagocytosis of lipopolysaccharide-coated titanium particles. J Orthop Res 2011; 29:984-92. [PMID: 21308757 DOI: 10.1002/jor.21369] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/03/2011] [Indexed: 02/04/2023]
Abstract
Macrophages phagocytose metallic wear particles and produce mediators, which can induce cellular host response and aseptic implant loosening. Lipopolysaccharide (LPS) on the wear debris can stimulate macrophages via Toll-like receptor 4 (TLR4) and enhance the response. However, the precise functional role and interaction of TLRs and their adaptor molecules is still unclear. Rat bone marrow macrophages were stimulated with titanium particle (Ti) coated by LPS (Ti/LPS+) and LPS-free Ti (Ti/LPS-). mRNA levels of cytokines, TLRs and their adaptor molecules were measured using real time PCR. mRNA levels of TNF-α, IL-1β, and IL-6 increased in Ti/LPS+ than Ti/LPS-. In contrast, mRNA levels of TLR4, TLR5, and TLR9 decreased in Ti/LPS+ compared to Ti/LPS-. mRNA levels of MyD88, IRAK1, IRAK4 decreased gradually, and TRAF6 underwent an initial transient increase, followed by suppression in Ti/LPS+. However, mRNA levels of TLR2 and IRAK2 increased after phagocytosis of Ti/LPS+ than Ti/LPS-. The increased expressions of proinflammatory cytokines found in Ti/LPS+ indicated that their productions cytokines could be enhanced by phagocytosis of LPS-coated particles. Subsequent down-regulation of TLR4, TLR5, TLR9, MyD88, IRAK1, and IRAK4 suggests that self-protective mechanisms to regulate excessive host responses are activated in macrophages. Increase of TLR2 and IRAK2 and a transient increase of TRAF6 in Ti/LPS+ suggest that another possible pathway to modulate TLR-mediated cellular response to prolong inflammatory response in foreign body reaction of aseptic loosening. This down- and/or up-regulation of the potential TLR-mediated responses to LPS-coated particles reflects the proactive behavior of effector cells.
Collapse
Affiliation(s)
- Tomoyuki Hirayama
- Department of Orthopaedic Surgery, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata 990-9585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Condé C, Gloire G, Piette J. Enzymatic and non-enzymatic activities of SHIP-1 in signal transduction and cancer. Biochem Pharmacol 2011; 82:1320-34. [PMID: 21672530 DOI: 10.1016/j.bcp.2011.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/27/2011] [Indexed: 12/29/2022]
Abstract
PI3K cascade is a central signaling pathway regulating cell proliferation, growth, differentiation, and survival. Tight regulation of the PI3K signaling pathway is necessary to avoid aberrant cell proliferation and cancer development. Together with SHIP-1, the inositol phosphatases PTEN and SHIP-2 are the gatekeepers of this pathway. In this review, we will focus on SHIP-1 functions. Negative regulation of immune cell activation by SHIP-1 is well characterized. Besides its catalytic activity, SHIP-1 also displays non-enzymatic activity playing role in several immune pathways. Indeed, SHIP-1 exhibits several domains that mediate protein-protein interaction. This review emphasizes the negative regulation of immune cell activation by SHIP-1 that is mediated by its protein-protein interaction.
Collapse
Affiliation(s)
- Claude Condé
- Laboratory of Virology & Immunology, GIGA-Research B34, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
31
|
TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 2011; 30:2475-84. [PMID: 21278795 PMCID: PMC3102782 DOI: 10.1038/onc.2010.619] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor associated macrophages (TAMs) constitute a major component of the immune cell infiltrate observed in the tumor microenvironment (TME). Factors present in the TME including TGF-β, allow tumors to circumvent host mediated immune responses to promote tumor progression. However, the molecular mechanism(s) involved are not clear. Toll-like receptors (TLRs) are important mediators of innate immune responses by immune cells, whose activation triggers the production of molecules required for anti-tumoral responses. Interleukin receptor associated kinase (IRAK)-M is an inactive serine/threonine kinase, predominantly expressed in macrophages and is a potent negative regulator of TLR signaling. Here we show that TAMs express significantly higher levels of IRAK-M compared to peritoneal macrophages (PEMs) in a syngeneic mouse model of lung cancer. Subcutaneous implantation of LLC cells in IRAK-M−/− mice resulted in a five-fold reduction in tumor growth, as compared to tumors in wild type animals. Furthermore, compared to WT TAMs, TAMs isolated from IRAK-M−/− mice displayed features of a classically activated (M1) rather than alternatively activated (M2) phenotype, as manifest by greater expression of IL-12, IFN-γ, and iNOS. Human lung cancer cells induced IRAK-M expression in human PBMCs when co-cultured together. Tumor cell-induced expression of IRAK-M was dependent on the activation of TGF-β pathway. Similarly, treatment of human PBMCs or mouse macrophage cell line, RAW 264.4, with TGF-β, induced IRAK-M expression. Interestingly, IRAK-M gene expression in 439 human lung adenocarcinoma tumors correlated with poor survival in patients with lung cancer. Together, our data demonstrates that TGF-β-dependent induction of IRAK-M expression is an important, clinically relevant mechanism by which tumors may circumvent anti-tumor responses of macrophages.
Collapse
|
32
|
Abstract
SHIP1 is at the nexus of intracellular signaling pathways in immune cells that mediate bone marrow (BM) graft rejection, production of inflammatory and immunosuppressive cytokines, immunoregulatory cell formation, the BM niche that supports development of the immune system, and immune cancers. This review summarizes how SHIP participates in normal immune physiology or the pathologies that result when SHIP is mutated. This review also proposes that SHIP can have either inhibitory or activating roles in cell signaling that are determined by whether signaling pathways distal to PI3K are promoted by SHIP's substrate (PI(3,4,5)P(3) ) or its product (PI(3,4)P(2) ). This review also proposes the "two PIP hypothesis" that postulates that both SHIP's product and its substrate are necessary for a cancer cell to achieve and sustain a malignant state. Finally, due to the recent discovery of small molecule antagonists and agonists for SHIP, this review discusses potential therapeutic settings where chemical modulation of SHIP might be of benefit.
Collapse
Affiliation(s)
- William G Kerr
- SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
33
|
Abstract
Antigen presenting cells (APCs) of the innate immune system sense a wide range of pathogens via pattern recognition receptors (PRRs). Engagement of certain PRRs can induce production of pro-inflammatory mediators that facilitate effective clearance of pathogen. Toll-like receptors (TLRs) are a well described group of PRRs that belong to the TLR/Interleukin-1 receptor (IL-1R) superfamily. However, TLR/IL-1R induction of pro-inflammatory mediators must be regulated to prevent excessive inflammation and tissue damage. One molecule of recent interest that is known to inhibit TLR/IL-1R signaling is interleukin-1 receptor associated kinase (IRAK)-M, also known as IRAK-3. IRAK-M is expressed in a number of immune and epithelial cells types, and through its inhibition of pro-inflammatory cytokine production, IRAK-M can regulate immune homeostasis and tolerance in a number of infectious and non-infectious diseases. Furthermore, use of IRAK-M deficient animals has increased our understanding of the importance of IRAK-M in regulating immune responsiveness to a variety of pathogens. Although IRAK-M expression is typically induced through TLR signaling, IRAK-M can also be expressed in response to various endogenous and exogenous soluble factors as well as cell surface and intracellular signaling molecules. This review will focus on clinical scenarios in which expression of IRAK-M is beneficial (as in early sepsis) and those situations where IRAK-M expression is harmful to the host (as in cancer and following bone marrow transplant). There is strong rationale for therapeutic targeting of IRAK-M for clinical benefit. However, effective targeting will require a greater understanding of the transcriptional regulation of this gene.
Collapse
Affiliation(s)
- Leah L N Hubbard
- Graduate Program in Immunology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|