1
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Matz HC, McIntire KM, Ellebedy AH. 'Persistent germinal center responses: slow-growing trees bear the best fruits'. Curr Opin Immunol 2023; 83:102332. [PMID: 37150126 PMCID: PMC10829534 DOI: 10.1016/j.coi.2023.102332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Germinal centers (GCs) are key microanatomical sites in lymphoid organs where responding B cells mature and undergo affinity-based selection. The duration of the GC reaction has long been assumed to be relatively brief, but recent studies in humans, nonhuman primates, and mice indicate that GCs can last for weeks to months after initial antigen exposure. This review examines recent studies investigating the factors that influence GC duration, including antigen persistence, T-follicular helper cells, and mode of immunization. Potential mechanisms for how persistent GCs influence the B-cell repertoire are considered. Overall, these studies provide a blueprint for how to design better vaccines that elicit persistent GC responses.
Collapse
Affiliation(s)
- Hanover C Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, USA.
| |
Collapse
|
3
|
Marsman C, Verstegen NJM, Streutker M, Jorritsma T, Boon L, ten Brinke A, van Ham SM. Termination of CD40L co-stimulation promotes human B cell differentiation into antibody-secreting cells. Eur J Immunol 2022; 52:1662-1675. [PMID: 36073009 PMCID: PMC9825913 DOI: 10.1002/eji.202249972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Human naïve B cells are notoriously difficult to differentiate into antibody-secreting cells (ASCs) in vitro while maintaining sufficient cell numbers to evaluate the differentiation process. B cells require T follicular helper (TFH ) cell-derived signals like CD40L and IL-21 during germinal center (GC) responses to undergo differentiation into ASCs. Cognate interactions between B and TFH cells are transient; after TFH contact, B cells cycle between GC light and dark zones where TFH contact is present and absent, respectively. Here, we elucidated that the efficacy of naïve B cells in ACS differentiation is dramatically enhanced by the release of CD40L stimulation. Multiparameter phospho-flow and transcription factor (TF)-flow cytometry revealed that termination of CD40L stimulation downmodulates NF-κB and STAT3 signaling. Furthermore, the termination of CD40 signaling downmodulates C-MYC, while promoting ASC TFs BLIMP1 and XBP-1s. Reduced levels of C-MYC in the differentiating B cells are later associated with crucial downmodulation of the B cell signature TF PAX5 specifically upon the termination of CD40 signaling, resulting in the differentiation of BLIMP1 high expressing cells into ASCs. The data presented here are the first steps to provide further insights how the transient nature of CD40 signaling is in fact needed for efficient human naïve B cell differentiation to ASCs.
Collapse
Affiliation(s)
- Casper Marsman
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marij Streutker
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tineke Jorritsma
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Anja ten Brinke
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
4
|
Ko S, Lim J, Hong S. Functional characterization of a novel tumor necrosis factor gene (TNF-New) in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104269. [PMID: 34600021 DOI: 10.1016/j.dci.2021.104269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The novel tumor necrosis factor (TNF-New or TNFN) gene has been identified only in teleost such as zebrafish, medaka (Oryzias latipes), fugu (Takifugu rubripes), and rainbow trout (Oncorhynchus mykiss). In this study, a putative TNFN gene in rock bream (named RB-TNFN) was cloned and its functional expression in the immune system was analyzed. Although it was previously reported to share a high degree of homology with mammalian lymphotoxin (LT)-β, in silico analysis revealed that RB-TNFN differed slightly from mammalian LT-β in its genomic structure, phylogenetic relationship, and predicted protein tertiary structure, whereas the genomic location of TNFN (immediately behind TNF-α) was the same as that of LT-β. In healthy rock bream, RB-TNFN gene expression was the highest in the liver and the lowest in the head kidney. In vitro, it was significantly upregulated in head kidney cells following polyinosinic:polycytidylic acid, concanavalin A, phytohemagglutinin, or calcium ionophore (CI) stimulation and in spleen cells by lipopolysaccharide (LPS), CI, and rock bream iridovirus (RBIV). In vivo, it was upregulated in the spleen, liver, and gut on day 1 and in the blood on day 3 following LPS injection, and in the blood, head kidney, and liver following RBIV vaccination. Post-RBIV infection, the vaccinated group showed a significantly higher TNFN gene expression in the head kidney and blood than the unvaccinated group. Treatment with recombinant TNFN protein (RB-rTNFN) resulted in significantly upregulated interleukin-1β expression in the head kidney, spleen, blood, liver, and peritoneal cells. It also enhanced IL-8 gene expression in the head kidney, blood, and peritoneal cells, and interferon γ gene expression in the gut and gills on day 1. TNFN and cyclo-oxygenase-2 gene expression was upregulated in peritoneal cells on day 3. Flow cytometry analysis revealed a significant increase in the peritoneal lymphocyte population after the intraperitoneal (i.p.) injection of RB-rTNFN. These results suggest that RB-TNFN mediated innate and adaptive immunity in rock bream.
Collapse
Affiliation(s)
- Sungjae Ko
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jongwon Lim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Suhee Hong
- East Coast Research institute of Life Science, Gangneung-Wonju National University, South Korea.
| |
Collapse
|
5
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Narayanan B, Prado de Maio D, La Porta J, Voskoboynik Y, Ganapathi U, Xie P, Covey LR. A Posttranscriptional Pathway of CD40 Ligand mRNA Stability Is Required for the Development of an Optimal Humoral Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:2552-2565. [PMID: 34031147 DOI: 10.4049/jimmunol.2001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
CD40 ligand (CD40L) mRNA stability is dependent on an activation-induced pathway that is mediated by the binding complexes containing the multifunctional RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) to a 3' untranslated region of the transcript. To understand the relationship between regulated CD40L and the requirement for variegated expression during a T-dependent response, we engineered a mouse lacking the CD40L stability element (CD40LΔ5) and asked how this mutation altered multiple aspects of the humoral immunity. We found that CD40LΔ5 mice expressed CD40L at 60% wildtype levels, and lowered expression corresponded to significantly decreased levels of T-dependent Abs, loss of germinal center (GC) B cells and a disorganized GC structure. Gene expression analysis of B cells from CD40LΔ5 mice revealed that genes associated with cell cycle and DNA replication were significantly downregulated and genes linked to apoptosis upregulated. Importantly, somatic hypermutation was relatively unaffected although the number of cells expressing high-affinity Abs was greatly reduced. Additionally, a significant loss of plasmablasts and early memory B cell precursors as a percentage of total GL7+ B cells was observed, indicating that differentiation cues leading to the development of post-GC subsets was highly dependent on a threshold level of CD40L. Thus, regulated mRNA stability plays an integral role in the optimization of humoral immunity by allowing for a dynamic level of CD40L expression on CD4 T cells that results in the proliferation and differentiation of pre-GC and GC B cells into functional subsets.
Collapse
Affiliation(s)
- Bitha Narayanan
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Diego Prado de Maio
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - James La Porta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | | | - Usha Ganapathi
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lori R Covey
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| |
Collapse
|
7
|
Host Components That Modulate the Disease Caused by hMPV. Viruses 2021; 13:v13030519. [PMID: 33809875 PMCID: PMC8004172 DOI: 10.3390/v13030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main pathogens responsible for acute respiratory infections in children up to 5 years of age, contributing substantially to health burden. The worldwide economic and social impact of this virus is significant and must be addressed. The structural components of hMPV (either proteins or genetic material) can be detected by several receptors expressed by host cells through the engagement of pattern recognition receptors. The recognition of the structural components of hMPV can promote the signaling of the immune response to clear the infection, leading to the activation of several pathways, such as those related to the interferon response. Even so, several intrinsic factors are capable of modulating the immune response or directly inhibiting the replication of hMPV. This article will discuss the current knowledge regarding the innate and adaptive immune response during hMPV infections. Accordingly, the host intrinsic components capable of modulating the immune response and the elements capable of restricting viral replication during hMPV infections will be examined.
Collapse
|
8
|
Arulraj T, Binder SC, Meyer-Hermann M. Rate of Immune Complex Cycling in Follicular Dendritic Cells Determines the Extent of Protecting Antigen Integrity and Availability to Germinal Center B Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:1436-1442. [PMID: 33608455 DOI: 10.4049/jimmunol.2001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
Abstract
Follicular dendritic cells (FDCs) retain immune complexes (ICs) for prolonged time periods and are important for germinal center (GC) reactions. ICs undergo periodic cycling in FDCs, a mechanism supporting an extended half-life of Ag. Based on experimental data, we estimated that the average residence time of PE-ICs on FDC surface and interior were 21 and 36 min, respectively. GC simulations show that Ag cycling might impact GC dynamics because of redistribution of Ag on the FDC surface and by protecting Ag from degradation. Ag protection and influence on GC dynamics varied with Ag cycling time and total Ag concentration. Simulations predict that blocking Ag cycling terminates the GC reaction and decreases plasma cell production. Considering that cycling of Ag could be a target for the modulation of GC reactions, our findings highlight the importance of understanding the mechanism and regulation of IC cycling in FDCs.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany.,Centre for Individualized Infection Medicine, 30625 Hannover, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; .,Centre for Individualized Infection Medicine, 30625 Hannover, Germany; and.,Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Haberman AM, Gonzalez DG, Wong P, Zhang TT, Kerfoot SM. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol Rev 2019; 288:10-27. [PMID: 30874342 DOI: 10.1111/imr.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Genetics, Yale University, New Haven, Connecticut
| | - Patrick Wong
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Ting-Ting Zhang
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| |
Collapse
|
10
|
B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 2019; 20:229-238. [PMID: 31836872 PMCID: PMC7223087 DOI: 10.1038/s41577-019-0244-2] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Surviving a single infection often results in lifelong immunity to the infecting pathogen. Such protection is mediated, in large part, by two main B cell memory ‘walls’ — namely, long-lived plasma cells and memory B cells. The cellular and molecular processes that drive the production of long-lived plasma cells and memory B cells are subjects of intensive research and have important implications for global health. Indeed, although nearly all vaccines in use today depend on their ability to induce B cell memory, we have not yet succeeded in developing vaccines for some of the world’s most deadly diseases, including AIDS and malaria. Here, we describe the two-phase process by which antigen drives the generation of long-lived plasma cells and memory B cells and highlight the challenges for successful vaccine development in each phase. The authors discuss the formation of two main ‘walls’ of B cell memory to protect against pathogen reinfection. The first wall comprises high-affinity antibodies produced by long-lived plasma cells, while the second wall is formed by memory B cells.
Collapse
|
11
|
Levels MJ, Fehres CM, van Baarsen LG, van Uden NO, Germar K, O'Toole TG, Blijdorp IC, Semmelink JF, Doorenspleet ME, Bakker AQ, Krasavin M, Tomilin A, Brouard S, Spits H, Baeten DL, Yeremenko NG. BOB.1 controls memory B-cell fate in the germinal center reaction. J Autoimmun 2019; 101:131-144. [DOI: 10.1016/j.jaut.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
|
12
|
Ise W, Kurosaki T. Plasma cell differentiation during the germinal center reaction. Immunol Rev 2019; 288:64-74. [DOI: 10.1111/imr.12751] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wataru Ise
- Laboratory of Lymphocyte DifferentiationWPI Immunology Frontier Research CenterOsaka University Osaka Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte DifferentiationWPI Immunology Frontier Research CenterOsaka University Osaka Japan
- Laboratory for Lymphocyte DifferentiationRIKEN Center for Integrative Medical Sciences (IMS) Yokohama Japan
| |
Collapse
|
13
|
Matsubara N, Imamura A, Yonemizu T, Akatsu C, Yang H, Ueki A, Watanabe N, Abdu-Allah H, Numoto N, Takematsu H, Kitazume S, Tedder TF, Marth JD, Ito N, Ando H, Ishida H, Kiso M, Tsubata T. CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice. Front Immunol 2018; 9:820. [PMID: 29725338 PMCID: PMC5917077 DOI: 10.3389/fimmu.2018.00820] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation.
Collapse
Affiliation(s)
- Naoko Matsubara
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Imamura
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Tatsuya Yonemizu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hongrui Yang
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akiharu Ueki
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Natsuki Watanabe
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Hajjaj Abdu-Allah
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Jamey D Marth
- Center for Nanomedicine, University of California, Santa Barbara, CA, United States
| | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Makoto Kiso
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Shin CA, Cho HW, Shin AR, Sohn HJ, Cho HI, Kim TG. Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy. Oncotarget 2018; 7:46173-46186. [PMID: 27323820 PMCID: PMC5216789 DOI: 10.18632/oncotarget.10068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022] Open
Abstract
Activated B-cells are a promising alternative source of antigen-presenting cells. They can generally be obtained in sufficient numbers for clinical use, but in most instances produce weak immune responses and therapeutic effects that are suboptimal for use in therapeutic cancer vaccines. To improve the immunogenic potency and therapeutic efficacy of B-cell-based vaccines, ex vivo-activated B-cells were transduced with recombinant lentiviruses in order to express additional costimulatory ligands—CD40L, CD70, OX40L, or 4-1BBL—either individually or in pairs (CD70/CD40L, OX40L/CD40L, or 4-1BBL/CD40L). We observed that the expression of CD40L molecules on B-cells was crucial for T-cell priming and activation. Administration of B-cells co-expressing CD40L with the other costimulatory ligands provided substantial antigen-specific CD8 T-cell responses capable of provoking in vivo proliferation and potent cytolytic activities. Notably, expression of CD40L augmented B-cell viability by inhibiting apoptosis through upregulated expression of the anti-apoptotic molecules BCL2, Bcl-xL and Bax. B-cells co-expressing CD40L with CD70, OX40L, or 4-1BBL induced potent therapeutic antitumor effects in a B16 melanoma model. Moreover, the combination of genetically-modified B-cell vaccines with programmed cell death-1 blockade potentiated the therapeutic efficacy. These results suggest that B-cells endowed with additional costimulatory ligands enable the design of effective vaccination strategies against cancer.
Collapse
Affiliation(s)
- Chang-Ae Shin
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hyun-Woo Cho
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - A-Ri Shin
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.,Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.,Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.,Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| |
Collapse
|
15
|
Zhang TT, Gonzalez DG, Cote CM, Kerfoot SM, Deng S, Cheng Y, Magari M, Haberman AM. Germinal center B cell development has distinctly regulated stages completed by disengagement from T cell help. eLife 2017; 6. [PMID: 28498098 PMCID: PMC5429091 DOI: 10.7554/elife.19552] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/27/2017] [Indexed: 12/11/2022] Open
Abstract
To reconcile conflicting reports on the role of CD40 signaling in germinal center (GC) formation, we examined the earliest stages of murine GC B cell differentiation. Peri-follicular GC precursors first expressed intermediate levels of BCL6 while co-expressing the transcription factors RelB and IRF4, the latter known to repress Bcl6 transcription. Transition of GC precursors to the BCL6hi follicular state was associated with cell division, although the number of required cell divisions was immunogen dose dependent. Potentiating T cell help or CD40 signaling in these GC precursors actively repressed GC B cell maturation and diverted their fate towards plasmablast differentiation, whereas depletion of CD4+ T cells promoted this initial transition. Thus while CD40 signaling in B cells is necessary to generate the immediate precursors of GC B cells, transition to the BCL6hi follicular state is promoted by a regional and transient diminution of T cell help. DOI:http://dx.doi.org/10.7554/eLife.19552.001
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, United States
| | - David G Gonzalez
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, United States
| | - Christine M Cote
- Department of Immunobiology, Yale School of Medicine, New Haven, United States
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Shaoli Deng
- Third Military Medical University, Chongqing, China
| | | | - Masaki Magari
- Department of Medical Bioengineering, Okayama University, Okayama, Japan
| | - Ann M Haberman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
16
|
Suan D, Sundling C, Brink R. Plasma cell and memory B cell differentiation from the germinal center. Curr Opin Immunol 2017; 45:97-102. [DOI: 10.1016/j.coi.2017.03.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
|
17
|
The Role of TLR4 on B Cell Activation and Anti- β2GPI Antibody Production in the Antiphospholipid Syndrome. J Immunol Res 2016; 2016:1719720. [PMID: 27868072 PMCID: PMC5102736 DOI: 10.1155/2016/1719720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023] Open
Abstract
High titer of anti-β2-glycoprotein I antibodies (anti-β2GPI Ab) plays a pathogenic role in antiphospholipid syndrome (APS). Numerous studies have focused on the pathological mechanism in APS; however, little attention is paid to the immune mechanism of production of anti-β2GPI antibodies in APS. Our previous study demonstrated that Toll-like receptor 4 (TLR4) plays a vital role in the maturation of bone marrow-derived dendritic cells (BMDCs) from the mice immunized with human β2-glycoprotein I (β2GPI). TLR4 is required for the activation of B cells and the production of autoantibody in mice treated with β2GPI. However, TLR4 provides a third signal for B cell activation and then promotes B cells better receiving signals from both B cell antigen receptor (BCR) and CD40, thus promoting B cell activation, surface molecules expression, anti-β2GPI Ab production, and cytokines secretion and making B cell functioning like an antigen presenting cell (APC). At the same time, TLR4 also promotes B cells producing antibodies by upregulating the expression of B-cell activating factor (BAFF). In this paper, we aim to review the functions of TLR4 in B cell immune response and antibody production in autoimmune disease APS and try to find a new way for the prevention and treatment of APS.
Collapse
|
18
|
TFH cells progressively differentiate to regulate the germinal center response. Nat Immunol 2016; 17:1197-1205. [PMID: 27573866 PMCID: PMC5030190 DOI: 10.1038/ni.3554] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022]
Abstract
Germinal center (GC) B cells undergo affinity selection, which depends on interactions with CD4(+) follicular helper T cells (TFH cells). We found that TFH cells progressed through transcriptionally and functionally distinct stages and provided differential signals for GC regulation. They initially localized proximally to mutating B cells, secreted interleukin 21 (IL-21), induced expression of the transcription factor Bcl-6 and selected high-affinity B cell clones. As the GC response evolved, TFH cells extinguished IL-21 production and switched to IL-4 production, showed robust expression of the co-stimulatory molecule CD40L, and promoted the development of antibody-secreting B cells via upregulation of the transcription factor Blimp-1. Thus, TFH cells in the B cell follicle progressively differentiate through stages of localization, cytokine production and surface ligand expression to 'fine tune' the GC reaction.
Collapse
|
19
|
Menard LC, Habte S, Gonsiorek W, Lee D, Banas D, Holloway DA, Manjarrez-Orduno N, Cunningham M, Stetsko D, Casano F, Kansal S, Davis PM, Carman J, Zhang CK, Abidi F, Furie R, Nadler SG, Suchard SJ. B cells from African American lupus patients exhibit an activated phenotype. JCI Insight 2016; 1:e87310. [PMID: 27699274 DOI: 10.1172/jci.insight.87310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease driven by both innate and adaptive immune cells. African Americans tend to present with more severe disease at an earlier age compared with patients of European ancestry. In order to better understand the immunological differences between African American and European American patients, we analyzed the frequencies of B cell subsets and the expression of B cell activation markers from a total of 68 SLE patients and 69 normal healthy volunteers. We found that B cells expressing the activation markers CD86, CD80, PD1, and CD40L, as well as CD19+CD27-IgD- double-negative B cells, were enriched in African American patients vs. patients of European ancestry. In addition to increased expression of CD40L, surface levels of CD40 on B cells were lower, suggesting the engagement of the CD40 pathway. In vitro experiments confirmed that CD40L expressed by B cells could lead to CD40 activation and internalization on adjacent B cells. To conclude, these results indicate that, compared with European American patients, African American SLE patients present with a particularly active B cell component, possibly via the activation of the CD40/CD40L pathway. These data may help guide the development of novel therapies.
Collapse
Affiliation(s)
- Laurence C Menard
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Sium Habte
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Waldemar Gonsiorek
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Deborah Lee
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Dana Banas
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Deborah A Holloway
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | | | - Mark Cunningham
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Dawn Stetsko
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Francesca Casano
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Selena Kansal
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Patricia M Davis
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Julie Carman
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Clarence K Zhang
- Immunoscience Translational Bioinformatics, Bristol-Myers Squibb Company, Pennington, New Jersey, USA
| | - Ferva Abidi
- Division of Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Richard Furie
- Division of Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Steven G Nadler
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Suzanne J Suchard
- Discovery Translational Sciences, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| |
Collapse
|
20
|
Zhu Y, Zou L, Liu YC. T follicular helper cells, T follicular regulatory cells and autoimmunity. Int Immunol 2015; 28:173-9. [PMID: 26714592 DOI: 10.1093/intimm/dxv079] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
CD4(+)T follicular helper (Tfh) cells are recognized as a distinct T-cell subset, which provides help for germinal center (GC) formation, B-cell development and affinity maturation, and immunoglobulin class switching, as an indispensable part of adaptive immunity. Tfh cell differentiation depends on various factors including cell-surface molecule interactions, extracellular cytokines and multiple transcription factors, with B-cell lymphoma 6 (Bcl-6) being the master regulator. T follicular regulatory (Tfr) cells are also located in the GC and share phenotypic characteristics with Tfh cells and regulatory T cells, but function as negative regulators of GC responses. Dysregulation of either Tfh or Tfr cells is linked to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus. This review covers the basic Tfh and Tfr biology including their differentiation and function, and their close relationship with autoimmune diseases.
Collapse
Affiliation(s)
- Yangyang Zhu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Le Zou
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Dr., La Jolla, CA 92130, USA
| |
Collapse
|
21
|
Kometani K, Kurosaki T. Differentiation and maintenance of long-lived plasma cells. Curr Opin Immunol 2015; 33:64-9. [DOI: 10.1016/j.coi.2015.01.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 01/03/2023]
|
22
|
Marrella V, Lo Iacono N, Fontana E, Sobacchi C, Sic H, Schena F, Sereni L, Castiello MC, Poliani PL, Vezzoni P, Cassani B, Traggiai E, Villa A. IL-10 Critically Modulates B Cell Responsiveness in Rankl−/− Mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:4144-53. [DOI: 10.4049/jimmunol.1401977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
|
23
|
Design of vaccine adjuvants incorporating TNF superfamily ligands and TNF superfamily molecular mimics. Immunol Res 2014; 57:303-10. [PMID: 24198065 DOI: 10.1007/s12026-013-8443-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
TNF superfamily ligands play a critical role in the regulation of adaptive immune responses, including the costimulation of dendritic cells, T cells, and B cells. This costimulation could potentially be exploited for the development of prophylactic vaccines and immunotherapy. Despite this, there have been only a limited number of reports on the use of this family of molecules as gene-based adjuvants to enhance DNA and/or viral vector vaccines. In addition, the molecule latent membrane protein 1 (LMP1), a viral mimic of the TNF superfamily receptor CD40, provides an alternative approach for the design of novel molecular adjuvants. Here, we discuss advances in the development of recombinant TNF superfamily ligands as adjuvants for HIV vaccines and as cancer immunotherapy, including the use of LMP1 and LMP1-CD40 chimeric fusion proteins to mimic constitutive CD40 signaling.
Collapse
|
24
|
Faiman B, Richards T. Innovative agents in multiple myeloma. J Adv Pract Oncol 2014; 5:193-202. [PMID: 25089218 PMCID: PMC4114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable cancer of the bone marrow plasma cells. However, the overall survival of patients with MM has increased dramatically within the past decade. This is due, in part, to newer agents such as immunomodulatory drugs (lenalidomide, thalidomide, and pomalidomide) and proteasome inhibitors (bortezomib, carfilzomib, MLN9708). These and several other new classes of drugs have arisen from an improved understanding of the complex environment in which genetic changes occur. Improved understanding of genetic events will enable clinicians to better stratify risk before and during therapy, tailor treatment, and test the value of personalized interventions. The ultimate goal in this incurable disease setting is to reduce the impact of cancer- or chemotherapy-related side effects. Nurses and advanced practitioners are integral to the treatment team. Thus, each should be aware of changes to the current drug landscape. Targeted drugs with sophisticated mechanisms of action are currently under investigation. Patients gain access to newer drugs within the context of clinical trials. Awareness of such trials will help accrual and determine if therapeutic benefit exists. In this article, we will describe new agents with unique and targeted mechanisms of action that have activity in patients with relapsed and/or refractory multiple myeloma.
Collapse
Affiliation(s)
- Beth Faiman
- Cleveland Clinic Foundation, Cleveland, Ohio, and University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiffany Richards
- Cleveland Clinic Foundation, Cleveland, Ohio, and University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Koni PA, Bolduc A, Takezaki M, Ametani Y, Huang L, Lee JR, Nutt SL, Kamanaka M, Flavell RA, Mellor AL, Tsubata T, Shimoda M. Constitutively CD40-activated B cells regulate CD8 T cell inflammatory response by IL-10 induction. THE JOURNAL OF IMMUNOLOGY 2013; 190:3189-96. [PMID: 23440421 DOI: 10.4049/jimmunol.1203364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
B cells are exposed to high levels of CD40 ligand (CD40L, CD154) in chronic inflammatory diseases. In addition, B cells expressing both CD40 and CD40L have been identified in human diseases such as autoimmune diseases and lymphoma. However, how such constitutively CD40-activated B cells under inflammation may impact on T cell response remains unknown. Using a mouse model in which B cells express a CD40L transgene (CD40LTg) and receive autocrine CD40/CD40L signaling, we show that CD40LTg B cells stimulated memory-like CD4 and CD8 T cells to express IL-10. This IL-10 expression by CD8 T cells was dependent on IFN-I and programmed cell death protein 1, and was critical for CD8 T cells to counterregulate their overactivation. Furthermore, adoptive transfer of naive CD8 T cells in RAG-1(-/-) mice normally induces colitis in association with IL-17 and IFN-γ cytokine production. Using this model, we show that adoptive cotransfer of CD40LTg B cells, but not wild-type B cells, significantly reduced IL-17 response and regulated colitis in association with IL-10 induction in CD8 T cells. Thus, B cells expressing CD40L can be a therapeutic goal to regulate inflammatory CD8 T cell response by IL-10 induction.
Collapse
Affiliation(s)
- Pandelakis A Koni
- Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mesin L, Sollid LM, Di Niro R. The intestinal B-cell response in celiac disease. Front Immunol 2012; 3:313. [PMID: 23060888 PMCID: PMC3463893 DOI: 10.3389/fimmu.2012.00313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/18/2012] [Indexed: 12/19/2022] Open
Abstract
The function of intestinal immunity is to provide protection toward pathogens while preserving the composition of the microflora and tolerance to orally fed nutrients. This is achieved via a number of tightly regulated mechanisms including production of IgA antibodies by intestinal plasma cells. Celiac disease is a common gut disorder caused by a dysfunctional immune regulation as signified, among other features, by a massive intestinal IgA autoantibody response. Here we review the current knowledge of this B-cell response and how it is induced, and we discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Luka Mesin
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Gabriel D. Victora
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
28
|
Koguchi Y, Buenafe AC, Thauland TJ, Gardell JL, Bivins-Smith ER, Jacoby DB, Slifka MK, Parker DC. Preformed CD40L is stored in Th1, Th2, Th17, and T follicular helper cells as well as CD4+ 8- thymocytes and invariant NKT cells but not in Treg cells. PLoS One 2012; 7:e31296. [PMID: 22363608 PMCID: PMC3283616 DOI: 10.1371/journal.pone.0031296] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/05/2012] [Indexed: 01/01/2023] Open
Abstract
CD40L is essential for the development of adaptive immune responses. It is generally thought that CD40L expression in CD4+ T cells is regulated transcriptionally and made from new mRNA following antigen recognition. However, imaging studies show that the majority of cognate interactions between effector CD4+ T cells and APCs in vivo are too short to allow de novo CD40L synthesis. We previously showed that Th1 effector and memory cells store preformed CD40L (pCD40L) in lysosomal compartments and mobilize it onto the plasma membrane immediately after antigenic stimulation, suggesting that primed CD4+ T cells may use pCD40L to activate APCs during brief encounters. Indeed, our recent study showed that pCD40L is sufficient to mediate selective activation of cognate B cells and trigger DC activation in vitro. In this study, we show that pCD40L is present in Th1 and follicular helper T cells developed during infection with lymphocytic choriomeningitis virus, Th2 cells in the airway of asthmatic mice, and Th17 cells from the CNS of animals with experimental autoimmune encephalitis (EAE). pCD40L is nearly absent in both natural and induced Treg cells, even in the presence of intense inflammation such as occurs in EAE. We also found pCD40L expression in CD4 single positive thymocytes and invariant NKT cells. Together, these results suggest that pCD40L may function in T cell development as well as an unexpectedly broad spectrum of innate and adaptive immune responses, while its expression in Treg cells is repressed to avoid compromising their suppressive activity.
Collapse
Affiliation(s)
- Yoshinobu Koguchi
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Abigail C. Buenafe
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Timothy J. Thauland
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jennifer L. Gardell
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Elizabeth R. Bivins-Smith
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Mark K. Slifka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David C. Parker
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shah HB, Joshi SK, Lang ML. CD40L-null NKT cells provide B cell help for specific antibody responses. Vaccine 2011; 29:9132-6. [PMID: 21959330 DOI: 10.1016/j.vaccine.2011.09.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/02/2011] [Accepted: 09/14/2011] [Indexed: 11/20/2022]
Abstract
CD1d-binding glycolipids exert potent adjuvant effects on T-dependent Ab responses. The mechanisms include cognate interaction between CD1d-expressing B cells and TCR-expressing Type I CD1d-restricted natural killer T cells (NKTs). However, the critical NKT-derived factors that stimulate B cells are poorly understood. We tested the hypothesis that CD1d-driven CD40L expression by NKT cells influences humoral immunity. Bone marrow chimeras with CD40L(+/+) or CD40L(-/-) NKT cells were immunized with Ag plus CD1d ligand before measuring Ab responses. CD40L(-/-) NKT cells stimulated higher endpoint Ab titers than controls expressing CD40L. In contrast, immunization of CD40L(-/-) mice revealed that CD40L(-/-) NKT cells could not provide B cell help when Th cells lacked CD40L. We report that CD40L(-/-) NKT cells can provide help for Ab production and do so cooperatively with CD40L(+/+) Th cells. We suggest that the manner in which NKT cells provide B cell help is distinct from that of Th cells.
Collapse
Affiliation(s)
- Hemangi B Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | | | | |
Collapse
|
30
|
Poe JC, Smith SH, Haas KM, Yanaba K, Tsubata T, Matsushita T, Tedder TF. Amplified B lymphocyte CD40 signaling drives regulatory B10 cell expansion in mice. PLoS One 2011; 6:e22464. [PMID: 21799861 PMCID: PMC3143148 DOI: 10.1371/journal.pone.0022464] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154(TG)) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22(-/-)) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154(TG)CD22(-/-) mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation. METHODOLOGY/PRINCIPAL FINDINGS CD154(TG)CD22(-/-) mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154(TG)CD22(-/-) mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154(TG)CD22(-/-) mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×10(6)±6 in CD154(TG)CD22(-/-) mice; 1.7×10(6)±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×10(6)±3 in CD154(TG)CD22(-/-) mice; 6.1×10(6)±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells. CONCLUSIONS/SIGNIFICANCE These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.
Collapse
Affiliation(s)
- Jonathan C. Poe
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Susan H. Smith
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Karen M. Haas
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Koichi Yanaba
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Takeshi Tsubata
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Matsushita
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
31
|
Koguchi Y, Gardell JL, Thauland TJ, Parker DC. Cyclosporine-resistant, Rab27a-independent mobilization of intracellular preformed CD40 ligand mediates antigen-specific T cell help in vitro. THE JOURNAL OF IMMUNOLOGY 2011; 187:626-34. [PMID: 21677130 DOI: 10.4049/jimmunol.1004083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD40L is critically important for the initiation and maintenance of adaptive immune responses. It is generally thought that CD40L expression in CD4(+) T cells is regulated transcriptionally and made from new mRNA following Ag recognition. However, recent studies with two-photon microscopy revealed that most cognate interactions between effector CD4(+) T cells and APCs are too short for de novo synthesis of CD40L. Given that effector and memory CD4(+) T cells store preformed CD40L (pCD40L) in lysosomal compartments and that pCD40L comes to the cell surface within minutes of antigenic stimulation, we and others have proposed that pCD40L might mediate T cell-dependent activation of cognate APCs during brief encounters in vivo. However, it has not been shown that this relatively small amount of pCD40L is sufficient to activate APCs, owing to the difficulty of separating the effects of pCD40L from those of de novo CD40L and other cytokines in vitro. In this study, we show that pCD40L surface mobilization is resistant to cyclosporine or FK506 treatment, while de novo CD40L and cytokine expression are completely inhibited. These drugs thus provide a tool to dissect the role of pCD40L in APC activation. We find that pCD40L mediates selective activation of cognate but not bystander APCs in vitro and that mobilization of pCD40L does not depend on Rab27a, which is required for mobilization of lytic granules. Therefore, effector CD4(+) T cells deliver pCD40L specifically to APCs on the same time scale as the lethal hit of CTLs but with distinct molecular machinery.
Collapse
Affiliation(s)
- Yoshinobu Koguchi
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
32
|
Lang GA, Johnson AM, Devera TS, Joshi SK, Lang ML. Reduction of CD1d expression in vivo minimally affects NKT-enhanced antibody production but boosts B-cell memory. Int Immunol 2011; 23:251-60. [PMID: 21398691 DOI: 10.1093/intimm/dxq477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The CD1d-binding glycolipid α-galactosylceramide exerts potent adjuvant effects on T-dependent humoral immunity. The mechanism is driven by cognate interaction between CD1d-expressing B cells and TCR-expressing type I CD1d-restricted NKT cells. Thus, far positive effects of alpha-galactosylceramide have been observed on initial and sustained antibody titers as well as B-cell memory. Following vaccination, each of these features is desirable, but good B-cell memory is of paramount importance for long-lived immunity. We therefore tested the hypothesis that CD1d expression in vivo differentially affects initial antibody titers versus B-cell memory responses. CD1d(+/+) and CD1d(+/-) mice were generated and immunized with antigen plus CD1d ligand before analysis of cytokine expression, CD40L expression, initial and longer term antibody responses and B-cell memory. As compared with CD1d(+/+) controls, CD1d(+/-) mice had equivalent numbers of total NKT cells, lower cytokine production, fewer CD40L-expressing NKT cells, lower initial antibody responses, similar long-term antibody responses and higher B-cell memory. Our data indicate that weak CD1d antigen presentation may facilitate good B-cell memory without compromising antibody responses. This work may impact vaccine design since over-stimulation of NKT cells at the time of vaccination may not lead to optimal B-cell memory.
Collapse
Affiliation(s)
- Gillian A Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
33
|
Calado DP, Zhang B, Srinivasan L, Sasaki Y, Seagal J, Unitt C, Rodig S, Kutok J, Tarakhovsky A, Schmidt-Supprian M, Rajewsky K. Constitutive canonical NF-κB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 2010; 18:580-9. [PMID: 21156282 PMCID: PMC3018685 DOI: 10.1016/j.ccr.2010.11.024] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/26/2010] [Accepted: 11/15/2010] [Indexed: 01/20/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) comprises disease entities with distinct genetic profiles, including germinal center B cell (GCB)-like and activated B cell (ABC)-like DLBCLs. Major differences between these two subtypes include genetic aberrations leading to constitutive NF-κB activation and interference with terminal B cell differentiation through BLIMP1 inactivation, observed in ABC- but not GCB-DLBCL. Using conditional gain-of-function and/or loss-of-function mutagenesis in the mouse, we show that constitutive activation of the canonical NF-κB pathway cooperates with disruption of BLIMP1 in the development of a lymphoma that resembles human ABC-DLBCL. Our work suggests that both NF-κB signaling, as an oncogenic event, and BLIMP1, as a tumor suppressor, play causal roles in the pathogenesis of ABC-DLBCL.
Collapse
Affiliation(s)
- Dinis Pedro Calado
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Baochun Zhang
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lakshmi Srinivasan
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshiteru Sasaki
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
- Riken Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Jane Seagal
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Unitt
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jeffery Kutok
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Alexander Tarakhovsky
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Marc Schmidt-Supprian
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
- Max Planck Institute of Biochemistry, Am Klopferspitz 18 D-82152, Martinsried, Germany
| | - Klaus Rajewsky
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
34
|
Kishi Y, Aiba Y, Higuchi T, Furukawa K, Tokuhisa T, Takemori T, Tsubata T. Augmented antibody response with premature germinal center regression in CD40L transgenic mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:211-9. [PMID: 20505144 DOI: 10.4049/jimmunol.0901694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD40 signaling is required for activation and differentiation of B cells, including germinal center (GC) formation and generation of memory B cells, in vivo generation of CD40 signaling augments plasma cell differentiation but disrupts GCs. Thus, CD40 signaling is thought to direct B cells to extrafollicular plasma cell fate rather than GC formation. In this study, we analyzed CD40L transgenic (CD40LTg) mice that constitutively express CD40L on B cells. After immunization, activation of B cells, but not dendritic cells, was augmented, although dendritic cells can be activated by CD40 ligation. Bone marrow chimera carrying CD40LTg and nontransgenic B cells showed increased Ab production from transgenic, but not from coexisting nontransgenic, B cells, suggesting that CD40L on a B cell preferentially stimulates the same B cell through an autocrine pathway, thereby augmenting Ab production. Although GCs rapidly regressed after day 5 of immunization and failed to generate late-appearing high-affinity Ab, CD40LTg mice showed normal GC formation up to day 5, as well as normal generation of long-lived plasma cells and memory B cell responses. This observation suggests that CD40 signaling does not block GC formation or differentiation of GC B cells, but it inhibits sustained expansion of GC B cells and augments B cell differentiation.
Collapse
Affiliation(s)
- Yusuke Kishi
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|