1
|
Hudson JS, Nowicki KW, Lucke-Wold B, Gersey ZC, Dodd WS, Alattar A, McCarthy DJ, Agarwal P, Mehdi Z, Lang MJ, Hasan DM, Hoh BL, Gross BA. Clopidogrel Is Associated with Reduced Likelihood of Aneurysmal Subarachnoid Hemorrhage: a Multi-Center Matched Retrospective Analysis. Transl Stroke Res 2024; 15:936-940. [PMID: 37470917 DOI: 10.1007/s12975-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Maladaptive inflammation underlies the formation and rupture of human intracranial aneurysms. There is a growing body of evidence that anti-inflammatory pharmaceuticals may beneficially modulate this process. Clopidogrel (Plavix) is a commonly used irreversible P2Y12 receptor antagonist with anti-inflammatory activity. In this paper, we investigate whether clopidogrel is associated with the likelihood of aneurysm rupture in a multi-institutional propensity-matched cohort analysis. Patients presenting for endovascular treatment of their unruptured intracranial aneurysms and those presenting with aneurysm rupture between 2015 and 2019 were prospectively identified at two quaternary referral centers. Patient demographics, comorbidities, and medication usage at the time of presentation were collected. Patients taking clopidogrel or not taking clopidogrel were matched in a 1:1 fashion with respect to location, age, smoking status, aneurysm size, aspirin usage, and hypertension. A total of 1048 patients with electively treated aneurysms or subarachnoid hemorrhages were prospectively identified. Nine hundred twenty-one patients were confirmed to harbor aneurysms during catheter-based diagnostic angiography. A total of 172/921 (19%) patients were actively taking clopidogrel at the time of presentation. Three hundred thirty-two patients were matched in a 1:1 fashion. A smaller proportion of patients taking clopidogrel at presentation had ruptured aneurysms than those who were not taking clopidogrel (6.6% vs 23.5%, p < .0001). Estimated treatment effect analysis demonstrated that clopidogrel usage decreased aneurysm rupture risk by 15%. We present, to the best of our knowledge, the first large-scale multi-institutional analysis suggesting clopidogrel use is protective against intracranial aneurysm rupture. It is our hope that these data will guide future investigation, revealing the pathophysiologic underpinning of this association.
Collapse
Affiliation(s)
- Joseph S Hudson
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA.
| | - Kamil W Nowicki
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zachary C Gersey
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA
| | - William S Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ali Alattar
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA
| | - David J McCarthy
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA
| | - Prateek Agarwal
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA
| | - Zain Mehdi
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael J Lang
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA
| | - David M Hasan
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brian L Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bradley A Gross
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, 4th floor, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Kiaie SH, Hatami Z, Nasr MS, Pazooki P, Hemmati S, Baradaran B, Valizadeh H. Pharmacological interaction and immune response of purinergic receptors in therapeutic modulation. Purinergic Signal 2024; 20:321-343. [PMID: 37843749 PMCID: PMC11303644 DOI: 10.1007/s11302-023-09966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/10/2023] [Indexed: 10/17/2023] Open
Abstract
Nucleosides and purine nucleotides serve as transmitter and modulator agents that extend their functions beyond the cell. In this context, purinergic signaling plays a crucial role in regulating energy homeostasis and modulating metabolic alterations in tumor cells. Therefore, it is essential to consider the pharmacological targeting of purinergic receptors (PUR), which encompass the expression and inhibition of P1 receptors (metabotropic adenosine receptors) as well as P2 receptors (extracellular ATP/ADP) comprising P2X and P2Y receptors. Thus, the pharmacological interaction between inhibitors (such as RNA, monoclonal antibodies, and small molecules) and PUR represents a key aspect in facilitating the development of therapeutic interventions. Moreover, this review explores recent advancements in pharmacological inhibitors and the regulation of innate and adaptive immunity of PUR, specifically in relation to immunological and inflammatory responses. These responses encompass the release of pro-inflammatory cytokines (PIC), the production of reactive oxygen and nitrogen species (ROS and RNS), the regulation of T cells, and the activation of inflammasomes in all human leukocytes.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Hemmati
- Institute Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
4
|
Liu L, Gao J, Tang Y, Guo G, Gan H. Increased expression of the P2Y 12 receptor is involved in the failure of autogenous arteriovenous fistula caused by stenosis. Ren Fail 2023; 45:2278314. [PMID: 38532720 PMCID: PMC11073481 DOI: 10.1080/0886022x.2023.2278314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/27/2023] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE This study investigated the role of the P2Y12 receptor in autogenous arteriovenous fistula (AVF) failure resulting from stenosis. METHODS Stenotic venous tissues and blood samples were obtained from patients with end-stage renal disease (ESRD) together with AVF stenosis, while venous tissues and blood samples were collected from patients with ESRD undergoing initial AVF surgery as controls. Immunohistochemistry and/or immunofluorescence techniques were utilized to assess the expression of P2Y12, transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein 1 (MCP-1), and CD68 in the venous tissues. The expression levels of P2Y12, TGFβ1, and MCP-1 were quantified using quantitative reverse transcription-polymerase chain reaction and western blot analyses. Double and triple immunofluorescence staining was performed to precisely localize the cellular localization of P2Y12 expression. RESULTS Expression levels of P2Y12, TGFβ1, MCP-1, and CD68 were significantly higher in stenotic AVF venous tissues than in the control group tissues. Double and triple immunofluorescence staining of stenotic AVF venous tissues indicated that P2Y12 was predominantly expressed in α-SMA-positive vascular smooth muscle cells (VSMCs) and, to a lesser extent, in CD68-positive macrophages, with limited expression in CD31-positive endothelial cells. Moreover, a subset of macrophage-like VSMCs expressing P2Y12 were observed in both stenotic AVF venous tissues and control venous tissues. Additionally, a higher number of P2Y12+/TGF-β1+ double-positive cells were identified in stenotic AVF venous tissues than in the control group tissues. CONCLUSION Increased expression of P2Y12 in stenotic AVF venous tissues of patients with ESRD suggests its potential involvement in the pathogenesis of venous stenosis within AVFs.
Collapse
Affiliation(s)
- Lei Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jianya Gao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Guangfeng Guo
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Entsie P, Kang Y, Amoafo EB, Schöneberg T, Liverani E. The Signaling Pathway of the ADP Receptor P2Y 12 in the Immune System: Recent Discoveries and New Challenges. Int J Mol Sci 2023; 24:6709. [PMID: 37047682 PMCID: PMC10095349 DOI: 10.3390/ijms24076709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.
Collapse
Affiliation(s)
- Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
7
|
Abstract
In addition to the key role in hemostasis and thrombosis, platelets have also been wildly acknowledged as immune regulatory cells and involving in the pathogenesis of inflammation-related diseases. Since purine receptor P2Y12 plays a crucial role in platelet activation, P2Y12 antagonists such as clopidogrel, prasugrel, and ticagrelor have been widely used in cardiovascular diseases worldwide in recent decades due to their potent antiplatelet and antithrombotic effects. Meanwhile, the role of P2Y12 in inflammatory diseases has also been extensively studied. Relatively, there are few studies on the regulation of P2Y12. This review first summarizes the various roles of P2Y12 in the process of platelet activation, as well as downstream effects and signaling pathways; then introduces the effects of P2Y12 in inflammatory diseases such as sepsis, atherosclerosis, cancer, autoimmune diseases, and asthma; and finally reviews the current researches on P2Y12 regulation.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China
| | | | - Xia Cao
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Albayati S, Li N, Unsworth AJ, Liverani E. Platelet-lymphocyte co-culture serves as an ex vivo platform of dynamic heterotypic cross-talk. J Cell Commun Signal 2022; 16:661-675. [PMID: 35414144 PMCID: PMC9733731 DOI: 10.1007/s12079-022-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Platelets are well known for their roles in hemostasis and thrombosis, and are increasingly recognized for their abilities to interact with white blood cells during inflammatory diseases, via secreted soluble factors as well as cell-cell contact. This interaction has been investigated in animal models and patient samples and has shown to be implicated in patient outcomes in several diseases. Platelet-leukocyte co-cultures are widely used to study platelet-leukocyte interactions ex vivo. However, there is a paucity with regard to the systematic characterization of cell activation and functional behaviors of platelets and leukocytes in these co-cultures. Hence we aimed to characterize a model of platelet-leukocyte co-culture ex vivo. Human peripheral blood mononuclear cell (PBMC) and platelets were isolated and co-cultured for 5 days at 37 °C in the presence or absence of anti-CD3/CD28 antibodies or PHA. We evaluated PF-4 secretion and p-selectin expression in platelets as markers of platelet activation. Lymphocyte activation was assessed by cell proliferation and cell population phenotyping, in addition to platelet-lymphocyte aggregation. Platelet secretion and p-selectin expression is maintained throughout the co-culture, indicating that platelets were viable and reactive over the 5 days. Similarly PBMCs were viable and maintained proliferative capacity. Finally, dynamic heterotypic conjugation between platelets and T lymphocytes was also observed throughout co-culture (with a peak at days 3 and 4) upon T lymphocyte activation. In conclusion, this in vitro model can successfully mimic the in vivo interaction between platelets and T lymphocytes, and can be used to confirm and/or support in vivo results.
Collapse
Affiliation(s)
- Samara Albayati
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institutet, Stockholm, Sweden
| | - Amanda J Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA.
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
9
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
10
|
Arneth B. The roles of nucleotide signaling and platelets in inflammation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:910-941. [PMID: 35727041 DOI: 10.1080/15257770.2022.2085295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Nucleotides and platelets have been associated with a wide range of activities that affect the host inflammatory response. The main goal of this study is to examine the roles of nucleotide signaling and platelets in inflammation. The study analysis entailed conducting a systematic search to identify relevant articles in PsycINFO, PubMed, Web of Science, and CINAHL. The evidence gathered from the identified articles shows the roles of nucleotides and platelets in inflammation. In the extracellular environment, nucleotides act as signaling molecules that can activate nucleotide receptors to promote inflammation. Inflammation is an essential process through which the innate immune system responds to pathogens, microbes, and damage-associated molecular patterns. Moreover, research evidence shows that the mechanisms through which platelets affect inflammatory responses and regulate hemostasis are the same. The roles of nucleotides and platelets in inflammation have been explored in several studies worldwide. Although platelets and nucleotides have unique structures, both of them influence the host response to pathogens and tumors. Analysis of platelets and nucleotides will offer valuable insight for the development of new treatments for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Borros Arneth
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the University of Giessen and Marburg (UKGM), Justus Liebig University, Giessen, Germany
| |
Collapse
|
11
|
Ticagrelor versus clopidogrel in reducing inflammatory cell infiltration of thrombus aspirated in patients with ST-elevation myocardial infarction. Eur J Clin Pharmacol 2022; 78:1391-1398. [PMID: 35674835 DOI: 10.1007/s00228-022-03348-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ticagrelor provides more rapid, potent, and consistent anti-platelet efficacy than clopidogrel. This randomized trial aimed to evaluate the anti-inflammation effects of ticagrelor versus clopidogrel on thrombus aspirated from the ST-elevation myocardial infarction (STEMI) patients. METHOD A total of 98 patients with STEMI and intended percutaneous coronary intervention (PCI) were randomly assigned to receive clopidogrel (600-mg loading dose) or ticagrelor (180-mg loading dose), of whom 55 with large thrombus burden underwent thrombus aspiration during PCI. Thrombus specimens were successfully aspirated from 49 patients. Finally, 24 patients in the clopidogrel group and 23 in the ticagrelor group completed the study. Inflammatory cells within thrombi were assessed by hematoxylin-eosin and immunohistochemistry stainings. RESULTS Compared with the clopidogrel group, the number of total inflammatory cells per mm2 thrombus area in the ticagrelor group was decreased by 28% (P = 0.009). The numbers of neutrophils and myeloperoxidase-positive cells per mm2 thrombus area in the ticagrelor group were respectively decreased by 35% (P = 0.016) and 28% (P = 0.047), as compared with those in the clopidogrel group. Moreover, ticagrelor treatment reduced the ratio of monocytes number higher than 250 per mm2 thrombus area compared with clopidogrel treatment (4% versus 29%, P = 0.048). CONCLUSION In patients with undergoing PCI for STEMI, the loading dose ticagrelor regimen was associated with a reduction in inflammatory cell infiltration within thrombus compared with the loading dose clopidogrel regimen.
Collapse
|
12
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
13
|
Zhang X, Zhao W, Zhao Y, Zhao Z, Lv Z, Zhang Z, Ren H, Wang Q, Liu M, Qian M, Du B, Qin J. Inflammatory macrophages exacerbate neutrophil-driven joint damage through ADP/P2Y 1 signaling in rheumatoid arthritis. SCIENCE CHINA-LIFE SCIENCES 2021; 65:953-968. [PMID: 34480694 DOI: 10.1007/s11427-020-1957-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints and is associated with excessive immune cell infiltration. However, the complex interactions between the immune cell populations in the RA synovium remain unknown. Here, we demonstrate that inflammatory macrophages in the synovium exacerbate neutrophil-driven joint damage in RA through ADP/P2Y1 signaling. We show that extracellular ADP (eADP) and its receptors are obviously increased in synovial tissues of RA patients as well as collagen-induced arthritis (CIA) mice, and eADP enhances neutrophil infiltration into joints through macrophages producing the chemokine CXCL2, aggravating disease development. Accordingly, the arthritis mouse model had more neutrophils in inflamed joints following ADP injection, whereas P2Y1 deficiency and pharmacologic inhibition restored arthritis severity to basal levels, suggesting a dominant role of ADP/P2Y1 signaling in RA pathology. Moreover, cellular activity of ADP/P2Y1-mediated CXCL2 production was dependent on the Gαq/Ca2+-NF-κB/NFAT pathway in macrophages. Overall, this study reveals a non-redundant role of eADP as a trigger in the pathogenesis of RA through neutrophil recruitment and disrupted tissue homeostasis and function.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.,Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, China
| | - Wenxiang Zhao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Yihan Zhao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Zeda Zhao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Zhangsheng Lv
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Zhen Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Hua Ren
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Qin Wang
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, 201499, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Min Qian
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Bing Du
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| | - Juliang Qin
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
P 2Y 12 receptor blockers are anti-inflammatory drugs inhibiting both circulating monocytes and macrophages including THP-1 cells. Sci Rep 2021; 11:17459. [PMID: 34465804 PMCID: PMC8408182 DOI: 10.1038/s41598-021-95710-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/22/2021] [Indexed: 01/11/2023] Open
Abstract
P2Y12 blockade improves patient outcomes after myocardial infarction. As well as antithrombotic effects, anti-inflammatory effects may contribute to this beneficial clinical outcome. Here we aimed to identify potential anti-inflammatory effects of P2Y12 receptor blockers on monocytes and macrophages. Using flow cytometry, migration assays, flow chambers and RNA microarrays, we investigated the effects of adenosine diphosphate (ADP) and P2Y12 receptor blockers on blood monocytes, THP-1 monocytes and THP-1 monocytes after differentiation to macrophages. P2Y12 -expressing platelets can form aggregates with monocytes in circulating blood. Mediated by platelets, ADP results in activation of the integrin receptor Mac-1 on blood monocytes, as detected by the conformation-specific single-chain antibody MAN-1. Via the same association with platelets, THP-1 monocyte adhesion to the endothelial intercellular adhesion molecule 1 (ICAM-1) is induced by ADP. P2Y12 receptor blockers prevent these ADP effects on monocytes. Interestingly, in contrast to THP-1 monocytes, THP-1 monocytes, after differentiation to macrophages, directly expressed the P2Y12 receptor and consequently ADP was found to be a potent chemoattractant. Again, P2Y12 receptor blockers antagonised this effect. Accordingly, stimulation of THP-1 macrophages with ADP caused a substantial change in gene expression pattern and upregulation of several genes associated with inflammation and atherogenesis. These data establish novel anti-inflammatory effects of P2Y12 receptor blockers on monocytes and macrophages, which are expected to contribute to cardiovascular risk reduction.
Collapse
|
15
|
Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 2021; 50:874-885. [PMID: 32248335 DOI: 10.1007/s11239-020-02098-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
16
|
Gölöncsér F, Baranyi M, Iring A, Hricisák L, Otrokocsi L, Benyó Z, Sperlágh B. Involvement of P2Y 12 receptors in an NTG-induced model of migraine in male mice. Br J Pharmacol 2021; 178:4626-4645. [PMID: 34363208 DOI: 10.1111/bph.15641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE P2Y12 receptors (P2Y12 Rs) are known to regulate different forms of pain and inflammation. In this study we investigated the participation of P2Y12 Rs in an animal model of migraine. EXPERIMENTAL APPROACH We tested the effect of the centrally administered selective P2Y12 R antagonist PSB-0739, and P2Y12 R gene deficiency in acute nitroglycerin (NTG)-treated mice. Additionally, platelet depletion was used to investigate the role of platelet P2Y12 Rs during migraine-like pain. KEY RESULTS NTG induced sensory hypersensitivity of C57BL/6 wild-type (P2ry12+/+ ) mice, accompanied by an increase in c-fos and CGRP expression in the upper cervical spinal cord (C1-C2) and trigeminal nucleus caudalis (TNC). Similar changes were also observed in P2Y12 R gene-deficient (P2ry12-/- ) mice. Prophylactic intrathecal application of PSB-0739 reversed thermal hyperalgesia and head grooming time in wild-type mice but had no effect in P2ry12-/- mice; furthermore, it was also effective when applied as a post-treatment. PSB-0739 administration suppressed the expression of c-fos in C1-C2 and TNC, and decrease C1-C2 levels of dopamine and serotonin in wild-type mice. NTG treatment itself did not change adenosine diphosphate (ADP)-induced platelet activation measured by CD62P upregulation in wild-type mice. Platelet depletion by anti-mouse CD41 antibody and clopidogrel attenuated NTG-induced thermal hypersensitivity and head grooming time in mice. CONCLUSION AND IMPLICATIONS Taken together, our findings show that acute inhibition of P2Y12 Rs alleviates migraine-like pain in mice, by modulating the expression of c-fos, and platelet P2Y12 Rs might contribute to this effect. Hence, it is suggested that the blockade of P2Y12 Rs may have therapeutic potential against migraine.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
17
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Klaver D, Thurnher M. Control of Macrophage Inflammation by P2Y Purinergic Receptors. Cells 2021; 10:1098. [PMID: 34064383 PMCID: PMC8147772 DOI: 10.3390/cells10051098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages comprise a phenotypically and functionally diverse group of hematopoietic cells. Versatile macrophage subsets engage to ensure maintenance of tissue integrity. To perform tissue stress surveillance, macrophages express many different stress-sensing receptors, including purinergic P2X and P2Y receptors that respond to extracellular nucleotides and their sugar derivatives. Activation of G protein-coupled P2Y receptors can be both pro- and anti-inflammatory. Current examples include the observation that P2Y14 receptor promotes STAT1-mediated inflammation in pro-inflammatory M1 macrophages as well as the demonstration that P2Y11 receptor suppresses the secretion of tumor necrosis factor (TNF)-α and concomitantly promotes the release of soluble TNF receptors from anti-inflammatory M2 macrophages. Here, we review macrophage regulation by P2Y purinergic receptors, both in physiological and disease-associated inflammation. Therapeutic targeting of anti-inflammatory P2Y receptor signaling is desirable to attenuate excessive inflammation in infectious diseases such as COVID-19. Conversely, anti-inflammatory P2Y receptor signaling must be suppressed during cancer therapy to preserve its efficacy.
Collapse
Affiliation(s)
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
19
|
Li FF, Liang YL, Han XS, Guan YN, Chen J, Wu P, Zhao XX, Jing Q. ADP receptor P2y12 prevents excessive primitive hematopoiesis in zebrafish by inhibiting Gata1. Acta Pharmacol Sin 2021; 42:414-421. [PMID: 32555443 DOI: 10.1038/s41401-020-0431-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
In the past two decades, purinergic signaling has emerged as a key regulator of hematopoiesis in physiological and pathological conditions. ADP receptor P2y12 is a crucial component of this signaling, but whether it is involved in primitive hematopoiesis remains unknown. To elucidate the function of P2y12 and provide new insights for drug development, we established a zebrafish P2y12 mutant by CRISPR/Cas 9-based genetic modification system, and investigated whether P2y12 acted as an important regulator for primitive hematopoiesis. By using mass spectrometry (MS) combined with RNA sequencing, we showed that absence of P2y12 induced excessive erythropoiesis, evidenced by significantly increased expression of mature erythrocytes marker α-globin (Hbae1 and Hbae3), β-globin (Hbbe1 and Hbbe3). Expression pattern analysis showed that P2y12 was mainly expressed in red blood cells and endothelial cells of early zebrafish embryos. Further studies revealed that primitive erythroid progenitor marker Gata1 was markedly up-regulated. Remarkably, inhibition of Gata1 by injection of Gata1 morpholino could rescue the erythroid abnormality in P2y12 mutants. The present study demonstrates the essential role of purinergic signaling in differentiation of proerythrocytes during primitive hematopoiesis, and provides potential targets for treatment of blood-related disease and drug development.
Collapse
|
20
|
Microglia and Neuroinflammation: What Place for P2RY12? Int J Mol Sci 2021; 22:ijms22041636. [PMID: 33561958 PMCID: PMC7915979 DOI: 10.3390/ijms22041636] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are immune brain cells involved in neuroinflammation. They express a lot of proteins on their surface such as receptors that can be activated by mediators released in the microglial environment. Among these receptors, purinergic receptor expression could be modified depending on the activation status of microglia. In this review, we focus on P2Y receptors and more specifically on P2RY12 that is involved in microglial motility and migration, the first step of neuroinflammation process. We describe the purinergic receptor families, P2RY12 structure, expression and physiological functions. The pharmacological and genetic tools for studying this receptor are detailed thereafter. Last but not least, we report the contribution of microglial P2RY12 to neuroinflammation in acute and chronic brain pathologies in order to better understand P2RY12 microglial role.
Collapse
|
21
|
Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2020; 187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.
Collapse
|
22
|
Albayati S, Vemulapalli H, Tsygankov AY, Liverani E. P2Y 12 antagonism results in altered interactions between platelets and regulatory T cells during sepsis. J Leukoc Biol 2020; 110:141-153. [PMID: 33242353 DOI: 10.1002/jlb.3a0220-097r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sepsis is a complex clinical condition resulting from a serious bloodstream infection. With mortality rates as high as 50%, improved treatments are needed. Regulatory T cells (Tregs), a subset of T lymphocytes, promote the resolution of inflammation. Septic patients have elevated levels of circulating Tregs. Platelets influence the proliferation and activation of Tregs in vitro. However, modulating platelet-Tregs interaction during sepsis may restraing Treg proliferation, leading to the restoration of immunologic homeostasis. P2Y12 is a purinergic receptor present on platelets and T lymphocytes. Blocking P2Y12 improves the outcome of sepsis. We investigated whether blocking P2Y12 alters platelet-Treg interaction in vivo. We used the murine model of sepsis, cecal ligation, and puncture (CLP) and we blocked P2Y12 using the P2Y12 antagonist, clopidogrel. Twenty-four hours after surgery, we measured Treg population sizes in the spleens of the Sham, CLP, and CLP + clopidogrel groups. We investigated the effect of blocking P2Y12 in vitro using cocultures of human platelets and T cells with or without anti-CD3/CD28. P2Y12 was blocked using AR-C69931MX. Treg population sizes were reduced in the septic mice treated with clopidogrel compared with untreated septic mice. Aggregation of platelets and CD4+ T cells was reduced in treated CLP mice compared with untreated CLP mice. P2Y12 antagonism changes how platelets influence T cells in vitro, depending on T-cell activation. In conclusion, blockade of the P2Y12 signaling pathway restrains Treg proliferation in vivo and in vitro. Targeting platelets to control Treg proliferation and activity may be a promising strategy for treating sepsis.
Collapse
Affiliation(s)
- Samara Albayati
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Harika Vemulapalli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA.,Department of Microbiology and Immunology Temple University School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| |
Collapse
|
23
|
Li Z, He C, Zhang J, Zhang H, Wei H, Wu S, Jiang W. P2Y6 Deficiency Enhances Dendritic Cell–Mediated Th1/Th17 Differentiation and Aggravates Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 205:387-397. [DOI: 10.4049/jimmunol.1900916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/14/2020] [Indexed: 01/16/2023]
|
24
|
Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int 2020; 20:110. [PMID: 32280302 PMCID: PMC7137337 DOI: 10.1186/s12935-020-01195-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine triphosphate (eATP) and its main metabolite adenosine (ADO) constitute an intrinsic part of immunological network in tumor immunity. The concentrations of eATP and ADO in tumor microenvironment (TME) are controlled by ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed on immune cells, endothelial cells and cancer cells. Once accumulated in TME, eATP boosts antitumor immune responses, while ADO attenuates immunity against tumors. eATP and ADO, like yin and yang, represent two opposite aspects from immune-activating to immune-suppressive signals. Here we reviewed the functions of eATP and ADO in tumor immunity and attempt to block eATP hydrolysis, ADO formation and their contradictory effects in tumor models, allowing the induction of effective anti-tumor immune responses in TME. These attempts documented that therapeutic approaches targeting eATP/ADO metabolism and function may be effective methods in cancer therapy.
Collapse
Affiliation(s)
- Li-Li Feng
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Yi-Qing Cai
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Ming-Chen Zhu
- 5Department of Clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing, 210009 Jiangsu China
| | - Li-Jie Xing
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Xin Wang
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China.,2School of Medicine, Shandong University, Jinan, 250012 Shandong China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China.,National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| |
Collapse
|
25
|
Santana PT, Luna-Gomes T, Rangel-Ferreira MV, Tamura AS, Da Graça CLAL, Machado MN, Zin WA, Takiya CM, Faffe DS, Coutinho-Silva R. P2Y 12 Receptor Antagonist Clopidogrel Attenuates Lung Inflammation Triggered by Silica Particles. Front Pharmacol 2020; 11:301. [PMID: 32256366 PMCID: PMC7093325 DOI: 10.3389/fphar.2020.00301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/28/2020] [Indexed: 11/15/2022] Open
Abstract
Silicosis is an occupational lung disease caused by inhalation of silica particles. It is characterized by intense lung inflammation, with progressive and irreversible fibrosis, leading to impaired lung function. Purinergic signaling modulates silica-induced lung inflammation and fibrosis through P2X7 receptor. In the present study, we investigate the role of P2Y12, the G-protein-coupled subfamily prototype of P2 receptor class in silicosis. To that end, BALB/c mice received an intratracheal injection of PBS or silica particles (20 mg), without or with P2Y12 receptor blockade by clopidogrel (20 mg/kg body weight by gavage every 48 h) - groups CTRL, SIL, and SIL + Clopi, respectively. After 14 days, lung mechanics were determined by the end-inflation occlusion method. Lung histology was analyzed, and lung parenchyma production of nitric oxide and cytokines (IL-1β, IL-6, TNF-α, and TGF-β) were determined. Silica injection reduced animal survival and increased all lung mechanical parameters in relation to CTRL, followed by diffuse lung parenchyma inflammation, increased neutrophil infiltration, collagen deposition and increased pro-inflammatory and pro-fibrogenic cytokine secretion, as well as increased nitrite production. Clopidogrel treatment prevented silica-induced changes in lung function, and significantly reduced lung inflammation, fibrosis, as well as cytokine and nitrite production. These data suggest that inhibition of P2Y12 signaling improves silica-induced lung inflammation, preventing lung functional changes and mortality. Our results corroborate previous observations of silica-induced lung changes and expand the understanding of purinergic signaling in this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
P2Y 12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci 2020; 21:ijms21041391. [PMID: 32092903 PMCID: PMC7073040 DOI: 10.3390/ijms21041391] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/18/2022] Open
Abstract
The P2Y12 receptor is a key player in platelet activation and a major target for antithrombotic drugs. The beneficial effects of P2Y12 receptor antagonists might, however, not be restricted to the primary and secondary prevention of arterial thrombosis. Indeed, it has been established that platelet activation also has an essential role in inflammation. Additionally, nonplatelet P2Y12 receptors present in immune cells and vascular smooth muscle cells might be effective players in the inflammatory response. This review will investigate the biological and clinical impact of P2Y12 receptor inhibition beyond its platelet-driven antithrombotic effects, focusing on its anti-inflammatory role. We will discuss the potential molecular and cellular mechanisms of P2Y12-mediated inflammation, including cytokine release, platelet–leukocyte interactions and neutrophil extracellular trap formation. Then we will summarize the current evidence on the beneficial effects of P2Y12 antagonists during various clinical inflammatory diseases, especially during sepsis, acute lung injury, asthma, atherosclerosis, and cancer.
Collapse
|
27
|
Abstract
Purinergic signaling involves extracellular purines and pyrimidines acting upon specific cell surface purinoceptors classified into the P1, P2X, and P2Y families for nucleosides and nucleotides. This widespread signaling mechanism is active in all major tissues and influences a range of functions in health and disease. Orthologs to all but one of the human purinoceptors have been found in mouse, making this laboratory animal a useful model to study their function. Indeed, analyses of purinoceptors via knock-in or knockout approaches to produce gain or loss of function phenotypes have revealed several important therapeutic targets. None of the homozygous purinoceptor knockouts proved to be developmentally lethal, which suggest that either these receptors are not involved in key developmental processes or that the large number of receptors in each family allowed for functional compensation. Different models for the same purinoceptor often show compatible phenotypes but there have been examples of significant discrepancies. These revealed unexpected differences in the structure of human and mouse genes and emphasized the importance of the genetic background of different mouse strains. In this chapter, we provide an overview of the current knowledge and new trends in the modifications of purinoceptor genes in vivo. We discuss the resulting phenotypes, their applications and relative merits and limitations of mouse models available to study purinoceptor subtypes.
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| |
Collapse
|
28
|
Vemulapalli H, Albayati S, Patwa VC, Tilley DG, Tsygankov AY, Liverani E. ADP exerts P2Y 12 -dependent and P2Y 12 -independent effects on primary human T cell responses to stimulation. J Cell Commun Signal 2019; 14:111-126. [PMID: 31808055 DOI: 10.1007/s12079-019-00540-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
Purinergic signaling plays a complex role in inflammation. Nucleotides released by T lymphocytes, endothelial cells, and platelets during inflammation induce cellular responses by binding to receptors that regulate intracellular signaling pathways. Previous studies have found that purinergic signaling can have both proinflammatory and anti-inflammatory effects, but the roles of specific pathways in specific cell types are poorly understood. We investigated the role of the P2Y12 signaling pathway in the activation of T lymphocytes in vitro. We isolated peripheral blood mononuclear cells (PBMCs) from healthy donors and pretreated them with ADP (a P2Y12 agonist), AR-C69931MX (a P2Y12 antagonist), or both. We then stimulated PBMC using phytohemagglutinin (PHA) or anti-CD3/CD28 antibodies. We found that ADP affects T cell responses in term of cell activity and receptor expression through both P2Y12-dependent and P2Y12-independent pathways and other responses (cytokine secretion) primarily through P2Y12 -independent pathways. The ADP-mediated effect changed over time and was stimulus-specific.
Collapse
Affiliation(s)
- Harika Vemulapalli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Samara Albayati
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Viren C Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA.,Department of Microbiology and Immunology, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
29
|
Kloss L, Dollt C, Schledzewski K, Krewer A, Melchers S, Manta C, Sticht C, Torre CDL, Utikal J, Umansky V, Schmieder A. ADP secreted by dying melanoma cells mediates chemotaxis and chemokine secretion of macrophages via the purinergic receptor P2Y12. Cell Death Dis 2019; 10:760. [PMID: 31591378 PMCID: PMC6779894 DOI: 10.1038/s41419-019-2010-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Melanoma immunotherapy is still not satisfactory due to immunosuppressive cell populations within the tumor stroma. Targeting tumor-associated macrophages (TAM) can help to restore an anti-tumor immunity. Previously, we could show that classical TAM markers expressed in vivo need a 7 day M-CSF/dexamethasone/IL-4 (MDI) stimulation for their induction in peripheral blood monocytes (pBM) in vitro. To identify possible novel therapeutic targets on TAM, gene expression analysis of MDI-treated pBM was performed. This identified up-regulation of the purinergic G-protein coupled receptor P2Y12, the therapeutic target of the clinically approved anti-thrombotic drugs cangrelor, clopidogrel, ticagrelor, and prasugrel. We generated a peptide antibody and validated its specificity using transgenic P2Y12+ U937 cells. With the help of this antibody, P2Y12 expression was confirmed on CD68+ CD163+ TAM of melanoma in situ. Functional analysis revealed that treatment of transgenic P2Y12+ U937 cells with the receptor agonist 2-MeSADP induced ERK1/2 and Akt phosphorylation and increased the secretion of the chemokines CXCL2, CXCL7, and CXCL8. These effects could be abolished with the P2Y12 antagonist PSB0739 or with Akt and ERK inhibitors. In addition, P2Y12+ macrophages migrated towards the ADP-rich culture medium of puromycin-treated dying B16F1 melanoma cells. Cangrelor treatment blocked migration. Taken together, our results indicate that P2Y12 is an important chemotaxis receptor, which triggers migration of macrophages towards nucleotide-rich, necrotic tumor areas, and modulates the inflammatory environment upon ADP binding.
Collapse
Affiliation(s)
- Loreen Kloss
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Claudia Dollt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Krewer
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Susanne Melchers
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Calin Manta
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolina de la Torre
- Center for Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Astrid Schmieder
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
30
|
Suzuki T, Kohyama K, Moriyama K, Ozaki M, Hasegawa S, Ueno T, Saitoe M, Morio T, Hayashi M, Sakuma H. Extracellular ADP augments microglial inflammasome and NF-κB activation via the P2Y12 receptor. Eur J Immunol 2019; 50:205-219. [PMID: 31549730 DOI: 10.1002/eji.201848013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome is a molecular complex that translates signals from pathogens and tissue damage into inflammatory responses, and plays crucial roles in numerous neurological diseases. Activation of the NLRP3 inflammasome leads to caspase-1 dependent cleavage of pro-IL-1β to form mature IL-1β. By acting on the P2X7 purinergic receptor, extracellular ATP is one of the major stimuli that activates the NLRP3 inflammasome. Although microglia express multiple purinergic receptors, their roles in inflammasome-mediated inflammation are largely unknown. We studied the role of the P2Y12 receptor, a metabotropic P2Y receptor enriched in microglia, on inflammation in vitro. Inhibition of the microglial P2Y12 receptor by PSB0739 or siRNA knockdown suppressed IL-1β release. P2Y12 receptor-deficient microglia displayed markedly attenuated IL-1β mRNA expression and release. P2Y12 receptor blockade also suppressed IL-6 production. Both IL-1β and IL-6 responses were augmented by extracellular ADP or ADP-βS and were abrogated by PSB0739. Mechanistically, ADP-βS potentiated NF-κB activation. In addition, ADP altered mitochondrial membrane potential in combination with ATP and increased the number of caspase-1 positive cells through the P2Y12 receptor. These results elucidate a novel inflammatory mechanism by which extracellular ADP acts on the P2Y12 receptor to activate NF-κB and the NLRP3 inflammasome to enhance microglial inflammation.
Collapse
Affiliation(s)
- Tomonori Suzuki
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Pediatrics and Developmental Biology, Bio-Environmental Response Division, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Kohyama
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kengo Moriyama
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mariko Ozaki
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Setsuko Hasegawa
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Taro Ueno
- Learning and Memory Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minoru Saitoe
- Learning and Memory Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Bio-Environmental Response Division, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaharu Hayashi
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Sakuma
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
31
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
32
|
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019; 151:12-24. [PMID: 30922852 DOI: 10.1016/j.brainresbull.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/17/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
33
|
Hu WS, Li SH, Wu QF. Purinergic signaling in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2019; 27:125-130. [DOI: 10.11569/wcjd.v27.i2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disease of the gut. In recent years, its incidence has continued to rise. So far, the exact cause of IBD is still unknown. Prinergic signaling is widely involved in the body's inflammatory immune response and is closely related to the occurrence of pain. A growing body of evidence indicates that purinergic signaling and its receptor system play an important role in IBD, and are widely involved in the development of IBD, which provides a new idea for its treatment. This article reviews the role of purinergic signaling in IBD.
Collapse
Affiliation(s)
- Wei-Shang Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Si-Hui Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Qiao-Feng Wu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| |
Collapse
|
34
|
Gao Y, Yu C, Pi S, Mao L, Hu B. The role of P2Y 12 receptor in ischemic stroke of atherosclerotic origin. Cell Mol Life Sci 2019; 76:341-354. [PMID: 30302530 PMCID: PMC11105791 DOI: 10.1007/s00018-018-2937-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Abstract
Atherosclerosis is a chronic and progressive disease of the arterial walls and a leading cause of non-cardioembolic ischemic stroke. P2Y12 is a well-recognized receptor that is expressed on platelets and is a target of thienopyridine-type antiplatelet drugs. In the last few decades, P2Y12 receptor inhibitors, such as clopidogrel, have been applied for the secondary prevention of non-cardioembolic ischemic stroke. Recent clinical studies have suggested that these P2Y12 receptor inhibitors may be more effective than other antiplatelet drugs in patients with ischemic stroke/transient ischemic attack of atherosclerotic origin. Moreover, animal studies have also shown that the P2Y12 receptor may participate in atherogenesis by promoting the proliferation and migration of vascular smooth muscle cells (VSMCs) and endothelial dysfunction, and affecting inflammatory cell activities in addition to amplifying and maintaining ADP-induced platelet activation and platelet aggregation. P2Y12 receptor inhibitors may also exert neuroprotective effects after ischemic stroke. Thus, P2Y12 receptor inhibitors may be a better choice for secondary prevention in patients with atherosclerotic ischemic stroke subtypes because of their triple functions (i.e., their anti-atherosclerotic, anti-platelet aggregation, and neuroprotective activities), and the P2Y12 receptor may also serve as a noval therapeutic target for atherosclerosis. In this review, we summarize the current knowledge on the P2Y12 receptor and its key roles in atherosclerosis and ischemic stroke of atherosclerotic origin.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Yu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Laidlaw TM, Cahill KN, Cardet JC, Murphy K, Cui J, Dioneda B, Kothari P, Raby BA, Israel E, Boyce JA. A trial of type 12 purinergic (P2Y 12) receptor inhibition with prasugrel identifies a potentially distinct endotype of patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2019; 143:316-324.e7. [PMID: 29890239 PMCID: PMC6286686 DOI: 10.1016/j.jaci.2018.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/15/2018] [Accepted: 06/03/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, recurrent nasal polyposis, and respiratory reactions on ingestion of COX-1 inhibitors. Increased numbers of platelet-leukocyte aggregates are present in the sinus tissue and blood of patients with AERD compared with that of aspirin-tolerant patients, and platelet activation can contribute to aspirin-induced reactions. OBJECTIVE We sought to determine whether treatment with prasugrel, which inhibits platelet activation by blocking the type 12 purinergic (P2Y12) receptor, would attenuate the severity of sinonasal and respiratory symptoms induced during aspirin challenge in patients with AERD. METHODS Forty patients with AERD completed a 10-week, double-blind, placebo-controlled crossover trial of prasugrel. All patients underwent oral aspirin challenges after 4 weeks of prasugrel and after 4 weeks of placebo. The primary outcome was a change in the provocative dose of aspirin that would elicit an increase in Total Nasal Symptom Score (TNSS) of 2 points. Changes in lung function, urinary eicosanoids, plasma tryptase, platelet-leukocyte aggregates, and platelet activation were also recorded. RESULTS Prasugrel did not significantly change the mean increase in TNSS of 2 points (79 ± 15 for patients receiving placebo and 139 ± 32 for patients receiving prasugrel, P = .10), platelet-leukocyte aggregates, or increases in urinary leukotriene E4 and prostaglandin D2 metabolite levels during aspirin-induced reactions in the study population as a whole. Five subjects (responders) reacted to aspirin while receiving placebo but did not have any reaction to aspirin challenge after the prasugrel arm. In contrast to prasugrel nonresponders (35 subjects), the prasugrel responders had smaller reaction-induced increases in TNSS; did not have significant aspirin-induced increases in urinary leukotriene E4, prostaglandin D2 metabolite, or thromboxane B2 levels; and did not display increases in serum tryptase levels during aspirin reactions on the placebo arm, all of which were observed in the nonresponders. CONCLUSION In the overall study population, prasugrel did not attenuate aspirin-induced symptoms, possibly because it failed to decrease the frequencies of platelet-adherent leukocytes or to diminish aspirin-induced mast cell activation. In a small subset of patients with AERD who had greater baseline platelet activation and milder upper respiratory symptoms during aspirin-induced reactions, P2Y12 receptor antagonism with prasugrel completely inhibited all aspirin-induced reaction symptoms, suggesting a contribution from P2Y12 receptor signaling in this subset.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, the Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and the Jeff and Penny Vinik Center, Boston, Mass.
| | - Katherine N Cahill
- Department of Medicine, Harvard Medical School, the Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and the Jeff and Penny Vinik Center, Boston, Mass
| | - Juan Carlos Cardet
- Department of Medicine, Harvard Medical School, Boston, Mass, and the Pulmonary and Critical Care Division, Brigham and Women's Hospital, Boston, Mass
| | - Katherine Murphy
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Jing Cui
- Department of Medicine, Harvard Medical School, the Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and the Jeff and Penny Vinik Center, Boston, Mass
| | - Brittney Dioneda
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Mass
| | - Parul Kothari
- Department of Medicine, Harvard Medical School, the Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and the Jeff and Penny Vinik Center, Boston, Mass
| | - Benjamin A Raby
- Department of Medicine, Harvard Medical School, Boston, Mass, and the Pulmonary and Critical Care Division, Brigham and Women's Hospital, Boston, Mass
| | - Elliot Israel
- Department of Medicine, Harvard Medical School, Boston, Mass, and the Pulmonary and Critical Care Division, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, the Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and the Jeff and Penny Vinik Center, Boston, Mass
| |
Collapse
|
36
|
von Kügelgen I. Structure, Pharmacology and Roles in Physiology of the P2Y 12 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:123-138. [PMID: 28921447 DOI: 10.1007/5584_2017_98] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. The platelet ADP-receptor which has been denominated P2Y12 receptor is an important target in pharmacotherapy. The receptor couples to Gαi2 mediating an inhibition of cyclic AMP accumulation and additional downstream events including the activation of phosphatidylinositol-3-kinase and Rap1b proteins. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel block P2Y12 receptors and, thereby, inhibit ADP-induced platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events such as acute coronary syndromes or stroke. The recently published three-dimensional crystal structures of the human P2Y12 receptor in complex with agonists and antagonists will facilitate the development of novel therapeutic agents with reduced adverse effects. P2Y12 receptors are also expressed on vascular smooth muscle cells and may be involved in the pathophysiology of atherogenesis. P2Y12 receptors on microglial cells operate as sensors for adenine nucleotides released during brain injury. A recent study indicated the involvement of microglial P2Y12 receptors in the activity-dependent neuronal plasticity. Interestingly, there is evidence for changes in P2Y12 receptor expression in CNS pathologies including Alzheimer's diseases and multiple sclerosis. P2Y12 receptors may also be involved in systemic immune modulating responses and the susceptibility to develop bronchial asthma.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
37
|
Micklewright JJ, Layhadi JA, Fountain SJ. P2Y 12 receptor modulation of ADP-evoked intracellular Ca 2+ signalling in THP-1 human monocytic cells. Br J Pharmacol 2018; 175:2483-2491. [PMID: 29574692 PMCID: PMC5980558 DOI: 10.1111/bph.14218] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The Gi -coupled, ADP-activated P2Y12 receptor is well characterized as playing a key role in platelet activation via crosstalk with the P2Y1 receptor in ADP-evoked intracellular Ca2+ responses. However, there is limited knowledge on the role of P2Y12 receptors in ADP-evoked Ca2+ responses in other blood cells. Here, we investigated the role of P2Y12 receptor activation in the modulation of ADP-evoked Ca2+ responses in human THP-1 monocytic cells. EXPERIMENTAL APPROACH A combination of intracellular Ca2+ measurements, RT-PCR, immunocytochemistry, leukocyte isolation and siRNA-mediated gene knockdown were used to identify the role of P2Y12 receptor activation. KEY RESULTS ADP-evoked intracellular Ca2+ responses (EC50 2.7 μM) in THP-1 cells were abolished by inhibition of PLC (U73122) or sarco/endoplasmic reticulum Ca2+ -ATPase (thapsigargin). Loss of ADP-evoked Ca2+ responses following treatment with MRS2578 (IC50 200 nM) revealed a major role for P2Y6 receptors in mediating ADP-evoked Ca2+ responses. ADP-evoked responses were attenuated either with pertussis toxin treatment, or P2Y12 receptor inhibition with two chemically distinct antagonists (ticagrelor, IC50 5.3 μM; PSB-0739, IC50 5.6 μM). ADP-evoked responses were suppressed following siRNA-mediated P2Y12 gene knockdown. The inhibitory effects of P2Y12 antagonists were fully reversed following adenylate cyclase inhibition (SQ22536). P2Y12 receptor expression was confirmed in freshly isolated human CD14+ monocytes. CONCLUSIONS AND IMPLICATIONS Taken together, these data suggest that P2Y12 receptor activation positively regulates P2Y6 receptor-mediated intracellular Ca2+ signalling through suppression of adenylate cyclase activity in human monocytic cells.
Collapse
Affiliation(s)
- J J Micklewright
- Biomedical Research Centre, School of Biological SciencesUniversity of East AngliaNorwichUK
| | - J A Layhadi
- Biomedical Research Centre, School of Biological SciencesUniversity of East AngliaNorwichUK
| | - S J Fountain
- Biomedical Research Centre, School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
38
|
Li S, Hao G, Xu Y, Wang N, Li J, Geng X, Sun J. Functional characterization of purinergic P2Y 2 and P2Y 12 receptors involved in Japanese flounder (Paralichthys olivaceus) innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2018; 75:208-215. [PMID: 29432865 DOI: 10.1016/j.fsi.2018.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/27/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
G-protein-coupled P2Y receptors activated by extracellular nucleotides play important roles under different physiological and pathophysiological conditions in mammals. To investigate the immunological relevance of P2Y receptors in fish, we identified and characterized the P2Y2 and P2Y12 receptors in Japanese flounder Paralichthys olivaceus. The P. olivaceus P2Y2 and P2Y12 receptors harbor seven transmembrane domains but share only 24% sequence identity. Real-time PCR analysis revealed the constitutive but unequal mRNA expression pattern of P2Y2R and P2Y12R in normal Japanese flounder tissues with the dominant expression of P2Y2R in head kidney and blood and P2Y12R in hepatopancreas. In addition, the expression of P2Y2 and P2Y12 receptors was markedly modulated by PAMPs stimulation and Edwardsiella tarda infection. Furthermore, blockage of P2Y12R potently increased ADP-activated pro-inflammatory cytokine IL-1beta gene expression in the head kidney macrophages (HKMs). Moreover, inhibition of P2Y2 and P2Y12 receptor activity with their respective potent antagonists significantly altered some of the LPS-induced pro-inflammatory cytokine gene expression in the HKMs. However, blockade of P2Y12R did not affect the poly(I:C)-induced pro-inflammatory cytokine gene expression examined in the HKMs. Collectively, we have for the first time reported the role of purinergic P2Y2 and P2Y12 receptors in fish innate immunity. Our findings have also addressed the importance of extracellular ATP and its metabolites in fish innate immune responses.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yaqi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
39
|
Müller K, Chatterjee M, Rath D, Geisler T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 2017. [DOI: 10.1160/th14-11-0947] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryPlatelets play a pivotal role in chronic inflammation leading to progression of atherosclerosis and acute coronary events. Recent discoveries on novel mechanisms and platelet-dependent inflammatory targets underpin the role of platelets to maintain a chronic inflammatory condition in cardiovascular disease. There is strong and clinically relevant crosslink between chronic inflammation and platelet activation. Antiplatelet therapy is a cornerstone in the prevention and treatment of acute cardiovascular events. The benefit of antiplatelet agents has mainly been attributed to their direct anti-aggregatory impact. Some anti-inflammatory off-target effects have also been described. However, it is unclear whether these effects are secondary due to inhibition of platelet activation or are caused by direct distinct mechanisms interfering with inflammatory pathways. This article will highlight novel platelet associated targets that contribute to inflammation in cardiovascular disease and elucidate mechanisms by which currently available antiplatelet agents evolve anti-inflammatory capacities, in particular by carving out the differential mechanisms directly or indirectly affecting platelet mediated inflammation. It will further illustrate the prognostic impact of antiplatelet therapies by reducing inflammatory marker release in recent cardiovascular trials.
Collapse
|
40
|
Le Duc D, Schulz A, Lede V, Schulze A, Thor D, Brüser A, Schöneberg T. P2Y Receptors in Immune Response and Inflammation. Adv Immunol 2017; 136:85-121. [PMID: 28950952 DOI: 10.1016/bs.ai.2017.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) are expressed in virtually all cells with implications in very diverse biological functions, including the well-established platelet aggregation (P2Y12), but also immune regulation and inflammation. The classical P2Y receptors bind nucleotides and are encoded by eight genes with limited sequence homology, while phylogenetically related receptors (e.g., P2Y12-like) recognize lipids and peptides, but also nucleotide derivatives. Growing lines of evidence suggest an important function of P2Y receptors in immune cell differentiation and maturation, migration, and cell apoptosis. Here, we give a perspective on the P2Y receptors' molecular structure and physiological importance in immune cells, as well as the related diseases and P2Y-targeting therapies. Extensive research is being undertaken to find modulators of P2Y receptors and uncover their physiological roles. We anticipate the medical applications of P2Y modulators and their immune relevance.
Collapse
Affiliation(s)
- Diana Le Duc
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
41
|
Bekő K, Koványi B, Gölöncsér F, Horváth G, Dénes Á, Környei Z, Botz B, Helyes Z, Müller CE, Sperlágh B. Contribution of platelet P2Y 12 receptors to chronic Complete Freund's adjuvant-induced inflammatory pain. J Thromb Haemost 2017; 15:1223-1235. [PMID: 28345287 DOI: 10.1111/jth.13684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/30/2022]
Abstract
Essentials The role of platelet P2Y12 receptors in the regulation of chronic inflammatory pain is unknown. Complete Freund's Adjuvant (CFA)-induced chronic inflammatory pain model was used in mice. Gene deficiency and antagonists of P2Y12 receptors attenuate hyperalgesia and local inflammation. Platelet P2Y12 receptors contribute to these effects in the chronic phase of inflammation. SUMMARY Background P2Y12 receptor antagonists are widely used in clinical practice to inhibit platelet aggregation. P2Y12 receptors are also known to regulate different forms of pain as well as local and systemic inflammation. However, it is not known whether platelet P2Y12 receptors contribute to these effects. Objectives To explore the contribution of platelet P2Y12 receptors to chronic inflammatory pain in mice. Methods Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain was induced in wild-type and P2ry12 gene-deficient (P2ry12-/- ) mice, and the potent, direct-acting and reversible P2Y12 receptor antagonists PSB-0739 and cangrelor were used. Results CFA-induced mechanical hyperalgesia was significantly decreased in P2ry12-/- mice for up to 14 days, and increased neutrophil myeloperoxidase activity and tumor necrosis factor (TNF)-α and CXCL1 (KC) levels in the hind paws were also attenuated in the acute inflammation phase. At day 14, increased interleukin (IL)-1β, IL-6, TNF-α and KC levels were attenuated in P2ry12-/- mice. PSB-0739 and cangrelor reversed hyperalgesia in wild-type mice but had no effect in P2ry12-/- mice, and PSB-0739 was also effective when applied locally. The effects of both local and systemic PSB-0739 were prevented by A-803467, a selective NaV1.8 channel antagonist, suggesting the involvement of NaV1.8 channels in the antihyperalgesic effect. Platelet depletion by anti-mouse CD41 antibody decreased hyperalgesia and attenuated the proinflammatory cytokine response in wild-type but not in P2ry12-/- mice on day 14. Conclusions In conclusion, P2Y12 receptors regulate CFA-induced hyperalgesia and the local inflammatory response, and platelet P2Y12 receptors contribute to these effects in the chronic inflammation phase.
Collapse
Affiliation(s)
- K Bekő
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - B Koványi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - F Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - G Horváth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Á Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Z Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - B Botz
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - C E Müller
- Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - B Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
42
|
Hasan D, Blankman P, Nieman GF. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury. Purinergic Signal 2017; 13:363-386. [PMID: 28547381 PMCID: PMC5563293 DOI: 10.1007/s11302-017-9564-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Collapse
Affiliation(s)
- Djo Hasan
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands.
| | - Paul Blankman
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| |
Collapse
|
43
|
Qin C, Zhou J, Gao Y, Lai W, Yang C, Cai Y, Chen S, Du C. Critical Role of P2Y12 Receptor in Regulation of Th17 Differentiation and Experimental Autoimmune Encephalomyelitis Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2017; 199:72-81. [DOI: 10.4049/jimmunol.1601549] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022]
|
44
|
Liverani E. Lung injury during LPS-induced inflammation occurs independently of the receptor P2Y 1. Purinergic Signal 2016; 13:119-125. [PMID: 27815804 DOI: 10.1007/s11302-016-9543-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022] Open
Abstract
Disruption of the lung endothelial and epithelial barriers during acute inflammation leads to excessive neutrophil migration. It is likely that activated platelets promote pulmonary recruitment of neutrophils during inflammation, and previous studies have found that anti-platelet therapy and depletion of circulating platelets have lung-protective effects in different models of inflammation. Because ADP signaling is important for platelet activation, I investigated the role of the ADP-receptor P2Y1, a G protein-coupled receptor expressed on the surface of circulating platelets, during lipopolysaccharide (LPS)-induced inflammation and lung injury in P2Y1-null and wild-type mice. Systemic inflammation was induced by a single intraperitoneal dose of LPS (3 mg/kg), and the mice were analyzed 24 h posttreatment. The data show that the LPS-induced inflammation levels were comparable in the P2Y1-null and wild-type mice. Specifically, splenomegaly, counts of circulating platelets and white blood cells (lymphocytes and neutrophils), and assessments of lung injury (tissue architecture and cell infiltration) were similar in the P2Y1-null and wild-type mice. Based on my results, I conclude that lung injury during LPS-induced inflammation in mice is independent of P2Y1 signaling. I propose that if a blockade of purinergic signaling in platelets is a potential lung-protective strategy in the treatment of acute inflammation, then it is more likely to be a result of the disruption of the signaling pathway mediated by P2Y12, another G protein-coupled receptor that mediates platelet responses to ADP.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Sol Sherry Thrombosis Research Center and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Temple University Hospital, Temple University, 3420 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
45
|
Nylander S, Schulz R. Effects of P2Y12 receptor antagonists beyond platelet inhibition--comparison of ticagrelor with thienopyridines. Br J Pharmacol 2016; 173:1163-78. [PMID: 26758983 PMCID: PMC5341337 DOI: 10.1111/bph.13429] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023] Open
Abstract
The effect and clinical benefit of P2Y12 receptor antagonists may not be limited to platelet inhibition and the prevention of arterial thrombus formation. Potential additional effects include reduction of the pro-inflammatory role of activated platelets and effects related to P2Y12 receptor inhibition on other cells apart from platelets. P2Y12 receptor antagonists, thienopyridines and ticagrelor, differ in their mode of action being prodrugs instead of direct acting and irreversibly instead of reversibly binding to P2Y12 . These key differences may provide different potential when it comes to additional effects. In addition to P2Y12 receptor blockade, ticagrelor is unique in having the only well-documented additional target of inhibition, the equilibrative nucleoside transporter 1. The current review will address the effects of P2Y12 receptor antagonists beyond platelets and the protection against arterial thrombosis. The discussion will include the potential for thienopyridines and ticagrelor to mediate anti-inflammatory effects, to conserve vascular function, to affect atherosclerosis, to provide cardioprotection and to induce dyspnea.
Collapse
Affiliation(s)
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| |
Collapse
|
46
|
von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2015; 104:50-61. [PMID: 26519900 DOI: 10.1016/j.neuropharm.2015.10.030] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y receptors are widely expressed and play important roles in physiology and pathophysiology. One important example is the ADP-induced platelet aggregation mediated by P2Y1 and P2Y12 receptors. Active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel as well as the nucleoside analogue ticagrelor block P2Y12 receptors and thereby platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events. Moreover, P2Y receptors play important roles in the nervous system. Adenine nucleotides modulate neuronal activity and neuronal fibre outgrowth by activation of P2Y1 receptors and control migration of microglia by P2Y12 receptors. UDP stimulates microglial phagocytosis through activation of P2Y6 receptors. There is evidence for a role for P2Y2 receptors in Alzheimer's disease pathology. The P2Y receptor subtypes are highly diverse in both their amino acid sequences and their pharmacological profiles. Selective receptor ligands have been developed for the pharmacological characterization of the receptor subtypes. The recently published three-dimensional crystal structures of the human P2Y1 and P2Y12 receptors will facilitate the development of therapeutic agents that selectively target P2Y receptors. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany.
| | - Kristina Hoffmann
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
47
|
Hechler B, Gachet C. Purinergic Receptors in Thrombosis and Inflammation. Arterioscler Thromb Vasc Biol 2015; 35:2307-15. [PMID: 26359511 DOI: 10.1161/atvbaha.115.303395] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
Abstract
Under various pathological conditions, including thrombosis and inflammation, extracellular nucleotide levels may increase because of both active release and passive leakage from damaged or dying cells. Once in the extracellular compartment, nucleotides interact with plasma membrane receptors belonging to the P2 purinergic family, which are expressed by virtually all circulating blood cells and in most blood vessels. In this review, we focus on the specific role of the 3 platelet P2 receptors P2Y1, P2Y12, and P2X1 in hemostasis and arterial thrombosis. Beyond platelets, these 3 receptors, along with the P2Y2, P2Y6, and P2X7 receptors, constitute the main P2 receptors mediating the proinflammatory effects of nucleotides, which play important roles in various functions of circulating blood cells and cells of the vessel wall. Each of these P2 receptor subtypes specifically contributes to chronic or acute vascular inflammation and related diseases, such as atherosclerosis, restenosis, endotoxemia, and sepsis. The potential for therapeutic targeting of these P2 receptor subtypes is also discussed.
Collapse
Affiliation(s)
- Béatrice Hechler
- From the UMR_S949, INSERM, Strasbourg, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France; and Université de Strasbourg, Strasbourg, France
| | - Christian Gachet
- From the UMR_S949, INSERM, Strasbourg, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France; and Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
48
|
Thomas MR, Storey RF. Effect of P2Y12 inhibitors on inflammation and immunity. Thromb Haemost 2015; 114:490-7. [PMID: 26156883 DOI: 10.1160/th14-12-1068] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/04/2015] [Indexed: 02/04/2023]
Abstract
Platelet P2Y12 inhibitors form a major part of the treatment strategy for patients with acute coronary syndromes (ACS) due to the importance of the platelet P2Y12 receptor in mediating the pathophysiology of arterial thrombosis. It has been increasingly recognised that platelets also have a critical role in inflammation and immune responses. P2Y12 inhibitors reduce platelet release of pro-inflammatory α-granule contents and the formation of pro-inflammatory platelet-leukocyte aggregates. These are important mediators of inflammation in a variety of different contexts. Clinical evidence shows that P2Y12 inhibition by clopidogrel is associated with a reduction in platelet-related mediators of inflammation, such as soluble P-selectin and CD40L, following atherothrombosis. Clopidogrel in addition to aspirin, compared to aspirin alone, also reduces markers of systemic inflammation such as tumour necrosis factor (TNF) α and C-reactive protein (CRP) following ACS. The more potent thienopyridine P2Y12 inhibitor, prasugrel, has been shown to decrease platelet P-selectin expression and platelet-leukocyte aggregate formation compared to clopidogrel. The PLATO study suggested that the novel P2Y12 inhibitor ticagrelor might improve clinical outcomes from pulmonary infections and sepsis compared to clopidogrel in patients with ACS. Ticagrelor is a more potent P2Y12 inhibitor than clopidogrel and also inhibits cellular adenosine uptake via equilibrative nucleoside transporter (ENT) 1, whereas clopidogrel does not. Further examination of the involvement of these mechanisms in inflammation and immunity is therefore warranted.
Collapse
Affiliation(s)
- Mark R Thomas
- Dr. Mark R. Thomas, BMedSci BMBS MRCP, Department of Cardiovascular Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Tel.: +44 114 3052019, Fax: +44 114 2266159, E-mail
| | | |
Collapse
|
49
|
Abstract
The platelet P2Y12 receptor (P2Y12R) for adenosine 5'diphosphate (ADP) plays a central role in platelet function, hemostasis, and thrombosis. Patients with inherited P2Y12R defects display mild-to-moderate bleeding diatheses. Defects of P2Y12R should be suspected when ADP, even at high concentrations (≥ 10 μm), is unable to induce full, irreversible platelet aggregation. P2Y12R also plays a role in inflammation: its role in the pathogenesis of allergic asthma has been well characterized. In addition, inhibition or genetic deficiency of P2Y12R has antitumor effects. Drugs inhibiting P2Y12R are potent antithrombotic drugs. Clopidogrel is the P2Y12R antagonist that is most widely used in the clinical setting. Its most important drawback is its inability to inhibit adequately P2Y12R-dependent platelet function in about one-third of patients. New drugs, such as prasugrel and ticagrelor, which effectively inhibit P2Y12R in the vast majority of patients, have proved to be more efficacious than clopdidogrel in preventing major adverse cardiovascular events.
Collapse
Affiliation(s)
- M Cattaneo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Unità di Medicina 3, Ospedale San Paolo, Milan, Italy
| |
Collapse
|
50
|
MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation. Blood 2015; 126:103-12. [PMID: 25972159 DOI: 10.1182/blood-2014-12-617258] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/03/2015] [Indexed: 01/07/2023] Open
Abstract
The successful treatment of acute leukemias with allogeneic hematopoietic cell transplantation (allo-HCT) is limited by acute graft-versus-host disease (GVHD). Because microRNA-155 (miR-155) regulates activation of the innate immune system, we aimed to determine its function in dendritic cells (DCs) during GVHD in an experimental model. We observed that miR-155 deficiency of the recipient led to improved survival, reduced serum levels of proinflammatory cytokines, and lower GVHD histopathology scores. In addition, miR-155(-/-) bone marrow chimeric mice receiving allo-HCT and miR-155(-/-) DCs showed that miR-155 deficiency in the DC compartment was responsible for protection from GVHD. Activated miR-155(-/-) DCs displayed lower expression of various purinergic receptors and impaired migration toward adenosine triphosphate (ATP). Microarray analysis of lipopolysaccharide/ATP-stimulated miR-155(-/-) DCs revealed mitogen-activated protein kinase pathway dysregulation and reduced inflammasome-associated gene expression. Consistent with this gene expression data, we observed reduced ERK activation, caspase-1 cleavage, and IL-1β production in miR-155(-/-) DCs. The connection between miR-155 and inflammasome activation was supported by the fact that Nlrp3/miR-155 double-knockout allo-HCT recipient mice had no increased protection from GVHD compared with Nlrp3(-/-) recipients. This study indicates that during GVHD, miR-155 promotes DC migration toward sites of ATP release accompanied by inflammasome activation. Inhibiting proinflammatory miR-155 by antagomir treatment could help reduce this complication of allo-HCT.
Collapse
|