1
|
Mammoliti O, Menet C, Cottereaux C, Blanc J, De Blieck A, Coti G, Geney R, Oste L, Ostyn K, Palisse A, Quinton E, Schmitt B, Borgonovi M, Parent I, Jagerschmidt C, De Vos S, Vayssiere B, López-Ramos M, Shoji K, Brys R, Amantini D, Galien R, Joannesse C. Design of a potent and selective dual JAK1/TYK2 inhibitor. Bioorg Med Chem 2024; 114:117932. [PMID: 39447537 DOI: 10.1016/j.bmc.2024.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Janus kinase (JAK) inhibitors have gathered interest as treatments for several inflammatory and autoimmune diseases. The four first marketed inhibitors target JAK1, with varying selectivity towards other JAK family members, but none inhibit tyrosine kinase-2 (TYK2) at clinically relevant doses. TYK2 is required for the signaling of the interleukin (IL)-12 and IL-23 cytokines, which are key to the polarization of TH1 and TH17 cells, respectively; two cell subtypes that play major roles in inflammatory diseases. Herein, we report our effort towards the optimization of a potent and selective dual JAK1/TYK2 inhibitor series starting from a HTS hit. Structural information revealed vectors required to improve both JAK1 and TYK2 potency as well as selectivity towards JAK2. The potent inhibition of both JAK1 (3.5 nM) and TYK2 (5.7 nM) in biochemical assays by our optimized lead compound, as well as its notable selectivity against JAK2, were confirmed in cellular and whole blood assays. Inhibition of TYK2 by the lead compound was demonstrated by dose-dependent efficacy in an IL-23-induced psoriasis-like inflammation mouse model.
Collapse
Affiliation(s)
- Oscar Mammoliti
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Christel Menet
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Céline Cottereaux
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Javier Blanc
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Ann De Blieck
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Ghjuvanni Coti
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Raphaël Geney
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Line Oste
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Koen Ostyn
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Adeline Palisse
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Evelyne Quinton
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Benoit Schmitt
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - Monica Borgonovi
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Isabelle Parent
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Steve De Vos
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | | | | | - Kenji Shoji
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11, 2800 Mechelen, Belgium
| | - David Amantini
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - René Galien
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | |
Collapse
|
2
|
Ramakrishna C, Mason A, Edwards CJ. Tyrosine kinase 2 inhibitors in autoimmune diseases. Autoimmun Rev 2024; 23:103649. [PMID: 39349269 DOI: 10.1016/j.autrev.2024.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Tyk2 is a member of the JAK kinase family. It is an important mediator in pro-inflammatory signalling, implicated in both innate and adaptive immune system. Activation of Tyk2 is believed to be integral to cellular processes that contribute to the development and progression of autoimmune disorders. Selective targeting of Tyk2 may reduce the number of adverse events as compared to non-selective JAK inhibitors. Therefore, in recent years there has been a growing body of research examining the inhibition of Tyk2 as a therapeutic intervention in autoimmune disease. Deucravacitinib has been approved for the treatment of moderate to severe skin psoriasis. This drug and other novel Tyk2 inhibitors are now being explored as therapies for multiple autoimmune diseases, including psoriatic arthritis, SLE, Sjogren's, dermatomyositis, inflammatory bowel disease, uveitis, hidradenitis suppurativa and others. Tyk2 inhibitors offer a potentially exciting new treatment option across a wide range of autoimmune diseases. We discuss Tyk2 inhibition, the current evidence for its usage to date, ongoing trials and what the future might hold.
Collapse
Affiliation(s)
- Chethana Ramakrishna
- Department of Rheumatology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK.
| | - Alice Mason
- Department of Rheumatology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Christopher J Edwards
- Department of Rheumatology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; NIHR Southampton clinical research facility, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
3
|
Bodega-Mayor I, Delgado-Wicke P, Arrabal A, Alegría-Carrasco E, Nicolao-Gómez A, Jaén-Castaño M, Espadas C, Dopazo A, de Luis EV, Martín-Gayo E, Gaspar ML, de Andrés B, Fernández-Ruiz E. Tyrosine kinase 2 modulates splenic B cells through type I IFN and TLR7 signaling. Cell Mol Life Sci 2024; 81:199. [PMID: 38683377 PMCID: PMC11058799 DOI: 10.1007/s00018-024-05234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.
Collapse
Affiliation(s)
- Irene Bodega-Mayor
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pablo Delgado-Wicke
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Alejandro Arrabal
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Ana Nicolao-Gómez
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Marta Jaén-Castaño
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Cristina Espadas
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Vázquez de Luis
- Immunology Department, Hospital Universitario de La Princesa and IIS-Princesa, Madrid, Spain
| | - Enrique Martín-Gayo
- Immunology Department, Hospital Universitario de La Princesa and IIS-Princesa, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Luisa Gaspar
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Belén de Andrés
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Fernández-Ruiz
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain.
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Mine K, Nagafuchi S, Akazawa S, Abiru N, Mori H, Kurisaki H, Shimoda K, Yoshikai Y, Takahashi H, Anzai K. TYK2 signaling promotes the development of autoreactive CD8 + cytotoxic T lymphocytes and type 1 diabetes. Nat Commun 2024; 15:1337. [PMID: 38351043 PMCID: PMC10864272 DOI: 10.1038/s41467-024-45573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Tyrosine kinase 2 (TYK2), a member of the JAK family, has attracted attention as a potential therapeutic target for autoimmune diseases. However, the role of TYK2 in CD8+ T cells and autoimmune type 1 diabetes (T1D) is poorly understood. In this study, we generate Tyk2 gene knockout non-obese diabetes (NOD) mice and demonstrate that the loss of Tyk2 inhibits the development of autoreactive CD8+ T-BET+ cytotoxic T lymphocytes (CTLs) by impairing IL-12 signaling in CD8+ T cells and the CD8+ resident dendritic cell-driven cross-priming of CTLs in the pancreatic lymph node (PLN). Tyk2-deficient CTLs display reduced cytotoxicity. Increased inflammatory responses in β-cells with aging are dampened by Tyk2 deficiency. Furthermore, treatment with BMS-986165, a selective TYK2 inhibitor, inhibits the expansion of T-BET+ CTLs, inflammation in β-cells and the onset of autoimmune T1D in NOD mice. Thus, our study reveals the diverse roles of TYK2 in driving the pathogenesis of T1D.
Collapse
Affiliation(s)
- Keiichiro Mine
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Satoru Akazawa
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Midori Clinic, Nagasaki, Japan
| | - Hitoe Mori
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hironori Kurisaki
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
5
|
Chen CXJ, Zhang W, Qu S, Xia F, Zhu Y, Chen B. A novel highly selective allosteric inhibitor of tyrosine kinase 2 (TYK2) can block inflammation- and autoimmune-related pathways. Cell Commun Signal 2023; 21:287. [PMID: 37845748 PMCID: PMC10578023 DOI: 10.1186/s12964-023-01299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/29/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND As a member of the Janus kinase (JAK) family, which includes JAK1, JAK2 and JAK3, tyrosine kinase 2 (TYK2) plays an important role in signal transduction and immune system regulation. Moreover, it is also involved in the development of many types of inflammatory and autoimmune diseases, such as psoriasis and systemic lupus erythematosus (SLE). TYK2 is an attractive therapeutic target, and selective inhibition of TYK2 over other JAK family members is critical for the development of TYK2 small molecule inhibitors. However, targeting the catalytic region of the TYK2 ATP-binding site is a major challenge due to the high structural homology between the catalytic regions of the JAK family proteins. RESULTS In this study, we developed a novel small molecule inhibitor (QL-1200186) by targeting the pseudokinase regulatory domain (Janus homology 2, JH2) of the TYK2 protein. The binding sites of QL-1200186 were predicted and screened by molecular docking. The inhibitory effects on IFNα, IL-12 and IL-23 signaling were tested in cell lines, human peripheral blood cells and human whole blood. The pharmacokinetic (PK) and pharmacodynamic properties of QL-1200186 were verified in mice. QL-1200186 showed high affinity for TYK2 JH2 and had no apparent selectivity for the TYK2 and JAK homologous kinase domains; these effects were demonstrated using biochemical binding, signaling pathway transduction (JAK1/2/3) and off-target effect assays. More importantly, we revealed that QL-1200186 was functionally comparable and selectivity superior to two clinical-stage TYK2 inhibitors (BMS-986165 and NDI-034858) in vitro. In the PK studies, QL-1200186 exhibited excellent exposure, high bioavailability and low clearance rates in mice. Oral administration of QL-1200186 dose-dependently inhibited interferon-γ (IFNγ) production after interleukin-12 (IL-12) challenge and significantly ameliorated skin lesions in psoriatic mice. CONCLUSION These findings suggest that QL-1200186 is a highly selective and potent inhibitor of TYK2. QL-1200186 could be an appealing clinical drug candidate for the treatment of psoriasis and other autoimmune diseases. Video Abstract.
Collapse
Affiliation(s)
- Celia X-J Chen
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Limited, Shanghai, China
| | - Wei Zhang
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Limited, Shanghai, China
| | - Shulan Qu
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Limited, Shanghai, China
| | - Fucan Xia
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Limited, Shanghai, China
| | - Yidong Zhu
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Limited, Shanghai, China.
| | - Bo Chen
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Limited, Shanghai, China.
- Present address: China Resources Pharmaceutical Group Limited, Beijing, China.
| |
Collapse
|
6
|
Xiao Z, Yang MG, Liu C, Sherwood T, Gilmore JL, Lin J, Li P, Wu DR, Tokarski J, Li S, Cheng L, Xie C, Fan J, Dierks E, Strnad J, Cvijic ME, Khan J, Ruzanov M, Galella M, Khandelwal P, Dyckman AJ, Mathur A, Lombardo LJ, Macor JE, Carter PH, Aranibar N, Burke JR, Weinstein DS. Structure-activity relationship study of central pyridine-derived TYK2 JH2 inhibitors: Optimization of the PK profile through C4' and C6 variations. Bioorg Med Chem Lett 2023; 91:129373. [PMID: 37315697 DOI: 10.1016/j.bmcl.2023.129373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Efforts directed at improving potency and preparing structurally different TYK2 JH2 inhibitors from the first generation of compounds such as 1a led to the SAR study of new central pyridyl based analogs 2-4. The current SAR study resulted in the identification of 4h as a potent and selective TYK2 JH2 inhibitor with distinct structural differences from 1a. In this manuscript, the in vitro and in vivo profiles of 4h are described. The hWB IC50 of 4h was shown as 41 nM with 94% bioavailability in the mouse PK study.
Collapse
Affiliation(s)
- Zili Xiao
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States.
| | - Michael G Yang
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Chunjian Liu
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Trevor Sherwood
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - John L Gilmore
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - James Lin
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Peng Li
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - John Tokarski
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Sha Li
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Lihong Cheng
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Chunshan Xie
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Jingsong Fan
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Elizabeth Dierks
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Joann Strnad
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Javed Khan
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Max Ruzanov
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Michael Galella
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Purnima Khandelwal
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Alaric J Dyckman
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Louis J Lombardo
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - John E Macor
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Percy H Carter
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Nelly Aranibar
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - James R Burke
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - David S Weinstein
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| |
Collapse
|
7
|
Genetic association and Mendelian randomization for hypothyroidism highlight immune molecular mechanisms. iScience 2022; 25:104992. [PMID: 36093044 PMCID: PMC9460554 DOI: 10.1016/j.isci.2022.104992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
We carried out a genome-wide association analysis including 51,194 cases of hypothyroidism and 443,383 controls. In total, 139 risk loci were associated to hypothyroidism with genes involved in lymphocyte function. Candidate genes associated with hypothyroidism were identified by using molecular quantitative trait loci, colocalization, and enhancer-promoter chromatin looping. Mendelian randomization (MR) identified 42 blood expressed genes and circulating proteins as candidate causal molecules in hypothyroidism. Drug-gene interaction analysis provided evidence that immune checkpoint and tyrosine kinase inhibitors used in cancer therapy increase the risk of hypothyroidism. Hence, integrative mapping and MR support that expression of genes and proteins enriched in lymphocyte function are associated with the risk of hypothyroidism and provide genetic evidence for drug-induced hypothyroidism and identify actionable potential drug targets. GWAS for hypothyroidism identified 139 risk loci including 76 novel associations GWAS was enriched in pathways related to lymphocyte function In total, 28 potentially deleterious missense variants were identified Mendelian randomization and colocalization identified 61 blood causal candidate genes
Collapse
|
8
|
Zhou Y, Li X, Shen R, Wang X, Zhang F, Liu S, Li D, Liu J, Li P, Yan Y, Dong P, Zhang Z, Wu H, Zhuang L, Chowdhury R, Miller M, Issa M, Mao Y, Chen H, Feng J, Li J, Bai C, He F, Tao W. Novel Small Molecule Tyrosine Kinase 2 Pseudokinase Ligands Block Cytokine-Induced TYK2-Mediated Signaling Pathways. Front Immunol 2022; 13:884399. [PMID: 35693820 PMCID: PMC9186491 DOI: 10.3389/fimmu.2022.884399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
A member of the Janus kinase (JAK) family, Tyrosine Kinase 2 (TYK2), is crucial in mediating various cytokine-signaling pathways such as interleukin-23 (IL23), interleukin-12 (IL12) and type I Interferons (IFN) which contribute to autoimmune disorders (e.g., psoriasis, lupus, and inflammatory bowel disease). Thus, TYK2 represents an attractive target to develop small-molecule therapeutics for the treatment of cytokine-driven inflammatory diseases. Selective inhibition of TYK2 over other JAK isoforms is critical to achieve a favorable therapeutic index in the development of TYK2 inhibitors. However, designing small molecule inhibitors to target the adenosine triphosphate (ATP) binding site of TYK2 kinase has been challenging due to the substantial structural homology of the JAK family catalytic domains. Here, we employed an approach to target the JAK homology 2 (JH2) pseudokinase regulatory domain of the TYK2 protein. We developed a series of small-molecule TYK2 pseudokinase ligands, which suppress the TYK2 catalytic activity through allosteric regulation. The TYK2 pseudokinase-binding small molecules in this study simultaneously achieve high affinity-binding for the TYK2 JH2 domain while also affording significantly reduced affinity for the TYK2 JAK homology 1 (JH1) kinase domain. These TYK2 JH2 selective molecules, although possessing little effect on suppressing the catalytic activity of the isolated TYK2 JH1 catalytic domain in the kinase assays, can still significantly block the TYK2-mediated receptor-stimulated pathways by binding to the TYK2 JH2 domain and allosterically regulating the TYK2 JH1 kinase. These compounds are potent towards human T-cell lines and primary immune cells as well as in human whole-blood specimens. Moreover, TYK2 JH2-binding ligands exhibit remarkable selectivity of TYK2 over JAK isoforms not only biochemically but also in a panel of receptor-stimulated JAK1/JAK2/JAK3-driven cellular functional assays. In addition, the TYK2 JH2-targeting ligands also demonstrate high selectivity in a multi-kinase screening panel. The data in the current study underscores that the TYK2 JH2 pseudokinase is a promising therapeutic target for achieving a high degree of biological selectivity. Meanwhile, targeting the JH2 domain represents an appealing strategy for the development of clinically well-tolerated TYK2 inhibitors that would have superior efficacy and a favorable safety profile compared to the existing Janus kinase inhibitors against autoimmune diseases.
Collapse
Affiliation(s)
- Yu Zhou
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
- *Correspondence: Yu Zhou, ; Xin Li,
| | - Xin Li
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
- *Correspondence: Yu Zhou, ; Xin Li,
| | - Ru Shen
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Xiangzhu Wang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Fan Zhang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Suxing Liu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Di Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Jian Liu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Puhui Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Yinfa Yan
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Ping Dong
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Zhigao Zhang
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Heping Wu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Linghang Zhuang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | | | - Matthew Miller
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Mena Issa
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Yuchang Mao
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hongli Chen
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Jun Feng
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Jing Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Chang Bai
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Feng He
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Weikang Tao
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| |
Collapse
|
9
|
Yang T, Cui X, Tang M, Qi W, Zhu Z, Shi M, Yang L, Pei H, Zhang W, Xie L, Xu Y, Yang Z, Chen L. Identification of a Novel 2,8-Diazaspiro[4.5]decan-1-one Derivative as a Potent and Selective Dual TYK2/JAK1 Inhibitor for the Treatment of Inflammatory Bowel Disease. J Med Chem 2022; 65:3151-3172. [PMID: 35113547 DOI: 10.1021/acs.jmedchem.1c01137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we described a series of 2,8-diazaspiro[4.5]decan-1-one derivatives as selective TYK2/JAK1 inhibitors. Systematic exploration of the structure-activity relationship through the introduction of spirocyclic scaffolds based on the reported selective TYK2 inhibitor 14l led to the discovery of the superior derivative compound 48. Compound 48 showed excellent potency on TYK2/JAK1 kinases with IC50 values of 6 and 37 nM, respectively, and exhibited more than 23-fold selectivity for JAK2. Compound 48 also demonstrated excellent metabolic stability and more potent anti-inflammatory efficacy than tofacitinib in acute ulcerative colitis models. Moreover, the excellent anti-inflammatory effect of compound 48 was mediated by regulating the expression of related TYK2/JAK1-regulated genes, as well as the formation of Th1, Th2, and Th17 cells. Taken together, these findings suggest that compound 48 is a selective dual TYK2/JAK inhibitor, deserving to be developed as a clinical candidate.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenyan Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zejiang Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wanhua Zhang
- Department of Hematology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lixin Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yaohui Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
10
|
Muromoto R, Oritani K, Matsuda T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J Biol Chem 2022; 13:1-14. [PMID: 35126866 PMCID: PMC8790287 DOI: 10.4331/wjbc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Immune system is a complex network that clears pathogens, toxic substrates, and cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens. The innate immune system elicits an early-phase response to various stimuli, whereas the adaptive immune response is tailored to previously encountered antigens. During immune responses, B cells differentiate into antibody-secreting cells, while naïve T cells differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, and regulatory T cells]. However, enhanced or prolonged immune responses can result in autoimmune disorders, which are characterized by lymphocyte-mediated immune responses against self-antigens. Signal transduction of cytokines, which regulate the inflammatory cascades, is dependent on the members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is associated with receptor subunits of immune-related cytokines, such as type I interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing. This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
11
|
Alexander M, Luo Y, Raimondi G, O’Shea JJ, Gadina M. Jakinibs of All Trades: Inhibiting Cytokine Signaling in Immune-Mediated Pathologies. Pharmaceuticals (Basel) 2021; 15:48. [PMID: 35056105 PMCID: PMC8779366 DOI: 10.3390/ph15010048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Over the last 25 years, inhibition of Janus kinases (JAKs) has been pursued as a modality for treating various immune and inflammatory disorders. While the clinical development of JAK inhibitors (jakinibs) began with the investigation of their use in allogeneic transplantation, their widest successful application came in autoimmune and allergic diseases. Multiple molecules have now been approved for diseases ranging from rheumatoid and juvenile arthritis to ulcerative colitis, atopic dermatitis, graft-versus-host-disease (GVHD) and other inflammatory pathologies in 80 countries around the world. Moreover, two jakinibs have also shown surprising efficacy in the treatment of hospitalized coronavirus disease-19 (COVID-19) patients, indicating additional roles for jakinibs in infectious diseases, cytokine storms and other hyperinflammatory syndromes. Jakinibs, as a class of pharmaceutics, continue to expand in clinical applications and with the development of more selective JAK-targeting and organ-selective delivery. Importantly, jakinib safety and pharmacokinetics have been investigated alongside clinical development, further cementing the potential benefits and limits of jakinib use. This review covers jakinibs that are approved or are under late phase investigation, focusing on clinical applications, pharmacokinetic and safety profiles, and future opportunities and challenges.
Collapse
Affiliation(s)
- Madison Alexander
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 10 Center Drive, Building 10 Room 10C211, Bethesda, MD 20892, USA;
| | - Yiming Luo
- Vasculitis Translational Research Program, Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Giorgio Raimondi
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, 720 Rutland Ave., Ross Research Building, Suite 755A, Baltimore, MD 21205, USA;
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 10 Center Drive, Building 10 Room 13C103C, Bethesda, MD 20892, USA;
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 10 Center Drive, Building 10 Room 10C211, Bethesda, MD 20892, USA;
| |
Collapse
|
12
|
Muromoto R, Shimoda K, Oritani K, Matsuda T. Therapeutic Advantage of Tyk2 Inhibition for Treating Autoimmune and Chronic Inflammatory Diseases. Biol Pharm Bull 2021; 44:1585-1592. [PMID: 34719635 DOI: 10.1248/bpb.b21-00609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tyrosine kinase 2 (Tyk2) is a member of the Janus family of protein tyrosine kinases (Jaks). Tyk2 associates with interferon (IFN)-α, IFN-β, interleukin (IL)-6, IL-10, IL-12, and IL-23 receptors and mediates their downstream signaling pathways. Based on our data using Tyk2-deficient mice and cells, Tyk2 plays crucial roles in the differentiation, maintenance, and function of T helper 1 (Th1) and Th17 cells, and its dysregulation may promote autoimmune and/or inflammatory diseases. IFN-α-induced growth inhibition of B lymphocyte progenitors is dependent on Tyk2-mediated signals to regulate death-associated protein (Daxx) nuclear localization and Daxx-promyelocytic leukemia protein interactions. Tyk2-deficient mice show impaired constitutive production of type I IFNs by macrophages under steady-state conditions. When heat-killed Cutibacterium acnes is injected intraperitoneally, Tyk2-deficient mice show less granuloma formation through enhanced prostaglandin E2 and protein kinase A activities, leading to high IL-10 production by macrophages. Thus, Tyk2 is widely involved in the immune and inflammatory response at multiple events; therefore, Tyk2 is likely to be a suitable target for treating patients with autoimmune and/or chronic inflammatory diseases. Clinical trials of Tyk2 inhibitors have shown higher response rates and improved tolerability in the treatment of patients with psoriasis and inflammatory bowel diseases. Taken together, Tyk2 inhibition has great potential for clinical application in the management of a variety of diseases.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University
| | - Kazuya Shimoda
- Department of Internal Medicine II, Faculty of Medicine, University of Miyazaki
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University
| |
Collapse
|
13
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
14
|
Muromoto R, Oritani K, Matsuda T. Tyk2-mediated homeostatic control by regulating the PGE 2-PKA-IL-10 axis. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Gracey E, Hromadová D, Lim M, Qaiyum Z, Zeng M, Yao Y, Srinath A, Baglaenko Y, Yeremenko N, Westlin W, Masse C, Müller M, Strobl B, Miao W, Inman RD. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J Clin Invest 2020; 130:1863-1878. [PMID: 32149730 PMCID: PMC7108927 DOI: 10.1172/jci126567] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
Spondyloarthritis (SpA) represents a family of inflammatory diseases of the spine and peripheral joints. Ankylosing spondylitis (AS) is the prototypic form of SpA in which progressive disease can lead to fusion of the spine. Therapeutically, knowledge of type 3 immunity has translated into the development of IL-23– and IL-17A–blocking antibodies for the treatment of SpA. Despite being able to provide symptomatic control, the current biologics do not prevent the fusion of joints in AS patients. Thus, there is an unmet need for disease-modifying drugs. Genetic studies have linked the Janus kinase TYK2 to AS. TYK2 is a mediator of type 3 immunity through intracellular signaling of IL-23. Here, we describe and characterize a potentially novel small-molecule inhibitor of TYK2 that blocked IL-23 signaling in vitro and inhibited disease progression in animal models of SpA. The effect of the inhibitor appears to be TYK2 specific, using TYK2-inactive mice, which further revealed a duality in the induction of IL-17A and IL-22 by IL-23. Specifically, IL-22 production was TYK2/JAK2/STAT3 dependent, while IL-17A was mostly JAK2 dependent. Finally, we examined the effects of AS-associated TYK2 SNPs on TYK2 expression and function and correlated them with AS disease progression. This work provides evidence that TYK2 inhibitors have great potential as an orally delivered therapeutic for SpA.
Collapse
Affiliation(s)
- Eric Gracey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Melissa Lim
- Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Michael Zeng
- Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Yuchen Yao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Archita Srinath
- Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Natalia Yeremenko
- Division of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Craig Masse
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Wenyan Miao
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Robert D Inman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Liu C, Lin J, Langevine C, Smith D, Li J, Tokarski JS, Khan J, Ruzanov M, Strnad J, Zupa-Fernandez A, Cheng L, Gillooly KM, Shuster D, Zhang Y, Thankappan A, McIntyre KW, Chaudhry C, Elzinga PA, Chiney M, Chimalakonda A, Lombardo LJ, Macor JE, Carter PH, Burke JR, Weinstein DS. Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. J Med Chem 2020; 64:677-694. [PMID: 33370104 DOI: 10.1021/acs.jmedchem.0c01698] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A search for structurally diversified Tyk2 JH2 ligands from 6 (BMS-986165), a pyridazine carboxamide-derived Tyk2 JH2 ligand as a clinical Tyk2 inhibitor currently in late development for the treatment of psoriasis, began with a survey of six-membered heteroaryl groups in place of the N-methyl triazolyl moiety in 6. The X-ray co-crystal structure of an early lead (12) revealed a potential new binding pocket. Exploration of the new pocket resulted in two frontrunners for a clinical candidate. The potential hydrogen bonding interaction with Thr599 in the pocket was achieved with a tertiary amide moiety, confirmed by the X-ray co-crystal structure of 29. When the diversity search was extended to nicotinamides, a single fluorine atom addition was found to significantly enhance the permeability, which directly led to the discovery of 7 (BMS-986202) as a clinical Tyk2 inhibitor that binds to Tyk2 JH2. The preclinical studies of 7, including efficacy studies in mouse models of IL-23-driven acanthosis, anti-CD40-induced colitis, and spontaneous lupus, will also be presented.
Collapse
Affiliation(s)
- Chunjian Liu
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James Lin
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charles Langevine
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Department of Discovery Synthesis, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Department of Discovery Synthesis, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John S Tokarski
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Javed Khan
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Max Ruzanov
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joann Strnad
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Adriana Zupa-Fernandez
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen M Gillooly
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - David Shuster
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yifan Zhang
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Anil Thankappan
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W McIntyre
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Leads Discovery and Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Paul A Elzinga
- Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Manoj Chiney
- Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Anjaneya Chimalakonda
- Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Louis J Lombardo
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John E Macor
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H Carter
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R Burke
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - David S Weinstein
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
17
|
De Vries LCS, Ghiboub M, van Hamersveld PHP, Welting O, Verseijden C, Bell MJ, Rioja I, Prinjha RK, Koelink PJ, Strobl B, Müller M, D’Haens GR, Wildenberg ME, De Jonge WJ. Tyrosine Kinase 2 Signalling Drives Pathogenic T cells in Colitis. J Crohns Colitis 2020; 15:617-630. [PMID: 33005945 PMCID: PMC8023831 DOI: 10.1093/ecco-jcc/jjaa199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Tyrosine kinase 2 [TYK2] is required for the signalling of key cytokines in the pathogenesis of inflammatory bowel disease [IBD]. We assessed the efficacy of a novel selective TYK2 inhibitor [TYK2i] in experimental colitis, using pharmacological and genetic tools. METHODS At onset of T cell transfer colitis, RAG1-/- mice received vehicle or TYK2i daily by oral gavage. T cells lacking TYK2 kinase activity [TYK2KE] were used to confirm selectivity of the inhibitor. To this end, RAG1-/- or RAG1-/-TYK2KE animals were transferred with either wild type [WT] or TYK2KE-CD45RBhigh colitogenic T cells. Loss of body weight, endoscopic disease, the disease activity index [DAI], and histopathology scores were recorded. Tissues were analysed ex vivo for lymphocyte populations by flow cytometry. The impact of TYK2 inhibition on human DC-T cell interactions were studied using autologous Revaxis specific T cell assays. RESULTS TYK2i [70 mg/kg] prevented weight loss and limited endoscopic activity during T cell transfer colitis. TYK2i [70 mg/kg] decreased DAI. Whereas transfer of WT T cells into RAG-/-TYK2KE hosts induced colitis, TYK2KE T cells transferred into RAG1-/-TYK2KErecipients failed to do so. Ex vivo analysis showed a decrease in colon tissue Th1 cells and an increase in Th17 cells upon transfer of TYK2KE-CD45RBhigh cells. In human antigen-triggered T cells, TYK2i displayed reduced Th1 differentiation, similar to murine Th1 cells. CONCLUSIONS Oral administration of TYK2i, as well as transfer of T cells lacking TYK2 activity, reduced human Th1 differentiation and ameliorated the course of murine T cell transfer colitis. We conclude that TYK2 is a promising drug target for the treatment of IBD.
Collapse
Affiliation(s)
- Leonie C S De Vries
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline Verseijden
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthew J Bell
- Epigenetics RU, Oncology Therapy Area, Medicines Research Centre, GlaxoSmithKline, Stevenage, UK
| | - Inmaculada Rioja
- Epigenetics RU, Oncology Therapy Area, Medicines Research Centre, GlaxoSmithKline, Stevenage, UK
| | - Rabinder K Prinjha
- Epigenetics RU, Oncology Therapy Area, Medicines Research Centre, GlaxoSmithKline, Stevenage, UK
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics and Biomodels Austria, University of Veterinary Medicine, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels Austria, University of Veterinary Medicine, Vienna, Austria
| | - Geert R D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J De Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Department of Surgery, University of Bonn, Bonn, Germany,Corresponding author: Wouter de Jonge, PhD, Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, Amsterdam, Meibergdreef 69–71, 1105 BK Amsterdam, The Netherlands. Tel.: +31205668163;
| |
Collapse
|
18
|
IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020; 9:cells9102184. [PMID: 32998371 PMCID: PMC7600943 DOI: 10.3390/cells9102184] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines of the IL-12 family show structural similarities but have distinct functions in the immune system. Prominent members of this cytokine family are the pro-inflammatory cytokines IL-12 and IL-23. These two cytokines share cytokine subunits and receptor chains but have different functions in autoimmune diseases, cancer and infections. Accordingly, structural knowledge about receptor complex formation is essential for the development of new therapeutic strategies preventing and/or inhibiting cytokine:receptor interaction. In addition, intracellular signaling cascades can be targeted to inhibit cytokine-mediated effects. Single nucleotide polymorphisms can lead to alteration in the amino acid sequence and thereby influencing protein functions or protein–protein interactions. To understand the biology of IL-12 and IL-23 and to establish efficient targeting strategies structural knowledge about cytokines and respective receptors is crucial. A highly efficient therapy might be a combination of different drugs targeting extracellular cytokine:receptor assembly and intracellular signaling pathways.
Collapse
|
19
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
20
|
Hirashima K, Muromoto R, Minoguchi H, Matsumoto T, Kitai Y, Kashiwakura JI, Shimoda K, Oritani K, Matsuda T. The mechanism of Tyk2 deficiency-induced immunosuppression in mice involves robust IL-10 production in macrophages. Cytokine 2020; 130:155077. [PMID: 32208335 DOI: 10.1016/j.cyto.2020.155077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023]
Abstract
Macrophages are highly plastic in their pro-inflammatory/anti-inflammatory roles. Type I and II interferons (IFNs) are known to modulate macrophage activation. Tyrosine kinase 2 (Tyk2) has an intimate relationship with type I and II IFN signaling. Animal studies have shown that Tyk2 knock-out (KO) in mice is associated with reduced inflammatory responses in various mouse models of diseases. To investigate the role of Tyk2 in inflammation in more detail, we intraperitoneally injected heat-killed Propionibacterium acnes (P. acnes) to Tyk2 KO mice. P. acnes-induced acute peritoneal inflammation, assessed by neutrophil infiltration, was reduced in Tyk2 KO mice. The reduction was accompanied with diminished productions of inflammatory cytokines and an enhanced production of anti-inflammatory IL-10. Unexpectedly, pre-treatment of wild-type mice with the neutralizing antibodies for IFNs did not affect P. acnes-induced neutrophil infiltration. A neutralizing antibody for the IL-10 receptor in Tyk2 KO mice restored P. acnes-induced peritoneal inflammation. Enhanced production of IL-10 from Tyk2 KO peritoneal cells was suppressed by either the cyclooxygenase inhibitor diclofenac or protein kinase A inhibitor H-89. The level of prostaglandin E2 (PGE2) in the steady-state peritoneal cavity in Tyk2 KO mice was higher than that in wild-type mice. Tyk2 KO macrophages showed an enhanced CREB phosphorylation induced by P. acnes plus PGE2. Taken together, these results showed that Tyk2 deficiency potentiates the PGE2-protein kinase A-IL-10 pathway in macrophages, and thereby contributes to potentiation of the immunosuppressive phenotype.
Collapse
Affiliation(s)
- Koki Hirashima
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Hiroya Minoguchi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohiro Matsumoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kazuya Shimoda
- Department of Internal Medicine II, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, 4-3 Kouzunomori, Narita, Chiba 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
21
|
TYK2 in Tumor Immunosurveillance. Cancers (Basel) 2020; 12:cancers12010150. [PMID: 31936322 PMCID: PMC7017180 DOI: 10.3390/cancers12010150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
We review the history of the tyrosine kinase 2 (TYK2) as the founding member of the Janus kinase (JAK) family and outline its structure-function relation. Gene-targeted mice and hereditary defects of TYK2 in men have established the biological and pathological functions of TYK2 in innate and adaptive immune responses to infection and cancer and in (auto-)inflammation. We describe the architecture of the main cytokine receptor families associated with TYK2, which activate signal transducers and activators of transcription (STATs). We summarize the cytokine receptor activities with well characterized dependency on TYK2, the types of cells that respond to cytokines and TYK2 signaling-induced cytokine production. TYK2 may drive beneficial or detrimental activities, which we explain based on the concepts of tumor immunoediting and the cancer-immunity cycle in the tumor microenvironment. Finally, we summarize current knowledge of TYK2 functions in mouse models of tumor surveillance. The biology and biochemistry of JAKs, TYK2-dependent cytokines and cytokine signaling in tumor surveillance are well covered in recent reviews and the oncogenic properties of TYK2 are reviewed in the recent Special Issue ‘Targeting STAT3 and STAT5 in Cancer’ of Cancers.
Collapse
|
22
|
Moslin R, Zhang Y, Wrobleski ST, Lin S, Mertzman M, Spergel S, Tokarski JS, Strnad J, Gillooly K, McIntyre KW, Zupa-Fernandez A, Cheng L, Sun H, Chaudhry C, Huang C, D'Arienzo C, Heimrich E, Yang X, Muckelbauer JK, Chang C, Tredup J, Mulligan D, Xie D, Aranibar N, Chiney M, Burke JR, Lombardo L, Carter PH, Weinstein DS. Identification of N-Methyl Nicotinamide and N-Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). J Med Chem 2019; 62:8953-8972. [PMID: 31314518 DOI: 10.1021/acs.jmedchem.9b00443] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a member of the Janus (JAK) family of nonreceptor tyrosine kinases, TYK2 plays an important role in mediating the signaling of pro-inflammatory cytokines including IL-12, IL-23, and type 1 interferons. The nicotinamide 4, identified by a SPA-based high-throughput screen targeting the TYK2 pseudokinase domain, potently inhibits IL-23 and IFNα signaling in cellular assays. The described work details the optimization of this poorly selective hit (4) to potent and selective molecules such as 47 and 48. The discoveries described herein were critical to the eventual identification of the clinical TYK2 JH2 inhibitor (see following report in this issue). Compound 48 provided robust inhibition in a mouse IL-12-induced IFNγ pharmacodynamic model as well as efficacy in an IL-23 and IL-12-dependent mouse colitis model. These results demonstrate the ability of TYK2 JH2 domain binders to provide a highly selective alternative to conventional TYK2 orthosteric inhibitors.
Collapse
|
23
|
Liu C, Lin J, Moslin R, Tokarski JS, Muckelbauer J, Chang C, Tredup J, Xie D, Park H, Li P, Wu DR, Strnad J, Zupa-Fernandez A, Cheng L, Chaudhry C, Chen J, Chen C, Sun H, Elzinga P, D’arienzo C, Gillooly K, Taylor TL, McIntyre KW, Salter-Cid L, Lombardo LJ, Carter PH, Aranibar N, Burke JR, Weinstein DS. Identification of Imidazo[1,2- b]pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 Inhibitors. ACS Med Chem Lett 2019; 10:383-388. [PMID: 30891145 DOI: 10.1021/acsmedchemlett.9b00035] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
In sharp contrast to a previously reported series of 6-anilino imidazopyridazine based Tyk2 JH2 ligands, 6-((2-oxo-N1-substituted-1,2-dihydropyridin-3-yl)amino)imidazo[1,2-b]pyridazine analogs were found to display dramatically improved metabolic stability. The N1-substituent on 2-oxo-1,2-dihydropyridine ring can be a variety of alkyl, aryl, and heteroaryl groups, but among them, 2-pyridyl provided much enhanced Caco-2 permeability, attributed to its ability to form intramolecular hydrogen bonds. Further structure-activity relationship studies at the C3 position led to the identification of highly potent and selective Tyk2 JH2 inhibitor 6, which proved to be highly effective in inhibiting IFNγ production in a rat pharmacodynamics model and fully efficacious in a rat adjuvant arthritis model.
Collapse
Affiliation(s)
- Chunjian Liu
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - James Lin
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Ryan Moslin
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - John S. Tokarski
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jodi Muckelbauer
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - ChiehYing Chang
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jeffrey Tredup
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dianlin Xie
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Hyunsoo Park
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Peng Li
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dauh-Rurng Wu
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joann Strnad
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Adriana Zupa-Fernandez
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jing Chen
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Cliff Chen
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Huadong Sun
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Paul Elzinga
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Celia D’arienzo
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kathleen Gillooly
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Tracy L. Taylor
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Louis J. Lombardo
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Nelly Aranibar
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - James R. Burke
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - David S. Weinstein
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
24
|
Gorman JA, Hundhausen C, Kinsman M, Arkatkar T, Allenspach EJ, Clough C, West SE, Thomas K, Eken A, Khim S, Hale M, Oukka M, Jackson SW, Cerosaletti K, Buckner JH, Rawlings DJ. The TYK2-P1104A Autoimmune Protective Variant Limits Coordinate Signals Required to Generate Specialized T Cell Subsets. Front Immunol 2019; 10:44. [PMID: 30740104 PMCID: PMC6355696 DOI: 10.3389/fimmu.2019.00044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
TYK2 is a JAK family member that functions downstream of multiple cytokine receptors. Genome wide association studies have linked a SNP (rs34536443) within TYK2 encoding a Proline to Alanine substitution at amino acid 1104, to protection from multiple autoimmune diseases including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). The protective role of this SNP in autoimmune pathogenesis, however, remains incompletely understood. Here we found that T follicular helper (Tfh) cells, switched memory B cells, and IFNAR signaling were decreased in healthy individuals that expressed the protective variant TYK2 A1104 (TYK2 P ). To study this variant in vivo, we developed a knock-in murine model of this allele. Murine Tyk2 P expressing T cells homozygous for the protective allele, but not cells heterozygous for this change, manifest decreased IL-12 receptor signaling, important for Tfh lineage commitment. Further, homozygous Tyk2 P T cells exhibited diminished in vitro Th1 skewing. Surprisingly, despite these signaling changes, in vivo formation of Tfh and GC B cells was unaffected in two models of T cell dependent immune responses and in two alternative SLE models. TYK2 is also activated downstream of IL-23 receptor engagement. Here, we found that Tyk2 P expressing T cells had reduced IL-23 dependent signaling as well as a diminished ability to skew toward Th17 in vitro. Consistent with these findings, homozygous, but not heterozygous, Tyk2 P mice were fully protected in a murine model of MS. Homozygous Tyk2 P mice had fewer infiltrating CD4+ T cells within the CNS. Most strikingly, homozygous mice had a decreased proportion of IL-17+/IFNγ+, double positive, pathogenic CD4+ T cells in both the draining lymph nodes (LN) and CNS. Thus, in an autoimmune model, such as EAE, impacted by both altered Th1 and Th17 signaling, the Tyk2 P allele can effectively shield animals from disease. Taken together, our findings suggest that TYK2P diminishes IL-12, IL-23, and IFN I signaling and that its protective effect is most likely manifest in the setting of autoimmune triggers that concurrently dysregulate at least two of these important signaling cascades.
Collapse
Affiliation(s)
- Jacquelyn A Gorman
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Christian Hundhausen
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Mackenzie Kinsman
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Tanvi Arkatkar
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Courtnee Clough
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Samuel E West
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kerri Thomas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Ahmet Eken
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Socheath Khim
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Mohamed Oukka
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Liu Y, Gibson SA, Benveniste EN, Qin H. Opportunities for Translation from the Bench: Therapeutic Intervention of the JAK/STAT Pathway in Neuroinflammatory Diseases. Crit Rev Immunol 2018; 35:505-27. [PMID: 27279046 DOI: 10.1615/critrevimmunol.2016015517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathogenic CD4+ T cells and myeloid cells play critical roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These immune cells secrete aberrantly high levels of pro-inflammatory cytokines that pathogenically bridge the innate and adaptive immune systems and damage neurons and oligodendrocytes. These cytokines include interleukin-2 (IL-2), IL-6, IL-12, IL-21, IL-23, granulocyte macrophage-colony stimulating factor (GM-CSF), and interferon-γ (IFN-γ). It is, therefore, not surprising that both the dysregulated expression of these cytokines and the subsequent activation of their downstream signaling cascades is a common feature in MS/EAE. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is utilized by numerous cytokines for signal transduction and is essential for the development and regulation of immune responses. Unbridled activation of the JAK/STAT pathway by pro-inflammatory cytokines has been demonstrated to be critically involved in the pathogenesis of MS/EAE. In this review, we discuss recent advancements in our understanding of the involvement of the JAK/STAT signaling pathway in the pathogenesis of MS/EAE, with a particular focus on therapeutic approaches to target the JAK/STAT pathway.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294; Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sara A Gibson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
26
|
Moslin R, Gardner D, Santella J, Zhang Y, Duncia JV, Liu C, Lin J, Tokarski JS, Strnad J, Pedicord D, Chen J, Blat Y, Zupa-Fernandez A, Cheng L, Sun H, Chaudhry C, Huang C, D'Arienzo C, Sack JS, Muckelbauer JK, Chang C, Tredup J, Xie D, Aranibar N, Burke JR, Carter PH, Weinstein DS. Identification of imidazo[1,2- b]pyridazine TYK2 pseudokinase ligands as potent and selective allosteric inhibitors of TYK2 signalling. MEDCHEMCOMM 2017; 8:700-712. [PMID: 30108788 PMCID: PMC6071835 DOI: 10.1039/c6md00560h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
As a member of the Janus (JAK) family of non-receptor tyrosine kinases, TYK2 mediates the signaling of pro-inflammatory cytokines including IL-12, IL-23 and type 1 interferon (IFN), and therefore represents an attractive potential target for treating the various immuno-inflammatory diseases in which these cytokines have been shown to play a role. Following up on our previous report that ligands to the pseudokinase domain (JH2) of TYK2 suppress cytokine-mediated receptor activation of the catalytic (JH1) domain, the imidazo[1,2-b]pyridazine (IZP) 7 was identified as a promising hit compound. Through iterative modification of each of the substituents of the IZP scaffold, the cellular potency was improved while maintaining selectivity over the JH1 domain. These studies led to the discovery of the JH2-selective TYK2 inhibitor 29, which provided encouraging systemic exposures after oral dosing in mice. Phosphodiesterase 4 (PDE4) was identified as an off-target and potential liability of the IZP ligands, and selectivity for TYK2 JH2 over this enzyme was obtained by elaborating along selectivity vectors determined from analyses of X-ray co-crystal structures of representative ligands of the IZP class bound to both proteins.
Collapse
Affiliation(s)
- R Moslin
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - D Gardner
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J Santella
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - Y Zhang
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J V Duncia
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - C Liu
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J Lin
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J S Tokarski
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J Strnad
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - D Pedicord
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J Chen
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - Y Blat
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | | | - L Cheng
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - H Sun
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - C Chaudhry
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - C Huang
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - C D'Arienzo
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J S Sack
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J K Muckelbauer
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - C Chang
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J Tredup
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - D Xie
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - N Aranibar
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - J R Burke
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - P H Carter
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| | - D S Weinstein
- Bristol-Myers Squibb Research , Princeton , New Jersey , USA .
| |
Collapse
|
27
|
Yokota K, Kobayakawa K, Saito T, Hara M, Kijima K, Ohkawa Y, Harada A, Okazaki K, Ishihara K, Yoshida S, Kudo A, Iwamoto Y, Okada S. Periostin Promotes Scar Formation through the Interaction between Pericytes and Infiltrating Monocytes/Macrophages after Spinal Cord Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:639-653. [PMID: 28082119 DOI: 10.1016/j.ajpath.2016.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023]
Abstract
Scar formation is a prominent pathological feature of traumatic central nervous system (CNS) injury, which has long been implicated as a major impediment to the CNS regeneration. However, the factors affecting such scar formation remain to be elucidated. We herein demonstrate that the extracellular matrix protein periostin (POSTN) is a key player in scar formation after traumatic spinal cord injury (SCI). Using high-throughput RNA sequencing data sets, we found that the genes involved in the extracellular region, such as POSTN, were significantly expressed in the injured spinal cord. The expression of POSTN peaked at 7 days after SCI, predominantly in the scar-forming pericytes. Notably, we found that genetic deletion of POSTN in mice reduced scar formation at the lesion site by suppressing the proliferation of the pericytes. Conversely, we found that recombinant POSTN promoted the migration capacity of the monocytes/macrophages and increased the expression of tumor necrosis factor-α from the monocytes/macrophages in vitro, which facilitated the proliferation of pericytes. Furthermore, we revealed that the pharmacological blockade of POSTN suppressed scar formation and improved the long-term functional outcome after SCI. Our findings suggest a potential mechanism whereby POSTN regulates the scar formation after SCI and provide significant evidence that POSTN is a promising therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Kazuya Yokota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Hara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kijima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Department of Transcriptomics, Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Department of Transcriptomics, Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Ishihara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
28
|
Saito T, Yokota K, Kobayakawa K, Hara M, Kubota K, Harimaya K, Kawaguchi K, Hayashida M, Matsumoto Y, Doi T, Shiba K, Nakashima Y, Okada S. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy. PLoS One 2017; 12:e0169717. [PMID: 28060908 PMCID: PMC5217959 DOI: 10.1371/journal.pone.0169717] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023] Open
Abstract
Lumbar spinal canal stenosis (LSCS) is one of the most common spinal disorders in elderly people, with the number of LSCS patients increasing due to the aging of the population. The ligamentum flavum (LF) is a spinal ligament located in the interior of the vertebral canal, and hypertrophy of the LF, which causes the direct compression of the nerve roots and/or cauda equine, is a major cause of LSCS. Although there have been previous studies on LF hypertrophy, its pathomechanism remains unclear. The purpose of this study is to establish a relevant mouse model of LF hypertrophy and to examine disease-related factors. First, we focused on mechanical stress and developed a loading device for applying consecutive mechanical flexion-extension stress to the mouse LF. After 12 weeks of mechanical stress loading, we found that the LF thickness in the stress group was significantly increased in comparison to the control group. In addition, there were significant increases in the area of collagen fibers, the number of LF cells, and the gene expression of several fibrosis-related factors. However, in this mecnanical stress model, there was no macrophage infiltration, angiogenesis, or increase in the expression of transforming growth factor-β1 (TGF-β1), which are characteristic features of LF hypertrophy in LSCS patients. We therefore examined the influence of infiltrating macrophages on LF hypertrophy. After inducing macrophage infiltration by micro-injury to the mouse LF, we found excessive collagen synthesis in the injured site with the increased TGF-β1 expression at 2 weeks after injury, and further confirmed LF hypertrophy at 6 weeks after injury. Our findings demonstrate that mechanical stress is a causative factor for LF hypertrophy and strongly suggest the importance of macrophage infiltration in the progression of LF hypertrophy via the stimulation of collagen production.
Collapse
Affiliation(s)
- Takeyuki Saito
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Department of Orthopaedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Hara
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Kubota
- Department of Orthopaedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsumasa Hayashida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Doi
- Department of Orthopaedic Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Keiichiro Shiba
- Department of Orthopaedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Yokota K, Saito T, Kobayakawa K, Kubota K, Hara M, Murata M, Ohkawa Y, Iwamoto Y, Okada S. The feasibility of in vivo imaging of infiltrating blood cells for predicting the functional prognosis after spinal cord injury. Sci Rep 2016; 6:25673. [PMID: 27156468 PMCID: PMC4860707 DOI: 10.1038/srep25673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
After a spinal cord injury (SCI), a reliable prediction of the potential functional outcome is essential for determining the optimal treatment strategy. Despite recent advances in the field of neurological assessment, there is still no satisfactory methodology for predicting the functional outcome after SCI. We herein describe a novel method to predict the functional outcome at 12 hours after SCI using in vivo bioluminescence imaging. We produced three groups of SCI mice with different functional prognoses: 50 kdyn (mild), 70 kdyn (moderate) and 90 kdyn (severe). Only the locomotor function within 24 hours after SCI was unable to predict subsequent functional recovery. However, both the number of infiltrating neutrophils and the bioluminescence signal intensity from infiltrating blood cells were found to correlate with the severity of the injury at 12 hours after SCI. Furthermore, a strong linear relationship was observed among the number of infiltrating neutrophils, the bioluminescence signal intensity, and the severity of the injury. Our findings thus indicate that in vivo bioluminescence imaging is able to accurately predict the long-term functional outcome in the hyperacute phase of SCI, thereby providing evidence that this imaging modality could positively contribute to the future development of tailored therapeutic approaches for SCI.
Collapse
Affiliation(s)
- Kazuya Yokota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeyuki Saito
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kensuke Kubota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masamitsu Hara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Transcriptomics, JST-CREST, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Requirement of CD30 expression on CD4 T cells in the pathogenesis of experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 291:39-45. [DOI: 10.1016/j.jneuroim.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 01/04/2023]
|
31
|
Hainzl E, Stockinger S, Rauch I, Heider S, Berry D, Lassnig C, Schwab C, Rosebrock F, Milinovich G, Schlederer M, Wagner M, Schleper C, Loy A, Urich T, Kenner L, Han X, Decker T, Strobl B, Müller M. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5011-24. [PMID: 26432894 PMCID: PMC4635564 DOI: 10.4049/jimmunol.1402565] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3.
Collapse
Affiliation(s)
- Eva Hainzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| | - Isabella Rauch
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Susanne Heider
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Clarissa Schwab
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Felix Rosebrock
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gabriel Milinovich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | | | - Michael Wagner
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Christa Schleper
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Institute for Clinical Pathology, Medical University Vienna, 1090 Vienna, Austria; Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; and
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| |
Collapse
|
32
|
Guerreiro-Cacais AO, Laaksonen H, Flytzani S, N'diaye M, Olsson T, Jagodic M. Translational utility of experimental autoimmune encephalomyelitis: recent developments. J Inflamm Res 2015; 8:211-25. [PMID: 26622189 PMCID: PMC4654535 DOI: 10.2147/jir.s76707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune condition with firmly established genetic and environmental components. Genome-wide association studies (GWAS) have revealed a large number of genetic polymorphisms in the vicinity of, and within, genes that associate to disease. However, the significance of these single-nucleotide polymorphisms in disease and possible mechanisms of action remain, with a few exceptions, to be established. While the animal model for MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in understanding immunity in general and mechanisms of MS disease in particular, much of the translational information gathered from the model in terms of treatment development (glatiramer acetate and natalizumab) has been extensively summarized. In this review, we would thus like to cover the work done in EAE from a GWAS perspective, highlighting the research that has addressed the role of different GWAS genes and their pathways in EAE pathogenesis. Understanding the contribution of these pathways to disease might allow for the stratification of disease subphenotypes in patients and in turn open the possibility for new and individualized treatment approaches in the future.
Collapse
Affiliation(s)
- Andre Ortlieb Guerreiro-Cacais
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Laaksonen
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sevasti Flytzani
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie N'diaye
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Tokarski JS, Zupa-Fernandez A, Tredup JA, Pike K, Chang C, Xie D, Cheng L, Pedicord D, Muckelbauer J, Johnson SR, Wu S, Edavettal SC, Hong Y, Witmer MR, Elkin LL, Blat Y, Pitts WJ, Weinstein DS, Burke JR. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain. J Biol Chem 2015; 290:11061-74. [PMID: 25762719 DOI: 10.1074/jbc.m114.619502] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 01/04/2023] Open
Abstract
Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity.
Collapse
Affiliation(s)
| | | | | | - Kristen Pike
- the Department of Leads Discovery and Optimization, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut 06492
| | | | | | | | | | | | | | | | | | - Yang Hong
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543 and
| | | | - Lisa L Elkin
- the Department of Leads Discovery and Optimization, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut 06492
| | | | - William J Pitts
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543 and
| | - David S Weinstein
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543 and
| | | |
Collapse
|
34
|
Shinoda K, Sun X, Oyamada A, Yamada H, Muta H, Podack ER, Kira JI, Yoshikai Y. CD30 ligand is a new therapeutic target for central nervous system autoimmunity. J Autoimmun 2014; 57:14-23. [PMID: 25533628 DOI: 10.1016/j.jaut.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/02/2014] [Accepted: 11/26/2014] [Indexed: 01/13/2023]
Abstract
The CD30 ligand (CD30L)/CD30 axis plays a critical role in Th1 and Th17 cell differentiation. However, the role in the pathogenesis of central nervous system autoimmunity remains unknown. Here we show the resistance for experimental autoimmune encephalomyelitis (EAE) with markedly reduced induction of antigen-specific Th1 and Th17 cells in CD30L knockout mice. Bone marrow chimera experiments indicated that CD30L on bone marrow-derived cells were critical for the development of EAE and that CD30L reverse signaling in CD4 T cells was dispensable for the pathogenic Th17 cell differentiation at the induction phase. Adoptive transfer experiment revealed an additional role for CD30L in the environment at the effector phase. In vivo neutralization of CD30L by soluble murine CD30-Immunoglobulin fusion protein before disease onset or even after disease onset significantly ameliorated the clinical symptoms. These results indicate that CD30L/CD30 signaling is critically involved in antigen-specific CD4 T cell responses at both the induction and effector phase, thus could be a new target molecule for the treatment of central nervous system autoimmunity.
Collapse
Affiliation(s)
- Koji Shinoda
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang 110001, China
| | - Akiko Oyamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisakata Yamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiromi Muta
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33124, USA
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
35
|
Ubel C, Mousset S, Trufa D, Sirbu H, Finotto S. Establishing the role of tyrosine kinase 2 in cancer. Oncoimmunology 2014; 2:e22840. [PMID: 23482926 PMCID: PMC3583936 DOI: 10.4161/onci.22840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus family of non-receptor tyrosine kinases involved in cytokine signaling. TYK2 deficiency is associated with increased susceptibility to mycobacterial and viral infections, hyper IgE syndrome as well as with allergic asthma. However the precise role of TYK2 in oncogenesis and tumor progression is not clear yet. Tyk2-deficient mice are prone to develop tumors because they lack efficient cytotoxic CD8+ T-cell antitumor responses as a result of deficient Type I interferon signaling. However, as TYK2 functions downstream of growth factor receptors that are often hyperactivated in cancer, inhibiting TYK2 might also have beneficial effects for cancer treatment.
Collapse
Affiliation(s)
- Caroline Ubel
- Laboratory of Cellular and Molecular Lung Immunology; Institute of Molecular Pneumology; University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
36
|
Jenkins BJ. Transcriptional regulation of pattern recognition receptors by Jak/STAT signaling, and the implications for disease pathogenesis. J Interferon Cytokine Res 2014; 34:750-8. [PMID: 25051239 DOI: 10.1089/jir.2014.0081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cytokines are well known for their pleiotropism, affecting a large number of cellular responses, including proliferation, survival, functional maturation, and immunomodulation. It is, therefore, not surprising that both the deregulated expression of cytokines and the subsequent activation of their downstream signaling pathways is a common feature of many cancers, as well as chronic inflammatory, autoimmune, metabolic, and cardiovascular diseases. In this regard, activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is the predominant intracellular signaling event triggered by cytokines, with STAT1 and STAT3 having the greatest diversity of biological functions among the 7 known members of the STAT family of latent transcription factors. Notably, over recent years, it has emerged that STAT1 and STAT3 are employed by various cytokines to manipulate the signal output of heterologous receptors of the innate immune system, namely pattern recognition receptors (PRRs), with both immune and nonimmune (eg, oncogenic, metabolic) cellular processes being affected. This review highlights these pivotal advancements in our understanding of how a cross talk between cytokine and PRR signaling networks can impact on a variety of cellular responses during disease pathogenesis, and the potential therapeutic implications of targeting these networks.
Collapse
Affiliation(s)
- Brendan John Jenkins
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research (formerly Monash Institute of Medical Research) , Clayton, Victoria, Australia
| |
Collapse
|
37
|
Hashiguchi T, Oyamada A, Sakuraba K, Shimoda K, Nakayama KI, Iwamoto Y, Yoshikai Y, Yamada H. Tyk2-Dependent Bystander Activation of Conventional and Nonconventional Th1 Cell Subsets Contributes to Innate Host Defense againstListeria monocytogenesInfection. THE JOURNAL OF IMMUNOLOGY 2014; 192:4739-47. [DOI: 10.4049/jimmunol.1303067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Liang Y, Zhu Y, Xia Y, Peng H, Yang XK, Liu YY, Xu WD, Pan HF, Ye DQ. Therapeutic potential of tyrosine kinase 2 in autoimmunity. Expert Opin Ther Targets 2014; 18:571-80. [PMID: 24654603 DOI: 10.1517/14728222.2014.892925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Tyrosine kinase 2 (Tyk2) is a Janus kinase family member that is crucial for signaling transduction in response to a wide variety of cytokines, including type I IFNs, IL-6, IL-10, IL-12 and IL-23. An appropriate expression of Tyk2-mediated signaling might be essential for maintaining normal immune responses. AREAS COVERED This review summarizes that Tyk2 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, B cells, as well as T helper cells. In addition, Tyk2-mediated signaling promoted the production of autoimmune-associated components, which is implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis. Aberrant expression of Tyk2 was observed in many autoimmune conditions. EXPERT OPINION Until recently, no patent filings had claimed selective inhibitors of Tyk2. Both CP-690,500 and CMP6 failed to be used in clinical treatment due to the difficulties of finding suitable selective leads or due to detrimental toxicities. Although the result of Cmpd1 is promising, it remains to be seen how specific the Tyk2 inhibitor is and how they are working. Currently, structure-based drug design (SBDD) technology has provided us with a quite useful window for SBDD of Tyk2 inhibitors.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , 81 Meishan Road, Hefei, Anhui, 230032 , PR China +86 551 65167726 ; +86 551 65161171 ;
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Goris A, Pauwels I, Dubois B. Progress in multiple sclerosis genetics. Curr Genomics 2013; 13:646-63. [PMID: 23730204 PMCID: PMC3492804 DOI: 10.2174/138920212803759695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/06/2023] Open
Abstract
A genetic component in the susceptibility to multiple sclerosis (MS) has long been known, and the first and major genetic risk factor, the HLA region, was identified in the 1970’s. However, only with the advent of genome-wide association studies in the past five years did the list of risk factors for MS grow from 1 to over 50. In this review, we summarize the search for MS risk genes and the latest results. Comparison with data from other autoimmune and neurological diseases and from animal models indicates parallels and differences between diseases. We discuss how these translate into an improved understanding of disease mechanisms, and address current challenges such as genotype-phenotype correlations, functional mechanisms of risk variants and the missing heritability.
Collapse
Affiliation(s)
- An Goris
- Laboratory for Neuroimmunology, Section of Experimental Neurology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
40
|
Impact of microbes on autoimmune diseases. Arch Immunol Ther Exp (Warsz) 2013; 61:175-86. [PMID: 23417246 DOI: 10.1007/s00005-013-0216-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
Autoimmune and autoinflammatory diseases arise as a consequence of complex interactions of environmental factors with genetic traits. Although specific allelic variations cluster in predisposed individuals and promote the generation and/or expansion of autoreactive T and B lymphocytes, autoimmunity appears in various disease phenotypes and localizes to diverging tissues. Furthermore, the discovery that allelic variations within genes encoding components of the innate immune system drive self-reactive immune responses as well, led to the distinction of immune responses against host tissues into autoimmune and autoinflammatory diseases. In both categories of disorders, different pathogenic mechanisms and/or subsequent orders of tissue assaults may underlie the target cell specificity of the respective autoimmune attack. Furthermore, the transition from the initial tissue assault to the development of full-blown disease is likely driven by several factors. Thus, the development of specific forms of autoimmunity and autoinflammation reflects a multi-factorial process. The delineation of the specific factors involved in the pathogenic process is hampered by the fact that certain symptoms are assembled under the umbrella of a specific disease, although they might originate from diverging pathogenic pathways. These multi-factorial triggers and pathogenic pathways may also explain the inter-individual divergent courses and outcomes of diseases among humans. Here, we will discuss the impact of different environmental factors in general and microbial pathogens in particular on the regulation/expression of genes encoded within susceptibility alleles, and its consequences on subsequent autoimmune and/or autoinflammatory tissue damage utilizing primarily the chronic cholestatic liver disease primary biliary cirrhosis as model.
Collapse
|
41
|
Chen P, Baldeviano GC, Ligons DL, Talor MV, Barin JG, Rose NR, Cihakova D. Susceptibility to autoimmune myocarditis is associated with intrinsic differences in CD4(+) T cells. Clin Exp Immunol 2012; 169:79-88. [PMID: 22774982 DOI: 10.1111/j.1365-2249.2012.04598.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A.SW and B10.S mice share the same major histocompatibility complex (MHC) haplotype (H-2(s)). However, A.SW mice are susceptible to experimental autoimmune myocarditis (EAM) and develop severe disease after immunization with myosin, whereas B10.S mice are resistant. We found that naive A.SW mice have intrinsically increased total CD4(+) T cell counts and increased proportions of CD4(+) T cells in their spleens compared to B10.S mice. Among total CD4(+) T cells, naive A.SW mice have a lower relative frequency of forkhead box protein 3 (FoxP3(+))CD25(+) regulatory T cells (T(regs)). A.SW mice also had a higher proportion of CD4(+) T cells and a lower proportion of T(regs) in their hearts and spleen during EAM, with greater T cell activation and proliferation, compared to B10.S mice. These differences in the T cell compartment were not antigen-specific, as ovalbumin/complete Freund's adjuvant (OVA/CFA) or CFA immunization elicited the same differences in CD4(+) T cells and T(regs) between A.SW and B10.S mice. Moreover, A.SW mice had more T helper type 17 (Th17) cells and B10.S had more Th1 cells in their hearts. The higher percentage of CD4(+) T cells and their enhanced potential to differentiate towards the Th17 pathway was also observed in naive A.SW mice. Interleukin (IL)-6 is required for Th17 induction. Interestingly, IL-6Rα expression was greater on naive A.SW CD4(+) T cells, compared to B10.S CD4(+) T cells, indicating that this intrinsic difference, together with a relatively lower T(reg) proportion of CD4(+) T cells, might lead to heightened Th17 responses and greater susceptibility to autoimmunity in A.SW mice.
Collapse
Affiliation(s)
- P Chen
- Department of Pathology, Division of Immunology, Johns Hopkins University School of Medicine, MD, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Argiriadi MA, Goedken ER, Banach D, Borhani DW, Burchat A, Dixon RW, Marcotte D, Overmeyer G, Pivorunas V, Sadhukhan R, Sousa S, Moore NSJ, Tomlinson M, Voss J, Wang L, Wishart N, Woller K, Talanian RV. Enabling structure-based drug design of Tyk2 through co-crystallization with a stabilizing aminoindazole inhibitor. BMC STRUCTURAL BIOLOGY 2012; 12:22. [PMID: 22995073 PMCID: PMC3478977 DOI: 10.1186/1472-6807-12-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/27/2012] [Indexed: 01/13/2023]
Abstract
Background Structure-based drug design (SBDD) can accelerate inhibitor lead design and optimization, and efficient methods including protein purification, characterization, crystallization, and high-resolution diffraction are all needed for rapid, iterative structure determination. Janus kinases are important targets that are amenable to structure-based drug design. Here we present the first mouse Tyk2 crystal structures, which are complexed to 3-aminoindazole compounds. Results A comprehensive construct design effort included N- and C-terminal variations, kinase-inactive mutations, and multiple species orthologs. High-throughput cloning and expression methods were coupled with an abbreviated purification protocol to optimize protein solubility and stability. In total, 50 Tyk2 constructs were generated. Many displayed poor expression, inadequate solubility, or incomplete affinity tag processing. One kinase-inactive murine Tyk2 construct, complexed with an ATP-competitive 3-aminoindazole inhibitor, provided crystals that diffracted to 2.5–2.6 Å resolution. This structure revealed initial “hot-spot” regions for SBDD, and provided a robust platform for ligand soaking experiments. Compared to previously reported human Tyk2 inhibitor crystal structures (Chrencik et al. (2010) J Mol Biol 400:413), our structures revealed a key difference in the glycine-rich loop conformation that is induced by the inhibitor. Ligand binding also conferred resistance to proteolytic degradation by thermolysin. As crystals could not be obtained with the unliganded enzyme, this enhanced stability is likely important for successful crystallization and inhibitor soaking methods. Conclusions Practical criteria for construct performance and prioritization, the optimization of purification protocols to enhance protein yields and stability, and use of high-throughput construct exploration enable structure determination methods early in the drug discovery process. Additionally, specific ligands stabilize Tyk2 protein and may thereby enable crystallization.
Collapse
Affiliation(s)
- Maria A Argiriadi
- Department of Molecular & Cellular Pharmacology, Abbott Laboratories, Worcester, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
O'Rielly DD, Rahman P. Genetics of susceptibility and treatment response in psoriatic arthritis. Nat Rev Rheumatol 2011; 7:718-32. [DOI: 10.1038/nrrheum.2011.169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Wang L, Du C, Lv J, Wei W, Cui Y, Xie X. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:2336-45. [PMID: 21804021 DOI: 10.4049/jimmunol.1100333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cysteinyl leukotrienes (CysLTs) are potent proinflammatory mediators and are considered to play a key role in inflammatory diseases such as asthma. Antagonists targeting the receptor of CysLTs (CysLT1) are currently used as antiasthmatic drugs. CysLTs have also been implicated in other inflammatory reactions. In this study, we report that in experimental autoimmune encephalomyelitis animals, CysLT1 is upregulated in immune tissue and the spinal cord, and CysLT levels in the blood and cerebrospinal fluid are also higher than in normal mice. Two clinically used antiasthma drugs, montelukast and zafirlukast, both targeting CysLT1, effectively block the CNS infiltration of inflammatory cells and thus reduce the incidence, peak severity, and cumulative clinical scores. Further study indicated that CysLT1 signaling does not affect the differentiation of pathogenic T helper cells. It might affect the pathogenesis of experimental autoimmune encephalomyelitis by increasing the secretion of IL-17 from myelin oligodendrocyte glycoprotein-specific T cells, increasing the permeability of the blood-brain barrier and inducing chemotaxis of T cells. These effects can be blocked by CysLT1 antagonists. Our findings indicate that the antiasthmatic drugs against CysLT1 can also be used to treat multiple sclerosis.
Collapse
Affiliation(s)
- Liefeng Wang
- Laboratory of Receptor-Based BioMedicine, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
45
|
Ishizaki M, Muromoto R, Akimoto T, Ohshiro Y, Takahashi M, Sekine Y, Maeda H, Shimoda K, Oritani K, Matsuda T. Tyk2 deficiency protects joints against destruction in anti-type II collagen antibody-induced arthritis in mice. Int Immunol 2011; 23:575-82. [PMID: 21765170 DOI: 10.1093/intimm/dxr057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tyrosine kinase-2 (Tyk2) participates in the signaling pathways of multiple cytokines in innate and acquired immunity. In the present study, we investigated the in vivo involvement of Tyk2 in anti-type II collagen antibody-induced arthritis (CAIA) using Tyk2-deficient mice. Hind paws of wild-type mice showed massive swelling and erythema by arthritogenic antibody injection, whereas Tyk2-deficient mice did not show any signs of arthritis. Indeed, neither the infiltration of inflammatory cells nor the fibrillation of articular cartilages was observed in Tyk2-deficient mice. Tyk2 deficiency also reduced the production of T(h)1/T(h)17-related cytokines, the other proinflammatory cytokines and matrix metalloproteases, which are induced in the CAIA paw. Our results demonstrate a critical contribution of Tyk2 in the development of arthritis, and we propose that Tyk2 might be an important candidate for drug development.
Collapse
Affiliation(s)
- Masayuki Ishizaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ishizaki M, Akimoto T, Muromoto R, Yokoyama M, Ohshiro Y, Sekine Y, Maeda H, Shimoda K, Oritani K, Matsuda T. Involvement of tyrosine kinase-2 in both the IL-12/Th1 and IL-23/Th17 axes in vivo. THE JOURNAL OF IMMUNOLOGY 2011; 187:181-9. [PMID: 21606247 DOI: 10.4049/jimmunol.1003244] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase-2 (Tyk2), a member of the Jak family of kinases, mediates the signals triggered by various cytokines, including type I IFNs, IL-12, and IL-23. In the current study, we investigated the in vivo involvement of Tyk2 in several IL-12/Th1- and IL-23/Th17-mediated models of experimental diseases, including methylated BSA injection-induced footpad thickness, imiquimod-induced psoriasis-like skin inflammation, and dextran sulfate sodium- or 2,4,6-trinitrobenzene sulfonic acid-induced colitis. In these disease models, Tyk2 deficiency influenced the phenotypes in immunity and/or inflammation. Our findings demonstrate a somewhat broader contribution of Tyk2 to immune systems than previously expected and suggest that Tyk2 may represent an important candidate for drug development by targeting both the IL-12/Th1 and IL-23/Th17 axes.
Collapse
Affiliation(s)
- Masayuki Ishizaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Couturier N, Bucciarelli F, Nurtdinov RN, Debouverie M, Lebrun-Frenay C, Defer G, Moreau T, Confavreux C, Vukusic S, Cournu-Rebeix I, Goertsches RH, Zettl UK, Comabella M, Montalban X, Rieckmann P, Weber F, Müller-Myhsok B, Edan G, Fontaine B, Mars LT, Saoudi A, Oksenberg JR, Clanet M, Liblau RS, Brassat D. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain 2011; 134:693-703. [PMID: 21354972 DOI: 10.1093/brain/awr010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tyrosine kinase 2 variant rs34536443 has been established as a genetic risk factor for multiple sclerosis in a variety of populations. However, the functional effect of this variant on disease pathogenesis remains unclear. This study replicated the genetic association of tyrosine kinase 2 with multiple sclerosis in a cohort of 1366 French patients and 1802 controls. Furthermore, we assessed the functional consequences of this polymorphism on human T lymphocytes by comparing the reactivity and cytokine profile of T lymphocytes isolated from individuals expressing the protective TYK2(GC) genotype with the disease-associated TYK2(GG) genotype. Our results demonstrate that the protective C allele infers decreased tyrosine kinase 2 activity, and this reduction of activity is associated with a shift in the cytokine profile favouring the secretion of Th2 cytokines. These findings suggest that the rs34536443 variant effect on multiple sclerosis susceptibility might be mediated by deviating T lymphocyte differentiation toward a Th2 phenotype. This impact of tyrosine kinase 2 on effector differentiation is likely to be of wider importance because other autoimmune diseases also have been associated with polymorphisms within tyrosine kinase 2. The modulation of tyrosine kinase 2 activity might therefore represent a new therapeutic approach for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nicolas Couturier
- INSERM U563 and Pôle des neurosciences, University of Toulouse 3, 31000 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rodríguez E, Eyerich K, Weidinger S. Genetik häufiger chronisch-entzündlicher Hauterkrankungen. Hautarzt 2011; 62:107-18. [DOI: 10.1007/s00105-010-2053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Sun X, Yamada H, Shibata K, Muta H, Tani K, Podack ER, Iwakura Y, Yoshikai Y. CD30 ligand is a target for a novel biological therapy against colitis associated with Th17 responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:7671-80. [PMID: 21068411 DOI: 10.4049/jimmunol.1002229] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously found that CD30 ligand (CD30L; CD153)/CD30 signaling executed by the T-T cell interaction plays a critical role in Th17 cell differentiation, at least partly via downregulation of IL-2 production. In this study, we investigated the role of CD30L in the development of colitis experimentally induced by dextran sulfate sodium (DSS), in which IL-17A is involved in the pathogenesis. CD30L(-/-) mice were resistant to both acute colitis induced by administration of 3 to ∼ 5% DSS and to chronic colitis induced by administration of 1.5% DSS on days 0-5, 10-15, and 20-25 as assessed by weight loss, survival rate, and histopathology. The levels of IFN-γ, IL-17A, and IL-10 were significantly lower but the IL-2 level higher in the lamina propria T lymphocytes of CD30L(-/-) mice than those in lamina propria T lymphocytes of wild-type mice after DSS administration. Soluble murine CD30-Ig fusion protein, which was capable of inhibiting Th17 cell differentiation in vitro, ameliorated both types of DSS-induced colitis in wild-type mice. Modulation of CD30L/CD30 signaling by soluble CD30 could be a novel biological therapy for inflammatory diseases associated with Th17 responses.
Collapse
Affiliation(s)
- Xun Sun
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Strange A, Capon F, Spencer CCA, Knight J, Weale ME, Allen MH, Barton A, Band G, Bellenguez C, Bergboer JGM, Blackwell JM, Bramon E, Bumpstead SJ, Casas JP, Cork MJ, Corvin A, Deloukas P, Dilthey A, Duncanson A, Edkins S, Estivill X, Fitzgerald O, Freeman C, Giardina E, Gray E, Hofer A, Hüffmeier U, Hunt SE, Irvine AD, Jankowski J, Kirby B, Langford C, Lascorz J, Leman J, Leslie S, Mallbris L, Markus HS, Mathew CG, McLean WHI, McManus R, Mössner R, Moutsianas L, Naluai AT, Nestle FO, Novelli G, Onoufriadis A, Palmer CNA, Perricone C, Pirinen M, Plomin R, Potter SC, Pujol RM, Rautanen A, Riveira-Munoz E, Ryan AW, Salmhofer W, Samuelsson L, Sawcer SJ, Schalkwijk J, Smith CH, Ståhle M, Su Z, Tazi-Ahnini R, Traupe H, Viswanathan AC, Warren RB, Weger W, Wolk K, Wood N, Worthington J, Young HS, Zeeuwen PLJM, Hayday A, Burden AD, Griffiths CEM, Kere J, Reis A, McVean G, Evans DM, Brown MA, Barker JN, Peltonen L, Donnelly P, Trembath RC. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010; 42:985-90. [PMID: 20953190 PMCID: PMC3749730 DOI: 10.1038/ng.694] [Citation(s) in RCA: 802] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/31/2010] [Indexed: 02/08/2023]
Abstract
To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10⁻⁸ and two loci with a combined P < 5 × 10⁻⁷). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10⁻⁶). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.
Collapse
|