1
|
Chang X, Shao Y, Wang X, Guo X. A mechanism of human cytomegalovirus for establishing latency through inhibition of HCMV UL16 expression by hcmv-miR-US33-5p. Int J Biol Macromol 2024; 283:137798. [PMID: 39557271 DOI: 10.1016/j.ijbiomac.2024.137798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Human cytomegalovirus (HCMV) is the only beta herpesvirus that can encode microRNA (miRNA). As one of the 26 HCMV miRNAs, hcmv-miR-US33-5p has been reported to inhibit viral DNA synthesis and DNA replication via downregulation of the host gene syntaxin 3. Here, we tested the luciferase activity of 8 other putative target mRNAs of hcmv-miR-US33-5p, which were identified via hybrid PCR, 7 of which decreased following the over expression of hcmv-miRNA-US33-5p. A viral gene, HCMV UL16, was confirmed to be a direct target of hcmv-miR-US33-5p since both luciferase activity and protein levels were decreased by hcmv-miR-US33-5p overexpression. Moreover, by using a reconstituted virus with UL16 deletion, we found that UL16 is not an essential gene for the ability of hcmv-miR-US33-5p to downregulate DNA replication. UL16 plays a critical role in NK cell evasion by sequestering NKG2D ligands in the endoplasmic reticulum (ER) and reducing their cell surface expression. We demonstrated that over expression of hcmv-miR-US33-5p induced some NKG2D ligands independent of other HCMV genes and decreased the interaction between MICB and UL16. These stimulating NKG2D ligands can be recognized by NKG2D and subsequently activate NK cells. Our results provide insight into the mechanisms by which HCMV promotes latency through the inhibition of UL16 and the stimulation of NKG2D ligand expression by hcmv-miR-US33-5p.
Collapse
Affiliation(s)
- Xiaocen Chang
- Department of Endocrinology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yaozhong Shao
- Department of Nephrology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Xinyi Wang
- Department of Biobank, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xin Guo
- Department of Pediatrics, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Hartmann JA, Cardoso MR, Talarico MCR, Kenney DJ, Leone MR, Reese DC, Turcinovic J, O'Connell AK, Gertje HP, Marino C, Ojeda PE, De Paula EV, Orsi FA, Velloso LA, Cafiero TR, Connor JH, Ploss A, Hoelzemer A, Carrington M, Barczak AK, Crossland NA, Douam F, Boucau J, Garcia-Beltran WF. Evasion of NKG2D-mediated cytotoxic immunity by sarbecoviruses. Cell 2024; 187:2393-2410.e14. [PMID: 38653235 PMCID: PMC11088510 DOI: 10.1016/j.cell.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.
Collapse
Affiliation(s)
- Jordan A Hartmann
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Devin J Kenney
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Madison R Leone
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Dagny C Reese
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Aoife K O'Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Caitlin Marino
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Pedro E Ojeda
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Erich V De Paula
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Fernanda A Orsi
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Licio Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John H Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Angelique Hoelzemer
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute for Infection and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Mary Carrington
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amy K Barczak
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas A Crossland
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Florian Douam
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Julie Boucau
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
4
|
Smith DM, Schafer JR, Tullius B, Witkam L, Paust S. Natural killer cells for antiviral therapy. Sci Transl Med 2023; 15:eabl5278. [PMID: 36599006 DOI: 10.1126/scitranslmed.abl5278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cell-based immunotherapy is being explored for treating infectious diseases, including viral infections. Here, we discuss evidence of NK cell responses to different viruses, ongoing clinical efforts to treat such infections with NK cell products, and review platforms to generate NK cell products.
Collapse
Affiliation(s)
- Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Laura Witkam
- Kiadis Pharma, Sanofi, 1105BP Amsterdam, Netherlands
| | - Silke Paust
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Mosher BS, Kowalik TF, Yurochko AD. Overview of how HCMV manipulation of host cell intracellular trafficking networks can promote productive infection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1026452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in the immunocompromised and developing fetuses. Infection has also been linked to chronic inflammatory diseases, cardiovascular disease, and the development of certain cancers. The wide range of pathologies associated with HCMV infection is attributable to the broad cellular tropism of the virus where infection affects every organ system. Like other viruses, HCMV must tailor host cells to support productive infection. In particular, HCMV dedicates many resources and various strategies to manipulate host intracellular trafficking networks to facilitate various aspects of infection across all infected cell types. The dysregulation of host intracellular trafficking networks allows the virus to translocate to the host cell nucleus for genome replication, facilitate nuclear import/export of viral proteins and immature virions, subvert the host immune response, form new organelles for progeny virion assembly, maturation and egress, and promote cellular migration and viral spread. However, due to their complex nature, many aspects of these processes are not well-studied. New research and omics-based technologies have recently begun to elucidate the extent to which HCMV dysregulates host cell trafficking machinery. Here we review the variety of strategies HCMV utilizes to dysregulate intracellular trafficking networks to promote productive infection.
Collapse
|
6
|
Dong Y, Liu J, Lu N, Zhang C. Enterovirus 71 Antagonizes Antiviral Effects of Type III Interferon and Evades the Clearance of Intestinal Intraepithelial Lymphocytes. Front Microbiol 2022; 12:806084. [PMID: 35185830 PMCID: PMC8848745 DOI: 10.3389/fmicb.2021.806084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Enterovirus 71 (EV71) is the major pathogen causing severe neurological complications and hand, foot, and mouth disease. The intestinal mucosal immune system has a complete immune response and immune regulation mechanism, consisting of densely arranged monolayer intestinal epithelial cells (IECs) and intestinal intraepithelial lymphocytes (iIELs) distributed among the IECs, which constitute the first line of intestinal mucosa against infection of foreign pathogens. As an enterovirus, EV71 is transmitted by the intestinal tract; however, the mechanisms it uses to evade the immunosurveillance of the intestinal mucosal immune system are still incompletely clarified. The present study investigated how EV71 evades from recognizing and eliminating IECs, iIELs, and iNK cells. We found that EV71 infection induced a higher level of type III interferons (IFN-λ) than type I interferons (IFN-β) in IECs, and the addition of IFN-λ markedly restricted EV71 replication in IECs. These results indicate that IFN-λ plays a more important role in anti-EV71 intestinal infection. However, EV71 infection could markedly attenuate the antiviral responses of IFN-λ. Mechanistically, 2A protease (2Apro) and 3C protease (3Cpro) of EV71 inhibited the IFN-λ production and IFN-λ receptor expression and further decreased the response of IECs to IFN-λ. In addition, we found that EV71-infected IECs were less susceptible to the lysis of intestinal NK (iNK) cells and CD3+iIELs. We revealed that the viral 2Apro and 3Cpro could significantly reduce the expression of the ligands of natural killer group 2D (NKG2D) and promote the expression of PD-L1 on IECs, rendering them to evade the recognition and killing of iNK and CD3+iIELs. These results provide novel evasion mechanisms of EV71 from intestinal mucosal innate immunity and may give new insights into antiviral therapy.
Collapse
Affiliation(s)
- Yuanmin Dong
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Immunomodulatory Arming Factors-The Current Paradigm for Oncolytic Vectors Relies on Immune Stimulating Molecules. Int J Mol Sci 2021; 22:ijms22169051. [PMID: 34445759 DOI: 10.3390/ijms22169051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The dogma of engineering oncolytic viral vectors has shifted from emphasizing the viral lysis of individual cancer cells to the recruitment and coordination of the adaptive immune system to clear the tumor. To accomplish this, researchers have been adding several classes of transgenes to their preferred viral platforms. The most prevalent of these include antibodies and targeting moieties, interleukins and cytokines, and genes which rely on small molecule co-administration for tumor killing. Most current vectors rely exclusively on one of these types of transgenes to elicit the desired immune response to clear tumors, but are not mutually exclusive, with several larger OVs armed with several of these factors. The common theme of emerging armed vectors is to simply initiate or enhance infiltration of effector CD8+ T cells to clear the tumor locally at OV infection sites, and systemically throughout the body where the OV has not infected tumor cells. The precision of oncolytic vectors to target a cell type or tissue remains its key advantage over small-molecule drugs. Unlike chemo- and other drug therapies, viral vectors can be made to specifically infect and grow within tumor cells. This ensures localized expression of the therapeutic transgene to the diseased tissue, thereby limiting systemic toxicity. This review will examine the immunomodulating transgenes of current OVs, describe their general effect on the immune system, and provide the rationale for each vector's use in clearing its targeted tumor.
Collapse
|
9
|
Alves E, McLeish E, Blancafort P, Coudert JD, Gaudieri S. Manipulating the NKG2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Front Immunol 2021; 12:712722. [PMID: 34456921 PMCID: PMC8397441 DOI: 10.3389/fimmu.2021.712722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
The activating immune receptor natural killer group member D (NKG2D) and its cognate ligands represent a fundamental surveillance system of cellular distress, damage or transformation. Signaling through the NKG2D receptor-ligand axis is critical for early detection of viral infection or oncogenic transformation and the presence of functional NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many viruses and tumors have developed mechanisms to evade NKG2D recognition via transcriptional, post-transcriptional or post-translational interference with NKG2D-L, supporting the concept that circumventing immune evasion of the NKG2D receptor-ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the lack of specificity of current NKG2D-targeting therapies has not allowed for the precise manipulation required to optimally harness NKG2D-mediated immunity. However, with the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-specific gene editing and regulation. Here, we give a brief overview of the NKG2D receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated and dysregulated during viral infection and oncogenesis. Moreover, we explore the potential for CRISPR-based technologies to provide novel therapeutic avenues to improve and maximize NKG2D-mediated immunity.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jerome D. Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Galitska G, Coscia A, Forni D, Steinbrueck L, De Meo S, Biolatti M, De Andrea M, Cagliani R, Leone A, Bertino E, Schulz T, Santoni A, Landolfo S, Sironi M, Cerboni C, Dell'Oste V. Genetic Variability of Human Cytomegalovirus Clinical Isolates Correlates With Altered Expression of Natural Killer Cell-Activating Ligands and IFN-γ. Front Immunol 2021; 12:532484. [PMID: 33897679 PMCID: PMC8062705 DOI: 10.3389/fimmu.2021.532484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the “aggressive” HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Diego Forni
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Lars Steinbrueck
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Simone De Meo
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Rachele Cagliani
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Agata Leone
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Enrico Bertino
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Santo Landolfo
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Manuela Sironi
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Cristina Cerboni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Denaeghel S, De Pelsmaeker S, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection Causes Downregulation of Ligands for the Activating NK Cell Receptor NKG2D. Viruses 2021; 13:266. [PMID: 33572245 PMCID: PMC7915010 DOI: 10.3390/v13020266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses display a complex and carefully balanced interaction with important players in the antiviral immune response of immunocompetent natural hosts, including natural killer (NK) cells. With regard to NK cells, this delicate balance is illustrated on the one hand by severe herpesvirus disease reported in individuals with NK cell deficiencies and on the other hand by several NK cell evasion strategies described for herpesviruses. In the current study, we report that porcine cells infected with the porcine alphaherpesvirus pseudorabies virus (PRV) display a rapid and progressive downregulation of ligands for the major activating NK cell receptor NKG2D. This downregulation consists both of a downregulation of NKG2D ligands that are already expressed on the cell surface of an infected cell and an inhibition of cell surface expression of newly expressed NKG2D ligands. Flow cytometry and RT-qPCR assays showed that PRV infection results in downregulation of the porcine NKG2D ligand pULBP1 from the cell surface and a very substantial suppression of mRNA expression of pULBP1 and of another potential NKG2D ligand, pMIC2. Furthermore, PRV-induced NKG2D ligand downregulation was found to be independent of late viral gene expression. In conclusion, we report that PRV infection of host cells results in a very pronounced downregulation of ligands for the activating NK cell receptor NKG2D, representing an additional NK evasion strategy of PRV.
Collapse
Affiliation(s)
| | | | | | - Herman W. Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (S.D.); (S.D.P.); (C.V.W.)
| |
Collapse
|
12
|
Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, Riva G, Dell’Oste V, Biolatti M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021; 13:260. [PMID: 33567734 PMCID: PMC7914970 DOI: 10.3390/v13020260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency in poorly differentiated myeloid precursors from where it can reactivate at later times to cause recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases, whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay between HCMV and the immune system has led many to hypothesize that HCMV could also be involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic diseases. In addition, HCMV infection has been frequently linked to increased production of autoantibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus (SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the potential role of HCMV-mediated immune activation at disease onset.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Gloria Griffante
- Department of Translational Medicine, Molecular Virology Unit, University of Piemonte Orientale Medical School, 28100 Novara, Italy;
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy;
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| |
Collapse
|
13
|
Forrest C, Gomes A, Reeves M, Male V. NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030394. [PMID: 32698362 PMCID: PMC7563466 DOI: 10.3390/vaccines8030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.
Collapse
Affiliation(s)
- Calum Forrest
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Ariane Gomes
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Matthew Reeves
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
- Correspondence: (M.R.); (V.M.)
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Campus, London SW10 9NH, UK
- Correspondence: (M.R.); (V.M.)
| |
Collapse
|
14
|
Abstract
The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
15
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
16
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Endoplasmic Reticulum (ER) Reorganization and Intracellular Retention of CD58 Are Functionally Independent Properties of the Human Cytomegalovirus ER-Resident Glycoprotein UL148. J Virol 2020; 94:JVI.01435-19. [PMID: 31801856 DOI: 10.1128/jvi.01435-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
The human cytomegalovirus (HCMV) endoplasmic reticulum (ER)-resident glycoprotein UL148 is posited to play roles in immune evasion and regulation of viral cell tropism. UL148 prevents cell surface presentation of the immune cell costimulatory ligand CD58 while promoting maturation and virion incorporation of glycoprotein O, a receptor binding subunit for an envelope glycoprotein complex involved in entry. Meanwhile, UL148 activates the unfolded protein response (UPR) and causes large-scale reorganization of the ER. In order to determine whether the seemingly disparate effects of UL148 are related or discrete, we generated six charged cluster-to-alanine (CCTA) mutants within the UL148 ectodomain and compared them to wild-type UL148, both in the context of infection studies using recombinant viruses and in ectopic expression experiments, assaying for effects on ER remodeling and CD58 surface presentation. Two mutants, targeting charged clusters spanning residues 79 to 83 (CC3) and 133 to 136 (CC4), retained the potential to impede CD58 surface presentation. Of the six mutants, only CC3 retained the capacity to reorganize the ER, but it showed a partial phenotype. Wild-type UL148 accumulates in a detergent-insoluble form during infection. However, all six CCTA mutants were fully soluble, which implies a relationship between insolubility and organelle remodeling. Additionally, we found that the chimpanzee cytomegalovirus UL148 homolog suppresses surface presentation of CD58 but fails to reorganize the ER, while the homolog from rhesus cytomegalovirus shows neither activity. Collectively, our findings illustrate various degrees of functional divergence between homologous primate cytomegalovirus immunevasins and suggest that the capacity to cause ER reorganization is unique to HCMV UL148.IMPORTANCE In myriad examples, viral gene products cause striking effects on cells, such as activation of stress responses. It can be challenging to decipher how such effects contribute to the biological roles of the proteins. The HCMV glycoprotein UL148 retains CD58 within the ER, thereby preventing it from reaching the cell surface, where it functions to stimulate cell-mediated antiviral responses. Intriguingly, UL148 also triggers the formation of large, ER-derived membranous structures and activates the UPR, a set of signaling pathways involved in adaptation to ER stress. We demonstrate that the potential of UL148 to reorganize the ER and to retain CD58 are separable by mutagenesis and, possibly, by evolution, since chimpanzee cytomegalovirus UL148 retains CD58 but does not remodel the ER. Our findings imply that ER reorganization contributes to other roles of UL148, such as modulation of alternative viral glycoprotein complexes that govern the virus' ability to infect different cell types.
Collapse
|
18
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
19
|
Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, Romashova V, Roche K, Murphy E, Chilvers E, Lehner PJ, Sinclair J, Poole E. Monocytes Latently Infected with Human Cytomegalovirus Evade Neutrophil Killing. iScience 2019; 12:13-26. [PMID: 30677738 PMCID: PMC6352302 DOI: 10.1016/j.isci.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV) in vivo is in undifferentiated cells of the myeloid lineage. Although latently infected cells are known to evade host T cell responses by suppression of T cell effector functions, it is not known if they must also evade surveillance by other host immune cells. Here we show that cells latently infected with HCMV can, indeed, be killed by host neutrophils but only in a serum-dependent manner. Specifically, antibodies to the viral latency-associated US28 protein mediate neutrophil killing of latently infected cells. To address this mechanistically, a full proteomic screen was carried out on latently infected monocytes. This showed that latent infection downregulates the neutrophil chemoattractants S100A8/A9, thus suppressing neutrophil recruitment to latently infected cells. The ability of latently infected cells to inhibit neutrophil recruitment represents an immune evasion strategy of this persistent human pathogen, helping to prevent clearance of the latent viral reservoir.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Genomic Medicine Institute, Lerner Research Institute, 9620 Carnegie Avenue, Cleveland, OH, USA
| | - James Williamson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Yusuf Aslam
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Neda Farahi
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alexander Wood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Kate Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Eain Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Edwin Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
20
|
The Human Cytomegalovirus Protein UL148A Downregulates the NK Cell-Activating Ligand MICA To Avoid NK Cell Attack. J Virol 2018; 92:JVI.00162-18. [PMID: 29950412 DOI: 10.1128/jvi.00162-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system capable of killing hazardous cells, including virally infected cells. NK cell-mediated killing is triggered by activating receptors. Prominent among these is the activating receptor NKG2D, which binds several stress-induced ligands, among them major histocompatibility complex (MHC) class I-related chain A (MICA). Most of the human population is persistently infected with human cytomegalovirus (HCMV), a virus which employs multiple immune evasion mechanisms, many of which target NK cell responses. HCMV infection is mostly asymptomatic, but in congenitally infected neonates and in immunosuppressed patients it can lead to serious complications and mortality. Here we discovered that an HCMV protein named UL148A whose role was hitherto unknown is required for evasion of NK cells. We demonstrate that UL148A-deficient HCMV strains are impaired in their ability to downregulate MICA expression. We further show that when expressed by itself, UL148A is not sufficient for MICA targeting, but rather acts in concert with an unknown viral factor. Using inhibitors of different cellular degradation pathways, we show that UL148A targets MICA for lysosomal degradation. Finally, we show that UL148A-mediated MICA downregulation hampers NK cell-mediated killing of HCMV-infected cells. Discovering the full repertoire of HCMV immune evasion mechanisms will lead to a better understanding of the ability of HCMV to persist in the host and may also promote the development of new vaccines and drugs against HCMV.IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen which is usually asymptomatic but that can cause serious complications and mortality in congenital infections and in immunosuppressed patients. One of the difficulties in developing novel vaccines and treatments for HCMV is its remarkable ability to evade our immune system. In particular, HCMV directs significant efforts to thwarting cells of the innate immune system known as natural killer (NK) cells. These cells are crucial for successful control of HCMV infection, and yet our understanding of the mechanisms which HCMV utilizes to elude NK cells is partial at best. In the present study, we discovered that a protein encoded by HCMV which had no known function is important for preventing NK cells from killing HCMV-infected cells. This knowledge can be used in the future for designing more-efficient HCMV vaccines and for formulating novel therapies targeting this virus.
Collapse
|
21
|
Abstract
Natural killer (NK) cells play an important role in the host response against viral infections and cancer development. They are able to kill virus-infected and tumor cells, and they produce different important cytokines that stimulate the antiviral and antitumor adaptive immune response, particularly interferon gamma. NK cells are of particular importance in herpesvirus infections, which is illustrated by systemic and life-threatening herpesvirus disease symptoms in patients with deficiencies in NK cell activity and by the myriad of reports describing herpesvirus NK cell evasion strategies. The latter is particularly obvious for cytomegaloviruses, but increasing evidence indicates that most, if not all, members of the herpesvirus family suppress NK cell activity to some extent. This review discusses the different NK cell evasion strategies described for herpesviruses and how this knowledge may translate to clinical applications.
Collapse
|
22
|
Subramanian N, Wu Z, Reister F, Sampaio KL, Frascaroli G, Cicin-Sain L, Mertens T. Naïve T cells are activated by autologous HCMV-infected endothelial cells through NKG2D and can control HCMV transmission in vitro. J Gen Virol 2017; 98:3068-3085. [PMID: 29165229 DOI: 10.1099/jgv.0.000976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apart from classical antigen-presenting cells (APCs) like dendritic cells and macrophages, there are semiprofessional APCs such as endothelial cells (ECs) and Langerhans' cells. Human cytomegalovirus (HCMV) infects a wide range of cell types including the ECs which are involved in the trafficking and homing of T cells. By investigating the interaction of naïve T cells obtained from HCMV-seronegative umbilical cord blood with autologous HCMV-infected human umbilical vein ECs (HUVECs), we could show that the activation of naïve T cells occurred after 1 day of peripheral blood mononuclear cell (PBMC) exposure to HCMV-infected HUVECs. The percentage of activated T cells increased over time and the activation of naïve T cells was not induced by either autologous uninfected HUVECs or by autologous HCMV-infected fibroblasts. The activation of T cells occurred also when purified T cells were co-cultured with HCMV-infected HUVECs. In addition, in most of the donors only CD8+ T cells were activated, when the purified T cells were exposed to HCMV-infected HUVECs. The activation of naïve T cells was inhibited when the NKG2D receptor was blocked on the surface of T cells and among the different NKG2D ligands, we identified two ligands (ULBP4 and MICA) on HCMV-infected HUVECs which might be the interaction partners of the NKG2D receptor. Using a functional cell culture assay, we could show that these activated naïve T cells specifically inhibited HCMV transmission. Altogether, we identified a novel specific activation mechanism of naïve T cells from the umbilical cord by HCMV-infected autologous HUVECs through interaction with NKG2D.
Collapse
Affiliation(s)
| | - Zeguang Wu
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Reister
- Gynecology and Obstetrics Clinics, Ulm University Hospital, Ulm, Germany
| | | | - Giada Frascaroli
- Institute of Virology, Ulm University Medical Center, Ulm, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Location Hannover-Braunschweig, Germany
| | - Thomas Mertens
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
23
|
Molfetta R, Quatrini L, Santoni A, Paolini R. Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis. Int J Mol Sci 2017; 18:ijms18081677. [PMID: 28767057 PMCID: PMC5578067 DOI: 10.3390/ijms18081677] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Natural-killer receptor group 2, member D (NKG2D) is a well characterized natural killer (NK) cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs), DNAX accessory molecule-1 (DNAM1) and CD16, will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Linda Quatrini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
24
|
Schönrich G, Abdelaziz MO, Raftery MJ. Herpesviral capture of immunomodulatory host genes. Virus Genes 2017; 53:762-773. [PMID: 28451945 DOI: 10.1007/s11262-017-1460-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Herpesviruses have acquired numerous genes from their hosts. Although these homologs are not essential for viral replication, they often have important immunomodulatory functions that ensure viral persistence in the host. Some of these viral molecules are called virokines as they mimic cellular cytokines of their host such as interleukin-10 (cIL-10). In recent years, many viral homologs of IL-10 (vIL-10s) have been discovered in the genome of members of the order Herpesvirales. For some, gene and protein structure as well as biological activity and potential use in the clinical context have been explored. Besides virokines, herpesviruses have also captured genes encoding membrane-bound host immunomodulatory proteins such as major histocompatibility complex (MHC) molecules. These viral MHC mimics also retain many of the functions of the cellular genes, in particular directly or indirectly modulating the activity of natural killer cells. The mechanisms underlying capture of cellular genes by large DNA viruses are still enigmatic. In this review, we provide an update of the advances in the field of herpesviral gene piracy and discuss possible scenarios that could explain how the gene transfer from host to viral genome was achieved.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mohammed O Abdelaziz
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
25
|
Schmiedel D, Mandelboim O. Disarming Cellular Alarm Systems-Manipulation of Stress-Induced NKG2D Ligands by Human Herpesviruses. Front Immunol 2017; 8:390. [PMID: 28443092 PMCID: PMC5387052 DOI: 10.3389/fimmu.2017.00390] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
The coevolution of viruses and their hosts led to the repeated emergence of cellular alert signals and viral strategies to counteract them. The herpesvirus family of viruses displays the most sophisticated repertoire of immune escape mechanisms enabling infected cells to evade immune recognition and thereby maintain infection. The herpesvirus family consists of nine viruses that are capable of infecting humans: herpes simplex virus 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), roseoloviruses (HHV-6A, HHV-6B, and HHV-7), and Kaposi’s-sarcoma-associated herpesvirus (KSHV). Most of these viruses are highly prevalent and infect a vast majority of the human population worldwide. Notably, research over the past 15 years has revealed that cellular ligands for the activating receptor natural-killer group 2, member D (NKG2D)—which is primarily expressed on natural killer (NK) cells—are common targets suppressed during viral infection, i.e., their surface expression is reduced in virtually all lytic herpesvirus infections by diverse mechanisms. Here, we review the viral mechanisms by which all herpesviruses known to date to downmodulate the expression of the NKG2D ligands. Also, in light of recent findings, we speculate about the importance of the emergence of eight different NKG2D ligands in humans and further allelic diversification during host and virus coevolution.
Collapse
Affiliation(s)
- Dominik Schmiedel
- Faculty of Medicine, The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- Faculty of Medicine, The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
26
|
Molfetta R, Zitti B, Santoni A, Paolini R. Ubiquitin and ubiquitin-like modifiers modulate NK cell-mediated recognition and killing of damaged cells. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Human γδT-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 2016; 14:245-253. [PMID: 27890919 PMCID: PMC5360884 DOI: 10.1038/cmi.2016.55] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
γδT cells are a conserved population of innate lymphocytes with diverse structural and functional heterogeneity that participate in various immune responses during tumor progression. γδT cells perform potent immunosurveillance by exerting direct cytotoxicity, strong cytokine production and indirect antitumor immune responses. However, certain γδT-cell subsets also contribute to tumor progression by facilitating cancer-related inflammation and immunosuppression. Here, we review recent observations regarding the antitumor and protumor roles of major structural and functional subsets of human γδT cells, describing how these subsets are activated and polarized, and how these events relate to subsequent function in tumor immunity. These studies provide insights into the manipulation of γδT-cell function to facilitate more targeted approaches for tumor therapy.
Collapse
|
28
|
Pignoloni B, Fionda C, Dell'Oste V, Luganini A, Cippitelli M, Zingoni A, Landolfo S, Gribaudo G, Santoni A, Cerboni C. Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. THE JOURNAL OF IMMUNOLOGY 2016; 197:4066-4078. [PMID: 27733551 DOI: 10.4049/jimmunol.1502527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
Elimination of virus-infected cells by cytotoxic lymphocytes is triggered by activating receptors, among which NKG2D and DNAM-1/CD226 play an important role. Their ligands, that is, MHC class I-related chain (MIC) A/B and UL16-binding proteins (ULBP)1-6 (NKG2D ligand), Nectin-2/CD112, and poliovirus receptor (PVR)/CD155 (DNAM-1 ligand), are often induced on virus-infected cells, although some viruses, including human CMV (HCMV), can block their expression. In this study, we report that infection of different cell types with laboratory or low-passage HCMV strains upregulated MICA, ULBP3, and PVR, with NKG2D and DNAM-1 playing a role in NK cell-mediated lysis of infected cells. Inhibition of viral DNA replication with phosphonoformic acid did not prevent ligand upregulation, thus indicating that early phases of HCMV infection are involved in ligand increase. Indeed, the major immediate early (IE) proteins IE1 and IE2 stimulated the expression of MICA and PVR, but not ULBP3. IE2 directly activated MICA promoter via its binding to an IE2-responsive element that we identified within the promoter and that is conserved among different alleles of MICA. Both IE proteins were instead required for PVR upregulation via a mechanism independent of IE DNA binding activity. Finally, inhibiting IE protein expression during HCMV infection confirmed their involvement in ligand increase. We also investigated the contribution of the DNA damage response, a pathway activated by HCMV and implicated in ligand regulation. However, silencing of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related protein, and DNA-dependent protein kinase did not influence ligand expression. Overall, these data reveal that MICA and PVR are directly regulated by HCMV IE proteins, and this may be crucial for the onset of an early host antiviral response.
Collapse
Affiliation(s)
- Benedetta Pignoloni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Marco Cippitelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy; .,Mediterranean Neurological Institute-Neuromed, 86077 Pozzilli (Isernia), Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy;
| |
Collapse
|
29
|
Sturgill ER, Malouli D, Hansen SG, Burwitz BJ, Seo S, Schneider CL, Womack JL, Verweij MC, Ventura AB, Bhusari A, Jeffries KM, Legasse AW, Axthelm MK, Hudson AW, Sacha JB, Picker LJ, Früh K. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus. PLoS Pathog 2016; 12:e1005868. [PMID: 27580123 PMCID: PMC5006984 DOI: 10.1371/journal.ppat.1005868] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection. Natural killer (NK) cells are an important subset of the innate immune system that rapidly responds to cellular transformation and infection. The importance of NK cell control of viral infection is dramatically illustrated by our results revealing that cytomegalovirus (CMV) is unable to establish infections in healthy individuals unless NK cell responses are subverted. By studying infection of rhesus macaques with rhesus CMV, a highly representative animal model for human CMV, we identified a key viral factor that allows RhCMV to limit NK cell activation by preventing NK cell activating ligands from trafficking to the cell surface. Importantly, we observed that this avoidance of NK cell activation is essential to establish infection in vivo because RhCMV lacking the NK cell evasion factor was unable to infect animals unless NK cells were depleted. By unmasking such viral stealth strategies it might be possible to harness innate immunity to prevent viral infection, the primary goal of CMV vaccine development.
Collapse
Affiliation(s)
- Elizabeth R. Sturgill
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Seongkyung Seo
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, Waukesha, Wisconsin, United States of America
| | - Jennie L. Womack
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Marieke C. Verweij
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Krystal M. Jeffries
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bigley AB, Rezvani K, Shah N, Sekine T, Balneger N, Pistillo M, Agha N, Kunz H, O'Connor DP, Bollard CM, Simpson RJ. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clin Exp Immunol 2016; 185:239-51. [PMID: 26940026 PMCID: PMC4955006 DOI: 10.1111/cei.12785] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) infection markedly expands NKG2C+/NKG2A- NK cells, which are potent killers of infected cells expressing human leucocyte antigen (HLA)-E. As HLA-E is also over-expressed in several haematological malignancies and CMV has been linked to a reduced risk of leukaemic relapse, we determined the impact of latent CMV infection on NK cell cytotoxicity against four tumour target cell lines with varying levels of HLA-E expression. NK cell cytotoxicity against K562 (leukaemia origin) and U266 (multiple myeloma origin) target cells was strikingly greater in healthy CMV-seropositive donors than seronegative donors and was associated strongly with target cell HLA-E and NK cell NKG2C expression. NK cell cytotoxicity against HLA-E transfected lymphoma target cells (221.AEH) was ∼threefold higher with CMV, while NK cell cytotoxicity against non-transfected 721.221 cells was identical between the CMV groups. NK cell degranulation (CD107a(+) ) and interferon (IFN)-γ production to 221.AEH cells was localized almost exclusively to the NKG2C subset, and antibody blocking of NKG2C completely eliminated the effect of CMV on NK cell cytotoxicity against 221.AEH cells. Moreover, 221.AEH feeder cells and interleukin (IL)-15 were found to expand NKG2C(+) /NKG2A(-) NK cells preferentially from CMV-seronegative donors and increase NK cell cytotoxicity against HLA-E(+) tumour cell lines. We conclude that latent CMV infection enhances NK cell cytotoxicity through accumulation of NKG2C(+) NK cells, which may be beneficial in preventing the initiation and progression of haematological malignancies characterized by high HLA-E expression.
Collapse
Affiliation(s)
- A. B. Bigley
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - K. Rezvani
- Department of Stem Cell Transplantation, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - N. Shah
- Department of Stem Cell Transplantation, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - T. Sekine
- Department of Stem Cell Transplantation, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - N. Balneger
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - M. Pistillo
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - N. Agha
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - H. Kunz
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - D. P. O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - C. M. Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation and Center for Cancer and Immunology ResearchChildren's National Health SystemWashingtonDCUSA
| | - R. J. Simpson
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| |
Collapse
|
31
|
Chávez-Blanco A, Chacón-Salinas R, Dominguez-Gomez G, Gonzalez-Fierro A, Perez-Cardenas E, Taja-Chayeb L, Trejo-Becerril C, Duenas-Gonzalez A. Viral inhibitors of NKG2D ligands for tumor surveillance. Expert Opin Ther Targets 2016; 20:1375-1387. [PMID: 27322108 DOI: 10.1080/14728222.2016.1202928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Natural Killer cells (NK) are key for the innate immune response against tumors and viral infections. Several viral proteins evade host immune response and target the NK cell receptor NKG2D and its ligands. Areas covered: This review aimed to describe the viruses and their proteins that interfere with the NKG2D receptor and their ligands, and how these interactions lead to immune evasion, host protection, and tissue damage from acute and chronic viral infections. Expert opinion: The study of viral proteins has already impacted the field of oncology. A prime example is the HBV vaccine and the development of antiviral drugs for HIV, Hepatitis C, and the family of Herpesviridae viruses. The NKG2D system seems to be a rational therapeutic target. Nevertheless, an effective cytotoxic response by NK cells is mediated by a network of activating and inhibitory receptors, the integration of which determines if the NK cell becomes cytotoxic or permissive. Immunotherapeutic agents that increase the antitumor lytic activity of NK cells through modulating activation and inhibitory signaling of NK cells are being developed. Nevertheless, more research is needed to dissect the integrative mechanism of NK cells function to fully exploit their antitumor and antiviral effector mechanisms.
Collapse
Affiliation(s)
- Alma Chávez-Blanco
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Rommel Chacón-Salinas
- b Departamento de Inmunología , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN , Mexico City , México
| | | | - Aurora Gonzalez-Fierro
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Enrique Perez-Cardenas
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Lucia Taja-Chayeb
- a Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | | | - Alfonso Duenas-Gonzalez
- c Unidad de Investigacion Biomedica en Cancer , Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Cancerología , Mexico City , Mexico.,d Unidad de Investigacion Basica Aplicada , ISSEMyM Cancer Center , Toluca , Mexico
| |
Collapse
|
32
|
Abstract
NKG2D ligands (NKG2DLs) are a group of stress-inducible major histocompatibility complex (MHC) class I-like molecules that act as a danger signal alerting the immune system to the presence of abnormal cells. In mammals, two families of NKG2DL genes have been identified: the MIC gene family encoded in the MHC region and the ULBP gene family encoded outside the MHC region in most species. Some mammals have a third family of NKG2DL-like class I genes which we named MILL (MHC class I-like located near the leukocyte receptor complex). Despite the fact that MILL genes are more closely related to MIC genes than ULBP genes are to MIC genes, MILL molecules do not function as NKG2DLs, and their function remains unknown. With the progress of mammalian genome projects, information on the MIC, ULBP, and MILL gene families became available in many mammalian species. Here, we summarize such information and discuss the origin and evolution of the NKG2DL gene family from the viewpoint of host-pathogen coevolution.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichi Sutoh
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Ma Y, Li X, Kuang E. Viral Evasion of Natural Killer Cell Activation. Viruses 2016; 8:95. [PMID: 27077876 PMCID: PMC4848590 DOI: 10.3390/v8040095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.
Collapse
Affiliation(s)
- Yi Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
34
|
Abstract
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
35
|
Varicella-Zoster Virus and Herpes Simplex Virus 1 Differentially Modulate NKG2D Ligand Expression during Productive Infection. J Virol 2015; 89:7932-43. [PMID: 25995251 DOI: 10.1128/jvi.00292-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Natural killer (NK) cell-deficient patients are particularly susceptible to severe infection with herpesviruses, especially varicella-zoster virus (VZV) and herpes simplex virus 1 (HSV-1). The critical role that NK cells play in controlling these infections denotes an intricate struggle for dominance between virus and NK cell antiviral immunity; however, research in this area has remained surprisingly limited. Our study addressed this absence of knowledge and found that infection with VZV was not associated with enhanced NK cell activation, suggesting that the virus uses specific mechanisms to limit NK cell activity. Analysis of viral regulation of ligands for NKG2D, a potent activating receptor ubiquitously expressed on NK cells, revealed that VZV differentially modulates expression of the NKG2D ligands MICA, ULBP2, and ULBP3 by upregulating MICA expression while reducing ULBP2 and ULBP3 expression on the surface of infected cells. Despite being closely related to VZV, infection with HSV-1 produced a remarkably different effect on NKG2D ligand expression. A significant decrease in MICA, ULBP2, and ULBP3 was observed with HSV-1 infection at a total cellular protein level, as well as on the cell surface. We also demonstrate that HSV-1 differentially regulates expression of an additional NKG2D ligand, ULBP1, by reducing cell surface expression while total protein levels are unchanged. Our findings illustrate both a striking point of difference between two closely related alphaherpesviruses, as well as suggest a powerful capacity for VZV and HSV-1 to evade antiviral NK cell activity through novel modulation of NKG2D ligand expression. IMPORTANCE Patients with deficiencies in NK cell function experience an extreme susceptibility to infection with herpesviruses, in particular, VZV and HSV-1. Despite this striking correlation, research into understanding how these two alphaherpesviruses interact with NK cells is surprisingly limited. Through examination of viral regulation of ligands to the activating NK cell receptor NKG2D, we reveal patterns of modulation by VZV, which were unexpectedly varied in response to regulation by HSV-1 infection. Our study begins to unravel the undoubtedly complex interactions that occur between NK cells and alphaherpesvirus infection by providing novel insights into how VZV and HSV-1 manipulate NKG2D ligand expression to modulate NK cell activity, while also illuminating a distinct variation between two closely related alphaherpesviruses.
Collapse
|
36
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
37
|
Goldberger T, Mandelboim O. The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol 2014; 36:659-74. [PMID: 25234555 DOI: 10.1007/s00281-014-0447-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its "multitasking" microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.
Collapse
Affiliation(s)
- Tal Goldberger
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, 91120, Israel
| | | |
Collapse
|
38
|
Siegers GM, Lamb LS. Cytotoxic and regulatory properties of circulating Vδ1+ γδ T cells: a new player on the cell therapy field? Mol Ther 2014; 22:1416-1422. [PMID: 24895997 DOI: 10.1038/mt.2014.104] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/26/2014] [Indexed: 12/20/2022] Open
Abstract
Exploration of cancer immunotherapy strategies that incorporate γδ T cells as primary mediators of antitumor immunity are just beginning to be explored and with a primary focus on the use of manufactured phosphoantigen-stimulated Vγ9Vδ2 T cells. Increasing evidence, however, supports a critical role for Vδ1+ γδ T cells, a minor subset in peripheral blood with distinct innate recognition properties that possess powerful tumoricidal activity. They are activated by a host of ligands including stress-induced self-antigens, glycolipids presented by CD1c/d, and potentially many others that currently remain unidentified. In contrast to Vγ9Vδ2 T cells, tumor-reactive Vδ1+ T cells are not as susceptible to activation-induced cell death and can persist in the circulation for many years, potentially offering durable immunity to some cancers. In addition, specific populations of Vδ1+ T cells can also exhibit immunosuppressive and regulatory properties, a function that can also be exploited for therapeutic purposes. This review explores the biology, function, manufacturing strategies, and potential therapeutic role of Vδ1+ T cells. We also discuss clinical experience with Vδ1+ T cells in the setting of cancer, as well as the potential of and barriers to the development of Vδ1+ T cell-based adoptive cell therapy strategies.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Lawrence S Lamb
- Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
39
|
Fielding CA, Aicheler R, Stanton RJ, Wang ECY, Han S, Seirafian S, Davies J, McSharry BP, Weekes MP, Antrobus PR, Prod'homme V, Blanchet FP, Sugrue D, Cuff S, Roberts D, Davison AJ, Lehner PJ, Wilkinson GWG, Tomasec P. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog 2014; 10:e1004058. [PMID: 24787765 PMCID: PMC4006889 DOI: 10.1371/journal.ppat.1004058] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.
Collapse
Affiliation(s)
- Ceri A. Fielding
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rebecca Aicheler
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eddie C. Y. Wang
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Song Han
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sepehr Seirafian
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Davies
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Brian P. McSharry
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - P. Robin Antrobus
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginie Prod'homme
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Fabien P. Blanchet
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel Sugrue
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simone Cuff
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dawn Roberts
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Gavin W. G. Wilkinson
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - Peter Tomasec
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
40
|
Human cytomegalovirus and autoimmune disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:472978. [PMID: 24967373 PMCID: PMC4022258 DOI: 10.1155/2014/472978] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/17/2014] [Indexed: 11/28/2022]
Abstract
Human cytomegalovirus (HCMV) represents a prototypic pathogenic member of the β-subgroup of the herpesvirus family. A range of HCMV features like its lytic replication in multiple tissues, the lifelong persistence through periods of latency and intermitting reactivation, the extraordinary large proteome, and extensive manipulation of adaptive and innate immunity make HCMV a high profile candidate for involvement in autoimmune disorders. We surveyed the available literature for reports on HCMV association with onset or exacerbation of autoimmune disease. A causative linkage between HCMV and systemic lupus erythematosus (SLE), systemic sclerosis (SSc), diabetes mellitus type 1, and rheumatoid arthritis (RA) is suggested by the literature. However, a clear association of HCMV seroprevalence and disease could not be established, leaving the question open whether HCMV could play a coresponsible role for onset of disease. For convincing conclusions population-based prospective studies must be performed in the future. Specific immunopathogenic mechanisms by which HCMV could contribute to the course of autoimmune disease have been suggested, for example, molecular mimicry by UL94 in SSc and UL83/pp65 in SLE patients, as well as aggravation of joint inflammation by induction and expansion of CD4+/CD28− T-cells in RA patients. Further studies are needed to validate these findings and to lay the grounds for targeted therapeutic intervention.
Collapse
|
41
|
Potential for Natural Killer Cell-Mediated Antibody-Dependent Cellular Cytotoxicity for Control of Human Cytomegalovirus. Antibodies (Basel) 2013. [DOI: 10.3390/antib2040617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
42
|
Affiliation(s)
- Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA +1001 858 752 6732
| |
Collapse
|
43
|
Chitadze G, Bhat J, Lettau M, Janssen O, Kabelitz D. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol 2013; 78:120-9. [PMID: 23679194 DOI: 10.1111/sji.12072] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/14/2013] [Indexed: 12/23/2022]
Abstract
The activating natural killer group 2 member D (NKG2D) receptor is expressed on NK cells, cytotoxic T cells and additional T cell subsets. Ligands for human NKG2D comprise two groups of MHC class I-related molecules, the MHC class I chain-related proteins A and B (MICA/B) and 6 UL16-binding proteins (ULBP1-6). While NKG2D ligands are absent from most normal cells, expression is induced upon stress and malignant transformation. In fact, most solid tumours and leukaemia/lymphomas constitutively express at least one NKG2D ligand and thereby are susceptible to NKG2D-dependent immunosurveillance. However, soluble NKG2D ligands are released from tumour cells and can down-modulate NKG2D activation as a means of tumour immune escape. In some tumour entities, levels of soluble NKG2D ligands in the serum correlate with tumour progression. NKG2D ligands can be proteolytically shed from the cell surface or liberated from the membrane by phospholipase C in the case of glycosylphosphatidylinositol (GPI)-anchored molecules. Moreover, NKG2D ligands can be secreted in exosomal microvesicles together with other tumour-derived molecules. Depending on the specific tumour/immune cell setting, these various forms of soluble and/or exosome-bound NKG2D ligands can exert multiple effects on NKG2D/NKG2D ligand interactions. In this review, we focus on the role of various proteases in the shedding of human NKG2D ligands from tumour cells and discuss the not completely unanimous reported functional implications of soluble and exosome-secreted NKG2D ligands for immunosurveillance.
Collapse
Affiliation(s)
- G Chitadze
- Institute of Immunology, University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
44
|
Knight A, Arnouk H, Britt W, Gillespie GY, Cloud GA, Harkins L, Su Y, Lowdell MW, Lamb LS. CMV-independent lysis of glioblastoma by ex vivo expanded/activated Vδ1+ γδ T cells. PLoS One 2013; 8:e68729. [PMID: 23950874 PMCID: PMC3737218 DOI: 10.1371/journal.pone.0068729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/01/2013] [Indexed: 11/19/2022] Open
Abstract
Vδ2neg γδ T cells, of which Vδ1+ γδ T cells are by far the largest subset, are important effectors against CMV infection. Malignant gliomas often contain CMV genetic material and proteins, and evidence exists that CMV infection may be associated with initiation and/or progression of glioblastoma multiforme (GBM). We sought to determine if Vδ1+ γδ T cells were cytotoxic to GBM and the extent to which their cytotoxicity was CMV dependent. We examined the cytotoxic effect of ex vivo expanded/activated Vδ1+ γδ T cells from healthy CMV seropositive and CMV seronegative donors on unmanipulated and CMV-infected established GBM cell lines and cell lines developed from short- term culture of primary tumors. Expanded/activated Vδ1+ T cells killed CMV-negative U251, U87, and U373 GBM cell lines and two primary tumor explants regardless of the serologic status of the donor. Experimental CMV infection did not increase Vδ1+ T cell - mediated cytotoxicity and in some cases the cell lines were more resistant to lysis when infected with CMV. Flow cytometry analysis of CMV-infected cell lines revealed down-regulation of the NKG2D ligands ULBP-2, and ULBP-3 as well as MICA/B in CMV-infected cells. These studies show that ex vivo expanded/activated Vδ1+ γδ T cells readily recognize and kill established GBM cell lines and primary tumor-derived GBM cells regardless of whether CMV infection is present, however, CMV may enhance the resistance GBM cell lines to innate recognition possibly contributing to the poor immunogenicity of GBM.
Collapse
Affiliation(s)
- Andrea Knight
- The Department of Haematology, University College London, London, United Kingdom
| | - Hilal Arnouk
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - William Britt
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - G. Yancey Gillespie
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Gretchen A. Cloud
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Lualhati Harkins
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Yun Su
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Mark W. Lowdell
- The Department of Haematology, University College London, London, United Kingdom
| | - Lawrence S. Lamb
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
45
|
Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog 2013; 9:e1003257. [PMID: 23592985 PMCID: PMC3617138 DOI: 10.1371/journal.ppat.1003257] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
During the first trimester of pregnancy the uterus is massively infiltrated by decidual natural killer cells (dNK). These cells are not killers, but they rather provide a microenvironment that is propitious to healthy placentation. Human cytomegalovirus (HCMV) is the most common cause of intrauterine viral infections and a known cause of severe birth defects or fetal death. The rate of HCMV congenital infection is often low in the first trimester of pregnancy. The mechanisms controlling HCMV spreading during pregnancy are not yet fully revealed, but evidence indicating that the innate immune system plays a role in controlling HCMV infection in healthy adults exists. In this study, we investigated whether dNK cells could be involved in controlling viral spreading and in protecting the fetus against congenital HCMV infection. We found that freshly isolated dNK cells acquire major functional and phenotypic changes when they are exposed to HCMV-infected decidual autologous fibroblasts. Functional studies revealed that dNK cells, which are mainly cytokines and chemokines producers during normal pregnancy, become cytotoxic effectors upon their exposure to HCMV-infected autologous decidual fibroblasts. Both the NKG2D and the CD94/NKG2C or 2E activating receptors are involved in the acquired cytotoxic function. Moreover, we demonstrate that CD56pos dNK cells are able to infiltrate HCMV-infected trophoblast organ culture ex-vivo and to co-localize with infected cells in situ in HCMV-infected placenta. Taken together, our results present the first evidence suggesting the involvement of dNK cells in controlling HCMV intrauterine infection and provide insights into the mechanisms through which these cells may operate to limit the spreading of viral infection to fetal tissues. Human cytomegalovirus (HCMV) is a herpes virus that can establish persisting infection in immunocompetent hosts. HCMV primary infection during pregnancy is devastating; it can result in up to 75% of congenital infections and it is a known cause of fetal death. The immune system and particularly natural killer cells (NK) are known to play a key role in the clearance of several viruses in healthy adults. Whether decidual NK cells (dNK), present in the pregnant uterus, have a role during HCMV infection is not known. We analyze changes in dNK cell function and phenotype in the presence of HCMV-infected targets in an autologous setting. We demonstrate the acquisition of cytotoxic profile which is associated with changes in dNK cell receptor repertoire and cytokine production. Finally, we find that dNK cells are able to sense HCMV infection, migrate and infiltrate infected tissues both in tissular organ culture and in situ in infected placenta. Together our results present the first report demonstrating the involvement of dNK cells in controlling HCMV infection.
Collapse
|
46
|
Wang YP, Qi Y, Huang YJ, Qi ML, Ma YP, He R, Ji YH, Sun ZR, Ruan Q. Identification of immediate early gene X-1 as a cellular target gene of hcmv-mir-UL148D. Int J Mol Med 2013; 31:959-66. [PMID: 23403649 DOI: 10.3892/ijmm.2013.1271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/23/2013] [Indexed: 11/05/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that causes congenital diseases and opportunistic infections in immunocompromised individuals. Its functional proteins and microRNAs (miRNAs) facilitate efficient viral propagation by altering host cell behavior. The identification of functional target genes of miRNAs is an important step in the study of HCMV pathogenesis. HCMV encodes at least 14 miRNAs, including hcmv-mir-UL148D, which resides in the HCMV UL/b' region. hcmv-mir-UL148D is the only miRNA encoded by the HCMV UL/b' region; however, its targets and functional effects have not yet been eludidated. In this study, hybrid-PCR screening was used to identify target genes and dual luciferase reporter assay was used to evaluate the binding effect of hcmv-miR-UL148D to the 3' untranslated region (3'UTR) of IEX-1. In addition, western blot analysis was used to detect the expression kinetics of IEX-1 protein and apoptosis assay was used to identify the effects of hcmv-miR-UL148D on cell apoptosis. The hybrid-PCR results showed that only one binding site in the 3'UTR of the cellular gene, human immediate early gene X-1 (IEX-1), was completely complementary to an 11 nucleotide (nt) sequence in the 5' terminus of hcmv-mir-UL148D, including the entire seed region. The binding site was demonstrated to be functional by dual luciferase reporter assay with a 47% repression of the relative luciferase activity. In an in vitro system of human embryonic kidney 293 (HEK293) cells, the ectopically expressed hcmv-mir-UL148D exhibited a downregulatory effect on IEX-1 expression, and decreased the cell apoptosis induced by transfected IEX-1. Our data demonstrate that hcmv-mir-UL148D targets the cellular gene, IEX-1, downregulating its expression and thus results in anti-apoptotic effects.
Collapse
Affiliation(s)
- Yue-Ping Wang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fernández-Messina L, Reyburn HT, Valés-Gómez M. Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front Immunol 2012; 3:299. [PMID: 23056001 PMCID: PMC3457034 DOI: 10.3389/fimmu.2012.00299] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/07/2012] [Indexed: 02/05/2023] Open
Abstract
Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumors and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, major histocompatibility complex class I-related chain (MIC) A/B and UL16 binding proteins (ULBPs), are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarize the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | |
Collapse
|
48
|
Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells. PLoS One 2012; 7:e41577. [PMID: 22870231 PMCID: PMC3409864 DOI: 10.1371/journal.pone.0041577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/27/2012] [Indexed: 12/25/2022] Open
Abstract
NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.
Collapse
|
49
|
Kasahara M, Yoshida S. Immunogenetics of the NKG2D ligand gene family. Immunogenetics 2012; 64:855-67. [PMID: 22843249 DOI: 10.1007/s00251-012-0638-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/18/2012] [Indexed: 12/31/2022]
Abstract
NKG2D ligands (NKG2DLs) are a group of major histocompatibility complex (MHC) class I-like molecules, the expression of which is induced by cellular stresses such as infection, tumorigenesis, heat shock, tissue damage, and DNA damage. They act as a molecular danger signal alerting the immune system for infected or neoplastic cells. Mammals have two families of NKG2DL genes: the MHC-encoded MIC gene family and the ULBP gene family encoded outside the MHC region in most mammals. Rodents such as mice and rats lack the MIC family of ligands. Interestingly, some mammals have NKG2DL-like molecules named MILL that are phylogenetically related to MIC, but do not function as NKG2DLs. In this paper, we review our current knowledge of the MIC, ULBP, and MILL gene families in representative mammalian species and discuss the origin and evolution of the NKG2DL gene family.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, North-15 West-7, Sapporo 060-8638, Japan.
| | | |
Collapse
|
50
|
Reevaluation of the coding potential and proteomic analysis of the BAC-derived rhesus cytomegalovirus strain 68-1. J Virol 2012; 86:8959-73. [PMID: 22718821 DOI: 10.1128/jvi.01132-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cytomegaloviruses are highly host restricted, resulting in cospeciation with their hosts. As a natural pathogen of rhesus macaques (RM), rhesus cytomegalovirus (RhCMV) has therefore emerged as a highly relevant experimental model for pathogenesis and vaccine development due to its close evolutionary relationship to human CMV (HCMV). Most in vivo experiments performed with RhCMV employed strain 68-1 cloned as a bacterial artificial chromosome (BAC). However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, the gene content of the RhCMV genome is unknown, and previous open reading frame (ORF) predictions relied solely on uninterrupted ORFs with an arbitrary cutoff of 300 bp. To obtain a more precise picture of the actual proteins encoded by the most commonly used molecular clone of RhCMV, we reevaluated the RhCMV 68-1 BAC genome by whole-genome shotgun sequencing and determined the protein content of the resulting RhCMV virions by proteomics. By comparing the RhCMV genome to those of several related Old World monkey (OWM) CMVs, we were able to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This comparative genomics analysis suggests a high degree of ORF conservation among OWM CMVs, thus decreasing the likelihood that ORFs found only in RhCMV comprise true genes. Moreover, virion proteomics independently validated the revised ORF predictions, since only proteins that were conserved across OWM CMVs could be detected. Taken together, these data suggest a much higher conservation of genome and virion structure between CMVs of humans, apes, and OWMs than previously assumed.
Collapse
|