1
|
Inoue M, Tsuji Y, Shibata S, Okuda M, Najima C, Yamasaki H, Tsunoda SI. Ovalbumin-induced food allergy suppression via regulatory T cell expansion mediated by a TNFR2 agonist in mice. Biochem Biophys Res Commun 2024; 737:150909. [PMID: 39489111 DOI: 10.1016/j.bbrc.2024.150909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Food allergies represent a growing health concern worldwide, characterized by abnormal immune responses to specific dietary antigens. This condition is often associated with a dysregulation of immune tolerance, especially within the intestinal mucosa. Regulatory T cells (Tregs), a crucial subset of lymphocytes, play a central role in maintaining peripheral immune tolerance and are abundant in the intestinal lamina propria. Recent studies have highlighted Treg dysfunction in patients with food allergies, suggesting a potential connection between impaired Treg function and allergy onset. Therefore, strategies to adequately control and activate Tregs could offer new avenues for the prevention and treatment of food allergies. Our research focuses on targeting the regulatory molecule, tumor necrosis factor receptor type 2 (TNFR2), a key modulator of Treg function. We have developed a TNFR2 agonist, scR2agoTNF-Fc, characterized by high TNFR2-stimulating activity and enhanced blood retention in vivo for Treg expansion. In this study, we utilized an ovalbumin (OVA)-induced food allergy mouse model to verify the therapeutic potential of scR2agoTNF-Fc in modulating allergic responses and restoring immune balance. The results showed that scR2agoTNF-Fc promoted the expansion of Treg population in vivo in mice. In addition, scR2agoTNF-Fc reduced diarrhea caused by the food allergy. This was consistent with the molecular mechanisms of suppression of blood immunoglobulins and Th2 cells. Therefore, it was shown that quantitative and functional enhancement of Tregs by the TNFR2 agonist, scR2agoTNF-Fc, may be effective in treating food allergies.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Saya Shibata
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Mei Okuda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Chihiro Najima
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Honoka Yamasaki
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan; Laboratory of Cellular and Molecular Physiology, The Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
2
|
Kalim M, Jing R, Guo W, Xing H, Lu Y. Functional diversity and regulation of IL-9-producing T cells in cancer immunotherapy. Cancer Lett 2024; 606:217306. [PMID: 39426662 DOI: 10.1016/j.canlet.2024.217306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Wei Guo
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Hui Xing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2024:S1933-0219(24)00106-5. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
4
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
5
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Roostaee A, Yaghobi R, Afshari A, Jafarinia M. Regulatory role of T helper 9/interleukin-9: Transplantation view. Heliyon 2024; 10:e26359. [PMID: 38420400 PMCID: PMC10900956 DOI: 10.1016/j.heliyon.2024.e26359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
T helper 9 (Th9) cells, a subset of CD4+ T helper cells, have emerged as a valuable target for immune cell therapy due to their potential to induce immunomodulation and tolerance. The Th9 cells mainly produce interleukin (IL)-9 and are known for their defensive effects against helminth infections, allergic and autoimmune responses, and tumor suppression. This paper explores the mechanisms involved in the generation and differentiation of Th9 cells, including the cytokines responsible for their polarization and stabilization, the transcription factors necessary for their differentiation, as well as the role of Th9 cells in inflammatory and autoimmune diseases, allergic reactions, and cancer immunotherapies. Recent research has shown that the differentiation of Th9 cells is coregulated by the transcription factors transforming growth factor β (TGF-β), IL-4, and PU.1, which are also known to secrete IL-10 and IL-21. Multiple cell types, such as T and B cells, mast cells, and airway epithelial cells, are influenced by IL-9 due to its pleiotropic effects.
Collapse
Affiliation(s)
- Azadeh Roostaee
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
7
|
Yuan C, Rayasam A, Moe A, Hayward M, Wells C, Szabo A, Mackenzie A, Salzman N, Drobyski WR. Interleukin-9 production by type 2 innate lymphoid cells induces Paneth cell metaplasia and small intestinal remodeling. Nat Commun 2023; 14:7963. [PMID: 38042840 PMCID: PMC10693577 DOI: 10.1038/s41467-023-43248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/03/2023] [Indexed: 12/04/2023] Open
Abstract
Paneth cell metaplasia (PCM) typically arises in pre-existing gastrointestinal (GI) diseases; however, the mechanistic pathway that induces metaplasia and whether PCM is initiated exclusively by disorders intrinsic to the GI tract is not well known. Here, we describe the development of PCM in a murine model of chronic myelogenous leukemia (CML) that is driven by an inducible bcr-abl oncogene. Mechanistically, CML induces a proinflammatory state within the GI tract that results in the production of epithelial-derived IL-33. The binding of IL-33 to the decoy receptor ST2 leads to IL-9 production by type 2 innate lymphoid cells (ILC2) which is directly responsible for the induction of PCM in the colon and tissue remodeling in the small intestines, characterized by goblet and tuft cell hyperplasia along with expansion of mucosal mast cells. Thus, we demonstrate that an extra-intestinal disease can trigger an ILC2/IL-9 immune circuit, which induces PCM and regulates epithelial cell fate decisions in the GI tract.
Collapse
Affiliation(s)
- Chengyin Yuan
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aditya Rayasam
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alison Moe
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael Hayward
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Clive Wells
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Nita Salzman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William R Drobyski
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
9
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
10
|
Chen Q, Liu M, Guo H, Wang K, Liu J, Wang Y, Lin Y, Li J, Li P, Yang L, Jia L, Yang J, Li P, Song H. Altered Respiratory Microbiomes, Plasma Metabolites, and Immune Responses in Influenza A Virus and Methicillin-Resistant Staphylococcus aureus Coinfection. Microbiol Spectr 2023; 11:e0524722. [PMID: 37318361 PMCID: PMC10433956 DOI: 10.1128/spectrum.05247-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Influenza A virus (IAV)-methicillin-resistant Staphylococcus aureus (MRSA) coinfection causes severe respiratory infections. The host microbiome plays an important role in respiratory tract infections. However, the relationships among the immune responses, metabolic characteristics, and respiratory microbial characteristics of IAV-MRSA coinfection have not been fully studied. We used specific-pathogen-free (SPF) C57BL/6N mice infected with IAV and MRSA to build a nonlethal model of IAV-MRSA coinfection and characterized the upper respiratory tract (URT) and lower respiratory tract (LRT) microbiomes at 4 and 13 days postinfection by full-length 16S rRNA gene sequencing. Immune response and plasma metabolism profile analyses were performed at 4 days postinfection by flow cytometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships among the LRT microbiota, the immune response, and the plasma metabolism profile were analyzed by Spearman's correlation analysis. IAV-MRSA coinfection showed significant weight loss and lung injury and significantly increased loads of IAV and MRSA in bronchoalveolar lavage fluid (BALF). Microbiome data showed that coinfection significantly increased the relative abundances of Enterococcus faecalis, Enterobacter hormaechei, Citrobacter freundii, and Klebsiella pneumoniae and decreased the relative abundances of Lactobacillus reuteri and Lactobacillus murinus. The percentages of CD4+/CD8+ T cells and B cells in the spleen; the levels of interleukin-9 (IL-9), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8 in the lung; and the level of mevalonolactone in plasma were increased in IAV-MRSA-coinfected mice. L. murinus was positively correlated with lung macrophages and natural killer (NK) cells, negatively correlated with spleen B cells and CD4+/CD8+ T cells, and correlated with multiple plasma metabolites. Future research is needed to clarify whether L. murinus mediates or alters the severity of IAV-MRSA coinfection. IMPORTANCE The respiratory microbiome plays an important role in respiratory tract infections. In this study, we characterized the URT and LRT microbiota, the host immune response, and plasma metabolic profiles during IAV-MRSA coinfection and evaluated their correlations. We observed that IAV-MRSA coinfection induced severe lung injury and dysregulated host immunity and plasma metabolic profiles, as evidenced by the aggravation of lung pathological damage, the reduction of innate immune cells, the strong adaptation of the immune response, and the upregulation of mevalonolactone in plasma. L. murinus was strongly correlated with immune cells and plasma metabolites. Our findings contribute to a better understanding of the role of the host microbiome in respiratory tract infections and identified a key bacterial species, L. murinus, that may provide important references for the development of probiotic therapies.
Collapse
Affiliation(s)
- Qichao Chen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Kaiying Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yun Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- School of Public Health, China Medical University, Shenyang City, Liaoning Province, China
| | - Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jinhui Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Peihan Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Lang Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Leili Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| |
Collapse
|
11
|
Riekert M, Almanzar G, Schmalzing M, Schütze N, Jakob F, Prelog M. Mesenchymal stem cells modulate IL-17 and IL-9 production induced by Th17-inducing cytokine conditions in autoimmune arthritis: an explorative analysis. Adv Rheumatol 2023; 63:37. [PMID: 37525265 DOI: 10.1186/s42358-023-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The importance of proinflammatory T-cells and their cytokine production in patients with autoimmune arthritis has been widely described. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have come into focus as a potential therapeutic concept. The aim of this study was to investigate the influence of MSCs on the phenotype, cytokine profile, and functionality of naive and non-naive CD4+ T-cells from healthy donors (HD) and patients with autoimmune arthritis under Th17-cytokine polarizing conditions in an explorative way using a transwell system prohibiting any cell-cell-contact. METHODS Magnetically isolated naive and non-naive CD4+ T-cells were stimulated under Th17-polarizing proinflammatory cytokine conditions in presence and absence of bone marrow derived mesenchymal stromal cells (MSCs). After an incubation period of 6 days, the proportions of the T-cell subpopulations TEMRA (CD45RA+CD27-), memory (CD45RA-CD27+), effector (CD45RA-CD27-) and naive cells (CD45RA+CD27+) were determined. Quantitative immunofluorescence intensity was used as a measure for IL-9, IL-17 and IFN-γ production in each subpopulation. RESULTS In isolated naive CD4+ T-cells from HD and patients, MSCs suppressed the differentiation of naive towards an effector phenotype while memory and naive cells showed higher percentages in culture with MSCs. In patients, MSCs significantly decreased the proportion of IL-9 and IL-17 producing effector T-cells. MSCs also reduced IFN-γ production in the naive and memory phenotype from HD. CONCLUSION The results of the study indicate significant immunomodulatory properties of MSCs, as under Th17-polarizing conditions MSCs are still able to control T-cell differentiation and proinflammatory cytokine production in both HD and patients with autoimmune arthritis.
Collapse
Affiliation(s)
- Maximilian Riekert
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany.
- Department of Oral and Craniomaxillofacial and Plastic Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50924, Cologne, Germany.
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Norbert Schütze
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
12
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
14
|
Heiss J, Grün K, Tempel L, Matasci M, Schrepper A, Schwarzer M, Bauer R, Förster M, Berndt A, Jung C, Schulze PC, Neri D, Franz M. Targeted Interleukin-9 delivery in pulmonary hypertension: Comparison of immunocytokine formats and effector cell study. Eur J Clin Invest 2023; 53:e13907. [PMID: 36377348 DOI: 10.1111/eci.13907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
AIMS Pulmonary hypertension (PH) is accompanied by pulmonary vascular remodelling. By targeted delivery of Interleukin-9 (IL9) via the immunocytokine F8IL9, beneficial effects could be demonstrated in a mouse model of PH. This study aimed to compare two immunocytokine formats (single-chain Fv and full IgG) and to identify potential target cells of IL9. METHODS The Monocrotaline mouse model of PH (PH, n = 12) was chosen to evaluate the treatment effects of F8IL9F8 (n = 12) and F8IgGIL9 (n = 6) compared with sham-induced animals (control, n = 10), the dual endothelin receptor antagonist Macitentan (MAC, n = 12) or IL9-based immunocytokines with irrelevant antigen specificity (KSFIL9KSF, n = 12; KSFIgGIL9 n = 6). Besides comparative validation of treatment effects, the study was focused on the detection and quantification of mast cells (MCs) and regulatory T cells (Tregs). RESULTS There was a significantly elevated systolic right ventricular pressure (104 ± 36 vs. 45 ± 17 mmHg) and an impairment of right ventricular echocardiographic parameters (RVbasal: 2.52 ± 0.25 vs. 1.94 ± 0.13 mm) in untreated PH compared with controls (p < 0.05). Only the groups treated with F8IL9, irrespective of the format, showed consistent beneficial effects (p < 0.05). Moreover, F8IL9F8 but not F8IgGIL9 treatment significantly reduced lung tissue damage compared with untreated PH mice (p < 0.05). There was a significant increase in Tregs in F8IL9-treated compared with control animals, the untreated PH and the MAC group (p < 0.05). CONCLUSIONS Beneficial treatment effects of targeted IL9 delivery in a preclinical model of PH could be convincingly validated. IL9-mediated recruitment of Tregs into lung tissue might play a crucial role in the induction of anti-inflammatory and anti-proliferative mechanisms potentially contributing to a novel disease-modifying concept.
Collapse
Affiliation(s)
- Judith Heiss
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany.,Else Kröner Graduate School for Medical Students "JSAM", Jena University Hospital, Jena, Germany
| | - Katja Grün
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | - Laura Tempel
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | | | - Andrea Schrepper
- Department of Cardiothoracic Surgery, University Hospital Jena, Jena, Germany
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, University Hospital Jena, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Martin Förster
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | - Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| |
Collapse
|
15
|
Luo Y, Acevedo D, Baños N, Pluma A, Castellanos-Moreira R, Moreno E, Rodríguez-García S, Deyà-Martínez A, García-García A, Quesada-Masachs E, Torres M, Casellas M, Grados D, Martí-Castellote C, Antón J, Vlagea A, Juan M, Esteve-Solé A, Alsina L. Expected impact of immunomodulatory agents during pregnancy: A newborn's perspective. Pediatr Allergy Immunol 2023; 34:e13911. [PMID: 36825745 DOI: 10.1111/pai.13911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
The neonatal immune ontogeny begins during pregnancy to ensure that the neonate is well-suited for perinatal life. It prioritizes Th2/M2 and regulatory responses over Th/M1 activity to avoid excessive inflammatory responses and to ensure immune tolerance and homeostasis. Newborns also present increased Th17/Th22 responses providing effective anti-fungal immunity and mucosal protection. Intrauterine exposure to immune modulatory drugs with the placental transfer may influence the natural course of the fetal immune development. The vertical transfer of both biological therapy and small molecules begins during the first trimester through neonatal Fc receptor or placental diffusion, respectively, reaching its maximum transfer potential during the third trimester of pregnancy. Most of the biological therapy have a prolonged half-life in newborn's blood, being detectable in infants up to 12 months after birth (usually 6-9 months). The use of immunomodulators during pregnancy is gaining global interest. Current evidence mainly reports birth-related outcomes without exhaustive analysis of the on-target side effect on the perinatal immune system ontogeny, the infection risk, or the immune dysregulation. The present review will focus on: (1) the main characteristics of the perinatal immune system to understand its specific features and vulnerabilities to immune modulation; (2) the mechanisms of placental transfer of immunomodulators; and (3) the immune changes reported to date in newborns exposed to immunomodulators with emphasis on the current concerns and gaps in knowledge.
Collapse
Affiliation(s)
- Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Núria Baños
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia, Obstetrícia i Neonatologia Fetal i+D Fetal Medicine Research Center, Barcelona, Spain
| | - Andrea Pluma
- Rheumatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Estefania Moreno
- Rheumatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Mireia Torres
- Rheumatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Manel Casellas
- High Risk Obstetric Unit, Gynecology and Obstetrics Department, Vall de Hebron Hospital Campus, Universitat Autónoma of Barcelona (UAB), Barcelona, Spain
| | - Dolors Grados
- Rheumatology Department, Hospital Universitari d'Igualada, Igualada, Spain
| | - Celia Martí-Castellote
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jordi Antón
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Pediatric Rheumatology, Hospital Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Manel Juan
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
van der Elst G, Varol H, Hermans M, Baan CC, Duong-van Huyen JP, Hesselink DA, Kramann R, Rabant M, Reinders MEJ, von der Thüsen JH, van den Bosch TPP, Clahsen-van Groningen MC. The mast cell: A Janus in kidney transplants. Front Immunol 2023; 14:1122409. [PMID: 36891297 PMCID: PMC9986315 DOI: 10.3389/fimmu.2023.1122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Mast cells (MCs) are innate immune cells with a versatile set of functionalities, enabling them to orchestrate immune responses in various ways. Aside from their known role in allergy, they also partake in both allograft tolerance and rejection through interaction with regulatory T cells, effector T cells, B cells and degranulation of cytokines and other mediators. MC mediators have both pro- and anti-inflammatory actions, but overall lean towards pro-fibrotic pathways. Paradoxically, they are also seen as having potential protective effects in tissue remodeling post-injury. This manuscript elaborates on current knowledge of the functional diversity of mast cells in kidney transplants, combining theory and practice into a MC model stipulating both protective and harmful capabilities in the kidney transplant setting.
Collapse
Affiliation(s)
- G van der Elst
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - H Varol
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M Hermans
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - C C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - D A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - R Kramann
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - M Rabant
- Department of Pathology, Necker Hospital, APHP, Paris, France
| | - M E J Reinders
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - T P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Zhou Y, Quan G, Liu Y, Shi N, Wu Y, Zhang R, Gao X, Luo L. The application of Interleukin-2 family cytokines in tumor immunotherapy research. Front Immunol 2023; 14:1090311. [PMID: 36936961 PMCID: PMC10018032 DOI: 10.3389/fimmu.2023.1090311] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The Interleukin-2 Family contains six kinds of cytokines, namely IL-2, IL-15, IL-4, IL-7, IL-9, and IL-21, all of which share a common γ chain. Many cytokines of the IL-2 family have been reported to be a driving force in immune cells activation. Therefore, researchers have tried various methods to study the anti-tumor effect of cytokines for a long time. However, due to the short half-life, poor stability, easy to lead to inflammatory storms and narrow safety treatment window of cytokines, this field has been tepid. In recent years, with the rapid development of protein engineering technology, some engineered cytokines have a significant effect in tumor immunotherapy, showing an irresistible trend of development. In this review, we will discuss the current researches of the IL-2 family and mainly focus on the application and achievements of engineered cytokines in tumor immunotherapy.
Collapse
Affiliation(s)
- Yangyihua Zhou
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guiqi Quan
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, China
| | - Yahui Wu
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ran Zhang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- *Correspondence: Ran Zhang, ; Xiang Gao, ; Longlong Luo,
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Ran Zhang, ; Xiang Gao, ; Longlong Luo,
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Ran Zhang, ; Xiang Gao, ; Longlong Luo,
| |
Collapse
|
19
|
Shete A, Bhat M, Sawant J, Deshpande S. Both N- and C-terminal domains of galectin-9 are capable of inducing HIV reactivation despite mediating differential immunomodulatory functionalities. Front Immunol 2022; 13:994830. [PMID: 36569879 PMCID: PMC9772452 DOI: 10.3389/fimmu.2022.994830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background The shock-and-kill strategy for HIV cure requires the reactivation of latent HIV followed by the killing of the reactivated cellular reservoir. Galectin-9, an immunomodulatory protein, is shown to induce HIV reactivation as well as contribute to non-AIDS- and AIDS-defining events. The protein is prone to cleavage by inflammatory proteases at its linker region separating the N- and C-terminal carbohydrate-binding domains (N- and C-CRDs) which differ in their binding specificities. It is important to study the activity of its cleaved as well as uncleaved forms in mediating HIV reactivation and immunomodulation in order to understand their role in HIV pathogenesis and their further utilization for the shock-and-kill strategy. Methodology The PBMCs of HIV patients on virally suppressive ART (n = 11) were stimulated using 350 nM of the full-length protein and N- and C-CRDs of Gal-9. HIV reactivation was determined by analyzing gag RNA copies using qPCR using isolated CD4 cells and intracellular P24 staining of PBMCs by flow cytometry. Cytokine responses induced by the full-length protein and N- and C-CRDs of Gal-9 were also assessed by flow cytometry, Luminex, and gene expression assays. Changes in T helper cell gene expression pattern after the stimulation were also determined by real-time PCR array. Results Both N- and C-CRDs of galectin-9 induced HIV reactivation in addition to the full-length galectin-9 protein. The two domains elicited higher cytokine responses than the full-length protein, possibly capable of mediating higher perturbations in the immune system if used for HIV reactivation. N-CRD was found to induce the development of Treg cells, whereas C-CRD inhibited the induction of Treg cells. Despite this, both domains elicited IL-10 secretory response although targeting different CD4 cell phenotypes. Conclusion N- and C-CRDs were found to induce HIV reactivation similar to that of the full-length protein, indicating their possible usefulness in the shock-and-kill strategy. The study indicated an anti-inflammatory role of N-CRD versus the proinflammatory properties of C-CRD of galectin-9 in HIV infection.
Collapse
|
20
|
Ndoricyimpaye EL, Van Snick J, Niyoyita JDD, Kanimba P, Mbonimpa JB, Rutayisire R, Rutayisire R, Ndahindwa V, Cheou P, Coutelier JP, Rujeni N. Integrated Analysis of Cytokine Profiles in Malaria Patients Discloses Selective Upregulation of TGF-β1, β3, and IL-9 in Mild Clinical Presentation. Int J Mol Sci 2022; 23:ijms232012665. [PMID: 36293524 PMCID: PMC9603849 DOI: 10.3390/ijms232012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
The proper control of Plasmodium infection requires a finely balanced immune response. Here, we evaluated the implication of TGF-β1 and TGF-β3 in this process using novel monoclonal antibodies to measure their plasma concentrations in comparison with other cytokines and the expression of FOXP3 mRNA. Plasma cytokine levels were measured in 80 patients with severe anaemic malaria and 186 with a mild presentation using ELISA, and rtPCR was used to measure FOXP3 mRNA expression. While no mature TGF-β isoforms were detected in the plasma, the latent TGF-β1 and TGF-β3 were strongly upregulated in patients with mild malaria and nearly undetected in patients with severe disease. Similar selective upregulation in mild patients was observed for IL-9 and FOXP3 mRNA, while IL-7, IL-10, IL-17, and IL-27, although higher in mild cases, were also detected in severe disease. In contrast, a clearly skewed trend of severe cases towards higher pro-inflammatory (IL-6, IL-13, TNF-α) and Th1 (IFN-γ) responses was observed, which was associated with a higher level of parasitaemia as well as lower IgG and higher IgM responses. Together, these results suggest that the stimulation of regulatory T cells through TGF-β1/TGF-β3 and IL-9 is paramount to an effective and balanced protective immunity in natural human malaria infection.
Collapse
Affiliation(s)
- Ella Larissa Ndoricyimpaye
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
- Medecine Expérimentale, de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Jacques Van Snick
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Jean de Dieu Niyoyita
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Philbert Kanimba
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Jean Bosco Mbonimpa
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Robert Rutayisire
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
- National Reference Laboratory, Rwanda Biomedical Centre, Kigali P.O. Box 4285, Rwanda
| | - Réverien Rutayisire
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Vedaste Ndahindwa
- School of Public Health, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Paméla Cheou
- Medecine Expérimentale, de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Jean Paul Coutelier
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
- Medecine Expérimentale, de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Nadine Rujeni
- Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
- Correspondence:
| |
Collapse
|
21
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
22
|
Guo J, Fang X, Zhou J, Zeng L, Yu B. Identification and validation of miR-509-5p as a prognosticator for favorable survival in osteosarcoma. Medicine (Baltimore) 2022; 101:e29705. [PMID: 35984199 PMCID: PMC9387993 DOI: 10.1097/md.0000000000029705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer diagnosed in children. This study aims to explore the aberrantly expressed miRNAs that are prognostically related and to provide potential biomarkers for the prognosis prediction of OS. The miRNA profiles of OS and adjacent normal controls were obtained from 2 gene expression omnibus cohorts (i.e., GSE28423 and GSE65071). GSE39058 and Therapeutically Applicable Research to Generate Effective Treatments cohorts, which respectively contained 91 and 85 OS samples with both miRNA expression and clinical characteristics, were employed to perform survival and multivariate Cox regression analyses. Lymphocyte infiltration abundance between distinct subgroups was evaluated with the CIBERSORT algorithm and a previously proposed method. Gene set enrichment analysis was used to infer the dysregulated signaling pathways within each subgroup. Of the 31 differentially expressed miRNAs, miR-509-5p (miR-509) was the most significantly prognostic miRNA in the GSE39058 cohort and its high expression was associated with the better OS prognosis (Log-rank P = .008). In the Therapeutically Applicable Research to Generate Effective Treatments validation cohort, the association of high miR-509 expression with favorable survival was also observed (Log-rank P = .014). The results remained still significant even adjusted for clinical confounding factors in multivariate Cox regression models. Further immunology analyses demonstrated that elevated infiltration of lymphocytes, decreased infiltration of immune-suppressive cells, and immune response-related pathways were significantly enriched in patients with miR-509 high expression. Our study suggests that miR-509 may serve as a potential biomarker for evaluating OS prognosis and provides clues for tailoring OS immunotherapy strategies.
Collapse
Affiliation(s)
- Jiekun Guo
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - Xiang Fang
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - Jun Zhou
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - LingGuo Zeng
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - Bin Yu
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Bin Yu, Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (e-mail: )
| |
Collapse
|
23
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
24
|
Chen W, Cao Y, Zhong Y, Sun J, Dong J. The Mechanisms of Effector Th Cell Responses Contribute to Treg Cell Function: New Insights into Pathogenesis and Therapy of Asthma. Front Immunol 2022; 13:862866. [PMID: 35898499 PMCID: PMC9309477 DOI: 10.3389/fimmu.2022.862866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
CD4 + helper T (Th) cell subsets are critically involved in the pathogenesis of asthma. Naive Th cells differentiate into different subsets under the stimulation of different sets of cytokines, and the differentiation process is dominantly driven by lineage specific transcription factors, such as T-bet (Th1), GATA3 (Th2), RORγt (Th17) and Foxp3 (Treg). The differentiation mechanisms driven by these transcription factors are mutually exclusive, resulting in functional inhibition of these Th subsets to each other, particularly prominent between effector Th cells and Treg cells, such as Th2 versus Treg cells and Th17 versus Treg cells. Being of significance in maintaining immune homeostasis, the balance between effector Th cell response and Treg cell immunosuppression provides an immunological theoretical basis for us to understand the immunopathological mechanism and develop the therapy strategies of asthma. However, recent studies have found that certain factors involved in effector Th cells response, such as cytokines and master transcription factors (IL-12 and T-bet of Th1, IL-4 and GATA3 of Th2, IL-6 and RORγt of Th17), not only contribute to immune response of effector Th cells, but also promote the development and function of Treg cells, therefore bridging the interplay between effector Th cell immune responses and Treg cell immunosuppression. Although we have an abundant knowledge concerning the role of these cytokines and transcription factors in effector Th cell responses, our understanding on their role in Treg cell development and function is scattered thus need to be summarized. This review summarized the role of these cytokines and transcription factors involved in effector Th cell responses in the development and function of Treg cells, in the hope of providing new insights of understanding the immunopathological mechanism and seeking potential therapy strategies of asthma.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| |
Collapse
|
25
|
Semenchuk J, Sullivan K, Moineddin R, Mahmud F, Dart A, Wicklow B, Xiao F, Medeiros T, Scholey J, Burger D. Urinary interleukin-9 in youth with type 1 diabetes mellitus. Acta Diabetol 2022; 59:939-947. [PMID: 35445345 PMCID: PMC9156513 DOI: 10.1007/s00592-022-01873-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 11/17/2022]
Abstract
AIMS Interleukin-9 (IL-9) attenuates podocyte injury in experimental kidney disease, but its role in diabetic nephropathy is unknown. We sought to relate urinary IL-9 levels to the release of podocyte-derived extracellular vesicles (EVs) in youth with type 1 diabetes. We related urinary IL-9 levels to clinical variables and studied interactions between urinary IL-9, vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) on urinary albumin/creatinine ratio (ACR) a functional measure of podocyte injury. METHODS We performed an analysis of urine samples and clinical data from a cohort of youth with type 1 diabetes (n = 53). Cytokines were measured using a Luminex platform (Eve Technologies), and nanoscale flow cytometry was employed to quantify urinary podocyte-derived EVs. All urinary measures were normalized to urinary creatinine. RESULTS Mean age was 14.7 ± 1.6 years, and the mean time from diagnosis was 6.7 ± 2.9 years. Mean HbA1c was 70.3 ± 13.9 mmol/mol, mean ACR was 1.3 ± 1.9 mg/mmol, and mean eGFR was 140.3 ± 32.6 ml/min/1.73 m2. IL-9 was inversely related to podocyte EVs (r = - 0.56, p = 0.003). IL-9 was also inversely related to blood glucose, HbA1C and eGFR (r = - 0.44, p = 0.002; r = - 0.41, p = 0.003; r = - 0.49, p < 0.001, respectively) and positively correlated with systolic BP (r = 0.30, p = 0.04). There was a significant interaction between IL-9, EVs and ACR (p = 0.0143), and the relationship between IL-9 and ACR depended on VEGF (p = 0.0083), TNFα (p = 0.0231) and IL-6 levels (p = 0.0178). CONCLUSIONS IL-9 is associated with podocyte injury in early type 1 diabetes, and there are complex interactions between urinary IL-9, inflammatory cytokines and ACR.
Collapse
Affiliation(s)
- Julie Semenchuk
- Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Katie Sullivan
- Department of Medicine, Renal and Hypertension Division, University of Pennsylvania, Philadelphia, USA
| | - Rahim Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
| | - Farid Mahmud
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Allison Dart
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba Research Team, University of Manitoba, Winnipeg, Canada
| | - Brandy Wicklow
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba Research Team, University of Manitoba, Winnipeg, Canada
| | - Fengxia Xiao
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Thalia Medeiros
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - James Scholey
- Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Dylan Burger
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
26
|
Marques RF, de Melo FM, Novais JT, Soares IS, Bargieri DY, Gimenez AM. Immune System Modulation by the Adjuvants Poly (I:C) and Montanide ISA 720. Front Immunol 2022; 13:910022. [PMID: 35844531 PMCID: PMC9278660 DOI: 10.3389/fimmu.2022.910022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are essential for vaccine development, especially subunit-based vaccines such as those containing recombinant proteins. Increasing the knowledge of the immune response mechanisms generated by adjuvants should facilitate the formulation of vaccines in the future. The present work describes the immune phenotypes induced by Poly (I:C) and Montanide ISA 720 in the context of mice immunization with a recombinant protein based on the Plasmodium vivax circumsporozoite protein (PvCSP) sequence. Mice immunized with the recombinant protein plus Montanide ISA 720 showed an overall more robust humoral response, inducing antibodies with greater avidity to the antigen. A general trend for mixed Th1/Th2 inflammatory cytokine profile was increased in Montanide-adjuvanted mice, while a balanced profile was observed in Poly (I:C)-adjuvanted mice. Montanide ISA 720 induced a gene signature in B lymphocytes characteristic of heme biosynthesis, suggesting increased differentiation to Plasma Cells. On the other hand, Poly (I:C) provoked more perturbations in T cell transcriptome. These results extend the understanding of the modulation of specific immune responses induced by different classes of adjuvants, and could support the optimization of subunit-based vaccines.
Collapse
Affiliation(s)
- Rodolfo F. Marques
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Filipe Menegatti de Melo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janaina Tenório Novais
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Krajewska NM, Fiancette R, Oo YH. Interplay between Mast Cells and Regulatory T Cells in Immune-Mediated Cholangiopathies. Int J Mol Sci 2022; 23:5872. [PMID: 35682552 PMCID: PMC9180565 DOI: 10.3390/ijms23115872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
Immune-mediated cholangiopathies are characterised by the destruction of small and large bile ducts causing bile acid stasis, which leads to subsequent inflammation, fibrosis, and eventual cirrhosis of the liver tissue. A breakdown of peripheral hepatic immune tolerance is a key feature of these diseases. Regulatory T cells (Tregs) are a major anti-inflammatory immune cell subset, and their quantities and functional capacity are impaired in autoimmune liver diseases. Tregs can undergo phenotypic reprogramming towards pro-inflammatory Th1 and Th17 profiles. The inflamed hepatic microenvironment influences and can impede normal Treg suppressive functions. Mast cell (MC) infiltration increases during liver inflammation, and active MCs have been shown to be an important source of pro-inflammatory mediators, thus driving pathogenesis. By influencing the microenvironment, MCs can indirectly manipulate Treg functions and inhibit their suppressive and proliferative activity. In addition, direct cell-to-cell interactions have been identified between MCs and Tregs. It is critical to consider the effects of MCs on the inflammatory milieu of the liver and their influence on Treg functions. This review will focus on the roles and crosstalk of Tregs and MCs during autoimmune cholangiopathy pathogenesis progression.
Collapse
Affiliation(s)
- Natalia M. Krajewska
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Rémi Fiancette
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Ye H. Oo
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Advanced Cellular Therapy Facility, University of Birmingham, Birmingham B15 2TT, UK
- Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|
28
|
Liang M, Lu M, Aleem MT, Zhang Y, Wang M, Wen Z, Song X, Xu L, Li X, Yan R. Identification of excretory and secretory proteins from Haemonchus contortus inducing a Th9 immune response in goats. Vet Res 2022; 53:36. [PMID: 35597967 PMCID: PMC9123704 DOI: 10.1186/s13567-022-01055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Th9 cells have been shown to play crucial roles in anti-parasite immunity, pathogenic microbe infection, and allergy. Previous studies have demonstrated that Haemonchus contortus excretory and secretory proteins (HcESPs) induce the proliferation of Th9 cells and alter the transcriptional level of IL-9 as well as its related pathways in the Th9 immune response after infection. However, the exact molecule(s) in HcESPs inducing the Th9 immune response is not yet known. In this study, flow cytometry, co-immunoprecipitation (Co-IP) and shotgun liquid chromatography tandem-mass spectrometry (LC–MS/MS) were used, and a total of 218 proteins from HcESPs that might interact with goat Th9 cells were identified. By in vitro culture of Th9 cells with HcESPs, 40 binding proteins were identified. In vivo, 38, 47, 42 and 142 binding proteins were identified at 7, 15, 35 and 50 days post-infection (dpi), respectively. Furthermore, 2 of the 218 HcESPs, named DNA/RNA helicase domain containing protein (HcDR) and GATA transcription factor (HcGATA), were confirmed to induce the proliferation of Th9 cells and promote the expression of IL-9 when incubated with goat peripheral blood mononuclear cells (PBMCs). This study represents a proteomics-guided investigation of the interactions between Th9 cells and HcESPs. It provides a new way to explore immunostimulatory antigens among HcESPs and identifies candidates for immune-mediated prevention of H. contortus infection.
Collapse
Affiliation(s)
- Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
29
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
30
|
Heim L, Yang Z, Tausche P, Hohenberger K, Chiriac MT, Koelle J, Geppert CI, Kachler K, Miksch S, Graser A, Friedrich J, Kharwadkar R, Rieker RJ, Trufa DI, Sirbu H, Neurath MF, Kaplan MH, Finotto S. IL-9 Producing Tumor-Infiltrating Lymphocytes and Treg Subsets Drive Immune Escape of Tumor Cells in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:859738. [PMID: 35514957 PMCID: PMC9065342 DOI: 10.3389/fimmu.2022.859738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023] Open
Abstract
Although lung cancer is the leading cause of cancer deaths worldwide, the mechanisms how lung cancer cells evade the immune system remain incompletely understood. Here, we discovered IL-9-dependent signaling mechanisms that drive immune evasion in non-small cell lung cancer (NSCLC). We found increased IL-9 and IL-21 production by T cells in the tumoral region of the lung of patients with NSCLC, suggesting the presence of Th9 cells in the lung tumor microenvironment. Moreover, we noted IL-9 producing Tregs in NSCLC. IL-9 target cells in NSCLC consisted of IL-9R+ tumor cells and tumor-infiltrating lymphocytes. In two murine experimental models of NSCLC, and in vitro, IL-9 prevented cell death and controlled growth of lung adenocarcinoma cells. Targeted deletion of IL-9 resulted in successful lung tumor rejection in vivo associated with an induction of IL-21 and reduction of Treg cells. Finally, anti-IL-9 antibody immunotherapy resulted in suppression of tumor development even in established experimental NSCLC and was associated with reduced IL-10 production in the lung. In conclusion, our findings indicate that IL-9 drives immune escape of lung tumor cells via effects on tumor cell survival and tumor infiltrating T cells. Thus, strategies blocking IL-9 emerge as a new approach for clinical therapy of lung cancer.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Patrick Tausche
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katja Hohenberger
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mircea T. Chiriac
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julia Koelle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carol-Immanuel Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katerina Kachler
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Miksch
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anna Graser
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rakshin Kharwadkar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ralf J. Rieker
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Denis I. Trufa
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F. Neurath
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Susetta Finotto,
| |
Collapse
|
31
|
Gray CC, Biron-Girard B, Wakeley ME, Chung CS, Chen Y, Quiles-Ramirez Y, Tolbert JD, Ayala A. Negative Immune Checkpoint Protein, VISTA, Regulates the CD4 + T reg Population During Sepsis Progression to Promote Acute Sepsis Recovery and Survival. Front Immunol 2022; 13:861670. [PMID: 35401514 PMCID: PMC8988198 DOI: 10.3389/fimmu.2022.861670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is a systemic immune response to infection that is responsible for ~35% of in-hospital deaths and over 24 billion dollars in annual treatment costs. Strategic targeting of non-redundant negative immune checkpoint protein pathways can cater therapeutics to the individual septic patient and improve prognosis. B7-CD28 superfamily member V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an ideal candidate for strategic targeting in sepsis. We hypothesized that immune checkpoint regulator, VISTA, controls T-regulatory cells (Treg), in response to septic challenge, thus playing a protective role/reducing septic morbidity/mortality. Further, we investigated if changes in morbidity/mortality are due to a Treg-mediated effect during the acute response to septic challenge. To test this, we used the cecal ligation and puncture model as a proxy for polymicrobial sepsis and assessed the phenotype of CD4+ Tregs in VISTA-gene deficient (VISTA-/-) and wild-type mice. We also measured changes in survival, soluble indices of tissue injury, and circulating cytokines in the VISTA-/- and wild-type mice. We found that in wild-type mice, CD4+ Tregs exhibit a significant upregulation of VISTA which correlates with higher Treg abundance in the spleen and small intestine following septic insult. However, VISTA-/- mice have reduced Treg abundance in these compartments met with a higher expression of Foxp3, CTLA4, and CD25 compared to wild-type mice. VISTA-/- mice also have a significant survival deficit, higher levels of soluble indicators of liver injury (i.e., ALT, AST, bilirubin), and increased circulating proinflammatory cytokines (i.e., IL-6, IL-10, TNFα, IL-17F, IL-23, and MCP-1) following septic challenge. To elucidate the role of Tregs in VISTA-/- sepsis mortality, we adoptively transferred VISTA-expressing Tregs into VISTA-/- mice. This adoptive transfer rescued VISTA-/- survival to wild-type levels. Taken together, we propose a protective Treg-mediated role for VISTA by which inflammation-induced tissue injury is suppressed and improves survival in early-stage murine sepsis. Thus, enhancing VISTA expression or adoptively transferring VISTA+ Tregs in early-stage sepsis may provide a novel therapeutic approach to ameliorate inflammation-induced death.
Collapse
Affiliation(s)
- Chyna C. Gray
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Bethany Biron-Girard
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Yaping Chen
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Yael Quiles-Ramirez
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Jessica D. Tolbert
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Alfred Ayala
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| |
Collapse
|
32
|
Assadiasl S, Fatahi Y, Nicknam MH. T helper-9 cells and Interleukin-9 in transplantation: The open question. Hum Immunol 2022; 83:499-508. [DOI: 10.1016/j.humimm.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
33
|
Zhang W, Shi F, Kong Y, Li Y, Sheng C, Wang S, Wang Q. Association of PTPRT mutations with immune checkpoint inhibitors response and outcome in melanoma and non-small cell lung cancer. Cancer Med 2021; 11:676-691. [PMID: 34862763 PMCID: PMC8817076 DOI: 10.1002/cam4.4472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/13/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Protein tyrosine phosphatase receptor type T (PTPRT), which is a well‐known phosphatase and mutates frequently in melanoma and non‐small cell lung cancer (NSCLC). Our research aims to elucidate its mutation association with immune checkpoint inhibitors (ICI) efficacy. Methods We integrated whole‐exome sequencing (WES)‐based somatic mutation profiles and clinical characteristics of 631 melanoma samples received ICI agents from eight studies and 109 NSCLC samples from two studies. For validation, 321 melanoma and 350 NSCLC immunotherapy samples with targeted next‐generation sequencing (NGS) were employed. Besides, an independent NSCLC cohort contained 240 samples was also collected for further corroboration. Distinct immune infiltration was evaluated according to the PTPRT mutational status. Results In the WES melanoma cohort, patients with PTPRT mutations harbored a significantly elevated ICI response rate (40.5% vs. 28.6%, p = 0.036) and a prolonged survival outcome (35.3 vs. 24.9 months, p = 0.006). In the WES NSCLC cohort, the favorable response and immunotherapy survival were also observed in PTPRT‐mutated patients (p = 0.036 and 0.019, respectively). For the validation cohorts, the associations of PTRPT mutations with better prognoses were identified in melanoma, NSCLC, and pan‐cancer patients with targeted‐NGS (all p < 0.05). Moreover, immunology analyses showed the higher mutation burden, increased lymphocyte infiltration, decreased‐ activated‐stroma, and immune response pathways were detected in patients with PTPRT mutations. Conclusion Our investigation indicates that PTPRT mutations may be considered as a potential indicator for assessing ICI efficacy in melanoma and NSCLC, even across multiple cancers. Further prospective validation cohorts are warranted.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Yuting Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chao Sheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Suzhen Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| |
Collapse
|
34
|
Silva NSDL, Orikaza CM, de Santana FR, Dos Santos LA, Salu BR, Oliva MLV, Sinigaglia RDC, Mortara RA. Interleukin-9 in Immunopathology of Trypanosoma cruzi Experimental Infection. Front Cell Infect Microbiol 2021; 11:756521. [PMID: 34722343 PMCID: PMC8554238 DOI: 10.3389/fcimb.2021.756521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
Chagas’ disease is a parasitosis caused by Trypanosoma cruzi, which affects approximately 8 million people worldwide. The balance between pro- and anti-inflammatory cytokines produced during immunological responses contributes to disease prognosis and progression. Parasite tissue persistence can induce chronic inflammatory stimuli, which can cause long-term tissue injury and fibrosis. Chronic Chagas’ patients exhibit increased levels of interleukin (IL)-9, an important cytokine in the regulation of inflammatory and fibrogenic processes. Data on the role of IL-9 in other pathologies are sometimes contradictory, and few studies have explored this cytokine’s influence in Chagas’ disease pathology. Hence, the aim of this study was to evaluate the role of IL-9 in the progression of T. cruzi infection in vivo and in vitro. In vitro infection demonstrated that IL-9 reduced the number of infected cells and decreased the multiplication of intracellular amastigotes in both C2C12 myoblasts and bone marrow-derived macrophages. In myoblasts, the increased production of nitric oxide (NO) was essential for reduced parasite multiplication, whereas macrophage responses resulted in increased IL-6 and reduced TGF-β levels, indicating that parasite growth restriction mechanisms induced by IL-9 were cell-type specific. Experimental infection of BALB/c mice with T. cruzi trypomastigotes of the Y strain implicated a major role of IL-9 during the chronic phase, as increased Th9 and Tc9 cells were detected among splenocytes; higher levels of IL-9 in these cell populations and increased cardiac IL-9 levels were detected compared to those of uninfected mice. Moreover, rIL9 treatment decreased serum IL-12, IL-6, and IL-10 levels and cardiac TNF-α levels, possibly attempting to control the inflammatory response. IL-9 neutralization increased cardiac fibrosis, synthesis of collagens I and III, and mastocyte recruitment in BALB/c heart tissue during the chronic phase. In conclusion, our data showed that IL-9 reduced the invasion and multiplication of T. cruzi in vitro, in both myoblasts and macrophages, favoring disease control through cell-specific mechanisms. In vivo, IL-9 was elevated during experimental chronic infection in BALB/c mice, and this cytokine played a protective role in the immunopathological response during this phase by controlling cardiac fibrosis and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Nadjania Saraiva de Lira Silva
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Cristina Mary Orikaza
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Fabiana Rodrigues de Santana
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Luana Aguiar Dos Santos
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Bruno Ramos Salu
- Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Luiza Vilela Oliva
- Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Rita de Cássia Sinigaglia
- Electronic Microscopy Center, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Aimulajiang K, Wen Z, Naqvi MAUH, Liang M, Tian X, Feng K, Muhammad Khand F, Memon MA, Xu L, Song X, Li X, Yan R. Characteristics of Biotin lipoyl attachment and 2-oxoacid dehydrogenase acyltransferase of the parasitic nematode Haemonchus contortus and its modulatory functions on goat PBMCs in vitro. Parasite Immunol 2021; 43:e12895. [PMID: 34674283 DOI: 10.1111/pim.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022]
Abstract
Biotin lipoyl attachment and 2-oxoacid dehydrogenase acyltransferase (BLAODA), as an essential excretion of Haemonchus contortus (HcESPs), was identified to have antigenic functions. T helper-9 (Th9) cells secrete interleukin (IL)-9, a signature cytokine associated with tumour immunology, allergy and autoimmunity. Nonetheless, the understanding of modulatory functions of BLAODA on Th9 and other immune cells is limited. In this study, the BLAODA gene was cloned, and the recombinant (r) protein of BLAODA (rHcBLAODA) was expressed and immunoblotting was performed. The results revealed that HcBLAODA gene was successfully cloned and rHcBLAODA protein was expressed. The localization of rHcBLAODA was confirmed on the surface of gut sections from adult H. contortus. The rHcBLAODA protein capability to react precisely with anti-H. contortus antibodies were confirmed by immunoblotting and immunofluorescence assay (IFA). Further functional analysis showed that interaction of rHcBLAODA with host cells significantly enhanced Th9 cells generation, IL-9 expression, nitric oxide production and cell apoptosis while suppressing the cells proliferation and cells migration depending on the concentration. Overall, these findings suggest that rHcBLAODA protein could modulate the host immune response by inducing Th9 cells to secrete IL-9 cytokine in vitro.
Collapse
Affiliation(s)
- Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Kangli Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faiz Muhammad Khand
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Sindh, Pakistan
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Dutta S, Sandhu N, Sengupta P, Alves MG, Henkel R, Agarwal A. Somatic-Immune Cells Crosstalk In-The-Making of Testicular Immune Privilege. Reprod Sci 2021; 29:2707-2718. [PMID: 34580844 DOI: 10.1007/s43032-021-00721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/22/2021] [Indexed: 11/27/2022]
Abstract
Immunological infertility contributes significantly to the etiology of idiopathic male infertility. Shielding the spermatogenic cells from systemic immune responses is fundamental to secure normal production of spermatozoa. The body's immune system is tuned with the host self-components since the early postnatal period, while sperm first develops during puberty, thus rendering spermatogenic proteins as 'non-self' or 'antigenic.' Development of antibodies to these antigens elicits autoimmune responses affecting sperm motility, functions, and fertility. Therefore, the testes need to establish a specialized immune-privileged microenvironment to protect the allogenic germ cells by orchestration of various testicular cells and resident immune cells. This is achieved through sequestration of antigenic germ cells by blood-testis barrier and actions of various endocrine, paracrine, immune-suppressive, and immunomodulatory mechanisms. The various mechanisms are very complex and need conceptual integration to disclose the exact physiological scenario, and to facilitate detection and management of immunogenic infertility caused by disruption of testicular immune regulation. The present review aims to (a) discuss the components of testicular immune privilege; (b) explain testicular somatic and immune cell interactions in establishing and maintaining the testicular immune micro-environment; and (c) illustrate the integration of multiple mechanisms involved in the control of immune privilege of the testis.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Narpal Sandhu
- Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
37
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
38
|
Schanz O, Cornez I, Yajnanarayana SP, David FS, Peer S, Gruber T, Krawitz P, Brossart P, Heine A, Landsberg J, Baier G, Wolf D. Tumor rejection in Cblb -/- mice depends on IL-9 and Th9 cells. J Immunother Cancer 2021; 9:jitc-2021-002889. [PMID: 34272310 PMCID: PMC8287598 DOI: 10.1136/jitc-2021-002889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. METHODS Using Cblb -/- mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb -/- Th9 cells into melanoma-bearing mice and assessed tumor control in vivo. In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb -/- mice to investigate the role of IL-9 in tumor immunity. RESULTS Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb -/- Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo. Accordingly, blocking IL-9 in melanoma cell-exposed Cblb -/- mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb -/- animals revealed a transcriptomic basis for increased Th9 cell differentiation. CONCLUSION We established IL-9 and Th9 cells as key antitumor executers in Cblb -/- animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.
Collapse
Affiliation(s)
- Oliver Schanz
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Cornez
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Friederike Sophie David
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Sebastian Peer
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Annkristin Heine
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Gottfried Baier
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany .,Department of Internal Medicine V, Hematology and Oncology, and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Lin Q, Menon MC, He JC. IL-9: a novel pro-podocyte survival cytokine in FSGS. Kidney Int 2021; 98:541-543. [PMID: 32828233 DOI: 10.1016/j.kint.2020.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022]
Abstract
Progressive focal segmental glomerulosclerosis, characterized by podocyte loss, is often refractory to treatment and leads to progressive proteinuric chronic kidney disease. Interleukin-9 (IL-9) is reported to play important roles in innate and adaptive immunity in extrarenal inflammatory diseases. By using an IL-9 knockout mouse model, Xiong et al. demonstrate IL-9 as a novel pro-podocyte survival cytokine in the adriamycin nephropathy model of focal segmental glomerulosclerosis. Sequential in vitro and in vivo data corroborate a direct protective role, rather than an immunologic role, for IL-9 on podocyte survival. This commentary highlights these novel data and discusses the necessary steps for developing IL-9 as a potential novel therapeutic for focal segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Qisheng Lin
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
40
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
41
|
Zhang Q, Yang L, Liu S, Zhang M, Jin Z. Interleukin-35 Suppresses Interleukin-9-Secreting CD4 + T Cell Activity in Patients With Hepatitis B-Related Hepatocellular Carcinoma. Front Immunol 2021; 12:645835. [PMID: 34177894 PMCID: PMC8222719 DOI: 10.3389/fimmu.2021.645835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection induces dysfunction of immune response and chronic liver damage. However, the mechanisms that account for HBV-related hepatocellular carcinoma (HCC) are poorly understood. The aim of present study was to investigate the modulatory role of interleukin (IL)-35, an immunosuppressive cytokine, to IL-9-secreting T cells in hepatitis B-related HCC. Twenty-two HBV-related HCC patients, twenty-seven chronic hepatitis B (CHB) patients, and eleven controls were enrolled. Serum IL-35 and IL-9 concentration was measured by ELISA. Peripheral and liver-infiltrating non-specific and HBV-specific Th9 and Tc9 cells were assessed by flow cytometry. The regulatory activity of IL-35 to peripheral and liver-infiltrating Th9 cells was assessed in co-culture system between CD8+ T cells and HepG2.2.15 cells. Serum IL-35 was up-regulated, while IL-9 was down-regulated in HBV-related HCC patients compared with in CHB patients and controls. Peripheral non-specific and HBV-specific Th9 cells, but not Tc9 cells, were decreased in HBV-related HCC patients. Liver-infiltrating non-specific and HBV-specific Th9 cells were also reduced in HCC tumor sites. CD8+ T cells from CHB and HBV-related HCC patients revealed decreased cytotoxicity compared with those from controls. Autologous Th9 cells mediated the elevation of CD8+ T cell cytotoxicity, and this process was depending on IL-9 secretion. Recombinant IL-35 stimulation inhibited IL-9 secretion and PU.1 mRNA expression in non-specific and HBV-specific Th9 cells, leading to the suppression of Th9-mediated CD8+ T cell cytotoxicity in CHB and HBV-related HCC patients. Our current data indicated that IL-35 might dampen non-specific and HBV-specific Th9 cells activity in HBV-related HCC patients.
Collapse
Affiliation(s)
- Qian Zhang
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Lanlan Yang
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Mengyao Zhang
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Zhenjing Jin
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
42
|
γδ T Cells Control Gut Pathology in a Chronic Inflammatory Model of Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:1163-1165.e8. [PMID: 33989816 PMCID: PMC8413143 DOI: 10.1016/j.jcmgh.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/10/2022]
|
43
|
Di Napoli A, Greco D, Scafetta G, Ascenzi F, Gulino A, Aurisicchio L, Santanelli Di Pompeo F, Bonifacino A, Giarnieri E, Morgan J, Mancini R, Kadin ME. IL-10, IL-13, Eotaxin and IL-10/IL-6 ratio distinguish breast implant-associated anaplastic large-cell lymphoma from all types of benign late seromas. Cancer Immunol Immunother 2021; 70:1379-1392. [PMID: 33146828 PMCID: PMC8053183 DOI: 10.1007/s00262-020-02778-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Breast implant-associated anaplastic large-cell lymphoma (BI-ALCL) is an uncommon peripheral T cell lymphoma usually presenting as a delayed peri-implant effusion. Chronic inflammation elicited by the implant has been implicated in its pathogenesis. Infection or implant rupture may also be responsible for late seromas. Cytomorphological examination coupled with CD30 immunostaining and eventual T-cell clonality assessment are essential for BI-ALCL diagnosis. However, some benign effusions may also contain an oligo/monoclonal expansion of CD30 + cells that can make the diagnosis challenging. Since cytokines are key mediators of inflammation, we applied a multiplexed immuno-based assay to BI-ALCL seromas and to different types of reactive seromas to look for a potential diagnostic BI-ALCL-associated cytokine profile. We found that BI-ALCL is characterized by a Th2-type cytokine milieu associated with significant high levels of IL-10, IL-13 and Eotaxin which discriminate BI-ALCL from all types of reactive seroma. Moreover, we found a cutoff of IL10/IL-6 ratio of 0.104 is associated with specificity of 100% and sensitivity of 83% in recognizing BI-ALCL effusions. This study identifies promising biomarkers for initial screening of late seromas that can facilitate early diagnosis of BI-ALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035, 00189, Roma, Italy.
| | - Daniele Greco
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, Palermo, Italy
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035, 00189, Roma, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, Palermo, Italy
| | | | | | | | - Enrico Giarnieri
- Department of Clinical and Molecular Medicine, Sapienza University, Cytology Unit, Sant'Andrea Hospital, Roma, Italy
| | - John Morgan
- Department of Pathology and Laboratory Medicine, Albert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Albert School of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
44
|
Cai J, McKinley T, Billiar I, Zenati MS, Gaski G, Vodovotz Y, Gruen DS, Billiar TR, Namas RA. Protective/reparative cytokines are suppressed at high injury severity in human trauma. Trauma Surg Acute Care Open 2021; 6:e000619. [PMID: 33748428 PMCID: PMC7929818 DOI: 10.1136/tsaco-2020-000619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/03/2023] Open
Abstract
Background Trauma elicits a complex inflammatory response that, among multiple presenting factors, is greatly impacted by the magnitude of injury severity. Herein, we compared the changes in circulating levels of mediators with known proinflammatory roles to those with known protective/reparative actions as a function of injury severity in injured humans. Methods Clinical and biobank data were obtained from 472 (trauma database-1 (TD-1), University of Pittsburgh) and 89 (trauma database-2 (TD-2), Indiana University) trauma patients admitted to the intensive care unit (ICU) and who survived to discharge. Injury severity was estimated based on the Injury Severity Score (ISS), and this was used as both a continuous variable and for the purpose of grouping patients into severity-based cohorts. Samples within the first 24 hours were obtained from all patients and then daily up to day 7 postinjury in TD-1. Sixteen cytokines were assayed using Luminex and were analyzed using two-way analysis of variance (p<0.05). Results Patients with higher ISSs had longer ICU and hospital stays, days on mechanical ventilation and higher rates of nosocomial infection when compared with the mild and moderate groups. Time course analysis and correlations with ISS showed that 11 inflammatory mediators correlated positively with injury severity, consistent with previous reports. However, five mediators (interleukin (IL)-9, IL-21, IL-22, IL-23 and IL-17E/25) were suppressed in patients with high ISS and inversely correlated with ISS. Discussion These findings suggest that severe injury is associated with a suppression of a subset of cytokines known to be involved in tissue protection and regeneration (IL-9, IL-22 and IL-17E/25) and lymphocyte differentiation (IL-21 and IL-23), which in turn correlates with adverse clinical outcomes. Thus, patterns of proinflammatory versus protective/reparative mediators diverge with increasing ISS.
Collapse
Affiliation(s)
- Jinman Cai
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Todd McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Isabel Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mazen S Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Greg Gaski
- Department of Orthopedic Surgery, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Danielle S Gruen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 2021; 385:281-292. [PMID: 33598825 PMCID: PMC8523400 DOI: 10.1007/s00441-020-03403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
46
|
Abstract
Renal inflammation, induced by autoantigen recognition or toxic drugs, leads to renal tissue injury and decline in kidney function. Recent studies have demonstrated the crucial role for regulatory T cells in suppressing pathogenic adaptive but also innate immune responses in the inflamed kidney. However, there is also evidence for other immune cell populations with immunosuppressive function in renal inflammation. This review summarizes mechanisms of immune cell regulation in immune-mediated glomerulonephritis and acute and chronic nephrotoxicity.
Collapse
|
47
|
Luo Y, Pei S, Xu J, Xiao Y, Zhu X. Combined chemotherapy of platinum and fluorouracil promotes T cell-mediated antitumor immunity. Acta Biochim Biophys Sin (Shanghai) 2021; 53:29-35. [PMID: 33201175 DOI: 10.1093/abbs/gmaa143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 11/14/2022] Open
Abstract
The two-drug combined chemotherapy of platinum and fluorouracil has been reported to efficiently kill tumor cells as the first-line treatment for advanced gastric cancer. However, the effect of these drugs on T cells remains unclear. Here, we showed that T cells including CD4+ T cells and CD8+ T cells of the patients with advanced gastric cancer after platinum and fluorouracil chemotherapy exhibited enhanced ex vivo proliferation ability as compared to that before chemotherapy. In addition, platinum and fluorouracil also promoted the differentiation of human T cells into Th1 and Th9 subtypes and cytotoxic T lymphocytes (CTLs) in vitro and in vivo. Accordingly, the combination therapy greatly suppressed tumor growth with increased tumor infiltration of Th1, Th9, and CTL cells in a mouse tumor model. Moreover, in activated T cells, long-term treatment with these two drugs further facilitates T cell activation along with promoted nuclear factor-κB (NF-κB) activation. Our findings demonstrate a previously unidentified function of platinum and fluorouracil combination chemotherapy in promoting T cell-mediated antitumor immunity.
Collapse
Affiliation(s)
- Yixiao Luo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
48
|
Vibhushan S, Bratti M, Montero-Hernández JE, El Ghoneimi A, Benhamou M, Charles N, Daugas E, Blank U. Mast Cell Chymase and Kidney Disease. Int J Mol Sci 2020; 22:E302. [PMID: 33396702 PMCID: PMC7795820 DOI: 10.3390/ijms22010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme's independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.
Collapse
Affiliation(s)
- Shamila Vibhushan
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Juan Eduardo Montero-Hernández
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Alaa El Ghoneimi
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Department of Pediatric Surgery and Urology, Hôpital Universitaire Robert Debré, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Marc Benhamou
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Eric Daugas
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Service de Néphrologie, Groupe Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| |
Collapse
|
49
|
García-Bernal D, García-Arranz M, García-Guillén AI, García-Hernández AM, Blanquer M, García-Olmo D, Sackstein R, Moraleda JM, Zapata AG. Exofucosylation of Adipose Mesenchymal Stromal Cells Alters Their Secretome Profile. Front Cell Dev Biol 2020; 8:584074. [PMID: 33324641 PMCID: PMC7726227 DOI: 10.3389/fcell.2020.584074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) constitute the cell type more frequently used in many regenerative medicine approaches due to their exclusive immunomodulatory properties, and they have been reported to mediate profound immunomodulatory effects in vivo. Nevertheless, MSCs do not express essential adhesion molecules actively involved in cell migration, a phenotypic feature that hampers their ability to home inflamed tissues following intravenous administration. In this study, we investigated whether modification by fucosylation of murine AdMSCs (mAdMSCs) creates Hematopoietic Cell E-/L-selectin Ligand, the E-selectin-binding CD44 glycoform. This cell surface glycan modification of CD44 has previously shown in preclinical studies to favor trafficking of mAdMSCs to inflamed or injured peripheral tissues. We analyzed the impact that exofucosylation could have in other innate phenotypic and functional properties of MSCs. Compared to unmodified counterparts, fucosylated mAdMSCs demonstrated higher in vitro migration, an altered secretome pattern, including increased expression and secretion of anti-inflammatory molecules, and a higher capacity to inhibit mitogen-stimulated splenocyte proliferation under standard culture conditions. Together, these findings indicate that exofucosylation could represent a suitable cell engineering strategy, not only to facilitate the in vivo MSC colonization of damaged tissues after systemic administration, but also to convert MSCs in a more potent immunomodulatory/anti-inflammatory cell therapy-based product for the treatment of a variety of autoimmune, inflammatory, and degenerative diseases.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Department of Internal Medicine, Medicine School, University of Murcia, Murcia, Spain
| | - Mariano García-Arranz
- Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Ana I García-Guillén
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain
| | - Ana M García-Hernández
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain
| | - Miguel Blanquer
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Department of Internal Medicine, Medicine School, University of Murcia, Murcia, Spain
| | - Damián García-Olmo
- Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Robert Sackstein
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Department of Internal Medicine, Medicine School, University of Murcia, Murcia, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
50
|
Do-Thi VA, Lee JO, Lee H, Kim YS. Crosstalk between the Producers and Immune Targets of IL-9. Immune Netw 2020; 20:e45. [PMID: 33425430 PMCID: PMC7779872 DOI: 10.4110/in.2020.20.e45] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
IL-9 has been reported to play dual roles in the pathogenesis of autoimmune disorders and cancers. The collaboration of IL-9 with microenvironmental factors including the broader cytokine milieu and other cellular components may provide important keys to explain its conflicting effects in chronic conditions. In this review, we summarize recent findings on the cellular sources of, and immunological responders to IL-9, in order to interpret the role of IL-9 in the regulation of immune responses. This knowledge will provide new perspectives to improve clinical benefits and limit adverse effects of IL-9 when treating pathologic conditions.
Collapse
Affiliation(s)
- Van Anh Do-Thi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|