1
|
Imbiakha B, Sahler JM, Buchholz DW, Ezzatpour S, Jager M, Choi A, Monreal IA, Byun H, Adeleke RA, Leach J, Whittaker G, Dewhurst S, Rudd BD, Aguilar HC, August A. Adaptive immune cells are necessary for SARS-CoV-2-induced pathology. SCIENCE ADVANCES 2024; 10:eadg5461. [PMID: 38170764 PMCID: PMC10775995 DOI: 10.1126/sciadv.adg5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic associated with morbidity and mortality in humans. Although disease severity correlates with immune dysregulation, the cellular mechanisms of inflammation and pathogenesis of COVID-19 remain relatively poorly understood. Here, we used mouse-adapted SARS-CoV-2 strain MA10 to investigate the role of adaptive immune cells in disease. We found that while infected wild-type mice lost ~10% weight by 3 to 4 days postinfection, rag-/- mice lacking B and T lymphocytes did not lose weight. Infected lungs at peak weight loss revealed lower pathology scores, fewer neutrophils, and lower interleukin-6 and tumor necrosis factor-α in rag-/- mice. Mice lacking αβ T cells also had less severe weight loss, but adoptive transfer of T and B cells into rag-/- mice did not significantly change the response. Collectively, these findings suggest that while adaptive immune cells are important for clearing SARS-CoV-2 infection, this comes at the expense of increased inflammation and pathology.
Collapse
Affiliation(s)
- Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie M. Sahler
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Mason Jager
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Isaac A. Monreal
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Richard Ayomide Adeleke
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Justin Leach
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Gary Whittaker
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
García-Ferreras R, Osuna-Pérez J, Ramírez-Santiago G, Méndez-Pérez A, Acosta-Moreno AM, Del Campo L, Gómez-Sánchez MJ, Iborra M, Herrero-Fernández B, González-Granado JM, Sánchez-Madrid F, Carrasco YR, Boya P, Martínez-Martín N, Veiga E. Bacteria-instructed B cells cross-prime naïve CD8 + T cells triggering effective cytotoxic responses. EMBO Rep 2023:e56131. [PMID: 37184882 DOI: 10.15252/embr.202256131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.
Collapse
Affiliation(s)
- Raquel García-Ferreras
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jesús Osuna-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Guillermo Ramírez-Santiago
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Almudena Méndez-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés M Acosta-Moreno
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Lara Del Campo
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Gómez-Sánchez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Marta Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M González-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology & Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | | | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Zheng D, Bhuvan T, Payne NL, Heng TSP. Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Front Immunol 2022; 13:892443. [PMID: 35784291 PMCID: PMC9243307 DOI: 10.3389/fimmu.2022.892443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in inflammatory models of human disease. However, clinical translation has fallen short of expectations, with many trials failing to meet primary endpoints. Failure to fully understand their mechanisms of action is a key factor contributing to the lack of successful commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not based solely on their viable properties, but also on the immune response to dying MSCs. The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key role in immune regulation. In this review, we will discuss how apoptotic cells can modify immune responses and highlight the importance of MSC-immune cell interactions in SLOs for therapeutic outcomes.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natalie L. Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Tracy S. P. Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
- *Correspondence: Tracy S. P. Heng,
| |
Collapse
|
4
|
Arthur CM, Patel SR, Sharma A, Zerra PE, Chonat S, Jajosky RP, Fasano RM, Patel R, Bennett A, Zhou X, Luckey CJ, Hudson KE, Eisenbarth SC, Josephson CD, Roback JD, Hendrickson JE, Stowell SR. Clodronate inhibits alloimmunization against distinct red blood cell alloantigens in mice. Transfusion 2022; 62:948-953. [PMID: 35470900 PMCID: PMC9491148 DOI: 10.1111/trf.16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alloimmunization can be a significant barrier to red blood cell (RBC) transfusion. While alloantigen matching protocols hold promise in reducing alloantibody formation, transfusion-dependent patients can still experience RBC alloimmunization and associated complications even when matching protocols are employed. As a result, complementary strategies capable of actively preventing alloantibody formation following alloantigen exposure are warranted. STUDY DESIGN AND METHODS We examined whether pharmacological removal of macrophages using clodronate may provide an additional strategy to actively inhibit RBC alloimmunization using two preclinical models of RBC alloimmunization. To accomplish this, mice were treated with clodronate, followed by transfusion of RBCs expressing the HOD (HEL, OVA, and Duffy) or KEL antigens. On days 5 and 14 post transfusion, anti-HOD or anti-KEL IgM and IgG antibodies were evaluated. RESULTS Low dose clodronate effectively eliminated key marginal zone macrophage populations from the marginal sinus. Prior treatment with clodronate, but not empty liposomes, also significantly inhibited IgM and IgG anti-HOD alloantibody formation following transfusion of HOD RBCs. Similar exposure to clodronate inhibited IgM and IgG antibody formation following KEL RBC transfusion. CONCLUSIONS Clodronate can inhibit anti-HOD and anti-KEL antibody formation following RBC transfusion in preclinical models. These results suggest that clodronate may provide an alternative approach to actively inhibit or prevent the development of alloantibodies following RBC transfusion, although future studies will certainly be needed to fully explore this possibility.
Collapse
Affiliation(s)
- Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seema R Patel
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Asish Sharma
- Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ryan P Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ravi Patel
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ashley Bennett
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xiaoxi Zhou
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | | | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia, USA.,Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nat Commun 2022; 13:1789. [PMID: 35379825 PMCID: PMC8980022 DOI: 10.1038/s41467-022-29426-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity. Follicular and marginal zone B (FoB and MZB, respectively) cells have divergent metabolic characteristics. Here the authors show that deficiency of glutamate cysteine ligase (Gclc), the enzyme for glutathione synthesis, differentially impacts FoB and MZB homeostasis, while specifically impeding FoB activation and downstream antiviral immunity.
Collapse
|
6
|
Zerra PE, Patel SR, Jajosky RP, Arthur CM, McCoy JW, Allen JWL, Chonat S, Fasano RM, Roback JD, Josephson CD, Hendrickson JE, Stowell SR. Marginal zone B cells mediate a CD4 T-cell-dependent extrafollicular antibody response following RBC transfusion in mice. Blood 2021; 138:706-721. [PMID: 33876205 PMCID: PMC8394907 DOI: 10.1182/blood.2020009376] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme [HEL] and ovalbumin [OVA] fused with the human RBC antigen Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they colocalize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited immunoglobulin M (IgM) and IgG anti-HOD antibody formation, whereas CD4 T-cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild-type or MZ B-cell-deficient recipients, suggesting that IgG formation is not dependent on MZ B-cell-mediated CD4 T-cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response, and no increase in antigen-specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest that MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.
Collapse
Affiliation(s)
- Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Seema R Patel
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ryan Philip Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - James W McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | | | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
7
|
Werth K, Hub E, Gutjahr JC, Bosjnak B, Zheng X, Bubke A, Russo S, Rot A, Förster R. Expression of ACKR4 demarcates the "peri-marginal sinus," a specialized vascular compartment of the splenic red pulp. Cell Rep 2021; 36:109346. [PMID: 34260918 DOI: 10.1016/j.celrep.2021.109346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The spleen comprises defined microanatomical compartments that uniquely contribute to its diverse host defense functions. Here, we identify a vascular compartment within the red pulp of the spleen delineated by expression of the atypical chemokine receptor 4 (ACKR4) in endothelial cells. ACKR4-positive vessels form a three-dimensional sinusoidal network that connects via shunts to the marginal sinus and tightly surrounds the outer perimeter of the marginal zone. Endothelial cells lining this vascular compartment express ACKR4 as part of a distinct gene expression profile. We show that T cells enter the spleen largely through this peri-marginal sinus and initially localize extravascularly around these vessels. In the absence of ACKR4, homing of T cells into the spleen and subsequent migration into T cell areas is impaired, and organization of the marginal zone is severely affected. Our data delineate the splenic peri-marginal sinus as a compartment that supports spleen homing of T cells.
Collapse
Affiliation(s)
- Kathrin Werth
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Elin Hub
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ London, UK
| | - Julia Christine Gutjahr
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK
| | - Berislav Bosjnak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Xiang Zheng
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Russo
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK
| | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ London, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ London, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
8
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
9
|
Qelliny MR, Shimizu T, Elsadek NE, Emam SE, Takata H, Fathalla ZMA, Hussein AK, Khaled KA, Ando H, Ishima Y, Ishida T. Incorporating Gangliosides into PEGylated Cationic Liposomes that Complexed DNA Attenuates Anti-PEG Antibody Production but Not Anti-DNA Antibody Production in Mice. Mol Pharm 2021; 18:2406-2415. [PMID: 33896187 DOI: 10.1021/acs.molpharmaceut.1c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gangliosides (glycosphingolipids) reduce antibody production by inhibiting B-cell receptor (BCR) signaling. We have shown that a copresentation of gangliosides and polyethylene glycol (PEG) on the same liposomes suppresses anti-PEG IgM production in mice. In addition, we recently observed that pDNA incorporated in PEGylated cationic liposomes (PCLs) induces anti-DNA IgM, which could be a hurdle to the development of efficient gene delivery systems. Therefore, the focus of this study was to determine if the copresentation of gangliosides and DNA on the same PCL would suppress antibody production against DNA. PCLs including DNA induced both anti-PEG IgM production and anti-DNA IgM production. The extent of anti-PEG and anti-DNA IgM production was likely dependent on the immunogenicity of the complexed DNA. Treatment of clodronate-containing liposomes, which causes a depletion of phagocytic cells, suppressed anti-PEG IgM production from PCLs that did not include DNA but failed to suppress anti-PEG IgM production from PCLs that complexed DNA (PCLD). Both anti-PEG IgM and anti-DNA IgM was induced in T-cell-deficient nude mice as well as in normal mice following treatment with PCLs and PCLD, respectively. These results indicate that phagocytic cells contribute to anti-PEG IgM production but not to anti-DNA IgM production, while T-cells do not contribute to any form of antibody production. The copresentation of gangliosides and DNA significantly reduced anti-PEG IgM production but unfortunately did not reduce anti-DNA IgM production. It appears that the immunosuppressive effect of gangliosides, presumably via the CD22 signaling pathway, is limited only to anti-PEG immunity.
Collapse
Affiliation(s)
- Milad Reda Qelliny
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Zeinab M A Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
10
|
Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:127. [PMID: 33767177 PMCID: PMC7994399 DOI: 10.1038/s41392-021-00506-6] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Kimura S, Khalil IA, Elewa YHA, Harashima H. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J Control Release 2021; 330:753-764. [PMID: 33422500 DOI: 10.1016/j.jconrel.2021.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
This study reports on the development of a novel lipid combination that permits the efficient and highly selective delivery of plasmid DNA (pDNA) to immune cells in the spleen. Using DODAP, an ionizable lipid that was previously thought to be inefficient for gene delivery, we show for the first time, that this ignored lipid can be successfully used for efficient and targeted gene delivery in vivo, but only when combined with DOPE, a specific helper lipid. Using certain DODAP and DOPE ratios resulted in the formation of lipid nanoparticles (LNPs) with a ~ 1000-fold higher gene expression, and this expression was specific for the spleen, making it the most spleen-selective system for transfection using pDNA. The developed DODAP/DOPE-LNPs target immune cells in the spleen via receptors for complement C3 and this pathway is critical for efficient gene expression. We hypothesize that the high spleen transfection activity of DODAP/DOPE-LNPs is caused by the promotion of gene expression associated with B cell activation via complement receptors. LNPs encapsulating tumor-antigen encoding pDNA showed both prophylactic and therapeutic anti-tumor effects. The optimized LNPs resulted in the production of different cytokines and antigen-specific antibodies as well as exerting antigen-specific cytotoxic effects. This study revives the use of DODAP in gene delivery and highlights the importance of using appropriate lipid combinations for delivering genes to specific cells.
Collapse
Affiliation(s)
- Seigo Kimura
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Molecular Design of Pharmaceuticsx, Department of Biomedical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
12
|
Vanderkerken M, Maes B, Vandersarren L, Toussaint W, Deswarte K, Vanheerswynghels M, Pouliot P, Martens L, Van Gassen S, Arthur CM, Kirkling ME, Reizis B, Conrad D, Stowell S, Hammad H, Lambrecht BN. TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proc Natl Acad Sci U S A 2020; 117:31331-31342. [PMID: 33214146 PMCID: PMC7733863 DOI: 10.1073/pnas.2009847117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM+ CD4+ cDC2s in the spleen and failed to prime CD4+ T cells in response to allogeneic red-blood-cell transfusion. These NOTCH2- and ADAM10-dependent cDC2s were absent selectively in the spleen, but not in the intestine of Taok3-/- and CD11c-cre Taok3fl/fl mice. The loss of splenic ESAM+ cDC2s was cell-intrinsic and could be rescued by conditional overexpression of the constitutively active NOTCH intracellular domain in CD11c-expressing cells. Therefore, TAOK3 controls the terminal differentiation of NOTCH2-dependent splenic cDC2s.
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Lana Vandersarren
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Philippe Pouliot
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Van Gassen
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Margaret E Kirkling
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Daniel Conrad
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298
| | - Sean Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Marinkovic D, Marinkovic T. Putative role of marginal zone B cells in pathophysiological processes. Scand J Immunol 2020; 92:e12920. [PMID: 32594535 DOI: 10.1111/sji.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of inner integrity of an organism is founded on the proper performance of two immunity branches, innate and adaptive immune responses. Recently, it became apparent that subset of splenic B cells named marginal zone B cells (MZB cells) exhibits unique developmental and functional features that bridge these two immunity branches. Strategically positioned at the site where blood and lymph are filtered, MZB cells represent a population of sentinels that rapidly proliferate and differentiate into IgM plasmablast cells when encountered with blood-borne, thymus-independent (TI) Ags. Moreover, MZB cells have intrinsic capability to induce potent CD4+ helper T cell response and cytokine production upon stimulation with soluble antigens. Due to their ability to overcome a time gap prior the establishment of the full adaptive response towards pathogens, MZB cells connect and direct innate and adaptive immunity. An additional interesting characteristic of MZB cells is capacity to function as regulatory cells in autoimmune processes. MZB cells may also contribute to the control of autoimmunity via the induction of tolerance by apoptotic cells. Importantly, in the clear association with inflammation and autoimmunity, MZB cells may transform into MALT lymphoma, representing a concurrence point for the infection, immunity and malignancy. This paper presents an insight into the complex biology of marginal zone B cells and their role in intertwining and directing innate and adaptive immune processes at the physiological and pathological level.
Collapse
Affiliation(s)
- Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
14
|
Hepatosplenic phagocytic cells indirectly contribute to anti-PEG IgM production in the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes: Appearance of an unexplained mechanism in the ABC phenomenon. J Control Release 2020; 323:102-109. [DOI: 10.1016/j.jconrel.2020.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
15
|
Bae HR, Leung PSC, Hodge DL, Fenimore JM, Jeon SM, Thovarai V, Dzutsev A, Welcher AA, Boedigheimer M, Damore MA, Choi MS, Fravell RA, Trinchieri G, Gershwin ME, Young HA. Multi-omics: Differential expression of IFN-γ results in distinctive mechanistic features linking chronic inflammation, gut dysbiosis, and autoimmune diseases. J Autoimmun 2020; 111:102436. [PMID: 32220507 PMCID: PMC7266723 DOI: 10.1016/j.jaut.2020.102436] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Low grade, chronic inflammation is a critical risk factor for immunologic dysfunction including autoimmune diseases. However, the multiplicity of complex mechanisms and lack of relevant murine models limit our understanding of the precise role of chronic inflammation. To address these hurdles, we took advantage of multi-omics data and a unique murine model with a low but chronic expression of IFN-γ, generated by replacement of the AU-rich element (ARE) in the 3' UTR region of IFN-γ mRNA with random nucleotides. Herein, we demonstrate that low but differential expression of IFN-γ in mice by homozygous or heterozygous ARE replacement triggers distinctive gut microbial alterations, of which alteration is female-biased with autoimmune-associated microbiota. Metabolomics data indicates that gut microbiota-dependent metabolites have more robust sex-differences than microbiome profiling, particularly those involved in fatty acid oxidation and nuclear receptor signaling. More importantly, homozygous ARE-Del mice have dramatic changes in tryptophan metabolism, bile acid and long-chain lipid metabolism, which interact with gut microbiota and nuclear receptor signaling similarly with sex-dependent metabolites. Consistent with these findings, nuclear receptor signaling, encompassing molecules such as PPARs, FXR, and LXRs, was detectable as a top canonical pathway in comparison of blood and tissue-specific gene expression between female homozygous vs heterozygous ARE-Del mice. Further analysis implies that dysregulated autophagy in macrophages is critical for breaking self-tolerance and gut homeostasis, while pathways interact with nuclear receptor signaling to regulate inflammatory responses. Overall, pathway-based integration of multi-omics data provides systemic and cellular insights about how chronic inflammation driven by IFN-γ results in the development of autoimmune diseases with specific etiopathological features.
Collapse
Affiliation(s)
- Heekyong R Bae
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Deborah L Hodge
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - John M Fenimore
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Seon-Min Jeon
- Center for Food and Nutritional Genomics Research, Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea.
| | - Vishal Thovarai
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - Amiran Dzutsev
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA.
| | | | | | | | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea.
| | - Richard A Fravell
- Department of Immunology, Yale School of Medicine, New Haven, CT, USA.
| | - Giorgio Trinchieri
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA.
| |
Collapse
|
16
|
Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A, Shin S, Allen JWL, Baldwin WH, Cox C, Verkerke H, Jajosky RP, Tormey CA, Meeks SL, Stowell SR. Fc Gamma Receptors and Complement Component 3 Facilitate Anti-fVIII Antibody Formation. Front Immunol 2020; 11:905. [PMID: 32582142 PMCID: PMC7295897 DOI: 10.3389/fimmu.2020.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Anti-factor VIII (fVIII) alloantibodies, which can develop in patients with hemophilia A, limit the therapeutic options and increase morbidity and mortality of these patients. However, the factors that influence anti-fVIII antibody development remain incompletely understood. Recent studies suggest that Fc gamma receptors (FcγRs) may facilitate recognition and uptake of fVIII by recently developed or pre-existing naturally occurring anti-fVIII antibodies, providing a mechanism whereby the immune system may recognize fVIII following infusion. However, the role of FcγRs in anti-fVIII antibody formation remains unknown. In order to define the influence of FcγRs on the development of anti-fVIII antibodies, fVIII was injected into WT or FcγR knockout recipients, followed by evaluation of anti-fVIII antibodies. Anti-fVIII antibodies were readily observed following fVIII injection into FcγR knockouts, with similar anti-fVIII antibody levels occurring in FcγR knockouts as detected in WT mice injected in parallel. As antibodies can also fix complement, providing a potential mechanism whereby anti-fVIII antibodies may influence anti-fVIII antibody formation independent of FcγRs, fVIII was also injected into complement component 3 (C3) knockout recipients in parallel. Similar to FcγR knockouts, C3 knockout recipients developed a robust response to fVIII, which was likewise similar to that observed in WT recipients. As FcγRs or C3 may compensate for each other in recipients only deficient in FcγRs or C3 alone, we generated mice deficient in both FcγRs and C3 to test for potential antibody effector redundancy in anti-fVIII antibody formation. Infusion of fVIII into FcγRs and C3 (FcγR × C3) double knockouts likewise induced anti-fVIII antibodies. However, unlike individual knockouts, anti-fVIII antibodies in FcγRs × C3 knockouts were initially lower than WT recipients, although anti-fVIII antibodies increased to WT levels following additional fVIII exposure. In contrast, infusion of RBCs expressing distinct alloantigens into FcγRs, C3 or FcγR × C3 knockout recipients either failed to change anti-RBC levels when compared to WT recipients or actually increased antibody responses, depending on the target antigen. Taken together, these results suggest FcγRs and C3 can differentially impact antibody formation following exposure to distinct alloantigens and that FcγRs and C3 work in concert to facilitate early anti-fVIII antibody formation.
Collapse
Affiliation(s)
- Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States.,Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Amanda Mener
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Sooncheon Shin
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jerry William L Allen
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - W Hunter Baldwin
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans Verkerke
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Pathology and Laboratory Medicine Service, VA Conneciticut Healthcare System, West Haven, CT, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
17
|
Pirgova G, Chauveau A, MacLean AJ, Cyster JG, Arnon TI. Marginal zone SIGN-R1 + macrophages are essential for the maturation of germinal center B cells in the spleen. Proc Natl Acad Sci U S A 2020; 117:12295-12305. [PMID: 32424104 PMCID: PMC7275705 DOI: 10.1073/pnas.1921673117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mechanisms that regulate germinal center (GC) B cell responses in the spleen are not fully understood. Here we use a combination of pharmacologic and genetic approaches to delete SIGN-R1+ marginal zone (MZ) macrophages and reveal their specific contribution to the regulation of humoral immunity in the spleen. We find that while SIGN-R1+ macrophages were not essential for initial activation of B cells, they were required for maturation of the response and development of GC B cells. These defects could be corrected when follicular helper T (Tfh) cells were induced before macrophage ablation or when Tfh responses were enhanced. Moreover, we show that in the absence of SIGN-R1+ macrophages, DCIR2+ dendritic cells (DCs), which play a key role in priming Tfh responses, were unable to cluster to the interfollicular regions of the spleen and were instead displaced to the MZ. Restoring SIGN-R1+ macrophages to the spleen corrected positioning of DCIR2+ DCs and rescued the GC B cell response. Our study reveals a previously unappreciated role for SIGN-R1+ macrophages in regulation of the GC reaction and highlights the functional specification of macrophage subsets in the MZ compartment.
Collapse
Affiliation(s)
- Gabriela Pirgova
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Anne Chauveau
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Andrew J MacLean
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Jason G Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Tal I Arnon
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom;
| |
Collapse
|
18
|
Shlomchik MJ, Luo W, Weisel F. Linking signaling and selection in the germinal center. Immunol Rev 2019; 288:49-63. [PMID: 30874353 DOI: 10.1111/imr.12744] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
Germinal centers (GC) are sites of rapid B-cell proliferation in response to certain types of immunization. They arise in about 1 week and can persist for several months. In GCs, B cells differentiate in a unique way and begin to undergo somatic mutation of the Ig V regions at a high rate. GC B cells (GCBC) thus undergo clonal diversification that can affect the affinity of the newly mutant B-cell receptor (BCR) for its driving antigen. Through processes that are still poorly understood, GCBC with higher affinity are selectively expanded while those with mutations that inactivate the BCR are lost. In addition, at various times during the extended GC reaction, some GCBC undergo differentiation into either long-lived memory B cells (MBC) or plasma cells. The cellular and molecular signals that govern these fate decisions are not well-understood, but are an active area of research in multiple laboratories. In this review, we cover both the history of this field and focus on recent work that has helped to elucidate the signals and molecules, such as key transcription factors, that coordinate both positive selection as well as differentiation of GCBC.
Collapse
Affiliation(s)
- Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α + Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity 2019; 51:64-76.e7. [PMID: 31231033 DOI: 10.1016/j.immuni.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.
Collapse
|
21
|
Haseeb M, Anwar MA, Choi S. Molecular Interactions Between Innate and Adaptive Immune Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. Front Immunol 2018; 9:2720. [PMID: 30542344 PMCID: PMC6277854 DOI: 10.3389/fimmu.2018.02720] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Innate immunity constitutes the first line of host defense against various anomalies in humans, and it also guides the adaptive immune response. The function of innate immune components and adaptive immune components are interlinked in hematological malignancies including chronic lymphocytic leukemia (CLL), and molecular interactions between innate and adaptive immune components are crucial for the development, progression and the therapeutic outcome of CLL. In this leukemia, genetic mutations in B cells and B cell receptors (BCR) are key driving factors along with evasion of cytotoxic T lymphocytes and promotion of regulatory T cells. Similarly, the release of various cytokines from CLL cells triggers the protumor phenotype in macrophages that further edges the CLL cells. Moreover, under the influence of various cytokines, dendritic cells are unable to mature and trigger T cell mediated antitumor response. The phenotypes of these cells are ultimately controlled by respective signaling pathways, the most notables are BCR, Wnt, Notch, and NF-κB, and their activation affects the cytokine profile that controls the pathogenesis of CLL, and challenge its treatment. There are several novel substances for CLL under clinical development, including kinase inhibitors, antibodies, and immune-modulators that offer new hopes. DC-based vaccines and CAR T cell therapy are promising tools; however, further studies are required to precisely dissect the molecular interactions among various molecular entities. In this review, we systematically discuss the involvement, common targets and therapeutic interventions of various cells for the better understanding and therapy of CLL.
Collapse
Affiliation(s)
- Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
22
|
Patel SR, Gibb DR, Girard-Pierce K, Zhou X, Rodrigues LC, Arthur CM, Bennett AL, Jajosky RP, Fuller M, Maier CL, Zerra PE, Chonat S, Smith NH, Tormey CA, Hendrickson JE, Stowell SR. Marginal Zone B Cells Induce Alloantibody Formation Following RBC Transfusion. Front Immunol 2018; 9:2516. [PMID: 30505302 PMCID: PMC6250814 DOI: 10.3389/fimmu.2018.02516] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
Red blood cell (RBC) alloimmunization represents a significant immunological challenge for some patients. While a variety of immune constituents likely contribute to the initiation and orchestration of alloantibodies to RBC antigens, identification of key immune factors that initiate alloantibody formation may aid in the development of a therapeutic modality to minimize or prevent this process. To define the immune factors that may be important in driving alloimmunization to an RBC antigen, we determined the specific immune compartment and distinct cells that may initially engage transfused RBCs and facilitate subsequent alloimmunization. Our findings demonstrate that the splenic compartment is essential for formation of anti-KEL antibodies following KEL RBC transfusion. Within the spleen, transfused KEL RBCs are found within the marginal sinus, where they appear to specifically co-localize with marginal zone (MZ) B cells. Consistent with this, removal of MZ B cells completely prevented alloantibody formation following KEL RBC transfusion. While MZ B cells can mediate a variety of key downstream immune pathways, depletion of follicular B cells or CD4 T cells failed to similarly impact the anti-KEL antibody response, suggesting that MZ B cells may play a key role in the development of anti-KEL IgM and IgG following KEL RBC transfusion. These findings highlight a key contributor to KEL RBC-induced antibody formation, wherein MZ B cells facilitate antibody formation following RBC transfusion.
Collapse
Affiliation(s)
- Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Kathryn Girard-Pierce
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaoxi Zhou
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Lilian Cataldi Rodrigues
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashley L Bennett
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Megan Fuller
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Patricia E Zerra
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Nicole H Smith
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
23
|
Meena NK, Pattanayak SP, Ben-Nun Y, Benhamron S, Kumar S, Merquiol E, Hövelmeyer N, Blum G, Tirosh B. mTORC1 activation in B cells confers impairment of marginal zone microarchitecture by exaggerating cathepsin activity. Immunology 2018; 155:505-518. [PMID: 30144045 DOI: 10.1111/imm.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell metabolism and lymphocyte proliferation. It is inhibited by the tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2. Deletion of either gene results in robust activation of mTORC1. Mature B cells reside in the spleen at two major anatomical locations, the marginal zone (MZ) and follicles. The MZ constitutes the first line of humoral response against blood-borne pathogens and undergoes atrophy in chronic inflammation. In previous work, we showed that mice deleted for TSC1 in their B cells (TSC1BKO ) have almost no MZ B cells, whereas follicular B cells are minimally affected. To explore potential underlying mechanisms for MZ B-cell loss, we have analysed the spleen MZ architecture of TSC1BKO mice and found it to be severely impaired. Examination of lymphotoxins (LTα and LTβ) and lymphotoxin receptor (LTβR) expression indicated that LTβR levels in spleen stroma were reduced by TSC1 deletion in the B cells. Furthermore, LTα transcripts in B cells were reduced. Because LTβR is sensitive to proteolysis, we analysed cathepsin activity in TSC1BKO . A higher cathepsin activity, particularly of cathepsin B, was observed, which was reduced by mTORC1 inhibition with rapamycin in vivo. Remarkably, in vivo administration of a pan-cathepsin inhibitor restored LTβR expression, LTα mRNA levels and the MZ architecture. Our data identify a novel connection, although not elucidated at the molecular level, between mTORC1 and cathepsin activity in a manner relevant to MZ dynamics.
Collapse
Affiliation(s)
- Naresh Kumar Meena
- Institute for Drug Research, The School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | | | - Yael Ben-Nun
- Institute for Drug Research, The School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Sandrine Benhamron
- Institute for Drug Research, The School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Saran Kumar
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Emmanuelle Merquiol
- Institute for Drug Research, The School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Galia Blum
- Institute for Drug Research, The School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, The School of Pharmacy, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
24
|
A-Gonzalez N, Castrillo A. Origin and specialization of splenic macrophages. Cell Immunol 2018; 330:151-158. [PMID: 29779612 DOI: 10.1016/j.cellimm.2018.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/18/2022]
Abstract
Macrophage heterogeneity in the spleen has been long documented, with four subsets populating the different splenic compartments. The diverse environments on the splenic compartments determine their varied phenotype and functions. In the white pulp, highly phagocytic macrophages contribute to the generation of the immune response. The marginal zone contains two populations of macrophages, which also contribute to the immune response. Their strategic position in the bloodstream and their unique phenotype confer them a crucial role in the defense against blood borne pathogens, placing them at the crossroad between innate and adaptive immune responses. Macrophages in the red pulp are classically linked to homeostatic and metabolic functions in erythrocyte phagocytosis and iron recycling. We review here recent advances demonstrating the importance of macrophage ontogeny and organ development in determining the phenotype, transcriptional profile and, ultimately, the functions of the populations of splenic macrophages.
Collapse
Affiliation(s)
- Noelia A-Gonzalez
- Institute of Immunology, University of Münster, 48149 Münster, Germany.
| | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols", Centro Mixto Consejo Superior de Investigaciones Cientificas y Universidad Autonoma de Madrid (IIBM CSIC-UAM), IIBM Madrid, Spain; Unidad De Biomedicina (Unidad Asociada al CSIC), IIBM- Universidad Las Palmas de Gran Canaria, ULPGC, Grupo de Investigación en medio ambiente y Salud (GIMAS), Instituto Universitario de Investigaciones Biomedicas y Sanitarias (IUIBS, ULPGC), Spain
| |
Collapse
|
25
|
Ádori M, Pedersen GK, Ádori C, Erikson E, Khoenkhoen S, Stark JM, Choi JH, Dosenovic P, Karlsson MCI, Beutler B, Karlsson Hedestam GB. Altered Marginal Zone B Cell Selection in the Absence of IκBNS. THE JOURNAL OF IMMUNOLOGY 2018; 200:775-787. [PMID: 29222168 DOI: 10.4049/jimmunol.1700791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Marginal zone (MZ) B cells reside in the splenic MZ and play important roles in T cell-independent humoral immune responses against blood-borne pathogens. IκBNS-deficient bumble mice exhibit a severe reduction in the MZ B compartment but regain an MZ B population with age and, thus, represent a valuable model to examine the biology of MZ B cells. In this article, we characterized the MZ B cell defect in further detail and investigated the nature of the B cells that appear in the MZ of aged bumble mice. Flow cytometry analysis of the splenic transitional B cell subsets demonstrated that MZ B cell development was blocked at the transitional-1 to transitional-2-MZ precursor stage in the absence of functional IκBNS. Immunohistochemical analysis of spleen sections from wild-type and bumble mice revealed no alteration in the cellular MZ microenvironment, and analysis of bone marrow chimeras indicated that the MZ B cell development defect in bumble mice was B cell intrinsic. Further, we demonstrate that the B cells that repopulate the MZ in aged bumble mice were distinct from age-matched wild-type MZ B cells. Specifically, the expression of surface markers characteristic for MZ B cells was altered and the L chain Igλ+ repertoire was reduced in bumble mice. Finally, plasma cell differentiation of sorted LPS-stimulated MZ B cells was impaired, and aged bumble mice were unable to respond to NP-Ficoll immunization. These results demonstrate that IκBNS is required for an intact MZ B cell compartment in C57BL/6 mice.
Collapse
Affiliation(s)
- Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Csaba Ádori
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | | |
Collapse
|
26
|
Abstract
Macrophages are ubiquitous cells that reside in all major tissues. Counter to long-held beliefs, we now know that resident macrophages in many organs are seeded during embryonic development and self-renew independently from blood monocytes. Under inflammatory conditions, those tissue macrophages are joined and sometimes replaced by recruited monocyte-derived macrophages. Macrophage function in steady state and disease depends on not only their developmental origin but also the tissue environment. Here, we discuss the ontogeny, function, and interplay of tissue-resident and monocyte-derived macrophages in various organs contributing to the development and progression of cardiovascular disease.
Collapse
Affiliation(s)
- Lisa Honold
- From the Center for Systems Biology, Department of Imaging (L.H., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Department of Imaging (L.H., M.N.) and Cardiovascular Research Center (M.N.), Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
27
|
The opposing forces of shear flow and sphingosine-1-phosphate control marginal zone B cell shuttling. Nat Commun 2017; 8:2261. [PMID: 29273735 PMCID: PMC5741619 DOI: 10.1038/s41467-017-02482-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2017] [Indexed: 11/29/2022] Open
Abstract
Splenic marginal zone B cells (MZB) shuttle between the blood-filled marginal zone for antigen collection and the follicle for antigen delivery. However, it is unclear how MZBs migrate directionally from the marginal zone to the follicle. Here, we show that murine MZBs migrate up shear flow via the LFA-1 (αLβ2) integrin ligand ICAM-1, but adhere or migrate down the flow via the VLA-4 integrin (α4β1) ligand VCAM-1. MZBs lacking Arhgef6 (Pak-interacting exchange factor (αPIX)) or functional LFA-1 are impaired in shuttling due to mislocalization toward the VCAM-1-rich red pulp. Sphingosine-1-phosphate (S1P) signaling through the S1PR3 receptor inhibits MZB migration up the flow, and deletion of S1pr3 in Arhgef6−/− mice rescues mislocalized MZBs. These findings establish shear flow as a directional cue for MZB migration to the follicle, and define S1PR3 and VCAM-1 as counteracting forces that inhibit this migration. Marginal zone B (MZB) cells shuttle between the marginal zone and lymphoid follicle to capture and present peripheral blood antigens. Here the authors show that shear force, such as blood flow from the sinus around the follicle, is a directional cue that induces MZB migration on ICAM-1, and that S1P signaling inhibits this directional migration.
Collapse
|
28
|
Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A. Blood 2017; 130:2559-2568. [PMID: 28978569 DOI: 10.1182/blood-2017-05-782912] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Although factor VIII (FVIII) replacement therapy can be lifesaving for patients with hemophilia A, neutralizing alloantibodies to FVIII, known as inhibitors, develop in a significant number of patients and actively block FVIII activity, making bleeding difficult to control and prevent. Although a variety of downstream immune factors likely regulate inhibitor formation, the identification and subsequent targeting of key initiators in inhibitor development may provide an attractive approach to prevent inhibitor formation before amplification of the FVIII immune response occurs. As the initial steps in FVIII inhibitor development remain incompletely understood, we sought to define early regulators of FVIII inhibitor formation. Our results demonstrate that FVIII localizes in the marginal sinus of the spleen of FVIII-deficient mice shortly after injection, with significant colocalization with marginal zone (MZ) B cells. FVIII not only colocalizes with MZ B cells, but specific removal of MZ B cells also completely prevented inhibitor development following FVIII infusion. Subsequent rechallenge with FVIII following MZ B-cell reconstitution resulted in a primary antibody response, demonstrating that MZ B-cell depletion did not result in FVIII tolerance. Although recipient exposure to the viral-like adjuvant polyinosinic:polycytidylic acid enhanced anti-FVIII antibody formation, MZ B-cell depletion continued to display similar effectiveness in preventing inhibitor formation following FVIII infusion in this inflammatory setting. These data strongly suggest that MZ B cells play a critical role in initiating FVIII inhibitor formation and suggest a potential strategy to prevent anti-FVIII alloantibody formation in patients with hemophilia A.
Collapse
|
29
|
Haeberlein S, Obieglo K, Ozir-Fazalalikhan A, Chayé MAM, Veninga H, van der Vlugt LEPM, Voskamp A, Boon L, den Haan JMM, Westerhof LB, Wilbers RHP, Schots A, Schramm G, Hokke CH, Smits HH. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells. PLoS Pathog 2017; 13:e1006539. [PMID: 28753651 PMCID: PMC5550006 DOI: 10.1371/journal.ppat.1006539] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/09/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Infection with the helminth Schistosoma (S.) mansoni drives the development of interleukin (IL)-10-producing regulatory B (Breg) cells in mice and man, which have the capacity to reduce experimental allergic airway inflammation and are thus of high therapeutic interest. However, both the involved antigen and cellular mechanisms that drive Breg cell development remain to be elucidated. Therefore, we investigated whether S. mansoni soluble egg antigens (SEA) directly interact with B cells to enhance their regulatory potential, or act indirectly on B cells via SEA-modulated macrophage subsets. Intraperitoneal injections of S. mansoni eggs or SEA significantly upregulated IL-10 and CD86 expression by marginal zone B cells. Both B cells as well as macrophages of the splenic marginal zone efficiently bound SEA in vivo, but macrophages were dispensable for Breg cell induction as shown by macrophage depletion with clodronate liposomes. SEA was internalized into acidic cell compartments of B cells and induced a 3-fold increase of IL-10, which was dependent on endosomal acidification and was further enhanced by CD40 ligation. IPSE/alpha-1, one of the major antigens in SEA, was also capable of inducing IL-10 in naïve B cells, which was reproduced by tobacco plant-derived recombinant IPSE. Other major schistosomal antigens, omega-1 and kappa-5, had no effect. SEA depleted of IPSE/alpha-1 was still able to induce Breg cells indicating that SEA contains more Breg cell-inducing components. Importantly, SEA- and IPSE-induced Breg cells triggered regulatory T cell development in vitro. SEA and recombinant IPSE/alpha-1 also induced IL-10 production in human CD1d+ B cells. In conclusion, the mechanism of S. mansoni-induced Breg cell development involves a direct targeting of B cells by SEA components such as the secretory glycoprotein IPSE/alpha-1. Infection with helminth parasites is known to be inversely associated with hyper-inflammatory disorders. While Schistosoma (S.) mansoni has been described to exert its down-modulatory effects on inflammation by inducing a network of regulatory immune cells such as regulatory B (Breg), the mechanisms of Breg cell induction remain unclear. Here, we use in vivo and in vitro approaches to show that antigens from S. mansoni eggs, among which the major glycoprotein IPSE/alpha-1, directly interact with splenic marginal zone B cells of mice which triggers them to produce the anti-inflammatory cytokine IL-10 and their capacity to induce regulatory T (Treg) cells. We also found that IPSE/alpha-1 induces IL-10 in human CD1d+ B cells, and that both natural and recombinant IPSE/alpha-1 are equally effective in driving murine and human Breg cells. Our study thus provides insight into the mechanisms of Breg cell induction by schistosomes, and an important step towards the development of helminth-based treatment strategies against hyper-inflammatory diseases.
Collapse
Affiliation(s)
- Simone Haeberlein
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Mathilde A. M. Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Henrike Veninga
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | | | - Astrid Voskamp
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Lotte B. Westerhof
- Plant Science Department, Wageningen University and Research Centre, Droevendaalsesteeg, Wageningen, Netherlands
| | - Ruud H. P. Wilbers
- Plant Science Department, Wageningen University and Research Centre, Droevendaalsesteeg, Wageningen, Netherlands
| | - Arjen Schots
- Plant Science Department, Wageningen University and Research Centre, Droevendaalsesteeg, Wageningen, Netherlands
| | - Gabriele Schramm
- Experimental Pneumology, Priority Research Area Asthma & Allergy, Research Center Borstel, Parkallee, Borstel, Germany
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- * E-mail:
| |
Collapse
|
30
|
McCulloch L, Smith CJ, McColl BW. Adrenergic-mediated loss of splenic marginal zone B cells contributes to infection susceptibility after stroke. Nat Commun 2017; 8:15051. [PMID: 28422126 PMCID: PMC5399306 DOI: 10.1038/ncomms15051] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/23/2017] [Indexed: 02/03/2023] Open
Abstract
Infection is a major complication of acute stroke and causes increased mortality and morbidity; however, current interventions do not prevent infection and improve clinical outcome in stroke patients. The mechanisms that underlie susceptibility to infection in these patients are unclear. Splenic marginal zone (MZ) B cells are innate-like lymphocytes that provide early defence against bacterial infection. Here we show experimental stroke in mice induces a marked loss of MZ B cells, deficiencies in capturing blood-borne antigen and suppression of circulating IgM. These deficits are accompanied by spontaneous bacterial lung infection. IgM levels are similarly suppressed in stroke patients. β-adrenergic receptor antagonism after experimental stroke prevents loss of splenic MZ B cells, preserves IgM levels, and reduces bacterial burden. These findings suggest that adrenergic-mediated loss of MZ B cells contributes to the infection-prone state after stroke and identify systemic B-cell disruption as a target for therapeutic manipulation.
Collapse
Affiliation(s)
- Laura McCulloch
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Craig J. Smith
- Stroke and Vascular Research Centre, University of Manchester, Manchester Academic Health Science Centre, Manchester M6 8HD, UK
- Greater Manchester Comprehensive Stroke Centre, Department of Medical Neurosciences, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Barry W. McColl
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
31
|
Prion pathogenesis is unaltered following down-regulation of SIGN-R1. Virology 2016; 497:337-345. [PMID: 27522473 PMCID: PMC5031137 DOI: 10.1016/j.virol.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
Abstract
Prion diseases are infectious neurodegenerative disorders characterised by accumulations of abnormal prion glycoprotein in affected tissues. Following peripheral exposure, many prion strains replicate upon follicular dendritic cells (FDC) in lymphoid tissues before infecting the brain. An intact splenic marginal zone is important for the efficient delivery of prions to FDC. The marginal zone contains a ring of specific intercellular adhesion molecule-3-grabbing non-integrin related 1 (SIGN-R1)-expressing macrophages. This lectin binds dextran and capsular pneumococcal polysaccharides, and also enhances the clearance of apoptotic cells via interactions with complement components. Since prions are acquired as complement-opsonized complexes we determined the role of SIGN-R1 in disease pathogenesis. We show that transient down-regulation of SIGN-R1 prior to intravenous prion exposure had no effect on the early accumulation of prions upon splenic FDC or their subsequent spread to the brain. Thus, SIGN-R1 expression by marginal zone macrophages is not rate-limiting for peripheral prion disease pathogenesis.
Collapse
|
32
|
Galletti G, Caligaris-Cappio F, Bertilaccio MTS. B cells and macrophages pursue a common path toward the development and progression of chronic lymphocytic leukemia. Leukemia 2016; 30:2293-2301. [DOI: 10.1038/leu.2016.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
|
33
|
McGaha TL, Karlsson MCI. Apoptotic cell responses in the splenic marginal zone: a paradigm for immunologic reactions to apoptotic antigens with implications for autoimmunity. Immunol Rev 2016; 269:26-43. [PMID: 26683143 DOI: 10.1111/imr.12382] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptotic cells drive innate regulatory responses that result in tolerogenic immunity. This is a critical aspect of cell physiology as apoptotic cells expose potentially dangerous nuclear antigens on the surface in apoptotic blebs, and failure in their recognition, phagocytosis, or destruction can cause dramatic autoimmunity in experimental models and is linked to development and progression of systemic pathology in human. The marginal zone is a specialized splenic environment that serves as a transitional site from circulation to peripheral lymphoid structures. The marginal zone serves a key role in trapping of particulates and initiation of innate responses against systemic microbial pathogens. However in recent years, it has become clear the marginal zone is also important for initiation of immune tolerance to apoptotic cells, driving a coordinated response involving multiple phagocyte and lymphocyte subsets. Recent reports linking defects in splenic macrophage function to systemic lupus erythematosus in a manner analogous to marginal zone macrophages in lupus-prone mice provide an impetus to better understand the mechanistic basis of the apoptotic cell response in the marginal zone and its general applicability to apoptotic cell-driven tolerance at other tissue sites. In this review, we discuss immune responses to apoptotic cells in the spleen in general and the marginal zone in particular, the relationship of these responses to autoimmune disease, and comparisons to apoptotic cell immunity in humans.
Collapse
Affiliation(s)
- Tracy L McGaha
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
34
|
Gätjen M, Brand F, Grau M, Gerlach K, Kettritz R, Westermann J, Anagnostopoulos I, Lenz P, Lenz G, Höpken UE, Rehm A. Splenic Marginal Zone Granulocytes Acquire an Accentuated Neutrophil B-Cell Helper Phenotype in Chronic Lymphocytic Leukemia. Cancer Res 2016; 76:5253-65. [PMID: 27488528 DOI: 10.1158/0008-5472.can-15-3486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Recruitment of tumor-associated macrophages and neutrophils (TAM and TAN) to solid tumors contributes to immunosuppression in the tumor microenvironment; however, their contributions to lymphoid neoplasms are less clear. In human chronic lymphocytic leukemia (CLL), tumor B cells lodge in lymph nodes where interactions with the microenvironment occur. Tumor cell homing stimulates proliferation, such that engagement of the B-cell receptor is important for malignant progression. In the Eμ-Tcl1 murine model of CLL, we identified gene expression signatures indicative of a skewed polarization in the phenotype of monocytes and neutrophils. Selective ablation of either of these cell populations in mice delayed leukemia growth. Despite tumor infiltration of these immune cells, a systemic inflammation was not detected. Notably, in progressive CLL, splenic neutrophils were observed to differentiate toward a B-cell helper phenotype, a process promoted by the induction of leukemia-associated IL10 and TGFβ. Our results suggest that targeting aberrant neutrophil differentiation and restoring myeloid cell homeostasis could limit the formation of survival niches for CLL cells. Cancer Res; 76(18); 5253-65. ©2016 AACR.
Collapse
Affiliation(s)
- Marcel Gätjen
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Franziska Brand
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Grau
- Department of Physics, Philipps-University Marburg, Marburg, Germany. Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Kerstin Gerlach
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Intensive Care Medicine, Experimental and Clinical Research Center, Charité-University Medicine Berlin, Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Peter Lenz
- Department of Physics, Philipps-University Marburg, Marburg, Germany
| | - Georg Lenz
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany. Translational Oncology, Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Uta E Höpken
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - Armin Rehm
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Shen L, Gao C, Suresh L, Xian Z, Song N, Chaves LD, Yu M, Ambrus JL. Central role for marginal zone B cells in an animal model of Sjogren's syndrome. Clin Immunol 2016; 168:30-36. [PMID: 27140729 PMCID: PMC4940264 DOI: 10.1016/j.clim.2016.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 12/12/2022]
Abstract
Patients with Sjogren's syndrome (SS) have been shown to have abnormal B cell function and increased numbers of marginal zone B cells (MZB and MZB precursors. The current studies utilized the Interleukin 14 alpha transgenic mouse model (IL14aTG) for SS to investigate the roles of marginal zone B cells (MZB) of the innate immune system in the pathophysiology of the disease. Eliminating MZB from IL14aTG mice by B cell specific deletion of RBP-J resulted in complete elimination of all disease manifestations of SS. Mice had normal salivary gland secretions, negative autoantibodies and normal histology of the salivary and lacrimal glands compared to IL14aTG mice at the same time points. In contrast, eliminating B1 cells by deleting btk did not ameliorate the disease. Therefore, MZB are critical for the development of SS.
Collapse
Affiliation(s)
- Long Shen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, United States
| | - Chun Gao
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, United States; Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Lakshmanan Suresh
- Department of Oral Diagnostics Sciences, SUNY at Buffalo School of Dental Medicine, United States
| | - Zhenhua Xian
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Nannan Song
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Lee D Chaves
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, United States
| | - Meixing Yu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, United States
| | - Julian L Ambrus
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, United States.
| |
Collapse
|
36
|
Cellular biodistribution of polymeric nanoparticles in the immune system. J Control Release 2016; 227:82-93. [DOI: 10.1016/j.jconrel.2016.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
|
37
|
Abstract
Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.
Collapse
Affiliation(s)
- Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | | | | |
Collapse
|
38
|
Response to pneumococcal polysaccharide vaccination in patients with chronic and allergic aspergillosis. Vaccine 2015; 33:7271-7275. [PMID: 26546263 DOI: 10.1016/j.vaccine.2015.10.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Pneumococcal infection causes significant morbidity in patients with underlying lung disease, and vaccination has been associated with reduced disease rates. Response to vaccination has not been studied in chronic lung conditions characterised by ongoing infection or inflammation like chronic pulmonary aspergillosis (CPA). METHODS In a prospective observational study, consecutive patients with CPA, allergic aspergillosis and bronchiectasis attending a national referral centre received pneumococcal 23-valent polysaccharide vaccine (PPV-23) and had pre- and post-vaccination antibody concentrations quantified as part of routine clinical care. Serotype-specific pneumococcal IgG antibodies were quantified for 12 serotypes using a multiplex microsphere assay. A protective response was defined as a level of >1.3μg/mL or a ≥ fourfold rise in concentration for ≥70% of serotypes, pre to post-vaccination. C-reactive protein, Immunoglobulins and mannose binding lectin (MBL) levels were measured and correlated to vaccine response. RESULTS A total of 318 patients were enrolled. In vaccine-naïve patients (n=127), the lowest pre-vaccination levels were seen with serotypes 1 and 4 and the highest with serotype 19A. A protective response post-vaccination was seen in 50% of patients. The poorest responses were observed with serotypes 1, 3 and 4. Levels of C-reactive protein did not affect efficacy. Profound MBL deficiency was found in 28.8%; there were no significant differences in response to vaccination in patients with or without MBL deficiency. Post-vaccination serotype-specific concentrations waned gradually, however they were still elevated compared to pre-vaccination after 2-5 years. CONCLUSIONS Patients with chronic and allergic aspergillosis exhibited a poor response to PPV-23 vaccination compared to healthy adults. An alternative vaccination strategy or delay of vaccination until their underlying condition is better controlled, e.g. after treatment with antifungals may result in better response.
Collapse
|
39
|
Chao B, Frederico B, Stevenson PG. B-cell-independent lymphoid tissue infection by a B-cell-tropic rhadinovirus. J Gen Virol 2015; 96:2788-2793. [PMID: 25986632 DOI: 10.1099/vir.0.000188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphocytes provide gammaherpesviruses with a self-renewing substrate for persistent infection and with transport to mucosal sites for host exit. Their role in the initial colonization of new hosts is less clear. Murid herpesvirus 4 (MuHV-4), an experimentally accessible, B-cell-tropic rhadinovirus (gamma-2 herpesvirus), persistently infects both immunocompetent and B-cell-deficient mice. A lack of B-cells did not compromise MuHV-4 entry into lymphoid tissue, which involved myeloid cell infection. However, it impaired infection amplification and MuHV-4 exit from lymphoid tissue, which involved myeloid to B-cell transfer.
Collapse
Affiliation(s)
- Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip G Stevenson
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, School of Chemistry and Molecular Biosciences, Royal Children's Hospital and University of Queensland, Brisbane, Australia.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Borhis G, Richard Y. Subversion of the B-cell compartment during parasitic, bacterial, and viral infections. BMC Immunol 2015; 16:15. [PMID: 25884828 PMCID: PMC4374497 DOI: 10.1186/s12865-015-0079-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Recent studies on HIV infection have identified new human B-cell subsets with a potentially important impact on anti-viral immunity. Current work highlights the occurrence of similar B-cell alterations in other viral, bacterial, and parasitic infections, suggesting that common strategies have been developed by pathogens to counteract protective immunity. For this review, we have selected key examples of human infections for which B-cell alterations have been described, to highlight the similarities and differences in the immune responses to a variety of pathogens. We believe that further comparisons between these models will lead to critical progress in the understanding of B-cell mechanisms and will open new target avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Gwenoline Borhis
- INSERM u1016, Cochin Institute, Department of Infection, Immunity and Inflammation, 27 rue du Faubourg St-Jacques, Roussy Bldg., Paris, 75014, France. .,CNRS, Paris, UMR8104, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France.
| | - Yolande Richard
- INSERM u1016, Cochin Institute, Department of Infection, Immunity and Inflammation, 27 rue du Faubourg St-Jacques, Roussy Bldg., Paris, 75014, France. .,CNRS, Paris, UMR8104, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France.
| |
Collapse
|
41
|
Deficiency of the B cell-activating factor receptor results in limited CD169+ macrophage function during viral infection. J Virol 2015; 89:4748-59. [PMID: 25673724 DOI: 10.1128/jvi.02976-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The B cell-activating factor (BAFF) is critical for B cell development and humoral immunity in mice and humans. While the role of BAFF in B cells has been widely described, its role in innate immunity remains unknown. Using BAFF receptor (BAFFR)-deficient mice, we characterized BAFFR-related innate and adaptive immune functions following infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). We identified a critical role for BAFFR signaling in the generation and maintenance of the CD169(+) macrophage compartment. Consequently, Baffr(-) (/) (-) mice exhibited limited induction of innate type I interferon production after viral infection. Lack of BAFFR signaling reduced virus amplification and presentation following viral infection, resulting in highly reduced antiviral adaptive immune responses. As a consequence, BAFFR-deficient mice showed exacerbated and fatal disease after viral infection. Mechanistically, transient lack of B cells in Baffr(-) (/) (-) animals resulted in limited lymphotoxin expression, which is critical for maintenance of CD169(+) cells. In conclusion, BAFFR signaling affects both innate and adaptive immune activation during viral infections. IMPORTANCE Viruses cause acute and chronic infections in humans resulting in millions of deaths every year. Innate immunity is critical for the outcome of a viral infection. Innate type I interferon production can limit viral replication, while adaptive immune priming by innate immune cells induces pathogen-specific immunity with long-term protection. Here, we show that BAFFR deficiency not only perturbed B cells, but also resulted in limited CD169(+) macrophages. These macrophages are critical in amplifying viral particles to trigger type I interferon production and initiate adaptive immune priming. Consequently, BAFFR deficiency resulted in reduced enforced viral replication, limited type I interferon production, and reduced adaptive immunity compared to BAFFR-competent controls. As a result, BAFFR-deficient mice were predisposed to fatal viral infections. Thus, BAFFR expression is critical for innate immune activation and antiviral immunity.
Collapse
|
42
|
Gordon S, Plüddemann A, Mukhopadhyay S. Sinusoidal immunity: macrophages at the lymphohematopoietic interface. Cold Spring Harb Perspect Biol 2014; 7:a016378. [PMID: 25502514 DOI: 10.1101/cshperspect.a016378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages are widely distributed throughout the body, performing vital homeostatic and defense functions after local and systemic perturbation within tissues. In concert with closely related dendritic cells and other myeloid and lymphoid cells, which mediate the innate and adaptive immune response, macrophages determine the outcome of the inflammatory and repair processes that accompany sterile and infectious injury and microbial invasion. This article will describe and compare the role of specialized macrophage populations at two critical interfaces between the resident host lymphohematopoietic system and circulating blood and lymph, the carriers of cells, humoral components, microorganisms, and their products. Sinusoidal macrophages in the marginal zone of the spleen and subcapsular sinus and medulla of secondary lymph nodes contribute to the innate and adaptive responses of the host in health and disease. Although historically recognized as major constituents of the reticuloendothelial system, it has only recently become apparent that these specialized macrophages in close proximity to B and T lymphocytes play an indispensable role in recognition and responses to exogenous and endogenous ligands, thus shaping the nature and quality of immunity and inflammation. We review current understanding of these macrophages and identify gaps in our knowledge for further investigation.
Collapse
Affiliation(s)
- Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Annette Plüddemann
- Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Subhankar Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
43
|
Maseda D, Bonami RH, Crofford LJ. Regulation of B lymphocytes and plasma cells by innate immune mechanisms and stromal cells in rheumatoid arthritis. Expert Rev Clin Immunol 2014; 10:747-62. [PMID: 24734886 DOI: 10.1586/1744666x.2014.907744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
B cells mediate multiple functions that influence immune and inflammatory responses in rheumatoid arthritis. Production of a diverse array of autoantibodies can happen at different stages of the disease, and are important markers of disease outcome. In turn, the magnitude and quality of acquired humoral immune responses is strongly dependent on signals delivered by innate immune cells. Additionally, the milieu of cells and chemokines that constitute a niche for plasma cells rely strongly on signals provided by stromal cells at different anatomical locations and times. The chronic inflammatory state therefore importantly impacts the developing humoral immune response and its intensity and specificity. We focus this review on B cell biology and the role of the innate immune system in the development of autoimmunity in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
44
|
Khan WN, Wright JA, Kleiman E, Boucher JC, Castro I, Clark ES. B-lymphocyte tolerance and effector function in immunity and autoimmunity. Immunol Res 2013; 57:335-53. [DOI: 10.1007/s12026-013-8466-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Bjarnarson SP, Benonisson H, Del Giudice G, Jonsdottir I. Pneumococcal polysaccharide abrogates conjugate-induced germinal center reaction and depletes antibody secreting cell pool, causing hyporesponsiveness. PLoS One 2013; 8:e72588. [PMID: 24069152 PMCID: PMC3771989 DOI: 10.1371/journal.pone.0072588] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plain pneumococcal polysaccharide (PPS) booster administered during second year of life has been shown to cause hyporesponsiveness. We assessed the effects of PPS booster on splenic memory B cell responses and persistence of PPS-specific long-lived plasma cells in the bone marrow (BM). METHODS Neonatal mice were primed subcutanously (s.c.) or intranasally (i.n.) with pneumococcal conjugate (Pnc1-TT) and the adjuvant LT-K63, and boosted with PPS+LT-K63 or saline 1, 2 or 3 times with 16 day intervals. Seven days after each booster, spleens were removed, germinal centers (GC), IgM(+), IgG(+) follicles and PPS-specific antibody secreting cells (AbSC) in spleen and BM enumerated. RESULTS PPS booster s.c., but not i.n., compromised the Pnc1-TT-induced PPS-specific Abs by abrogating the Pnc1-TT-induced GC reaction and depleting PPS-specific AbSCs in spleen and limiting their homing to the BM. There was no difference in the frequency of PPS-specific AbSCs in spleen and BM between mice that received 1, 2 or 3 PPS boosters s.c.. Repeated PPS+LT-K63 booster i.n. reduced the frequency of PPS-specific IgG(+) AbSCs in BM. CONCLUSIONS PPS booster-induced hyporesponsiveness is caused by abrogation of conjugate-induced GC reaction and depletion of PPS-specific IgG(+) AbSCs resulting in no homing of new PPS-specific long-lived plasma cells to the BM or survival. These results should be taken into account in design of vaccination schedules where polysaccharides are being considered.
Collapse
Affiliation(s)
- Stefania P. Bjarnarson
- Landspitali, The National University Hospital of Iceland, Department of Immunology, Reykjavik, Iceland
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - Hreinn Benonisson
- Landspitali, The National University Hospital of Iceland, Department of Immunology, Reykjavik, Iceland
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- Landspitali, The National University Hospital of Iceland, Department of Immunology, Reykjavik, Iceland
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
- deCODE Genetics, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
46
|
Capolunghi F, Rosado MM, Sinibaldi M, Aranburu A, Carsetti R. Why do we need IgM memory B cells? Immunol Lett 2013; 152:114-20. [PMID: 23660557 DOI: 10.1016/j.imlet.2013.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Immunological memory is our reservoir of ready-to-use antibodies and memory B cells. Because of immunological memory a secondary infection will be very light or not occur at all. Antibodies and cells, generated in the germinal center in response to the first encounter with antigen, are highly specific, remain in the organism virtually forever and are mostly of IgG isotype. Long lived plasma cells homing to the bone marrow ensure the constant production of protective antibodies, whereas switched memory B cells proliferate and differentiate in response to secondary challenge. IgM memory B cells represent our first-line defense against infections. They are generated by a T-cell independent mechanism probably triggered by Toll-like receptor-9. They produce natural antibodies with anti-bacterial specificity and the spleen is indispensable for their maintenance. We will review the characteristics and functions of IgM memory B cells that explain their importance in the immediate protection from pathogens. IgM memory B cells, similar to mouse B-1a B cells, may be a remnant of a primitive immune system that developed in the spleen of cartilaginous fish and persisted throughout evolution notwithstanding the sophisticated tools of the adaptive immune system.
Collapse
Affiliation(s)
- Federica Capolunghi
- Department of Laboratories, Children Hospital Bambino Gesù (IRCCS), Piazza S.Onofrio 4, 00165 Rome, Italy
| | | | | | | | | |
Collapse
|
47
|
den Haan JMM, Martinez-Pomares L. Macrophage heterogeneity in lymphoid tissues. Semin Immunopathol 2013; 35:541-52. [PMID: 23579230 DOI: 10.1007/s00281-013-0378-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
Macrophages in lymphoid organs exhibit a wide variety of phenotypes and functions. These cells excel in the removal of apoptotic cells that arise during the generation of immune cells and are thereby essential for the prevention of auto-immune responses. In addition to this macrophages in the secondary lymphoid organs form an important barrier for spreading of infections by phagocytosis of pathogens and the activation of both innate and adaptive immune responses. Thus, the remarkable ability of macrophages to phagocytose and handle a wide range of self and non-self material and to produce immunomediators is effectively exploited within lymphoid organs to regulate immune activation.
Collapse
Affiliation(s)
- Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007, MB, Amsterdam, the Netherlands.
| | | |
Collapse
|
48
|
Enhanced, sialoadhesin-dependent uptake of Guillain-Barre syndrome-associated Campylobacter jejuni strains by human macrophages. Infect Immun 2013; 81:2095-103. [PMID: 23529622 DOI: 10.1128/iai.01437-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular mimicry between Campylobacter jejuni sialylated lipooligosaccharides (LOS) and human nerve gangliosides can trigger the production of cross-reactive antibodies which induce Guillain-Barré syndrome (GBS). To better understand the immune events leading to GBS, it is essential to know how sialylated LOS are recognized by the immune system. Here, we show that GBS-associated C. jejuni strains bind to human sialoadhesin (hSn), a conserved, mainly macrophage-restricted I-type lectin. Using hSn-transduced THP-1 cells, we observed that C. jejuni strains with α(2,3)-sialylated LOS, including strains expressing GM1a- and GD1a-like epitopes, bind to hSn. This observation is of importance, as these epitopes are frequently the targets of the cross-reactive antibodies detected in GBS patients. Interestingly, the Sn binding domains were not constitutively exposed on the surface of C. jejuni. Heat inactivation and the environmental conditions which food-borne C. jejuni encounters during its passage through the intestinal tract, such as low pH and contact with bile constituents, exposed LOS and facilitated Sn binding. Sn binding enhanced bacterial uptake and increased the production of interleukin-6 (IL-6) by primary human Sn-expressing monocyte-derived macrophages compared to control conditions, where Sn was blocked using neutralizing antibodies or when nonsialylated C. jejuni was used. Sn-mediated uptake has been reported to enhance humoral immune responses. As C. jejuni strains expressing ganglioside mimics GD1a and GM1a are closely associated with GBS, Sn binding may be a determining event in the production of cross-reactive antibodies and the development of GBS.
Collapse
|
49
|
Abstract
The macrophage (MΦ) has been the focus of causality, research, and therapy of Gaucher disease, but recent evidence casts doubt its solitary role in the disease pathogenesis. The excess of glucosylceramide (GC) in such cells accounts for some of the disease manifestations. Evidence of increased expression of C-C and C-X-C chemokines (i.e., CCL2,CXCL1, CXCL8) in Gaucher disease could be critical for monocyte transformation to inflammatory subsets of macrophages and dendritic cells (DC) as well as neutrophil (PMNs) recruitment to visceral organs. These immune responses could be essential for activation of T- and B-cell subsets, and the induction of numerous cytokines and chemokines that participate in the initiation and propagation of the molecular pathogenesis of Gaucher disease. The association of Gaucher disease with a variety of cellular and humoral immune responses is reviewed here to provide a potential foundation for expanding the complex pathophysiology of Gaucher disease.
Collapse
Affiliation(s)
| | - Gregory A. Grabowski
- Address all correspondence to: Gregory A. Grabowski, M.D., Professor and Director, Division of Human Genetics, Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 4006, Cincinnati, Ohio 45229-3039, Phone: 513-636-7290, Fax 513-636-2261,
| |
Collapse
|
50
|
Garraud O, Borhis G, Badr G, Degrelle S, Pozzetto B, Cognasse F, Richard Y. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunol 2012. [PMID: 23194300 PMCID: PMC3526508 DOI: 10.1186/1471-2172-13-63] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories — the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells — plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express “Pathogen Recognition Receptors” such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology.
Collapse
|