1
|
Amo-Aparicio J, Dinarello CA, Lopez-Vales R. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regen Res 2024; 19:2189-2201. [PMID: 38488552 PMCID: PMC11034585 DOI: 10.4103/1673-5374.391330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
Collapse
Affiliation(s)
| | | | - Ruben Lopez-Vales
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| |
Collapse
|
2
|
Mou X, Luo F, Zhang W, Cheng Q, Hepojoki J, Zhu S, Liu Y, Xiong H, Guo D, Yu J, Chen L, Li Y, Hou W, Chen S. SARS-CoV-2 NSP16 promotes IL-6 production by regulating the stabilization of HIF-1α. Cell Signal 2024; 124:111387. [PMID: 39251053 DOI: 10.1016/j.cellsig.2024.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19). Severe and fatal COVID-19 cases often display cytokine storm i.e. significant elevation of pro-inflammatory cytokines and acute respiratory distress syndrome (ARDS) with systemic hypoxia. Understanding the mechanisms of these pathogenic manifestations would be essential for the prevention and especially treatment of COVID-19 patients. Here, using a dual luciferase reporter assay for hypoxia-response element (HRE), we initially identified SARS-CoV-2 nonstructural protein 5 (NSP5), NSP16, and open reading frame 3a (ORF3a) to upregulate hypoxia-inducible factor-1α (HIF-1α) signaling. Further experiments showed NSP16 to have the most prominent effect on HIF-1α, thus contributing to the induction of COVID-19 associated pro-inflammatory response. We demonstrate that NSP16 interrupts von Hippel-Lindau (VHL) protein interaction with HIF-1α, thereby inhibiting ubiquitin-dependent degradation of HIF-1α and allowing it to bind HRE region in the IL-6 promoter region. Taken together, the findings imply that SARS-CoV-2 NSP16 induces HIF-1α expression, which in turn exacerbates the production of IL-6.
Collapse
Affiliation(s)
- Xiaoli Mou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Weihao Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Cheng
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Shaowei Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Deyin Guo
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Jingyou Yu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; School of Ecology and Environment, Tibet University, Lhasa, Tibet 850000, China; Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, China.
| | - Shuliang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China.
| |
Collapse
|
3
|
Vinhas A, Rodrigues MT, Gonçalves AI, Gomes ME. Immunomodulatory Behavior of Tendon Magnetic Cell Sheets can be Modulated in Hypoxic Environments under Magnetic Stimulus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44440-44450. [PMID: 39143034 DOI: 10.1021/acsami.4c08154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tissue environments play a crucial role in orchestrating cell behavior, guided by a complex interplay of various factors. Long lasting inflammatory signals compromise tendon homeostasis and promote tissue degeneration, while tissue oxygen levels affect local cells' responses with hypoxic environments influencing apoptosis, inflammatory mediators, and matrix production. Recent works have unveiled the therapeutic potential of pulsed electromagnetic field (PEMF) in modulating inflammatory signals expressed by human tendon cells (hTDCs), and in mitigating the hypoxia-induced effects on the regulation of inflammatory cytokines. Thus, we sought to investigate the role of hypoxic environments, namely, 1 and 2% oxygen tension, in the inflammatory profiles of magnetic cell sheets (magCSs) formed by magnetic nanoparticles internalized in contiguous hTDCs with intact cell-cell junctions and deposited matrix. We also aimed to explore the impact of PEMF over hypoxia-treated magCSs, including IL-1β-primed-magCSs, with the objective of harnessing magnetic stimulation to guide abnormal inflammatory cell responses toward efficient treatments supporting tendon regenerative potential. Our findings revealed that low oxygen tensions amplified the expression of hypoxia-associated genes and of inflammatory markers in IL-1β-primed-magCSs with an involvement of the NF-κB signaling pathway. Encouragingly, when PEMF was applied to IL-1β-primed-magCSs under hypoxic conditions, it successfully modulated inflammatory cues by favoring IL-10 and IL-4, via the NF-κB pathway. These results signify the remarkable potential of PEMF in driving proregenerative strategies and opens up new approaches in tendon therapies, highlighting the transformative impact of immunomodulatory magnetic cell sheets.
Collapse
Affiliation(s)
- Adriana Vinhas
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, Zhang M, Ma X, Wang X, Ren F, Wang Y, Li M, Xu J, Jin P, Sheng J. Oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α- and HIF-2α-mediated lipid peroxidation. J Nanobiotechnology 2024; 22:479. [PMID: 39134988 PMCID: PMC11321022 DOI: 10.1186/s12951-024-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.
Collapse
Affiliation(s)
- Dezhi Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Heng Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xingchen Liao
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yilin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xianzong Ma
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Meng Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
5
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
6
|
Burke S. Hypoxia, NSAIDs, and autism: A biocultural analysis of stressors in gametogenesis. Am J Hum Biol 2024; 36:e24042. [PMID: 38282542 DOI: 10.1002/ajhb.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Cultural and generational trends have increasingly favored "anti-inflammatory" action, innovating a new class of analgesic, non-steroidal anti-inflammatory drugs (NSAIDs) in the 20th century. The modern human body has been molded over evolutionary time and while acknowledging inflammation can be pathologically entwined, it also serves an important role in healthy folliculogenesis and ovulation, shaping cues that drive needed vascular change. This review argues that because of anti-inflammatory action, the cultural invention of NSAIDs represents a particular stressor on female reproductive-age bodies, interacting with natural, underlying variation and placing limits on healthy growth and development in the follicles, creating potential autism risk through hypoxia and mutagenic or epigenetic effects. Since testes are analogs to ovaries, the biological grounding extends naturally to spermatogenesis. This review suggests the introduction of over-the-counter NSAIDs in the 1980s failed to recognize the unique functioning of reproductive-age bodies, challenging the cyclical inflammation needed for healthy gamete development. NSAIDs are framed as one (notable) stressor in an anti-inflammatory era focused on taming the risks of inflammation in modern human life.
Collapse
Affiliation(s)
- Stacie Burke
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Sun X, Cao S, Mao C, Sun F, Zhang X, Song Y. Post-translational modifications of p65: state of the art. Front Cell Dev Biol 2024; 12:1417502. [PMID: 39050887 PMCID: PMC11266062 DOI: 10.3389/fcell.2024.1417502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
P65, a protein subunit of NF-κB, is a widely distributed transcription factor in eukaryotic cells and exerts diverse regulatory functions. Post-translational modifications such as phosphorylation, acetylation, methylation and ubiquitination modulate p65 transcriptional activity and function, impacting various physiological and pathological processes including inflammation, immune response, cell death, proliferation, differentiation and tumorigenesis. The intricate interplay between these modifications can be antagonistic or synergistic. Understanding p65 post-translational modifications not only elucidates NF-κB pathway regulation but also facilitates the identification of therapeutic targets and diagnostic markers for associated clinical conditions.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Meng Y, Kong KW, Chang YQ, Deng XM, Yang T. Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury. Med Microbiol Immunol 2023; 212:369-379. [PMID: 37658121 DOI: 10.1007/s00430-023-00778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Sepsis is a severe syndrome caused by the imbalance of the host response to infection, accompanied by multiple organ damage, especially acute lung injury. SET Domain-Containing 2 (SETD2) is a methyltransferase catalyzing H3 lysine 36 trimethylation (H3K36me3) that regulates multiple biological processes. This study focused on explicating the action of SETD2 on macrophage function in sepsis and the precise mechanism involved. Enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting were used to determine expression. Luciferase reporter assay and chromatin immunoprecipitation assay were conducted to detect the binding of SETD2 or H3K36me3 with the hypoxia-inducible factor 1, alpha subunit (Hif1a) gene. A sepsis-induced acute lung injury model was constructed via cecal ligation and puncture (CLP). SETD2 was decreased in RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Besides, SETD2 suppressed M1 macrophage polarization and glycolysis caused by LPS. HIF-1α was enhanced in RAW 264.7 cells stimulated by LPS and inversely related to SETD2 expression. In addition, SETD2-catalyzed H3K36me3 bound to the Hif1a gene to modulate HIF-1α expression. Furthermore, Hif1a silencing suppressed Setd2 silencing-induced M1 macrophage polarization and glycolysis in RAW 264.7 cells. Moreover, overexpression of Setd2 inhibited CLP-induced lung injury and M1 macrophage polarization in mice. SETD2 suppressed M1 macrophage polarization and glycolysis via regulating HIF-1α through catalyzing H3K36me3 in sepsis.
Collapse
Affiliation(s)
- Yan Meng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Kai-Wen Kong
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Yong-Qing Chang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Xiao-Ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, People's Republic of China.
| | - Tao Yang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
9
|
Xun W, Ji M, Ma Z, Deng T, Yang W, Hou G, Shi L, Cao T. Dietary emodin alleviates lipopolysaccharide-induced intestinal mucosal barrier injury by regulating gut microbiota in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:152-162. [PMID: 37455790 PMCID: PMC10344667 DOI: 10.1016/j.aninu.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 04/06/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
This study was to determine the effects of dietary emodin (ED) on the intestinal mucosal barrier, nuclear factor kappa-B (NF-κB) pathways, and gut microbial flora in lipopolysaccharide (LPS)-induced piglets. Twenty-four weaned piglets were chosen and 4 treatments were created by randomly distributing piglets into CON, ED, LPS, and ED_LPS groups. Experiments were done in a 2 × 2 factorial arrangement and maintained for 21 d. Dietary treatment (a basal diet or 300 mg/kg ED) and immunological challenge (LPS or sterile saline) were 2 major factors. Intraperitoneal injections of LPS or sterilized saline were given to piglets on d 21. Six hours after the LPS challenge, all piglets were euthanized for sample collection and analysis. The results showed that piglets of the ED_LPS group had higher (P < 0.05) villus height to crypt depth ratio (VCR), and lower (P < 0.05) plasma D-lactate and diamine oxidase (DAO) than the LPS group. Furthermore, ED inhibited (P < 0.05) the decrease of glutathione peroxidase (GSH-Px) and catalase (CAT) activities and increase of malonaldehyde level (P < 0.05) in jejunal mucosa induced by LPS. The mRNA levels of pro-inflammatory cytokine genes (IL-6, IL-1β, and TNF-α) were significantly reduced (P < 0.05), and the mRNA levels of antioxidant enzyme genes (GPX-1, SOD2 and CAT), as well as protein and mRNA levels of tight junction proteins (occludin, claudin-1, and ZO-1), were also significantly increased (P < 0.05) by ED addition in LPS-induced piglets. Meanwhile, ED supplementation significantly decreased the LPS-induced protein levels of cyclooxygenase-2 and phosphorylation levels of NF-κB p65 and IκBα in jejunal mucosa. Emodin had a significant effect on the composition of gut microbial flora at various taxonomic positions as indicated by 16S RNA sequencing. The acetic acid, isobutyric acid, valeric acid, and isovaleric acid concentrations in the cecum were also increased by ED addition in pigs (P < 0.05). Furthermore, the correlation analysis revealed that some intestinal microbiota had a potential relationship with jejunal VCR, plasma D-lactate and DAO, jejunal mucosa GSH-Px and CAT activity, and cecal short-chain fatty acid concentration. These data suggest that ED is effective in alleviating LPS-induced intestinal mucosal barrier injury by modulating gut microbiota in piglets.
Collapse
Affiliation(s)
- Wenjuan Xun
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Mengyao Ji
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Zhonghua Ma
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Tanjie Deng
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Wen Yang
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Ting Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| |
Collapse
|
10
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
11
|
Carlsson R, Enström A, Paul G. Molecular Regulation of the Response of Brain Pericytes to Hypoxia. Int J Mol Sci 2023; 24:5671. [PMID: 36982744 PMCID: PMC10053233 DOI: 10.3390/ijms24065671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The brain needs sufficient oxygen in order to function normally. This is achieved by a large vascular capillary network ensuring that oxygen supply meets the changing demand of the brain tissue, especially in situations of hypoxia. Brain capillaries are formed by endothelial cells and perivascular pericytes, whereby pericytes in the brain have a particularly high 1:1 ratio to endothelial cells. Pericytes not only have a key location at the blood/brain interface, they also have multiple functions, for example, they maintain blood-brain barrier integrity, play an important role in angiogenesis and have large secretory abilities. This review is specifically focused on both the cellular and the molecular responses of brain pericytes to hypoxia. We discuss the immediate early molecular responses in pericytes, highlighting four transcription factors involved in regulating the majority of transcripts that change between hypoxic and normoxic pericytes and their potential functions. Whilst many hypoxic responses are controlled by hypoxia-inducible factors (HIF), we specifically focus on the role and functional implications of the regulator of G-protein signaling 5 (RGS5) in pericytes, a hypoxia-sensing protein that is regulated independently of HIF. Finally, we describe potential molecular targets of RGS5 in pericytes. These molecular events together contribute to the pericyte response to hypoxia, regulating survival, metabolism, inflammation and induction of angiogenesis.
Collapse
Affiliation(s)
- Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Neurology, Scania University Hospital, 22185 Lund, Sweden
| |
Collapse
|
12
|
Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J 2023; 42:e112067. [PMID: 36808622 PMCID: PMC10015374 DOI: 10.15252/embj.2022112067] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Di Vito Nolfi M, Vecchiotti D, Flati I, Verzella D, Di Padova M, Alesse E, Capece D, Zazzeroni F. EV-Mediated Chemoresistance in the Tumor Microenvironment: Is NF-κB a Player? Front Oncol 2022; 12:933922. [PMID: 35814425 PMCID: PMC9257640 DOI: 10.3389/fonc.2022.933922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Drug resistance is a major impediment to patient survival and remains the primary cause of unsuccessful cancer therapy. Drug resistance occurs in many tumors and is frequently induced by chemotherapy which triggers a defensive response both in cancerous and cancer-associated cells that constitute the tumor microenvironment (TME). Cell to cell communication within the TME is often mediated by extracellular vesicles (EVs) which carry specific tumor-promoting factors able to activate survival pathways and immune escape mechanisms, thus sustaining tumor progression and therapy resistance. NF-κB has been recognized as a crucial player in this context. NF-κB activation is involved in EVs release and EVs, in turn, can trigger NF-κB pathway activation in specific contexts, based on secreting cytotype and their specific delivered cargo. In this review, we discuss the role of NF-κB/EVs interplay that sustain chemoresistance in the TME by focusing on the molecular mechanisms that underlie inflammation, EVs release, and acquired drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- *Correspondence: Francesca Zazzeroni, ; Daria Capece,
| | | |
Collapse
|
14
|
Hou Y, Xu N, Li S, Zhang N, Ren W, Hua Z, Zhang X, Han W, Xu L, Sun Y, Sun H, Qu G, Lv C, Yu Y. Mechanism of SMND-309 against lung injury induced by chronic intermittent hypoxia. Int Immunopharmacol 2022; 105:108576. [PMID: 35121224 DOI: 10.1016/j.intimp.2022.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder that causes severe physiological disturbance. Evidence showed that OSAHS is an important associated comorbidity that can affect the survival of patients with pulmonary fibrosis. Until now, the potential mechanisms by which OSAHS accelerates the progression of lung fibrosis remain unclear. By constructing a pathological model of chronic intermittent hypoxia (CIH), the present study aimed to explore the pathological progress and potential mechanism of lung injury caused by OSAHS. Meanwhile, SMND-309 was given for treatment to evaluate its potential therapeutic role in CIH-induced lung injury. METHODS Mice were randomly divided into (C57BL/6 wild-type) WT+(room air) RA, WT + CIH, SMND-309 + RA, and SMND-309 + CIH groups. The WT + CIH and SMND-309 + CIH groups were exposed to CIH condition for 12 weeks, while the other groups were processed in normal oxygen at the same time. The SMND-309 + RA and SMND-309 + CIH groups were intraperitoneally injected with SMND-309 at the last week of the modeling period. After 12 weeks of treatment, three mice from each group were perfused through the heart. Lung tissues were isolated, fixed, sectioned, and stained with H&E, Masson, and immunofluorescence stain. The rest of the lung tissues were harvested for Western blot and ELISA assays. RESULTS CIH treatment increased the expression of pro-inflammatory factors (TNF-α and IL-6), resulting in lung tissue structure disorder, inflammatory cell infiltration, increased pulmonary capillary permeability, and pulmonary edema. The activation of the NF-κB signaling pathway played a crucial role in the process of inflammation. Noticeably, we observed M2 macrophage accumulation in the lung after CIH exposure, which promoted epithelial-mesenchymal transition (EMT) and pulmonary tissue fibrosis. ELISA assays showed the increased expression of TGF-β, IL-10, and IL-4 in the CIH group. SMND-309 inhibited pulmonary inflammation, reduced the accumulation of M2 macrophage, alleviated collagen deposition andlung damage. CONCLUSION CIH could induce chronic lung inflammation, promote the activation of M2 macrophages, trigger the occurrence of EMT, and accelerate the deposition of lung collagen, eventually leading to lung tissue damage. This study presents a possible explanation by which interstitial lung diseases, particularly idiopathic pulmonary fibrosis (IPF) with OSAHS, are usually associated with fast progress and poor prognosis. SMND-309 showed a good protective effect on CIH-induced lung damage.
Collapse
Affiliation(s)
- Yanyan Hou
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Na Xu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Shouyi Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, China
| | - Na Zhang
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Wenjing Ren
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Zhihao Hua
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Xin Zhang
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Wenjian Han
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Luhui Xu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Yeying Sun
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Hongliu Sun
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Guiwu Qu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China.
| | - Changjun Lv
- Department of Respiratory Medicine Affiliated Hospital of Binzhou Medical University, Binzhou, 256603 Shandong Province, China.
| | - Yan Yu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China.
| |
Collapse
|
15
|
Casciati A, Tanori M, Gianlorenzi I, Rampazzo E, Persano L, Viola G, Cani A, Bresolin S, Marino C, Mancuso M, Merla C. Effects of Ultra-Short Pulsed Electric Field Exposure on Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23063001. [PMID: 35328420 PMCID: PMC8950115 DOI: 10.3390/ijms23063001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.
Collapse
Affiliation(s)
- Arianna Casciati
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mirella Tanori
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Isabella Gianlorenzi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy;
| | - Elena Rampazzo
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Giampietro Viola
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alice Cani
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Carmela Marino
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mariateresa Mancuso
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| | - Caterina Merla
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| |
Collapse
|
16
|
Eades L, Drozd M, Cubbon RM. Hypoxia signalling in the regulation of innate immune training. Biochem Soc Trans 2022; 50:413-422. [PMID: 35015075 PMCID: PMC9022967 DOI: 10.1042/bst20210857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Innate immune function is shaped by prior exposures in a phenomenon often referred to as 'memory' or 'training'. Diverse stimuli, ranging from pathogen-associated molecules to atherogenic lipoproteins, induce long-lasting training, impacting on future responses, even to distinct stimuli. It is now recognised that epigenetic modifications in innate immune cells, and their progenitors, underpin these sustained behavioural changes, and that rewired cellular metabolism plays a key role in facilitating such epigenetic marks. Oxygen is central to cellular metabolism, and cells exposed to hypoxia undergo profound metabolic rewiring. A central effector of these responses are the hypoxia inducible factors (or HIFs), which drive transcriptional programmes aiming to adapt cellular homeostasis, such as by increasing glycolysis. These metabolic shifts indirectly promote post-translational modification of the DNA-binding histone proteins, and also of DNA itself, which are retained even after cellular oxygen tension and metabolism normalise, chronically altering DNA accessibility and utilisation. Notably, the activity of HIFs can be induced in some normoxic circumstances, indicating their broad importance to cell biology, irrespective of oxygen tension. Some HIFs are implicated in innate immune training and hypoxia is present in many disease states, yet many questions remain about the association between hypoxia and training, both in health and disease. Moreover, it is now appreciated that cellular responses to hypoxia are mediated by non-HIF pathways, suggesting that other mechanisms of training may be possible. This review sets out to define what is already known about the topic, address gaps in our knowledge, and provide recommendations for future research.
Collapse
Affiliation(s)
- Lauren Eades
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Richard M. Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| |
Collapse
|
17
|
Ahmed D, Humphrey A, Roy D, Sheridan ME, Versey Z, Jaworski A, Edwards A, Donner J, Abizaid A, Willmore W, Kumar A, Golshani A, Cassol E. HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow-Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. THE JOURNAL OF IMMUNOLOGY 2021; 207:2813-2827. [PMID: 34740958 DOI: 10.4049/jimmunol.2001282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is an important regulator of glucose metabolism and inflammatory cytokine production in innate immune responses. Viruses modulate HIF-1α to support viral replication and the survival of infected cells, but it is unclear if this transcription factor also plays an important role in regulating antiviral immune responses. In this study, we found that short and long dsRNA differentially engage TLR3, inducing distinct levels of proinflammatory cytokine production (TNF-α and IL-6) in bone marrow-derived macrophages from C57BL/6 mice. These responses are associated with differential accumulation of HIF-1α, which augments NF-κB activation. Unlike TLR4 responses, increased HIF-1α following TLR3 engagement is not associated with significant alterations in glycolytic activity and was more pronounced in low glucose conditions. We also show that the mechanisms supporting HIF-1α stabilization may differ following stimulation with short versus long dsRNA and that pyruvate kinase M2 and mitochondrial reactive oxygen species play a central role in these processes. Collectively, this work suggests that HIF-1α may fine-tune proinflammatory cytokine production during early antiviral immune responses, particularly when there is limited glucose availability or under other conditions of stress. Our findings also suggest we may be able to regulate the magnitude of proinflammatory cytokine production during antiviral responses by targeting proteins or molecules that contribute to HIF-1α stabilization.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allan Humphrey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Apoptosis Research Centre, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alex Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - James Donner
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - William Willmore
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; and.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada;
| |
Collapse
|
18
|
Lin CW, Huang HY, Chung FT, Lo CY, Huang YC, Wang TW, Yang LY, Pan YB, Chung KF, Wang CH. Emphysema-Predominant COPD Had a Greater 5-Year Mortality and a Worse Annual Decline in Lung Function Than Airway Obstruction-Predominant COPD or Asthma at Initial Same Degree of Airflow Obstruction. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1261. [PMID: 34833478 PMCID: PMC8622286 DOI: 10.3390/medicina57111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: We studied whether the extent of exertional oxygen desaturation and emphysema could cause greater mortality in COPD and asthma independent of airflow obstruction. Materials and Methods: We performed a 5-year longitudinal observational study in COPD and asthma patients who matched for airflow obstruction severity. All subjects performed a 6-min walk test (6MWT) and high-resolution computed tomography (HRCT) and followed spirometry and oxygen saturation (SpO2) during the 6MWT every 3-6 months. Overall survival was recorded. Cumulative survival curves were performed according to the Kaplan-Meier method and compared with the log-rank test. Results: The COPD group had higher emphysema scores, higher Δinspiratory capacities (ICs) and lower SpO2 during the 6MWT, which showed a greater yearly decline in FEV1 (40.6 mL) and forced vital capacity (FVC) (28 mL) than the asthma group (FEV1, 9.6 mL; FVC, 1.2 mL; p < 0.05). The emphysema-predominant COPD group had an accelerated annual decline in lung function and worse survival. The nadir SpO2 ≤ 80% and a higher emphysema score were the strong risk factors for mortality in COPD patients. Conclusions: The greater structural changes with a higher emphysema score and greater desaturation during the 6MWT in COPD may contribute to worse yearly decline in FEV1 and higher five-year mortality than in asthma patients with a similar airflow obstruction. The lowest SpO2 ≤ 80% during the 6MWT and emphysema-predominant COPD were the strong independent factors for mortality in chronic obstructive airway disease patients.
Collapse
Affiliation(s)
- Chang-Wei Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan; (C.-W.L.); (H.-Y.H.); (F.-T.C.); (C.-Y.L.); (Y.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan; (C.-W.L.); (H.-Y.H.); (F.-T.C.); (C.-Y.L.); (Y.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan; (C.-W.L.); (H.-Y.H.); (F.-T.C.); (C.-Y.L.); (Y.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan; (C.-W.L.); (H.-Y.H.); (F.-T.C.); (C.-Y.L.); (Y.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Chen Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan; (C.-W.L.); (H.-Y.H.); (F.-T.C.); (C.-Y.L.); (Y.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Wen Wang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Lan-Yan Yang
- Biostatistics Unit, Clinical Trial Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (L.-Y.Y.); (Y.-B.P.)
| | - Yu-Bin Pan
- Biostatistics Unit, Clinical Trial Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (L.-Y.Y.); (Y.-B.P.)
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London & Royal Brompton Hospital, London SW3 6LY, UK;
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan; (C.-W.L.); (H.-Y.H.); (F.-T.C.); (C.-Y.L.); (Y.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
19
|
Travica N, Ried K, Hudson I, Scholey A, Pipingas A, Sali A. The effects of cardiovascular and orthopaedic surgery on vitamin concentrations: a narrative review of the literature and mechanisms of action. Crit Rev Food Sci Nutr 2021:1-31. [PMID: 34619992 DOI: 10.1080/10408398.2021.1983762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Given the rise in worldwide chronic diseases, supplemented by an aging population, the volume of global major surgeries, encompassing cardiac and orthopedic procedures is anticipated to surge significantly. Surgical trauma can be accompanied by numerous postoperative complications and metabolic changes. The present review summarized the results from studies assessing the effects of orthopedic and cardiovascular surgery on vitamin concentrations, in addition to exploring the possible mechanisms associated with changes in concentrations. Studies have revealed a potentially severe depletion in plasma/serum concentrations of numerous vitamins following these surgeries acutely. Vitamins C, D and B1 appear particularly vulnerable to significant depletions, with vitamin C and D depletions consistently transpiring into inadequate and deficient concentrations, respectively. The possible multifactorial mechanisms impacting postoperative vitamin concentrations include changes in hemodilution and vitamin utilization, redistribution, circulatory transport and absorption. For a majority of vitamins, there has been a lack of investigation into the effects of both, cardiac and orthopedic surgery. Additionally, studies were predominantly restricted to short-term postoperative investigations, primarily performed within the first postoperative week of surgery. Overall, results indicated that further examination is necessary to determine the severity and clinical significance of the possible depletions in vitamin concentrations that ensue cardiovascular and orthopedic surgery.
Collapse
Affiliation(s)
- Nikolaj Travica
- Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), Geelong, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia.,The National Institute of Integrative Medicine, Melbourne, Australia
| | - Karin Ried
- The National Institute of Integrative Medicine, Melbourne, Australia.,Honorary Associate Professor, Discipline of General Practice, University of Adelaide, South Australia, Australia.,Torrens University, Melbourne, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia.,Digital Health, CRC, College of STEM, Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, Australia.,School of Mathematical and Physical Science, University of Newcastle, Newcastle, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Avni Sali
- The National Institute of Integrative Medicine, Melbourne, Australia
| |
Collapse
|
20
|
Malkov MI, Lee CT, Taylor CT. Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells 2021; 10:cells10092340. [PMID: 34571989 PMCID: PMC8466990 DOI: 10.3390/cells10092340] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Hypoxia and inflammation are frequently co-incidental features of the tissue microenvironment in a wide range of inflammatory diseases. While the impact of hypoxia on inflammatory pathways in immune cells has been well characterized, less is known about how inflammatory stimuli such as cytokines impact upon the canonical hypoxia-inducible factor (HIF) pathway, the master regulator of the cellular response to hypoxia. In this review, we discuss what is known about the impact of two major pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), on the regulation of HIF-dependent signaling at sites of inflammation. We report extensive evidence for these cytokines directly impacting upon HIF signaling through the regulation of HIF at transcriptional and post-translational levels. We conclude that multi-level crosstalk between inflammatory and hypoxic signaling pathways plays an important role in shaping the nature and degree of inflammation occurring at hypoxic sites.
Collapse
Affiliation(s)
- Mykyta I. Malkov
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chee Teik Lee
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
21
|
Role of Nrf2 in Synaptic Plasticity and Memory in Alzheimer's Disease. Cells 2021; 10:cells10081884. [PMID: 34440653 PMCID: PMC8391447 DOI: 10.3390/cells10081884] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor that reduces oxidative stress. When reactive oxygen species (ROS) or reactive nitrogen species (RNS) are detected, Nrf2 translocates from the cytoplasm into the nucleus and binds to the antioxidant response element (ARE), which regulates the expression of antioxidant and anti-inflammatory genes. Nrf2 impairments are observed in the majority of neurodegenerative disorders, including Alzheimer’s disease (AD). The classic hallmarks of AD include β-amyloid (Aβ) plaques, and neurofibrillary tangles (NFTs). Oxidative stress is observed early in AD and is a novel therapeutic target for the treatment of AD. The nuclear translocation of Nrf2 is impaired in AD compared to controls. Increased oxidative stress is associated with impaired memory and synaptic plasticity. The administration of Nrf2 activators reverses memory and synaptic plasticity impairments in rodent models of AD. Therefore, Nrf2 activators are a potential novel therapeutic for neurodegenerative disorders including AD.
Collapse
|
22
|
King RJ, Qiu F, Yu F, Singh PK. Metabolic and Immunological Subtypes of Esophageal Cancer Reveal Potential Therapeutic Opportunities. Front Cell Dev Biol 2021; 9:667852. [PMID: 34307352 PMCID: PMC8295652 DOI: 10.3389/fcell.2021.667852] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Esophageal cancer has the sixth highest rate of cancer-associated deaths worldwide, with many patients displaying metastases and chemotherapy resistance. We sought to find subtypes to see if precision medicine could play a role in finding new potential targets and predicting responses to therapy. Since metabolism not only drives cancers but also serves as a readout, metabolism was examined as a key reporter for differences. METHODS Unsupervised and supervised classification methods, including hierarchical clustering, partial least squares discriminant analysis, k-nearest neighbors, and machine learning techniques, were used to discover and display two major subgroups. Genes, pathways, gene ontologies, survival, and immune differences between the groups were further examined, along with biomarkers between the groups and against normal tissue. RESULTS Esophageal cancer had two major unique metabolic profiles observed between the histological subtypes esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). The metabolic differences suggest that ESCC depends on glycolysis, whereas EAC relies more on oxidative metabolism, catabolism of glycolipids, the tricarboxylic acid (TCA) cycle, and the electron transport chain. We also noted a robust prognostic risk associated with COQ3 expression. In addition to the metabolic alterations, we noted significant alterations in key pathways regulating immunity, including alterations in cytokines and predicted immune infiltration. ESCC appears to have increased signature associated with dendritic cells, Th17, and CD8 T cells, the latter of which correlate with survival in ESCC. We bioinformatically observed that ESCC may be more responsive to checkpoint inhibitor therapy than EAC and postulate targets to enhance therapy further. Lastly, we highlight correlations between differentially expressed enzymes and the potential immune status. CONCLUSION Overall, these results highlight the extreme differences observed between the histological subtypes and may lead to novel biomarkers, therapeutic strategies, and differences in therapeutic response for targeting each esophageal cancer subtype.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
23
|
Mucus composition abnormalities in sinonasal mucosa of chronic rhinosinusitis with and without nasal polyps. Inflammation 2021; 44:1937-1948. [PMID: 33999330 DOI: 10.1007/s10753-021-01471-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/11/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Mucus secretion and its composition are vital in the maintenance of airway health, among which hypoxia-inducible factors (HIFs) are thought to be involved in the regulation of mucin synthesis and regulation. Nasal mucus composition difference between healthy individuals and chronic rhinosinusitis (CRS) patients may contribute to the pathology of chronic nasal diseases, but so far, their role has yet to be completely understood. Nasal biopsy specimens were obtained from 24 healthy subjects and 99 patients with CRS without (CRSsNP, n=36) or with (CRSwNP, n=63) nasal polyps. Immunohistochemical (IHC) and immunofluorescent (IF) staining, quantitative real-time PCR, and western blot were performed to compare the nasal mucus composition between the subjects. Areas of the serous gland and mucous gland were both significantly increased in CRSsNP patients. In CRSwNP patients, a decrease in submucosal gland density and a marked increase in goblet cells were observed. The major gel-forming mucins in the sinonasal mucosa of CRSsNP and CRSwNP are MUC5B and MUC5AC respectively. Mucous cells are found in a higher proportion in both CRSsNP and CRSwNP. The proportion of MUC5AC-positive goblet cells was increased in CRSwNP. The mRNA level of HIF-2α was significantly increased in CRS, and both HIF-1α and HIF-2α were expressed in serous cell but not mucous cell. Over secretion and altered composition of mucus are observed in sinonasal mucosa of CRS, which was mainly associated with glandular hyperplasia in CRSsNP and goblet cell hyperplasia in CRSwNP. Mucus abnormality compromised both non-specific and specific antimicrobial capabilities in the sinonasal mucosa. HIF expression may contribute to differences in mucin synthesis and serous gland regulation, which needs further investigation to understand the pathology of CRS.
Collapse
|
24
|
Druker J, Wilson JW, Child F, Shakir D, Fasanya T, Rocha S. Role of Hypoxia in the Control of the Cell Cycle. Int J Mol Sci 2021; 22:ijms22094874. [PMID: 34062959 PMCID: PMC8124716 DOI: 10.3390/ijms22094874] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is an important cellular process whereby the cell attempts to replicate its genome in an error-free manner. As such, mechanisms must exist for the cell cycle to respond to stress signals such as those elicited by hypoxia or reduced oxygen availability. This review focuses on the role of transcriptional and post-transcriptional mechanisms initiated in hypoxia that interface with cell cycle control. In addition, we discuss how the cell cycle can alter the hypoxia response. Overall, the cellular response to hypoxia and the cell cycle are linked through a variety of mechanisms, allowing cells to respond to hypoxia in a manner that ensures survival and minimal errors throughout cell division.
Collapse
Affiliation(s)
- Jimena Druker
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | - James W. Wilson
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Fraser Child
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Dilem Shakir
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Temitope Fasanya
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
- Correspondence: ; Tel.: +44-(0)151-794-9084
| |
Collapse
|
25
|
Shakir D, Batie M, Rocha S. Use of ChIP-qPCR to Study the Crosstalk Between HIF and NF-κB Signaling in Hypoxia and Normoxia. Methods Mol Biol 2021; 2366:255-265. [PMID: 34236643 DOI: 10.1007/978-1-0716-1669-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Hypoxia and inflammation are intensely connected in a functional crosstalk. Within this crosstalk, two major transcription factors take center stage: HIF and NF-κB. To investigate transcription factor function, an important aspect is its ability to bind DNA. The most appropriate method to study this property in cells is the use of chromatin immunoprecipitation followed by qPCR and/or next generation sequencing. This allows identification of potentially directly regulated genes as well as enhancer regions. Here we describe the ChIP-qPCR method in detail, including key aspects important for the success of the technique.
Collapse
Affiliation(s)
- Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
26
|
Kang GJ, Xie A, Liu H, Dudley SC. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel. JCI Insight 2020; 5:140759. [PMID: 33108349 PMCID: PMC7714400 DOI: 10.1172/jci.insight.140759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac ischemia is associated with arrhythmias; however, effective therapies are currently limited. The cardiac voltage-gated sodium channel α subunit (SCN5A), encoding the Nav1.5 current, plays a key role in the cardiac electrical conduction and arrhythmic risk. Here, we show that hypoxia reduces Nav1.5 through effects on a miR, miR-448. miR-448 expression is increased in ischemic cardiomyopathy. miR-448 has a conserved binding site in 3′-UTR of SCN5A. miR-448 binding to this site suppressed SCN5A expression and sodium currents. Hypoxia-induced HIF-1α and NF-κB were major transcriptional regulators for MIR448. Moreover, hypoxia relieved MIR448 transcriptional suppression by RE1 silencing transcription factor. Therefore, miR-448 inhibition reduced arrhythmic risk after myocardial infarction. Here, we show that ischemia drove miR-448 expression, reduced Nav1.5 current, and increased arrhythmic risk. Arrhythmic risk was improved by preventing Nav1.5 downregulation, suggesting a new approach to antiarrhythmic therapy. Ischemic induction of miR-448 negatively regulates the cardiac sodium channel Nav1.5, and inhibiting miR-448 raises Nav1.5 and reduces arrhythmic risk after myocardial infarction in mice.
Collapse
|
27
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
28
|
Rezzola S, Loda A, Corsini M, Semeraro F, Annese T, Presta M, Ribatti D. Angiogenesis-Inflammation Cross Talk in Diabetic Retinopathy: Novel Insights From the Chick Embryo Chorioallantoic Membrane/Human Vitreous Platform. Front Immunol 2020; 11:581288. [PMID: 33117388 PMCID: PMC7552803 DOI: 10.3389/fimmu.2020.581288] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pathological angiogenesis of the retina is a key component of irreversible causes of blindness, as observed in proliferative diabetic retinopathy (PDR). The pathogenesis of PDR is complex and involves vascular, inflammatory, and neuronal mechanisms. Several structural and molecular alterations associated to PDR are related to the presence of inflammation that appears to play a non-redundant role in the neovascular response that characterizes the retina of PDR patients. Vascular endothelial growth factor (VEGF) blockers have evolved over time for the treatment of retinal neovascularization. However, several limitations to anti-VEGF interventions exist. Indeed, the production of other angiogenic factors and pro-inflammatory mediators may nullify and/or cause resistance to anti-VEGF therapies. Thus, appropriate experimental models are crucial for dissecting the mechanisms leading to retinal neovascularization and for the discovery of more efficacious anti-angiogenic/anti-inflammatory therapies for PDR patients. This review focuses on the tight cross talk between angiogenesis and inflammation during PDR and describe how the chick embryo chorioallantoic membrane (CAM) assay may represent a cost-effective and rapid in vivo tool for the study of the relationship between neovascular and inflammatory responses elicited by the vitreous humor of PDR patients and for the screening of novel therapeutic agents.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Loda
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Neurological and Vision Sciences, University of Brescia, Brescia, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy.,Italian Consortium for Biotechnology (CIB), Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
29
|
Frasca D, Blomberg BB. Adipose tissue, immune aging, and cellular senescence. Semin Immunopathol 2020; 42:573-587. [PMID: 32785750 DOI: 10.1007/s00281-020-00812-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Obesity represents a serious health problem as it is rapidly increasing worldwide. Obesity is associated with reduced healthspan and lifespan, decreased responses to infections and vaccination, and increased frequency of inflammatory conditions typical of old age. Obesity is characterized by increased fat mass and remodeling of the adipose tissue (AT). In this review, we summarize published data on the different types of AT present in mice and humans, and their roles as fat storage as well as endocrine and immune tissues. We review the age-induced changes, including those in the distribution of fat in the body, in abundance and function of adipocytes and their precursors, and in the infiltration of immune cells from the peripheral blood. We also show that cells with a senescent-associated secretory phenotype accumulate in the AT of mice and humans with age, where they secrete several factors involved in the establishment and maintenance of local inflammation, oxidative stress, cell death, tissue remodeling, and infiltration of pro-inflammatory immune cells. Not only adipocytes and pre-adipocytes but also immune cells show a senescent phenotype in the AT. With the increase in human lifespan, it is crucial to identify strategies of intervention and target senescent cells in the AT to reduce local and systemic inflammation and the development of age-associated diseases. Several studies have indeed shown that senescent cells can be effectively targeted in the AT by selectively removing them or by inhibiting the pathways that lead to the secretion of pro-inflammatory factors.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Miranda-Galvis M, Teng Y. Targeting Hypoxia-Driven Metabolic Reprogramming to Constrain Tumor Progression and Metastasis. Int J Mol Sci 2020; 21:ijms21155487. [PMID: 32751958 PMCID: PMC7432774 DOI: 10.3390/ijms21155487] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia in locally advanced solid tumors develops due to uncontrollable cell proliferation, altered metabolism, and the severe structural and functional abnormality of the tumor vasculature, leading to an imbalance between oxygen supply and consumption in the fast-growing tumors and negative impact on the therapeutic outcome. Several hypoxia-responsive molecular determinants, such as hypoxia-inducible factors, guide the cellular adaptation to hypoxia by gene activation, which is critical for promoting malignant progression in the hostile tumor microenvironment. Over time, a large body of evidence exists to suggest that tumor hypoxia also influences the tumor metabolic reprogramming, resulting in neoangiogenesis, metastasis, and immune evasion. In this respect, our review aims to understand the biological processes, key events, and consequences regarding the hypoxia-driven metabolic adaptation of tumor cells. We also assess the potential therapeutic impact of hypoxia and highlight our review by discussing possible therapeutic strategies targeting hypoxia, which would advance the current understanding of hypoxia-associated tumor propagation and malignant progression and improve the management of tumor hypoxia.
Collapse
Affiliation(s)
- Marisol Miranda-Galvis
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-70-6446-5611; Fax: +1-70-6721-9415
| |
Collapse
|
31
|
Co-treatment with nitroglycerin and metformin exhibits physicochemically and pathohistologically detectable anticancer effects on fibrosarcoma in hamsters. Biomed Pharmacother 2020; 130:110510. [PMID: 32707437 DOI: 10.1016/j.biopha.2020.110510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated the effect of nitroglycerin with metformin on fibrosarcoma in hamsters. Syrian golden hamsters of both sexes, weighing approximately 60 g, were randomly allocated to control and experimental groups, with 8 animals per group. In all groups, 2 × 106 BHK-21/C13 cells in 1 ml were injected subcutaneously into the animals' backs. Peroral treatment carried out with nitroglycerin 25 mg/kg daily, or with metformin 500 mg/kg daily, or with a combination of nitroglycerin 25 mg/kg and metformin 500 mg/kg daily. Later validation experiments were conducted with double doses of the single therapy and additional rescue doses of mebendazole 460 mg/kg daily, via a gastric probe after tumor inoculation. After 2 weeks, when the tumors were approximately 2-3 cm in the control group, all animals were sacrificed. Blood samples were collected for hematological and biochemical analyses, the tumors were excised and weighed, and their diameters and volumes were measured. The tumor samples were pathohistologically and immunohistochemically assessed for proliferation marker protein Ki-67, proliferating cell nuclear antigen PCNA, hematopoietic progenitor cell antigen CD34, cluster of differentiation 31 (CD31), cytochrome c oxidase subunit 4 (COX4), mitochondria marker Cytochrome C, glucose transporter 1 (GLUT1) and inducible nitric oxide synthase (iNOS), and the main organs were toxicologically tested. The Ki-67 and PCNA positivity and the cytoplasmic marker (CD34, CD31, COX4, Cytochrome C, GLUT1, iNOS) immunoexpression in the tumor samples were quantified. The combination of nitroglycerin and metformin significantly inhibited fibrosarcoma growth in hamsters without toxicity, compared to monotherapy or control. The results were validated and confirmed in the subsequently accomplished experiment with doubled doses of the single drug therapy and in the rescue experiment with addition of mebendazole. The single treatments did not show significant antisarcoma effect, regardless of the dose. Co-treatment with mebendazole inhibited anticancer activity of the nitroglycerin and metformin combination. Mebendazole rescued tumor progression suppressed by the combination of nitroglycerin and metformin. Administration of nitroglycerin with metformin might be an effective and safe approach in novel nontoxic adjuvant and relapse prevention anticancer treatment.
Collapse
|
32
|
Tolerance to Hypoxia Is Promoted by FOXO Regulation of the Innate Immunity Transcription Factor NF-κB/Relish in Drosophila. Genetics 2020; 215:1013-1025. [PMID: 32513813 DOI: 10.1534/genetics.120.303219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of tissues and organs to low oxygen (hypoxia) occurs in both physiological and pathological conditions in animals. Under these conditions, organisms have to adapt their physiology to ensure proper functioning and survival. Here, we define a role for the transcription factor Forkhead Box-O (FOXO) as a mediator of hypoxia tolerance in Drosophila We find that upon hypoxia exposure, FOXO transcriptional activity is rapidly induced in both larvae and adults. Moreover, we see that foxo mutant animals show misregulated glucose metabolism in low oxygen and subsequently exhibit reduced hypoxia survival. We identify the innate immune transcription factor, NF-κB/Relish, as a key FOXO target in the control of hypoxia tolerance. We find that expression of Relish and its target genes is increased in a FOXO-dependent manner in hypoxia, and that relish mutant animals show reduced survival in hypoxia. Together, these data indicate that FOXO is a hypoxia-inducible factor that mediates tolerance to low oxygen by inducing immune-like responses.
Collapse
|
33
|
Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2020; 117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of serious heart failure events, even though SGLT2 is not expressed in the myocardium. This cardioprotective benefit is not related to an effect of these drugs to lower blood glucose, promote ketone body utilization or enhance natriuresis, but it is linked statistically with their action to increase haematocrit. SGLT2 inhibitors increase both erythropoietin and erythropoiesis, but the increase in red blood cell mass does not directly prevent heart failure events. Instead, erythrocytosis is a biomarker of a state of hypoxia mimicry, which is induced by SGLT2 inhibitors in manner akin to cobalt chloride. The primary mediators of the cellular response to states of energy depletion are sirtuin-1 and hypoxia-inducible factors (HIF-1α/HIF-2α). These master regulators promote the cellular adaptation to states of nutrient and oxygen deprivation, promoting mitochondrial capacity and minimizing the generation of oxidative stress. Activation of sirtuin-1 and HIF-1α/HIF-2α also stimulates autophagy, a lysosome-mediated degradative pathway that maintains cellular homoeostasis by removing dangerous constituents (particularly unhealthy mitochondria and peroxisomes), which are a major source of oxidative stress and cardiomyocyte dysfunction and demise. SGLT2 inhibitors can activate SIRT-1 and stimulate autophagy in the heart, and thereby, favourably influence the course of cardiomyopathy. Therefore, the linkage between erythrocytosis and the reduction in heart failure events with SGLT2 inhibitors may be related to a shared underlying molecular mechanism that is triggered by the action of these drugs to induce a perceived state of oxygen and nutrient deprivation.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
34
|
Abu El‐Asrar AM, Ahmad A, Allegaert E, Siddiquei MM, Alam K, Gikandi PW, De Hertogh G, Opdenakker G. Galectin-1 studies in proliferative diabetic retinopathy. Acta Ophthalmol 2020; 98:e1-e12. [PMID: 31318490 DOI: 10.1111/aos.14191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/23/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Galectin-1 regulates endothelial cell function and promotes angiogenesis. We investigated the hypothesis that galectin-1 may be involved in the pathogenesis of proliferative diabetic retinopathy (PDR). METHODS Vitreous samples from 36 PDR and 20 nondiabetic patients, epiretinal fibrovascular membranes from 13 patients with PDR, rat retinas and human retinal Müller glial cells were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and Western blot analysis. In vitro angiogenesis assays were performed and the adherence of leukocytes to galectin-1-stimulated human retinal microvascular endothelial cells (HRMECs) was assessed. RESULTS The ELISA analysis revealed that galectin-1 and vascular endothelial growth factor (VEGF) levels were significantly higher in vitreous samples from PDR patients than in those from nondiabetics (p < 0.001 for both comparisons). A significant positive correlation was found between the levels of galectin-1 and VEGF (r = 0.354; p = 0.022). In epiretinal membranes, immunohistochemical analysis showed that galectin-1 was expressed in vascular endothelial cells expressing CD31, myofibroblasts expressing α-smooth muscle actin and leukocytes expressing CD45. The galectin-1 receptor neuropilin-1 was expressed on vascular endothelial cells. CD31 staining was used as a marker to assess microvessel density (MVD). Significant positive correlation was detected between MVD in epiretinal membranes and the number of blood vessels expressing galectin-1 (r = 0.848; p < 0.001). Western blot analysis demonstrated significant increase of galectin-1 protein in rat retinas after induction of diabetes. ELISA analysis revealed that hydrogen peroxide and cobalt chloride (CoCl2 ) induced upregulation of galectin-1 in Müller cells. Treatment with galectin-1 induced upregulation of VEGF in Müller cells and increased leukocyte adhesion to HRMECs. The galectin-1 inhibitor OTX008 attenuated VEGF-induced HRMECs migration and CoCl2 -induced upregulation of NF-κB, galectin-1 and VEGF in Müller cells. CONCLUSIONS These results suggest that galectin-1is involved in the pathogenesis of PDR.
Collapse
Affiliation(s)
- Ahmed M. Abu El‐Asrar
- Department of Ophthalmology King Saud University Riyadh Saudi Arabia
- Dr. Nasser Al‐Rashid Research Chair in Ophthalmology College of Medicine King Saud University Riyadh Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology King Saud University Riyadh Saudi Arabia
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry University of Leuven KU Leuven Leuven Belgium
| | | | - Kaiser Alam
- Department of Ophthalmology King Saud University Riyadh Saudi Arabia
| | | | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry University of Leuven KU Leuven Leuven Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research Department of Microbiology and Immunology University of Leuven KU Leuven Leuven Belgium
| |
Collapse
|
35
|
Criscuoli M, Ulivieri C, Filippi I, Monaci S, Guerrini G, Crifò B, De Tommaso D, Pelicci G, Baldari CT, Taylor CT, Carraro F, Naldini A. The Shc protein Rai enhances T-cell survival under hypoxia. J Cell Physiol 2020; 235:8058-8070. [PMID: 31944299 DOI: 10.1002/jcp.29461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions. Rai, an Shc family protein member, exerts pro-survival effects in hypoxic neuroblastoma cells. Since Rai is also expressed in T cells, we here investigated its role in hypoxic T cells. In this work, hypoxia differently affected cell survival, proapoptotic, and metabolic programs in T cells, depending upon Rai expression. By using Jurkat cells stably expressing Rai and splenocytes from Rai-/- mice, we demonstrated that Rai promotes T cell survival and affects cell metabolism under hypoxia. Upon exposure to hypoxia, Jurkat T cells expressing Rai show (a) higher HIF-1α protein levels; (b) a decreased cell death and increased Akt/extracellular-signal-regulated kinase phosphorylation; (c) a decreased expression of proapoptotic markers, including caspase activities and poly(ADP-ribose) polymerase cleavage; (d) an increased glucose and lactate metabolism; (e) an increased activation of nuclear factor-kB pathway. The opposite effects were observed in hypoxic splenocytes from Rai-/- mice. Thus, Rai plays an important role in hypoxic signaling and may be relevant in the protection of T cells against hypoxia.
Collapse
Affiliation(s)
- Mattia Criscuoli
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Irene Filippi
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,Istituto Toscano Tumori, Firenze, Italy
| | - Sara Monaci
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuditta Guerrini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bianca Crifò
- Department of Systems Biology, UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Department of Translational Medicine, Piemonte Orientale University "Amedeo Avogadro", Novara, Italy
| | | | - Cormac T Taylor
- Department of Systems Biology, UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Fabio Carraro
- Istituto Toscano Tumori, Firenze, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
36
|
Wyatt GL, Crump LS, Young CM, Wessells VM, McQueen CM, Wall SW, Gustafson TL, Fan YY, Chapkin RS, Porter WW, Lyons TR. Cross-talk between SIM2s and NFκB regulates cyclooxygenase 2 expression in breast cancer. Breast Cancer Res 2019; 21:131. [PMID: 31783895 PMCID: PMC6884910 DOI: 10.1186/s13058-019-1224-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/07/2019] [Indexed: 02/10/2023] Open
Abstract
Background Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer. Specifically, the nuclear factor kappa b (NFκB) pathway contributes to cancer progression by stimulating proliferation and preventing apoptosis. One target gene of this pathway is PTGS2, which encodes for cyclooxygenase 2 (COX-2) and is upregulated in 40% of human breast carcinomas. COX-2 is an enzyme involved in the production of prostaglandins, which mediate inflammation. Here, we investigate the effect of Singleminded-2s (SIM2s), a transcriptional tumor suppressor that is implicated in inhibition of tumor growth and metastasis, in regulating NFκB signaling and COX-2. Methods For in vitro experiments, reporter luciferase assays were utilized in MCF7 cells to investigate promoter activity of NFκB and SIM2. Real-time PCR, immunoblotting, immunohistochemistry, and chromatin immunoprecipitation assays were performed in SUM159 and MCF7 cells. For in vivo experiments, MCF10DCIS.COM cells stably expressing SIM2s-FLAG or shPTGS2 were injected into SCID mice and subsequent tumors harvested for immunostaining and analysis. Results Our results reveal that SIM2 attenuates the activation of NFκB as measured using NFκB-luciferase reporter assay. Furthermore, immunostaining of lysates from breast cancer cells overexpressing SIM2s showed reduction in various NFκB signaling proteins, as well as pAkt, whereas knockdown of SIM2 revealed increases in NFκB signaling proteins and pAkt. Additionally, we show that NFκB signaling can act in a reciprocal manner to decrease expression of SIM2s. Likewise, suppressing NFκB translocation in DCIS.COM cells increased SIM2s expression. We also found that NFκB/p65 represses SIM2 in a dose-dependent manner, and when NFκB is suppressed, the effect on the SIM2 is negated. Additionally, our ChIP analysis confirms that NFκB/p65 binds directly to SIM2 promoter site and that the NFκB sites in the SIM2 promoter are required for NFκB-mediated suppression of SIM2s. Finally, overexpression of SIM2s decreases PTGS2 in vitro, and COX-2 staining in vivo while decreasing PTGS2 and/or COX-2 activity results in re-expression of SIM2. Conclusion Our findings identify a novel role for SIM2s in NFκB signaling and COX-2 expression.
Collapse
Affiliation(s)
- Garhett L Wyatt
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Lyndsey S Crump
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, USA.,The University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Chloe M Young
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, USA.,The University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Veronica M Wessells
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, USA.,The University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Cole M McQueen
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Steven W Wall
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Tanya L Gustafson
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Yang-Yi Fan
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Weston W Porter
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, USA. .,The University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA.
| |
Collapse
|
37
|
Qiu Y, Huang X, He W. The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histol Histopathol 2019; 35:321-330. [PMID: 31691948 DOI: 10.14670/hh-18-182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high sensitivity to changes in oxygen tension makes kidney vulnerable to hypoxia. Both acute kidney injury and chronic kidney disease are almost always accompanied by hypoxia. Tubular epithelial cells (TECs), the dominant intrinsic cells in kidney tissue, are believed to be not only a victim in the pathological process of various kidney diseases, but also a major contributor to kidney damage. Hypoxia inducible factor-1 (HIF-1) is the main regulator of adaptive response of cells to hypoxia. Under various clinical and experimental kidney disease conditions, HIF-1 plays a pivotal role in modulating multiple cellular processes in TECs, including apoptosis, autophagy, inflammation, metabolic pattern alteration, and cell cycle arrest. A comprehensive understanding of the mechanisms by which HIF-1 regulates these cellular processes in TECs may help identify potential therapeutic targets to improve the outcome of acute kidney injury and delay the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Guo Y, Xiao Z, Yang L, Gao Y, Zhu Q, Hu L, Huang D, Xu Q. Hypoxia‑inducible factors in hepatocellular carcinoma (Review). Oncol Rep 2019; 43:3-15. [PMID: 31746396 PMCID: PMC6908932 DOI: 10.3892/or.2019.7397] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Maintenance of an appropriate oxygen concentration is essential for the function of the liver. However, in many pathological conditions, and particularly in the tumor microenvironment, cells and tissues are frequently in a hypoxic state. In the presence of hypoxia, the cells adapt to the low oxygen levels through the hypoxia-inducible factor (HIF) pathway. Overgrowth of tumor cells restricts the diffusion of oxygen in tumors, leading to insufficient blood supply and the creation of a hypoxic microenvironment, and, as a consequence, activation of the expression of HIFs. HIFs possess a wide range of target genes, which function to control a variety of signaling pathways; thus, HIFs modulate cellular metabolism, immune escape, angiogenesis, metastasis, extracellular matrix remodeling, cancer stem cells and other properties of the tumor. Given their crucial role in the occurrence and development of tumors, HIFs are expected to become new targets of precise treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yang Guo
- Graduate Department, BengBu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zunqiang Xiao
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Yuling Gao
- Department of Genetics, Shaoxing Women and Children Hospital, Shaoxin, Zhejiang 312030, P.R. China
| | - Qiaojuan Zhu
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Linjun Hu
- Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
39
|
Mariero LH, Torp M, Heiestad CM, Baysa A, Li Y, Valen G, Vaage J, Stensløkken K. Inhibiting nucleolin reduces inflammation induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and reoxygenation. Br J Pharmacol 2019; 176:4360-4372. [PMID: 31412132 PMCID: PMC6887679 DOI: 10.1111/bph.14830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Cellular debris causes sterile inflammation after myocardial infarction. Mitochondria constitute about 30 percent of the human heart. Mitochondrial DNA (mtDNA) is a damage-associated-molecular-pattern that induce injurious sterile inflammation. Little is known about mtDNA's inflammatory signalling pathways in cardiomyocytes and how mtDNA is internalized to associate with its putative receptor, toll-like receptor 9 (TLR9). EXPERIMENTAL APPROACH We hypothesized that mtDNA can be internalized in cardiomyocytes and induce an inflammatory response. Adult mouse cardiomyocytes were exposed to hypoxia-reoxygenation and extracellular DNA. Microscale thermophoresis was used to demonstrate binding between nucleolin and DNA. KEY RESULTS Expression of the pro-inflammatory cytokines IL-1β and TNFα were upregulated by mtDNA, but not by nuclear DNA (nDNA), in cardiomyocytes exposed to hypoxia-reoxygenation. Blocking the RNA/DNA binding protein nucleolin with midkine reduced expression of IL-1β/TNFα and the nucleolin inhibitor AS1411 reduced interleukin-6 release in adult mouse cardiomyocytes. mtDNA bound 10-fold stronger than nDNA to nucleolin. In HEK293-NF-κB reporter cells, mtDNA induced NF-κB activity in normoxia, while CpG-DNA and hypoxia-reoxygenation, synergistically induced TLR9-dependent NF-κB activity. Protein expression of nucleolin was found in the plasma membrane of cardiomyocytes and inhibition of nucleolin with midkine inhibited cellular uptake of CpG-DNA. Inhibition of endocytosis did not reduce CpG-DNA uptake in cardiomyocytes. CONCLUSION AND IMPLICATIONS mtDNA, but not nDNA, induce an inflammatory response in mouse cardiomyocytes during hypoxia-reoxygenation. In cardiomyocytes, nucleolin is expressed on the membrane and blocking nucleolin reduce inflammation. Nucleolin might be a therapeutic target to prevent uptake of immunogenic DNA and reduce inflammation. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Lars Henrik Mariero
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - May‐Kristin Torp
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Christina Mathisen Heiestad
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Anton Baysa
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Yuchuan Li
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
| | - Guro Valen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Jarle Vaage
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Emergency Medicine and Intensive CareOslo University HospitalOsloNorway
| | - Kåre‐Olav Stensløkken
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| |
Collapse
|
40
|
Shukla SD, Walters EH, Simpson JL, Keely S, Wark PA, O'Toole RF, Hansbro PM. Hypoxia‐inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology 2019; 25:53-63. [DOI: 10.1111/resp.13722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shakti D. Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - E. Haydn Walters
- School of Medicine, College of Health and MedicineUniversity of Tasmania Hobart TAS Australia
| | - Jodie L. Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Ronan F. O'Toole
- School of Molecular Sciences, College of Science, Health and EngineeringLa Trobe University Melbourne VIC Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Centenary Institute and School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
41
|
Opposite effects of demethylating treatment on VEGFA and HIF1A expression in MDA-MB-231 breast cancer cell line in hypoxic microenvironment. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
The nuclear hypoxia-regulated NLUCAT1 long non-coding RNA contributes to an aggressive phenotype in lung adenocarcinoma through regulation of oxidative stress. Oncogene 2019; 38:7146-7165. [PMID: 31417181 DOI: 10.1038/s41388-019-0935-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 01/03/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.
Collapse
|
43
|
Malacrida S, Giannella A, Ceolotto G, Reggiani C, Vezzoli A, Mrakic-Sposta S, Moretti S, Turner R, Falla M, Brugger H, Strapazzon G. Transcription Factors Regulation in Human Peripheral White Blood Cells during Hypobaric Hypoxia Exposure: an in-vivo experimental study. Sci Rep 2019; 9:9901. [PMID: 31289332 PMCID: PMC6617471 DOI: 10.1038/s41598-019-46391-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
High altitude is a natural laboratory, within which the clinical study of human physiological response to hypobaric hypoxia (HH) is possible. Failure in the response results in progressive hypoxemia, inflammation and increased tissue oxidative stress (OxS). Thus, investigating temporal changes in key transcription factors (TFs) HIF-1α, HIF-2α, NF-κB and NRF2 mRNA levels, relative to OxS and inflammatory markers, may reveal molecular targets which contrast deleterious effects of hypoxia. Biological samples and clinical data from 15 healthy participants were collected at baseline and after rapid, passive ascent to 3830 m (24 h and 72 h). Gene expression was assessed by qPCR and ROS generation was determined by EPR spectroscopy. Oxidative damage and cytokine levels were estimated by immuno or enzymatic methods. Hypoxia transiently enhanced HIF-1α mRNA levels over time reaching a peak after 24 h. Whereas, HIF-2α and NRF2 mRNA levels increased over time. In contrast, the NF-κB mRNA levels remained unchanged. Plasma levels of IL-1β and IL-6 also remained within normal ranges. ROS production rate and markers of OxS damage were significantly increased over time. The analysis of TF-gene expression suggests that HIF-1α is a lead TF during sub-acute HH exposure. The prolongation of the HH exposure led to a switch between HIF-1α and HIF-2α/NRF2, suggesting the activation of new pathways. These results provide new insights regarding the temporal regulation of TFs, inflammatory state, and ROS homeostasis involved in human hypoxic response, potentially also relevant to the mediation of diseases that induce a hypoxic state.
Collapse
Affiliation(s)
- Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy. .,Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Alessandra Giannella
- Department of Medicine-DIMED, Campus Biomedico Pietro D'Abano, University of Padova, Padova, Italy
| | - Giulio Ceolotto
- Department of Medicine-DIMED, Campus Biomedico Pietro D'Abano, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessandra Vezzoli
- Institute of Bioimaging and Molecular Physiology, National Council of Research, Segrate (Milan), Italy
| | - Simona Mrakic-Sposta
- Institute of Bioimaging and Molecular Physiology, National Council of Research, Segrate (Milan), Italy
| | - Sarah Moretti
- Institute of Bioimaging and Molecular Physiology, National Council of Research, Segrate (Milan), Italy
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marika Falla
- Department of Neurology, General Hospital of Bolzano, Bolzano, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| |
Collapse
|
44
|
Huang HY, Lo CY, Yang LY, Chung FT, Sheng TF, Lin HC, Lin CW, Huang YC, Chang CJ, Chung KF, Wang CH. Maintenance Negative Pressure Ventilation Improves Survival in COPD Patients with Exercise Desaturation. J Clin Med 2019; 8:jcm8040562. [PMID: 31027263 PMCID: PMC6518192 DOI: 10.3390/jcm8040562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022] Open
Abstract
Negative pressure ventilation (NPV), when used as an adjuvant to pulmonary rehabilitation, improves lung function, increases exercise capacity, and reduces exacerbations. The aim of this study was to determine whether maintenance NPV improves long-term clinical outcomes and reduces mortality in patients with chronic obstructive pulmonary disease (COPD). Between 2003 and 2009, 341 patients were treated for COPD either with or without hospital-based NPV. We measured forced expiratory volume in one second (FEV1), 6-min walking distance (6MWD), and oxygen saturation by pulse oximetry (SpO2) during a 6-min walk test (6MWT) every 3–6 months. Desaturation (D) during the 6MWT was defined as a reduction in SpO2 of ≥10% from baseline. The NPV group had a better survival outcome than the Non-NPV group. The 8-year survival probabilities for the NPV and Non-NPV groups were 60% and 20%, respectively (p < 0.01). Baseline desaturation was a significant risk factor for death, and the risk of death increased with desaturation severity (SpO2 80~89: hazard ratios (HR) 2.7, 95% confidence interval (CI) 1.4–5.3; SpO2 < 80: HR 3.1, 95% CI 1.3–7.4). The NPV group had a slower decline in lung function and 6MWD. The NPV + D and Non-NPV+D had a threefold and fourfold increase in the risks of all-cause mortality compared with the NPV-ND, respectively. Maintenance non-invasive NPV reduced long-term mortality in COPD patients. The desaturating COPD patients had an increased mortality risk compared with non-desaturating COPD patients.
Collapse
Affiliation(s)
- Hung-Yu Huang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Saint Paul's Hospital, Taoyuan 330, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Lan-Yan Yang
- Biostatistics Unit, Clinical Trial Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Te-Fang Sheng
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chang-Wei Lin
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Saint Paul's Hospital, Taoyuan 330, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
| | - Yu-Chen Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chee-Jen Chang
- Research Services Center for Health Information, Chang Gung University, Taoyuan 333, Taiwan.
| | - Kian Fan Chung
- Experimental Studies, National Heart & Lung Institute, Imperial College London & Biomedical Research Unit, Royal Brompton Hospital, London SW3 6LY, UK.
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
45
|
Manresa MC, Smith L, Casals‐Diaz L, Fagundes RR, Brown E, Radhakrishnan P, Murphy SJ, Crifo B, Strowitzki MJ, Halligan DN, van den Bogaard EH, Niehues H, Schneider M, Taylor CT, Steinhoff M. Pharmacologic inhibition of hypoxia-inducible factor (HIF)-hydroxylases ameliorates allergic contact dermatitis. Allergy 2019; 74:753-766. [PMID: 30394557 DOI: 10.1111/all.13655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND When an immune cell migrates from the bloodstream to a site of chronic inflammation, it experiences a profound decrease in microenvironmental oxygen levels leading to a state of cellular hypoxia. The hypoxia-inducible factor-1α (HIF-1α) promotes an adaptive transcriptional response to hypoxia and as such is a major regulator of immune cell survival and function. HIF hydroxylases are the family of oxygen-sensing enzymes primarily responsible for conferring oxygen dependence upon the HIF pathway. METHODS Using a mouse model of allergic contact dermatitis (ACD), we tested the effects of treatment with the pharmacologic hydroxylase inhibitor DMOG, which mimics hypoxia, on disease development. RESULTS Re-exposure of sensitized mice to 2,4-dinitrofluorobenzene (DNFB) elicited inflammation, edema, chemokine synthesis (including CXCL1 and CCL5) and the recruitment of neutrophils and eosinophils. Intraperitoneal or topical application of the pharmacologic hydroxylase inhibitors dymethyloxalylglycine (DMOG) or JNJ1935 attenuated this inflammatory response. Reduced inflammation was associated with diminished recruitment of neutrophils and eosinophils but not lymphocytes. Finally, hydroxylase inhibition reduced cytokine-induced chemokine production in cultured primary keratinocytes through attenuation of the JNK pathway. CONCLUSION These data demonstrate that hydroxylase inhibition attenuates the recruitment of neutrophils to inflamed skin through reduction of chemokine production and increased neutrophilic apoptosis. Thus, pharmacologic inhibition of HIF hydroxylases may be an effective new therapeutic approach in allergic skin inflammation.
Collapse
Affiliation(s)
- Mario C. Manresa
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Leila Smith
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Laura Casals‐Diaz
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Raphael R. Fagundes
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Eric Brown
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery University of Heidelberg Heidelberg Germany
| | - Stephen J. Murphy
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Bianca Crifo
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Moritz J. Strowitzki
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Doug N. Halligan
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Ellen H. van den Bogaard
- Department of Dermatology Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen The Netherlands
| | - Hanna Niehues
- Department of Dermatology Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen The Netherlands
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery University of Heidelberg Heidelberg Germany
| | - Cormac T. Taylor
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Systems Biology Ireland School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Martin Steinhoff
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Department of Dermatology & Venereology Translational Research Institute Hamad Medical Corporation Weill Cornell University‐Qatar and Qatar University Doha Qatar
| |
Collapse
|
46
|
Oxygen desaturation during the 6-min walk test as a risk for osteoporosis in non-cystic fibrosis bronchiectasis. BMC Pulm Med 2019; 19:28. [PMID: 30717716 PMCID: PMC6360688 DOI: 10.1186/s12890-019-0794-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteoporosis is a common comorbidity in non-cystic fibrosis (non-CF) bronchiectasis patients. We determined whether desaturation during 6-min walk test (6MWT) can be a predictor for osteoporosis risk. METHODS This was a retrospective cross-sectional study. Sixty-six non-CF bronchiectasis patients were enrolled. Lung function, walking distance, the lowest oxygen saturation (SpO2), the fall in SpO2 (ΔSpO2), and the distance-saturation product (DSP) were determined during the 6MWT. Desaturators (n = 45) were defined as those with ΔSpO2 > 10% or the lowest SpO2 < 88%. Bone mineral density (BMD) was determined through dual-energy X-ray absorptiometry. The severity of non-CF bronchiectasis was evaluated using high-resolution computed tomography. RESULTS Osteoporosis was evident in more desaturators (82%) than non-desaturators (43%, p < 0.01). BMD at the level of the femoral neck was significantly lower in desaturators than in non-desaturators (- 3.6 ± 1.1 vs. - 2.4 ± 0.9, p < 0.01). BMD was correlated positively with the lowest SpO2 and negatively with ΔSpO2 and severe exacerbations. In multivariate linear regression analysis, desaturation during 6MWT was the most significant predictive factor for osteoporosis (95% confidence interval - 1.60 to - 0.26, p = 0.01). Other risk factors included old age, low body mass index and severe exacerbation. CONCLUSIONS Exertional desaturation during the 6MWT was a significant predictive factor for osteoporosis in Asian non-CF bronchiectasis patients. The 6MWT may be useful in identifying the osteoporotic phenotype of non-CF bronchiectasis and increasing clinician awareness to promote early intervention.
Collapse
|
47
|
Stothers CL, Luan L, Fensterheim BA, Bohannon JK. Hypoxia-inducible factor-1α regulation of myeloid cells. J Mol Med (Berl) 2018; 96:1293-1306. [PMID: 30386909 DOI: 10.1007/s00109-018-1710-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/02/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022]
Abstract
Hematopoietic myeloblasts give rise to macrophages, dendritic cells, and neutrophils. Circulating myeloid cells detect invading microbes using pattern recognition receptors and subsequently orchestrate an innate immune response to contain and kill the pathogens. This innate immune response establishes an inflammatory niche characterized by hypoxia due to host and pathogen factors. Hypoxia-inducible factor (HIF) transcription factors are the primary regulators of the myeloid response to hypoxia. In particular, HIF-1α is a critical hub that integrates hypoxic and immunogenic signals during infection or inflammation. Hypoxia induces HIF-1α stabilization, which drives metabolic and phenotypic reprogramming of myeloid cells to maximize antimicrobial potential. HIF-1α activity in myeloid-derived cells enhances the host response to infection, but may also play a role in pathogenic inflammatory processes, such as atherosclerosis. In this review, we summarize recent advances that have elucidated the mechanism by which myeloid cells regulate HIF-1α activity and, in turn, how HIF-1α shapes myeloid cell function.
Collapse
Affiliation(s)
- C L Stothers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - L Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - B A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Sturrock A, Woller D, Freeman A, Sanders K, Paine R. Consequences of Hypoxia for the Pulmonary Alveolar Epithelial Cell Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2018; 201:3411-3420. [PMID: 30381478 DOI: 10.4049/jimmunol.1701387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
Pulmonary innate immune responses involve a highly regulated multicellular network to defend the enormous surface area of the lung. Disruption of these responses renders the host susceptible to pneumonia. Alveolar epithelial cells (AEC) are a critical source of innate immune molecules such as GM-CSF, which determine the functional maturation of alveolar macrophages. In many pulmonary diseases, heterogeneous ventilation leads to regional hypoxia in the lung. The effect of hypoxia on AEC innate immune function is unknown. We now report that exposure of primary murine AEC to hypoxia (1% oxygen) for 24 h results in significant suppression of key innate immune molecules, including GM-CSF, CCL2, and IL-6. This exposure did not cause toxicity but did induce stabilization of hypoxia-inducible factor 1α protein (HIF-1α) and shift to glycolytic metabolism. Focusing on GM-CSF, we found that hypoxia greatly decreased the rate of GM-CSF transcription. Hypoxia both decreased NF-κB signaling in AEC and induced chromosomal changes, resulting in decreased accessibility in the GM-CSF proximal promoter of target sequences for NF-κB binding. In mice exposed to hypoxia in vivo (12% oxygen for 2 d), lung GM-CSF protein expression was reduced. In vivo phagocytosis of fluorescent beads by alveolar macrophages was also suppressed, but this effect was reversed by treatment with GM-CSF. These studies suggest that in critically ill patients, local hypoxia may contribute to the susceptibility of poorly ventilated lung units to infection through complementary effects on several pathways, reducing AEC expression of GM-CSF and other key innate immune molecules.
Collapse
Affiliation(s)
- Anne Sturrock
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Diana Woller
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Andrew Freeman
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Karl Sanders
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Robert Paine
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and .,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
49
|
Hu X, Liu J, Zhao G, Zheng J, Qin X. Retracted
: Long non‐coding RNA GAS5 aggravates hypoxia injury in PC‐12 cells via down‐regulating miR‐124. J Cell Biochem 2018; 119:6765-6774. [DOI: 10.1002/jcb.26870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoli Hu
- Department of Rehabilitation MedicinePeople's Hospital of RizhaoRizhaoShandongChina
| | - Juan Liu
- Department of NeurologyPeople's Hospital of RizhaoRizhaoShandongChina
| | - Gang Zhao
- Department of Rehabilitation MedicinePeople's Hospital of RizhaoRizhaoShandongChina
| | - Jiaping Zheng
- Department of NeurologyPeople's Hospital of RizhaoRizhaoShandongChina
| | - Xia Qin
- Department of NeurologyPeople's Hospital of RizhaoRizhaoShandongChina
| |
Collapse
|
50
|
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2017; 122:30-51. [PMID: 29458788 DOI: 10.1016/j.critrevonc.2017.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX)-induced toxicity and resistance are major obstacles in chemotherapeutic approaches. Despite effective in the treatment of numerous malignancies, some clinicians have voiced concern that DOX has the potential to cause debilitating consequences in organ tissues, especially the heart. The mechanisms of toxicity and resistance are respectively related to induction of reactive oxygen species (ROS) and up-regulation of ATP-binding cassette (ABC) transporter. Curcumin (CUR) with several biological and pharmacological properties is expected to restore DOX-mediated impairments to tissues. This review is intended to address the current knowledge on DOX adverse effects and CUR protective actions in the heart, kidneys, liver, brain, and reproductive organs. Coadministration of CUR and DOX is capable of ameliorating DOX toxicity pertained to antioxidant, apoptosis, autophagy, and mitochondrial permeability.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|